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ABSTRACT

The graph edit distance (GED) is a widely used graph dissimilarity measure that
quantifies the minimum cost of the edit operations required to transform one graph
into another. Computing it, however, involves solving the associated NP-hard
graph matching problem. Indeed, exact solvers already struggle to handle graphs
with more than 20 nodes and classical heuristics frequently produce suboptimal
solutions. This motivates the development of machine learning methods that ex-
ploit recurring patterns in problem instances to produce high-quality approximate
solutions. In this work, we introduce GELATO, a graph neural network model
that constructs GED solutions incrementally by predicting a pair of nodes to be
matched at each step. By conditioning each prediction autoregressively on the
previous choices, it is able to capture complex structural dependencies. Empiri-
cally, GELATO achieves state-of-the-art results, even when generalizing to graphs
larger than the ones seen during training, and runs orders of magnitude faster than
competing ML-based methods. Moreover, it remains effective even under limited
or noisy supervision, alleviating the demand for costly ground-truth generation.

1 INTRODUCTION

Graphs are a common representation for structured data, with applications in domains such as chem-
istry, biology, social networks, and computer vision (Wu et al,[2021). A fundamental challenge in
graph analysis is measuring the similarity between two graphs. Perhaps the most natural definition
of such (dis-)similarity is the graph edit distance (GED), which quantifies the minimum cumulative
cost of transforming one graph into another through a sequence of edit operations, including node
and edge insertions, deletions, and substitutions (Bunke & Riesen, 2009; Blumenthal & Gamper,
2017). In practice, GED computations are commonly formulated as a graph matching problem,
which provides a finite and algorithmically tractable representation of edit paths.

Despite its conceptual appeal, computing the GED is a notoriously NP-hard problem (Bougleux
et al.l 2017), with exact solvers, often based either on A* search (Riesen et al., 2007) or integer
linear programming (Lerouge et al., [2017), struggling to solve instances with more than 20 nodes.
Classical heuristics have been proposed to mitigate this challenge, but often trade their computa-
tional efficiency with unsatisfactory solution quality (Carletti et al.,|2015; Blumenthal et al.| [2020).

This difficulty has sparked growing interest in machine learning (ML) approaches to approximate
the GED. While earlier works (Bai et al.,2019; Ranjan et al., [2022]) focused on regressing the scalar
value for the GED, these approaches do not return the edit path or the matching that would yield the
predicted distance value, thus lacking interpretability. Moreover, such predicted values might not be
integral upper bounds to the GED, and could therefore not be attained by any matching.

More recent work has instead focused on the combinatorial nature of the problem, seeking to find
good feasible solutions (i.e., edit paths or matchings) to the problem via ML models, thus providing
interpretable matchings, and, more importantly, guaranteeing that the provided distances are upper
bounds to the true distance. Some models like GENNA* (Wang et al.,[2021)) and MATA* (Liu et al.,
2023b) use ML to guide the A* search, but show limited scalability, hindering their applicability.
Other models like GEDGNN (P1ao et al., [2023)) and GEDHOT (Cheng et al., 2025) take the approach
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Figure 1: Conceptual visualization of GELATO. Graph matchings are generated in a step-by-step
manner. In each step, GELATO is fed autoregressively the previous partial matching, and it predicts
the next source-target node pair to be matched, until every source node has been mapped.

of transforming the graph matching problem into some variant of a linear assignment problem,
which is polynomially solvable, by learning the assignment costs. This approach is used also in
several classical heuristics (Blumenthal et al., 2020). However, since it computes all assignment
costs independently from each other, it might miss the interdependencies between node matches.

Contributions In this work, we formulate the solution of the GED problem as a sequential
decision-making process, where a solution (i.e., a node matching) is constructed incrementally in a
step-by-step manner, as visualized in Figure[I] In particular, each intermediate matching defines a
subproblem, and our model proceeds in an autoregressive fashion: it predicts the next pair of nodes
to be matched conditioned on the set of matches predicted so far. This autoregressive process ensures
that the decision at each stage leverages both the structural information of the graphs and the history
of previous matches, allowing the model to make more accurate predictions. This novel recursive
formulation naturally connects GED to the broader field of neural combinatorial optimization (Ben-
gio et al.| 2021} |Cappart et al.|[2023)), where learning to exploit structural regularities across problem
instances is key to efficiency and generalization (Drakulic et al., 2023)).

To this end, we introduce GELATO (Graph Edit distance Learning via Autoregressive neural
combinaTorial Optimization), a model that autoregressively predicts node matches using a graph
neural network, progressively constructing an approximate solution to the GED instance at hand.

Empirically, we show that GELATO achieves state-of-the-art solution quality on both established and
newly introduced benchmarks, and performs well on graphs larger than those seen during training.
Moreover, GELATO is substantially faster, often by up to two orders of magnitude, than compet-
ing ML-based approaches, and remains effective even when trained with limited or noisy supervi-
sion. This robustness directly addresses one of the central bottlenecks in GED research, namely the
scarcity of ground-truth matchings, whose exact computation is NP-hard.

1.1 ADDITIONAL RELATED WORK

The task of regressing the GED value has been pioneered by SIMGNN (Bai et al, [2019) and later
tackled by several models, including GMN (L1 et al., [2019), H2MN (Zhang et al., 2021), ERIC
(Zhuo & Tan,2022), GREED (Ranjan et al.|[2022), GRAPHEDX (Jain et al.,[2024a), and GRAPHSIM
(Bai et al.||2020). Beyond the models mentioned in the introduction, several works have tackled the
harder yet more informative task of producing GED solutions, such as GOTSIM (Doan et al., [2021])
and NOAH (Yang & Zou, 2021). Recently |Verma et al.| (2025) introduced GRAIL, an LLM-based
model that produces code for GED heuristics.

The deep graph matching (Fey et al., 2020) field, albeit related to the GED one, focuses on matching
fewer and larger graphs, often coming from computer vision (Gao et al.,2021a; Liu et al.,|2025)), and
usually maximizing the affinity of matched nodes and edges (Yu et al.||2019) rather than minimizing
cumulative costs. In this setting, |Liu et al.| (2023a)) introduced a model that predicts node matches
sequentially, and is trained with reinforcement learning rather than supervised learning.

In general, neural combinatorial optimization focuses on designing machine-learning-based heuris-
tics for NP-hard problems, with examples including TSP (Vinyals et al., 2015} Bello et al., 2016;
Khalil et al., 2017), CVRP (Nazari et al., 2018)) and the knapsack problem (Drakulic et al., [2023).
Approaches span both supervised learning (Fu et al.|2021)) and reinforcement learning (Kool et al.,
2019;|Zhang et al.| [2024). Further related work is discussed in Appendix
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2 PRELIMINARIES

A graph is a tuple G = (Vg, Eg, {), with Vi a finite set of nodes, Eg C {{u,v}: u# v € Vg}
a set of undirected edges, and ¢ : Vo U Eg — X a function assigning nodes and edges to a label
of a finite alphabet X. The neighborhood of a node is given by N (v) = {w € Vi : {v,w} € Eg}.

Graph Edit Distance The graph edit distance assesses the similarity between two graphs. In par-
ticular, it is computed as the minimum cumulative cost of the edit operations required to transform
one graph into another, with edit operations being node and edge insertion, deletion, and substitu-
tion, each with associated costs. If the costs are a metric, GED is a metric (Justice & Herol 2006).

In fact, GED can be equivalently defined as a graph matching problem or as a quadratic assignment
problem, which is more suitable for being solved algorithmically (Bougleux et al.,[2017). We define
the set of valid matchings M(G1,G2) = { C Vi x Vo | V(u,v), (v/,v") € p: uw=1u <
v = v'}, i.e. a set of node pairs such that no source node and no target node is repeated. Given
a valid matching 1 € M(G1,G2), we call u= = {(u,e): u € Vi, P(u,v) € pu} the set of source
node deletions and it = {(g,v): v € Va, P(u,v) € pu} the set of target node deletions. We denote
f=pUp~ UpT. We call a node pair (u,v) € u a match, to distinguish it from a matching.

Definition 1 (Graph Edit Distance (Bougleux et al.l 2017)). Let Gy and G2 be graphs. The graph
edit distance (GED) between Gy and G is defined by GED(G1, G2) = min,c pm(a, ,ap) ¢(1), with

C(N’): Z CH(G13G27uvv)+ Z C@(Gl,GQ,(U,w),(’U,Z)),

(u.v)€R (w0),(w,2)€f

where c,, is the cost function for node edit operations and c. for edge edit operations (see Def. [3).

Graph neural networks Message passing graph neural networks (GNNs), for a given graph G,
produce for each node v € Vg, at each layer £ = 1,..., L, the embeddings h! € R% by taking
into account messages coming from its neighbors A/ (v). More formally, the embedding of node v is
updated as hf = fupa (RS, fage (RS i u € N(v)})), where fagg and fupa are the aggregate
and the update operations, respectively. The first layer of the GNN is fed with the initial node
embeddings kY, e.g., one-hot encodings of the node labels.

3 GRAPH EDIT DISTANCE AS A DECISION PROCESS

In this section, we highlight how the graph edit distance problem can be naturally cast as a sequen-
tial decision process (Bellman| [1954), and how this perspective can be exploited in the design of
machine learning models. This connects the GED problem with a broader line of work on neural
combinatorial optimization, where problems are framed as sequential or Markov decision processes
in order to leverage policy-based models and dynamic search strategies (Drakulic et al.| 2023).

In particular, a sequential decision process in the context of combinatorial optimization is a discrete
and deterministic framework for solving problems where a solution is constructed step by step. At
each step, the system is in a state s € S representing a partial solution, and the algorithm selects an
action a € A(s) from the feasible set of actions. The action maps the current state to a successor
state via a transition function (s,a) — s’. The objective is to construct a sequence of actions that
leads from an initial state to a terminal state while minimizing the cost of the terminal state. This
formulation mirrors the principles of classical dynamic programming, where optimal solutions are
obtained by decomposing the problem into subproblems and reasoning recursively over states.

Intuitively, the GED problem solution can be formulated as a sequential decision process by pro-
gressively building the matching between the source and target graph. At each step, one selects a
node of the source graph and assigns it to a node of the target graph, while ensuring consistency with
the partial matching constructed so far. To define this formally, we first introduce a generalization
of the GED problem where some matches are already fixed.

Definition 2 (Graph edit distance with fixed matches). Let G1, G be graphs. Let p € M(G1, Gs2)
be a matching between G1 and G5. Then the graph edit distance with fixed matches (GEDFM)
problem on (G1, G, ) asks to find i* = arg ming, e pq(q,,Gz): ucv (V). We denote the value of
the optimal solution as GEDFM(G1, G, 1) = c(u*).
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Figure 2: (a) A pair of graphs and a possible surrogate cost matrix for node pairs. Entries with the
same color must have the same value, as their node pairs are indistinguishable. (b) The two node
matchings based on the matrix in panel (a) have the same linear-assignment cost, but the one on
the right is suboptimal due to inconsistent matches, such as (u1,v1) and (us,vg). This happens
because the linear assignment cannot capture pairwise dependencies between matches. (c¢) Once
the match (u,v1) is fixed and interpreted as an auxiliary edge, pairs (us, vs) and (us, vg) are not
indistinguishable anymore. Thus, autoregressive models can make a more informed choice.

To formulate the GED problem as a decision process, we define the state space S as the set of
GEDFM instances. In particular, for the GED problem on input graphs G1, G2, we define the initial
state as the GEDFM instance (G1, G2, ). Note that each state s = (G1, Ga, 1), even if u leaves
some nodes unmatched, represents a valid solution to the matching problem between G and Gs.
Indeed, the unmatched nodes belong to the set of source and target deletions p+ and p~. Therefore,
in our search space, any such state is also a valid terminal state. Then, in a state s = (G, Ga, ),
the set of actions is any pair of unmatched source and target nodes, i.e. A(G1,G2,pu) = {(u,v) €
Vi x Vo : P(w, 2) € p withw = w or z = v}. This defines the recursion

EDFM = mi i EDFM .
GEDFM(Gy, Go ) = min {e(i) ,  min  GEDFM(Gy, Go U {(u,v)}) |

This recursive formulation mirrors the structure exploited in classical search-based approaches such
as A*. A straightforward constructive heuristic would be to select, at each state, a single action
guided by a surrogate scoring function. In our method, we replace hand-designed surrogates with a
learned policy, by predicting the next action directly from the current state using a GNN. This casts
GED as a sequential prediction problem, where the node matching is built autoregressively and each
decision is conditioned on previous ones, which allows to capture dependencies between matches.

A class of non-sequential methods is the one of linear-assignment-based heuristic algorithms, which
include, with some slight variations, both classical heuristics such as NODE and BRANCH (Blumen-
thal et al.,[2020), but also several ML-based ones such as GEDGNN (Piao et al.| 2023)) and GOTSIM
(Doan et al.||2021). These algorithms first compute a surrogate cost associated with matching each
node u € V; to v € Vs, obtaining a surrogate cost matrix C' € RIViIXIV2l Once this matrix is
obtained, the matching is computed by solving the linear assignment problem on C'. Since C' is not
updated as the matching progresses, these methods cannot adapt decisions to previous choices and
thus fail to capture interdependencies between assignments. Indeed, for certain graph pairs, such
as the ones represented in Figure [2] no function based on node orbits can yield a matrix C' that
guarantees the optimal GED solution, showing that such models are not expressive enough.

If, however, we use a sequential method and the surrogate cost matrix is updated after each action,
it can use information from earlier matches and capture these dependencies. In fact, Lemma [I]
(discussed in Appendix [D) shows that there exists a function such that greedily selecting a pair at
each step recovers the optimal solution, although computing this function in general is intractable.
However, under a restricted distribution of instances (e.g., small molecules, which have recurring
substructures (Pellizzoni et al., 2025)), we can learn such a function with a ML model. This insight
is the core of our model’s architecture.

3.1 AN EFFICIENT STATE-SPACE FOR GED WITH PARTIAL MATCHES

Having formalized the GED problem as a sequential decision process, we address the problem of
exploring its state space efficiently. The core principle in the dynamic programming paradigm is to
exploit overlapping subproblems to reduce the search space. Crucially, each subproblem must be
represented in an efficient and concise way to obtain a reduction of the search space.
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Figure 4: Solid arrows show an optimal p*. While
Figure 3: Two different GEDFM instances are (uo,v3) € p*, it is automorphic to (us,v2) € p*,
mapped via reduce to the same, smaller sub- and hence included in M ™. (ug4,v3) is not auto-
problem, thus reducing the search space. morphic to any pair in p*, and is thus in M.

In our case, for each partial solution for the GED problem (i.e., a GEDFM instance), we construct a
possibly smaller GEDFM instance that corresponds to the same subproblem. Since multiple partial
solutions will be mapped to the same subproblem, we effectively reduce the size of the search space.

Intuitively, we reduce the graphs in a given instance by removing all nodes that cannot influence the
subsequent matches. Clearly, if a node has not been matched yet, it cannot be removed. Similarly,
if a matched node v has an unmatched neighbor v, then u cannot be removed, as it may influence
the choice of the match for v. However, if a node and all of its neighbors are matched, it can no
longer directly influence any other match, and therefore, it can be removed. In particular, consider
a GEDFM instance (G, Ga, ) and let preduce C g be all pairs (u v) for which all neighbors of
u or all neighbors of v are matched. Formally, p*°%® = {(u,v) € p : Yw € N(u),3(w,z) €
p oor Vz € N(v),3(w,z2) € p}. Remove from G all nodes u with (u,v) € p 4" (and their

incident edges), and analogously from G’ all nodes v with (u,v) € p*®duce, Let the resulting graphs
be G/ and G, and let 11/ = p \ "4, Then, we denote the constructed instance (G4, G5, i) =
reduce(G1, Ga, 11).

The following result shows that the optimal solutions for the original and reduced instances are
equivalent, meaning that if we restrict an optimal matching p* of an instance to the nodes that are
not deleted in the reduction, it remains an optimal matching for the reduced instance.

Theorem 1. Let (G1, Ga, ) be a GEDFM instance and p* 2 1 an optimal matching for it. Then,
the instance (G, G4, 1) = reduce(G1, Ga, i) has an optimal matching p* N (VY x V3).

Figure [3] depicts two distinct GEDFM instances that are equivalent to the same subproblem, which
is a smaller GEDFM instance. Here, the nodes w1, uo, v1, vo are deleted from the graphs in the
instance on the left, which yields the reduced instance at the center. Similarly, the deletion of w1,
way, w3, 21, 22 and z3 from the instance on the right yields (possibly after renaming the nodes)
the reduced instance in the center, even though the original instances were different. In fact, this
reduction procedure generally leads to a considerably smaller state-space compared to naively rep-
resenting GEDFM instances. Feeding the reduced instances to our ML model then enables it to learn
from a more compact instance space, possibly making the learning process easier, as formalized in
(Drakulic et al.,[2023], Section 3).

4 GELATO: AN AUTOREGRESSIVE MODEL FOR GED PREDICTION

In this section, we describe the architecture of our model, GELATO (Graph Edit distance Learning
via Autoregressive neural combinaTorial Optimization). In a nutshell, the model is a GNN that
takes as input a graph representation for a GEDFM instance, and outputs a prediction for an action
to be taken, i.e. a pair of yet-unmatched nodes to be matched. This is trained as a link prediction
task, with ground-truth given by the optimal graph matchings on the training instances. Then, at
inference time, a sequence of actions is predicted autoregressively until the matching is completed.
This matching is the output of the model. The next sections detail each of the components.

4.1 FRrROM GED SUBPROBLEMS TO GRAPHS

In order to process GEDFM instances with a GNN model, we encode them as graphs. In particular,
let (G1, G2, 1) be a GEDFM instance. Let H = (Vi, Ey, £g7) be a graph obtained as the disjoint
union of the two graphs, with nodes of G; labeled with an additional label src, nodes of G5 labeled
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with a label trg. Moreover, it contains additional edges (u,v) € V; x V; for each match (u, v) € p,
which take part in the message passing. Practical implementation details are reported in Section[F.2]

In fact, we can show (Lemma that the map (G1, G2, ) — H is injective. Therefore, a graph-
encoded instance discards no information, and is sufficient to make accurate predictions. In practice,
we encode the src and trg labels as 2-dimensional one-hot encodings appended to node features.
Moreover, we label edge-encoded matches with a label match, encoded as a binary flag appended
to the edge attribute vectors, to facilitate the decoding process. Finally, given a GEDFM instance,
we remark that we first transform it into its reduced subproblem, as described in Section and
then into its graph-encoded representation before feeding it to the action-predictor model.

4.2 MODEL ARCHITECTURE

The action predictor is implemented as a GNN model for link prediction tasks. First, node and edge
labels are embedded via a linear layer to vectors kY and e, , in a d-dimensional space. We then use
GINE message passing layers (Hu et al., |2020a), as they can take into account also edge features,
and they are provably as expressive as I-WL (Xu et al., 2018]). Moreover, we endow each layer with
batch normalization (Ioffe & Szegedy, 2015) and residual connections, as they have been shown to
be beneficial to the predictive performance of GNN models (Luo et al.,[2025)). In particular, we have

REFYL = b + ReLU (BatchNorm <MLP(h§ + > ReLU(K, + ew)))) e R
vEN (u)

Once the node-level representations are obtained after £ layers, one can obtain a scalar representa-
tion for a pair of (source and target) nodes by concatenating them and feeding them to an MLP as
follows: oy, = MLP (hﬁ ||hf) This can be interpreted as the logit of the likelihood of the match
(u, v) to be chosen as the next action in the decision process.

4.3 TRAINING

The goal of the model is, given a (graph-encoded) GEDFM instance (G1, G2, i1), to predict the next
pair of nodes to match. To do so, the model is trained as a link prediction task (Zhang & Chen,
2018)), where each link is formed by a pair of unmatched source and target nodes.

In particular, the model is trained, for a training instance (G1, G2, 1) with ground-truth matching
w*, to give a high likelihood to any pair of nodes in the optimal matching that is not yet included in
the current matching, i.e., u* \ u. We thus don’t make the model learn a pre-specified order in which
to perform actions: any matching that belongs to p* \ p is regarded as a valid action.

Ground truth construction Given a set of graph pairs, we obtain the optimal matchings using
an exact solver such as Mip-F2 (Lerouge et al., 2017). Then, for each such pair (G1,G3), we
construct multiple training instances by sampling a set U of source graph nodes, and letting the
partial matching be p = {(u,v) € p*: v € U}. Since the optimal solution for the instance
(G1, G, ) is still p*, this allows us to generate several training instances for each graph pair while
computing the optimal solution only once, which automatically yields a data-augmenting effect.

Dealing with automorphic matches An issue that might arise during training is that conflicts may
occur if two node pairs are indistinguishable, but only one is part of the optimal matching p*. Since
indistinguishable pairs must be assigned identical embeddings, this conflict provides contradictory
supervision to the model. For instance, consider the graphs of Figure ff] where the optimal matching
w* is depicted by solid green arrows. While the node pair (ug,vs) is not in p* and would thus
naively be considered a negative edge, it is indistinguishable from (us,v2) € p*. Formally, this
indistinguishability is caused by automorphisms. See Appendix [C|for a formal definition. However,
we can show (Lemma that if a pair of nodes (u,v) ¢ p* is automorphic to a pair (w, z) € p*,
denoted here by (u, v) ~ (w, z), then there exists another optimal solution * such that (u, v) € v*.
Therefore (u,v) should be considered a positive link. Then, we take positive link set as M+ :=
(u*\ p)/~, i.e., each pair-automorphism class in the ground truth is added once, and the negative
setas M~ := (A(G1,Ga, M)\ M) /~, i.e. each pair-automorphism class that is not in the positive
set is added once.
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4.4 INFERENCE

At inference, we pursue a sequential process as described in Section 3| Given two graphs G and
G, the process starts with GED instance (G1, G, ). At each step, likelihoods are computed via
the GNN model for all unmatched node pairs (u,v), and the pair with the highest score is selected.
Formally, at each step, given a graph-encoded instance (G4, G3, 1), we choose the next match to
be arg max(y, v)c A(Gy,Ga,p) Ouw- Then, we create a new instance (G, Gz, 1o U {(u,v)}), which is
reduced via the map reduce. This instance is then encoded as a graph, and finally used as the input
for the next step. Once all nodes of the smallest graph are matched, the process is completed.

While a greedy strategy as the one described above can give satisfactory results, it is very sensitive to
the choice of the first match. Indeed, while in later steps the model is informed by previous matches
(e.g., on average, neighbors of matched nodes are more likely to be matched), in the first step there
is no matching information to exploit. Therefore, to explore the solution space more broadly, we
use a simple ensembling strategy that considers multiple starting pairs. More precisely, at the initial
instance (G1, Ga, 0)), we select the top-k scoring node pairs (with respect to 0y4,v), and use each such
seed to initialize a separate search branch. In fact, to avoid selecting redundant pairs, we select the
top-k up to automorphisms. Clearly, £ = 1 reduces to the standard greedy strategy.

5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the predictive performance of GELATO on a set of novel
benchmark datasets, which we provide publicly and in an easy-to-use format alongside our code at
https://github.com/BorgwardtLab/Gelato.

Datasets We consider the established SImGNN (Bai et al., [2019)) datasets AIDS, LINUX and
IMDB, restricted to graphs up to 16 nodes. Moreover, we generate three additional datasets, taking
all graphs from the ZINC, molhiv and code2 datasets (Gomez-Bombarelli et al., 2018} [Hu et al.,
2020b), with up to 16, 16 and 22 nodes respectively. This includes datasets with no labels, only
node labels, and both edge and node labels. We randomly split the graphs into training, validation,
and test sets using a 60:20:20 ratio. Following Jain et al.| (2024b)); Roy et al.| (2025), who identified
that the established GED benchmark datasets are polluted by isomorphic graphs, we ensure that no
two graphs across different splits are isomorphic, to prevent data leakage. Moreover, for ZINC and
molhiv we additionally create a second test set “larger” with graphs from 17 to 24 nodes, and for
code2 from 23 to 30 nodes. For each split, we generate graph pairs by randomly sampling from the
available graphs, and compute the ground-truth GEDs and corresponding matchings using M1p-F2
(Lerouge et al.,2017)). All experiments use uniform edit costs, and we report additional experiments
with different edit costs in Appendix [H] Further details on datasets can be found in Appendix

We emphasize that our datasets, constructed to avoid data leakage and providing ground-truth solu-
tions for larger graphs, offer a fairer evaluation benchmark for both this work and future research.

Evaluation metrics We evaluate performance using two metrics: normalized mean average error
(nMAE) and exact hit rate (EHR). The nMAE measures the average error relative to the true values,

defined as 1/~ Ef\il % where y; denotes the true GED value and g; the predicted value. For
methods returning matchings, we have that J; —y; > 0, and the metric measures the optimality gap.

The EHR defines the fraction of predictions that exactly match the ground-truth GED value.

Baselines We evaluate a diverse set of baseline methods, including classical and learning-based
approaches. Among the classical methods, we consider BRANCH, REFINE (Blumenthal et al.||2020),
and M1pP-F2 (Lerouge et al., 2017) with a timelimit of 0.1s. For learning-based approaches, we
consider the best-performing ones, including GEDGNN (Piao et al.,|2023)), GEDHOT (Cheng et al.,
2025)), and MATA* (Liu et al.| 2023b), which produce (hard) matchings, as well as GREED (Ranjan
et al., 2022) and GRAPHEDX (Jain et al.} [2024a)), which do not. We re-train all learning-based
approaches on our datasets using the default settings. Finally, we consider the recent GRAIL (Verma
et al.| 2025) approach, which leverages large language models to generate code for GED heuristics.

For GELATO, we fix the number of GNN layers to £ = 5 and the embedding dimension to d =
128, which yields a good trade-off between representational power and memory requirements. See
Section [G] for results with different hyperparameters. We train the link prediction task using the
cross-entropy loss with the Adam optimizer (Ir = 10~3). We use up to 10° randomly selected pairs
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Method AIDS LINUX IMDB-16 ZINC-16 molhiv-16 code2-22
nMAE EHR nMAE EHR nMAE EHR nMAE EHR nMAE EHR nMAE EHR
MIP-F2019  13.0t00  63.2t1a4  0.3:0n 99.5:01  25.3zas 739515 43.Txor 6.1t07  24.1x0s  17.3:06 20.1x1.0 41.2¢2.4
BRANCH 99.0s26  1.9t0s  62.4ess  5l.leas  1lli2s  84.1:12 101.5:1a 1.0t0s  62.9r0s  0.4:0. 79.9:15 7. Tx0.0
REFINE 38.3t1s 20.0t10  56.2:20  56.6:13 5.0:21  93.4s05  52.6is5 ldso2  26.5018  6.2:07  182.1:136  5.6i0s
GREED 10.3z02  38.4:25  1l.4sos  55.6:20 4.7z05  64.6:16 9.7+0.2 24.7x14 99204 23.9:1s 8.4x0.3 36.7x1.6
GRAPHEDX  8.0:0s  51.5t06 13.80a  8l.4os  17.7:1s  49.2:0s T.Tx02 35.3:11 9.9:0s5  21.9:00 6.0+0.5 69.3:1.3
MATA* 6.5t07  66.1+26  3.Troa 89.8t0.0 0.4s01  98.2:04  18.1tos  10.7:00  14.1xon  15.5t06 5.1x02 61.1x0.0
GEDGNN 21.1t0s  38.Txoo  6.7:0s 85.8+0.0 2.3t05  95.1:07  46.6:11 35506 32.1i02  4.8:or 17.0:1.0 442612
GEDHOT 6.6:05  66.8:17  0.6x0.1 98.2+0.4 0.2:01  98.8:04  27.5x0. T.lsos  22.5:0a  9.9:04 9.0x0.4 54.6+0.0
GRAIL 2.7t01  82.1:os  0.0:00 100.0:t00 0.0z0.0 99.9:01 12.7:0s  21.3:00  8.5:02  33.1xoe 5.8t0.3 60.4x0.5
GELATO 0.1i00 99.3:0s5 0.lton 99.9:0.1 0.1:05  99.9:01  0.7t01 911111  0.5:0a 95.3:0s 0.6:0a  95.T:0s

Table 1: Overall solution quality of methods in terms of nMAE () and EHR (1) in %.

of training graphs, subsampling from each 40 random sub-instances, as described in Section .3
Model selection is based on validation nMAE. We use ensembling with k¥ = 32, unless noted. We
report mean and standard deviation over five runs, each using 1000 random pairs of test graphs.

5.1 MAIN RESULTS

We start by evaluating the overall solution quality of our approach. Table [I] demonstrates that
GELATO consistently outperforms all baseline methods on both considered evaluation metrics, or
matches the strongest baselines on datasets where results are close to optimal. The improvements
are particularly substantial on AIDS, ZINC-16, molhiv-16, and ZINC-22, where GELATO achieves
nMAE that is one order of magnitude lower than the second-best performing baseline. On LINUX
and IMDB-16, the performance is already quite saturated, which limits the scope for further differ-
entiation. Notably, even relatively simple baselines, such as BRANCH and REFINE, are quite com-
petitive on these two benchmarks. This can likely be attributed to the high number of isomorphic
graphs in the test sets, as well as a high degree of automorphisms, which increases the likelihood
of many matchings being optimal. Since ZINC-16 and molhiv-16 have edge labels, and most ML-
based baselines do not explicitly use edge labels, we report additional results on datasets variants
with no edge labels in Table[2] The results further confirm GELATO’s superior performance.

Finally, we report in Table [3]inference times, in milliseconds per pair. We observe that the runtimes
of the heuristics generated by GRAIL vary depending on the code selected for each dataset. Con-
cerning the learning-based methods, MATA* scales exponentially with graph size, while GEDGNN
and GEDHOT suffer from high computational demands due to their reliance on linear assignments
and ensembling, often exceeding one second per pair. Compared to these learning-based methods,
GELATO, due to its GPU-friendly implementation, achieves runtimes two orders of magnitude lower.
For a more comprehensive comparison highlighting GELATO’s efficiency, we provide the inference
runtimes on CPUs in Appendix [Hl demonstrating that GPU runtimes are up to 10 times faster than
those on CPU. Additionally, we report the training runtimes of all learning-based methods, showing
that GELATO s training is faster compared to other methods that generate matchings.

5.2 GENERALIZATION TO LARGER GRAPH SIZES

We now assess the generalizing capabilities of GELATO to larger graphs compared to the ones seen
during training. This setting reflects the most critical use case for GED prediction models. For small
graphs, exact or near-optimal solutions can be obtained using classical algorithms such as M1p-F2,
while it becomes computationally infeasible as graph size grows. Thus, the practical value of ML-
based approaches lies in their ability to transfer knowledge from small training instances to larger
instances, where exact solvers are no longer applicable.

Graphs from the “larger” test sets were grouped based on their node counts, with 500 pairs
randomly sampled from each group. We report mean and standard deviations over five runs. To
put results into perspective, we also include groups from the (in-distribution) test sets. The results,
illustrated in Figure[5} show that while the performance of GELATO decreases with increasing graph
sizes, the decline is gradual and does not accelerate compared to the in-distribution sizes. This
suggests that the reduction in performance is likely due to the complexity of the problem (e.g.
the number of feasible solutions) scaling with the graph size, rather than the model’s ability to
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Method ZINC-16 molhiv-16 Method AIDS  LINUX IMDB-16 ZINC-16 molhiv-16  code2-22
nMAE EHR nMAE EHR

MiP-F2019  51.6:10  4.3t06  43.2t12  10.Txo07 Mip-F2.15) 100.0:0.0  100.0t0.0  100.0t0.0  100.0x0.0 100.0:0.0 100.0+0.0
BRANCH 1273815 1.0x0s  114.0:17  0.4s02 BRANCH 0.1x0.0 0.0x0.0 0.1x0.0 0.1x0.0 0.1x0.0 0.3+0.0
REFINE 63.3:a2  1.0kos  45.2:22  3.1:o7 REFINE 0.2:0.0 0.1x0.0 0.2+0.0 0.9:0.0 0.8:0.0 2.9:0.0
GREED 9.3t0s  29.1:27  T.2t04  37.2423 GREED 0.1+01 0.101 0.1+0.1 0.1+0.1 0.1+01 0.1+0.1
GRAPHEDX  6.5:02 45.3:t10  5.Tx0s  46.3:25 GRAPHEDX 0.3+0.2 0.3+0.2 0.3+0.2 0.3+0.2 0.3+0.2 0.3+0.2
MATA* 19.3:05  13.6:11 19.5:04  16.0x0s MATA* 6.8:0.2 7.9+0.4 174051343 242443 375501 6329.8:27243
GEDGNN 48.5x0.0  4.1sos 44.0:10  6.7z07 GEDGNN 742.04205  350.7¢2.3  215.4e00  1383.2000 1252.Ti6s  2813.9:30.2
GEDHOT 22.0s0.4 129207 18.5:07 21.8:14 GEDHOT 1210.7:23.4 980.5:20.5 410.5416.5 2064.7x155 1954.1x75.5 3951.65134.6
GRAIL 8.3t0s  39.6:17  6.5:02 52514 GRAIL 8.4c0.1 81401 23.440.4 441402 18.9¢0.1 99.6+4.3
GELATO 0.7:01 92.3:07 0.5:02 95.6:05 GELATO 3.2t0.2 29401 3.6+0.2 4.2+0.2 4.1x0. 5.3t0.1

Table 2: Solution quality on edge- Table 3: Average inference runtime per graph pair (ms).
unlabeled graphs. Eval. metrics in %.
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Figure 5: Test solution quality across different graph sizes (EHR in %). Training was conducted on

graph pairs up to size 16, 16, and 22. The dashed line separates in- from out-of-distribution data.

generalize. Only results for code2 show a slightly different behavior, as the performance on unseen
graph sizes seems to decline at a faster pace, which might be due to a distribution shift in the graphs.

Additionally, the results demonstrate that GELATO consistently outperforms all baselines across all
graph sizes, showing its strong performance in both in-distribution and out-of-distribution cases.

5.3 ABLATION STUDIES AND ROBUSTNESS TO LIMITED SUPERVISION

In the following, we isolate and assess the impact of key components and parameters of GELATO.
Results are reported in Table As a baseline for the ablation studies, we set £k = 1, reducing
inference to the greedy strategy. As expected, this results in a noticeable performance drop compared
to GELATO with & = 32, highlighting the importance of a broad search space coverage. However,
even with k£ = 1, our approach still outperforms all baseline methods in several cases.

First, we ablate the role of sequential decision making by predicting the entire matching in one step,
instead of generating it autoregressively. Specifically, given two graphs G and G, and pairwise
match log-likelihoods between vertices v € V4 and v € V>, computed from o, ,, we compute
the matching corresponding to the optimal linear assignment between V; and V5. The results (row
“No sequential process”) show a significant performance drop when this strategy is applied, clearly
demonstrating that the autoregressive approach is critical to the performance of GELATO.

Second, we ablate the instance reduction discussed in Section@ which shrinks the search space.
In this ablation, we omit the reduction step and operate directly on the original, unreduced instances.
The results (row “No instance reduction”) show that the reduction has an overall positive impact on
predictive performance, albeit to a lesser degree compared to the sequential decisions.

Third, we investigate the strategy for selecting positive and negative links in the presence of au-
tomorphic matches. Recall from Section that we choose as positive links the set (u* \ u)/~
and ensure that no pair automorphic to any element in p* is contained in the negative link set to
avoid contradictions in the training data. Instead, we now consider the naive strategy which for an
instance (G1, Gz, pt) selects the set 1*\ i1 as positive links and all others A(G1, G2, M)\ u* as nega-
tives. The results (see row “Automorphic matches”) vary across different datasets, with performance
deteriorating in some cases, but improving in others. One possible explanation for the observed im-
provements is that the naive strategy effectively down-weights all automorphic pairs and therefore
postpones matching them, which may be beneficial on some datasets. In fact, using the two training
strategies as a dataset-specific hyperparameter can yield even better solution quality.
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Method AIDS LINUX IMDB-16 ZINC-16 molhiv-16 code2-22
nMAE EHR nMAE EHR nMAE EHR nMAE EHR nMAE EHR nMAE EHR
GELATO (k=1) 6.4t05  T4.2:10  9.0:15  92.8t0s  4.0:22  98.1t0a  8.6:04 4140 5.dvos 52814 20.6:a5  65.3tes

No sequential process ~ 61.0x1.5  11.6x06  81.5tas  60.6:15  15.9:34  78.8:00 70.4t16 2.0:0s  48.0z10  2.5:06  38.8:13  23.0:0s
No instance reduction ~ 8.0t1.0  68.7t05 50.9:s0 84.5:00  4.5:22  97.0t04  9.4vor  38.2:21  5.5ros  51.5i20 145510 60.9:24
Automorphic matches ~ 7.5:11 72.1x1s  16.5:26  90.0:12 0.1too  99.4t0n  8.7x0s 412001 6.3t0s 505200 9.5:1s 70951

Table 4: Ablation studies of key components of GELATO. Solution quality metrics reported in %.

ZINC-16 code2-22
100 )|
100 100 100 100 100
90 90
= 90 90 80 95 954 80
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s}
801 80 60 90 90 RE=
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32 64 128 256 3 5 7 2 8 32128 32 64 128 256 3 5 7 2 8 32 128
Embedding dimension d Layers £ Ensemble size k Embedding dimension d Layers £ Ensemble size k

Figure 6: Hyperparameter study on ZINC-16 and code2-22 with varying embedding dimension
d, number of layers £, and ensembling size k, while keeping other parameters at default values
d =128, £ =5 and k = 32. We report mean and standard deviation over five runs.

Moreover, Figure |§| shows, on the ZINC-16 and code2-22 dataset, how the solution quality varies
depending on the embedding dimension d, the number of GNN layers £ and the number of ensem-
bles k. Results show that lowering the embedding dimension or the number of layers reduces model
capacity. On the other hand, increasing them yields modest gains compared to Table [T} at a higher
memory cost. Larger ensembles consistently improve results, but increase runtime. Complete results
on all datasets are reported in Section[G| There, we also show that ablating residual connections and
batch normalizations results in a slight decrease in solution quality.

Finally, in Table [5] we investigate the sensitivity of GELATO to limited or noisy supervision. A
limiting factor for training GED prediction models is the NP-hardness of computing the ground-truth
matchings to be used as supervision signal. Towards this end, we investigate how sensitive GELATO
is to being trained on fewer graph pairs, as well as on instances with suboptimal matchings.

On the ZINC and code2 datasets,
1 - Data

which are the ones whose ground Datagen. nMAE EHR Datagen. nMAE EHR

truth computation is the most com- -

. . . 10k pairs 41h  L5wo 83Lus  19h  2.0ms 90.6m0s
putationally challenging, we train |0k pairs, Tie = I~ 2.0h 17501 81.6:00  12h  L.6eis 93314
GELATO on only 104 and 103 graph  10kpairs, Tpae =01s  03h  3.7:01 626ws  03h  18wr 87.3:0s

- .2 1k pairs 04h 5500 52020 02h 43w TT.5w00
pairs. Moreover, we also train it on
10* graph pairs, where the matchings
are computed with MIP-F2 under a
strict timelimit 73, of 1 second and 0.1 seconds, and may thus be suboptimal. While the solu-
tion quality degrades, as expected, as the supervision signal worsens, we observe that GELATO still
achieves state-of-the-art performance under all weak supervision scenarios, even when training on
only 102 pairs, whose generation takes at most 0.4 cpu-hours (i.e., roughly 3 minutes on 8 cores).

ZINC-16 code2-22

Table 5: Solution quality with limited supervision

6 CONCLUSIONS

In this paper we developed GELATO, a state-of-the-art machine learning model for solving the graph
edit distance problem, based on a novel autoregressive formulation. However, it could be further
improved by designing better inference strategies (e.g., beam search) and hyperparameter search.
Moreover, we believe that the field can benefit by focusing on the generalization to larger instances,
which can be enabled by the datasets we provide here. Moreover, removing the need for supervision
from optimal matchings, which are computationally expensive to compute, would be a significant
contribution. This could be achieved by using reinforcement learning (Pirnay & Grimm), [2024),
as recently shown for network alignment 2023a). Finally, machine learning could be
leveraged even in algorithms with optimality guarantees. For example, integrating GELATO into
branch-and-bound methods for exact graph edit distance may reduce the time to reach optimality.

10
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REPRODUCIBILITY STATEMENT

Code and datasets are available at https://github.com/BorgwardtLab/Gelato.

Moreover, the details needed to reproduce our implementation and experimental setup are reported
in Appendix [F|

ETHICS STATEMENT

This paper presents work whose goal is to advance the field of machine learning. There are many
indirect potential societal consequences of our work, none which we feel must be specifically high-
lighted here.
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A LIMITATIONS

While our model shows state-of-the-art performance, we believe it can be improved in several ways,
which could be addressed by future work. First, GELATO relies on a simple ensembling strategy
at inference time, and designing better inference strategies, such as beam search, could lead to
significant performance boosts. Moreover, a dataset-specific hyperparameter search for the GNN’s
architecture and training strategy could further improve results.

Moreover, we believe that a crucial advance in the field would be improving the solution quality on
graphs larger than the ones seen at training time. In fact, removing the need for supervision from
optimal matchings, which are computationally expensive to compute, would be a possible approach
to tackle such a challenge.

B ADDITIONAL RELATED WORK

Graph Edit Distance Additional learning-based methods that tackle the GED problem are
TAGSIM (Bai & Zhaol 2021), and EGsc (Qin et al., [2021)), which address the problem of learn-
ing graph dissimilarities, as well as ISONET (Roy et al.| [2022), which focuses on graph retrieval.
Finally, a recent unpublished preprint proposed DIFFGED (Huang et al., [2025), a diffusion-based
model for graph edit distance that shows promising performance. However, their code is not pub-
licly available yet.

Usually edit costs (Definition [3)) are considered to be known. In fact, the task of learning the edit
costs, pioneered by Neuhaus & Bunke|(2004])), has been tackled with machine learning in the context
of dataset augmentations (Heo et al., 2024), biochemistry (Pellizzoni et al.,|2024), and general GED
(Leonardi et al., [2025]).

Deep graph matching and network alignment The deep graph matching (Fey et al. 2020) or
deep network alignment research field (Emmert-Streib et al., 2016; He et al., 2024) is adjacent to
the graph edit distance learning one. Although the graph matching (or network alignment) and the
graph edit distance are largely equivalent problems, the focus of learning-based methods to solve
the two problems has historically been quite different in terms of objectives, modeling, and scale.

In GED-related works the focus is usually on computing a metric space over several small graphs
(e.g., molecules) and on simple edit costs. On the other hand, in works entailing learning-based
graph matchings, the focus is usually on fewer and larger graphs, often coming from computer
vision (Gao et al) 2021b; Liu et al} 2025), and on more complex costs, usually presented in the
form of an affinity matrix (Zanfir & Sminchisescu, [2018}Yu et al.,[2019), which possibly depend on
continuous node features. Usually, the task is to maximize the affinities of matched node and edges,
or to recover some ground-truth alignment between the graphs. Several papers tackled the graph
matching problem using deep learning, including approaches based on attention (Yu et al.,[2019), on
differentiating through combinatorial solvers (Rolinek et al.,2020), on unsupervised methods (Gao
et al.,2021a) and on quadratic-assignment-based formulations (Gao et al.l [2021b)). In this setting,
Liu et al.|(2023a) introduced the RGM model, which maximizes an affinity score by predicting node
matches sequentially, similarly to GELATO. Besides from the different objective function to the one
GELATO seeks to optimize, RGM relies on a more computationally expensive product graph, where
each node represents pairs of nodes from the original graphs. Moreover, RGM does not seem to
exploit any reduction of the search space, as allowed by our Theorem|I] Finally, the model is trained
with reinforcement learning rather than supervised learning.

Neural Combinatorial Optimization The neural combinatorial optimization field, pioneered by
Vinyals et al.| (2015) and Bello et al.| (2016)), uses deep learning to construct heuristic solutions
to NP-hard problems, usually focusing on routing problems such as TSP or CVRP. Approaches
include supervised learning methods (Vinyals et al.| [2015; Joshi et al., [2019; [Fu et al., 2021} |[Luo
et al.,|2023)), like we do in this paper, but also reinforcement-learning-based methods (Nazari et al.}
2018 Kool et al., [2019; Hottung et al.| 2022; Zhang et al., 2024} [Pirnay & Grimm, [2024). See the
review in|Bengio et al.| (2021) for an overview of the field, and |Cappart et al.| (2023)) for a focus on
graph-related problems.

15



Published as a conference paper at ICLR 2026

C ADDITIONAL PRELIMINARIES
In the following, we provide additional definitions that complement Section 2]

C.1 GRAPH EDIT DISTANCE

Recall that, given two graphs Gi = (Vi, Eq,¢1) and G2 = (Va, Eq, {5), the graph edit distance
(GED) between (1 and G is defined by GED(G1, Ga) = min,ec pq(a,,¢0) ¢(1t), With

C(ﬂ): Z Cn(G11G27uav)+ Z Ce(Gl,GQ,(U,’LU),(’U,Z)),

(u,v)ER (u,0),(w,2)ER
where ¢, is the cost function for node edit operations and c, for edge edit operations. We then define
formally these cost functions.

Definition 3 (Edit cost functions). Let G1 = (V1, Eq,41) and Gy = (Va, Ea, {5) be graphs. For a
pair of nodes u € V4 U {e} and v € Vo U {e}, we define

0 ifu=cecandv =¢,

5inns(€2(v)) ifu =&, vE VQa
C7L(G17G25u7v) =

Oger (£1(w)) ifueVi, v=ce,

6;1ub(€1(u)7€2(v)) lfu S ‘/1, RS ‘/2,

where 0} . is the cost of inserting a node, 0y, the cost of deleting a node, and 0, measures the cost

of substituting node u with v.

For a pair of edges (u,w) € Ey U {e} and (v,z) € E5 U {e}, we define

0 if (u,w) =cand (v,z) =¢,

5iens e ) :f ) = ) ) 6 E b
(G, G (), (0,2)) = | o2 Fluw)=e )€ B

Iter (01 (u, w)) if (u,w) € B, (v,2) =¢,

5§ub(£1(u,w),€2(v,z)) lf(u7w) € Ela (’072) € E27

where &, is the cost of inserting an edge, 63, the cost of deleting an edge, and JS,,,, measures the

ms
cost of substituting one edge with another.

Importantly, in this paper we consider the cost function to be fixed for an entire dataset, i.e., it does
not change from one instance to another.

Moreover, we consider only the case in which 02 (la(v,2)) + 054 (u,w)) >
6¢(1 (u,w), 2(v, 2)), as this is needed to ensure the equivalence between GED and graph
matching (Bougleux et al., 2017, Proposition 1). If this is not the case, once can simply set

(01 (w, w), la(v, 2)) = 05,5 (€2(v, 2)) + 851 (€1 (u, w)).
C.2 ISOMORPHISMS AND AUTOMORPHISMS

We say that two graphs G and H are isomorphic, denoted as G ~ H, if there exists a bijec-
tive mapping 7 : Vg — Vi, called isomorphism, such that g (v) = £y (7w(v)), Yv € Vg, and
la((u,v)) =Ly ((7(u), 7(v))), Yuv € Eg, and {7 (u),7(v)} € Ey if and only if {u, v} € Eg.

The group of isomorphisms from G to itself is called the automorphism group Aut(G). Given a
graph G and nodes u, v € V¢, we say that they belong to the same orbit if 37 € Aut(G) such that
m(u) = v.

Moreover, we can define isomorphisms for graph matchings. In particular, given G1, G2, p €
M(G1,G2), and G, Gh, i/ € M(G), G5), we say that (G, Ga, i) is isomorphic to (G, G5, u')
if there exists a bijective mapping 7 : V3 UV, — V{ U V4 such that (i) 7|y, is an isomorphism from
G to GY, (ii) |y, is an isomorphism from G to G%, and (iii) {(7(u), 7(v)): (u,v) € u} = p'.
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Then, we can define the automorphism group Aut(G1, Ga, i) as the group of isomorphisms from
(G1,Ga, ) to itself. In particular, given two pairs of nodes (u,v) € Vi x V5 and (w,z) €
Vi x Va,, we say they are automorphic, denoted as (G1,Ga, p,u,v) ~ (Gi,Ga,p,w,z), if
Ir € Aut(Gy, Ga, i) such that (w(u), 7(v)) = (w, z). Given a set of graphs G, we denote the set
of pair-orbits as Vy = {(G1, G2, i, u,v): G1,G2 € G, u € M(G1,G2), u € Vi,v € Va}/~.

In fact, identifying pair-automorphisms in matchings can be reduced to finding node automorphisms
in the graph representation of the instance. For computational efficiency, we use WL classes, en-
riched with homomorphism counts from small cycles, as a proxy for automorphisms.

D PROOFS

Lemma 1. Let G be a set of graphs. Consider the following algorithm, given a GEDFM instance
(G1, Ga, 1) and a function C : Vps — R:

1. select (u,v) = argmaxq p)eA(G,,Go.n) C(G1, G2, 1, @, b);

2. set p=pU{(u,v)};

3. if A(Gy1,Ga, ) == 0 return, otherwise go to step 1

Then, there exists a function C* : Var — R such that, for any pair of graphs G1,Gs € G, the
algorithm above called with (G, G, 1) and function C* outputs an optimal matching 11*, i.e. such

that ¢(p*) = GED(G4, G2).

Proof. We construct such a function. Let f; be a map (G1,Ge, ) — v \ p mapping GEDFM
instances to the missing matches to get an optimal matching v. Let then fo = min o f; be a map that
selects one match out of the set, based on some arbitrary but universal ordering on matches. Then,
we can let C*(G1, Ga, 1, a,b) = 1if fo(G1, Ga, 1) = (a,b), and 0 otherwise.

Then, we have that at each step of the algorithm, a pair (u, v) belonging to an optimal matching is
chosen. Therefore, when the algorithm, terminates, its output is an optimal matching. O

Theoreml Let (G1, G2, 1) be a GEDFM instance and p* 2O p an optimal matching for it. Then,
the instance (G, G4, 1) = reduce(G1, Ga, 1) has an optimal matching p* N (V{ x V7).

Proof. Recall that * = arg min, e pm(q,,G,): pcw ¢(G1, Ga, V).

We have that

c(G1,Ga,v) = Z en(G1, G2, u,v) + Z ce(G1, Gz, (u,w), (v, 2))

(u,v)€ED (u,v),(w,z)€ED
u<w
= Z cn(G1, G2, u,v) + Z cn(G1, G2, u,v)
(u,v)EP\p (u,v)Ep
+ Z G17G27 u w) (”U,Z))+ Z CE(G1,G2,(U,’LU),(U,Z))
(u,v)EP\p (u,v),(w,2)Ep
(w,z)eV u<w
= Z Cn(G17G27U7v)+ Z Ce(G17G27(u7w)7(v72))+07
(u,v)EP\p (u,v)EP\p
(w,z)eD

where C does not depend on the choice of v.
Splitting the sum over edge costs, we then have

o(G1,Go,v) = > en(Gr,Gou,v) + D> ce(Gr,Ga, (u,w), (v, 2))

(u,v)ev\p (u,v)ED\p
(w,2) e\

+ Z Z <(G1, G2, (u,w), (v,z)) + C.

(w,2)Ep (u,0) €\
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Note that for any (u,v) € 7\ p both u and v are unmatched, so v € V{ and v € VJ. Therefore,
all pairs considered in the first and second sum are in V{ x Vj. Note that for (u,v) € V{ x VJ
we have ¢, (G1, G2, u,v) = ¢, (G}, GS, u,v), as both nodes are maintained in the reduced graphs.
Moreover, (u,v), (w, z) € Vi xVy, wehave c.(G1, Ga, (u,w), (v, 2)) = c.(G}, G, (u, w), (v, 2)),
as both edges are maintained in the reduced graphs.

We now focus on the last sum. In particular, consider a (w, z) € p \ p'. This happens if either w or
z have no unmatched neighbors. Then, for any (u,v) € 7\ p, since both u and v are unmatched, we

have that (u, w) ¢ E. Then we have that 3, 5, Ce(G1, G2, (u, w), (v, 2)) is constant in v.

‘We can therefore write

C(G17G27V): Z Cn(Gll,GIQ,’U,,U)-F Z CE(G;,GIQ,(U7’IU),(U,Z))

(u,v)ET\p (u,v) €0\ p
(w,2)EP\p
Y (Gl G (mw), (v,2) +C.
(u,v)ET\p
(w,z)ep’

Given a matching v € M(G1,Gs) such that p C v, let v’ = v N (V) x V) € M(G},GY). Then,
we have that v \ p = v/ \ p/. Since a valid solution to the reduced instance must have p/ C v/,
we have that the map v — v/ is a bijection between valid solutions of the original and the reduced
instance.

Consider v/ = vN (V] x Vi) € M(G, G%). We then have that v/ = v/ U{(u,e): u € V{,B(u,v) €
'} U {(e,v): v € Vg, (u,v) € v'}. Then, noticing that anode u € V; or v € Va is unmatched in
v if and only if u € V{ or v € VJ respectively is unmatched in v/, we have that 7 \ p = v/ \ 1.

This lets us write ¢(G1, Go, v) only as a function of /" as follows:

(G Gar) = Y @ Ghu)+ S clGh G (uw), (v,2)

(u,w)ev/\p/ (uw)er/\p/
(w,z)ev’\p'
+ ) (G, Gy, (u,w), (v,2) +C
(u,v)ev’\p'
(w,z)ep’
= > a(GLGhuv)+ > (G Gy, (unw), (v,2) + C.
(u,v)ey\u’ (u,v)Eyyl
(w,z)ev’

Finally, we turn our attention to ¢(G%, G4, v'). We can write

C(GllaGIQaV,) = Z Cn(GllvG/Z,u7U)+ Z CE(G/17G,27(U7’LU)7(U7Z))

(u,v)ev’ (u,v),(w,z) €V’
u<w
= Z CW(GIDG/Qau?U)—'_ Z C’ﬂ(GllvGIQauvv)
(u,v)ev’\p! (u,v)ep’
+ Z ce(G1, Gy, (u,w), (v,2)) + Z ce(GY, G, (u, w), (v, 2))
(u,v)er’\p' (w,0),(w,z)ep’
(w,z)67 u<w
= Y (@ Ghuv)+ Y ce(Gh Gy, (u,w), (v,2) + C
(u,v)€r/\p/ (u,U)EWM/
(w,z)ev’

In particular, for any valid instance v € M(G1, G2), we have that ¢(G1, G2, v) = ¢(G}, G5, V') +
K, with K a constant not depending on the choice of v. Then, if v* is an optimal solution to
(G1,Ga, ), then v* = v* N (V{ x V3) is an optimal solution to (G}, G5, 1'). O

Lemma 2. The map encode(G1,Ga, ) = H is injective and there exists a map decode such that
decode o encode = id.
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Proof. To prove injectivity it suffices to exhibit the left inverse decode such that decode o encode =
id. Given a graph H = (Vi, Epy, {gr) that arises from the encoding of (G1, G2, 11), define

V{ :={v € Vg | £y (v) marks v with src },
Vy :={ v € Vi | £ (v) marks v with trg }.

By construction V{ and V; form a partition of Vj into the nodes of G; and G2 respectively. We
then define
Ei:={e=(u,v) € Eg|u,veV]},
Ey:={e=(u,v) € Eyg|uveV,},

which by construction correspond to the edges of G; and G> respectively. Finally, we recover the
matching edges

p={(u,v) € EgluecV], veVy},

which by construction correspond to the node matches in p. Finally, we let ¢ be the function £,
without the additional src and trg labels.

Let G} = (V{, E{,¢) and G5 = (V3, Eb, £), and set decode(H) = (G, G, p/).

Therefore encode admits a left inverse and is injective. O

Lemma 3. Ler (G1,Ga, 1) be a GEDFM instance and p* an optimal solution to it. Let a pair of
nodes (u,v) € Vi x Va such that (u,v) & u*. Let also (w, z) € pu* be such that (u,v) and (w, 2)
are automorphic. Then, there exists an optimal solution v* such that (u,v) € v*.

Proof. Since (u,v) and (w,z) are automorphic, there exists a matching automorphism ©= €
Aut(G1, G, p) such that 7(w) = w and 7(z) = u. Let then v = {(7(a),n(b)): (a,b) € u*}.
By definition of matching automorphism, we have that {(7(a), 7(b)): (a,b) € p} = u, and since
w C p*, we have that ¢ C v. Thus v is a feasible solution.

We have C, = 3 e, nl(G1,G2a,0) = 30 5, n(Gr,Ga,m(c), m(d)).  Since
¢n is permutation-equivariant, we have C, = 37 ;.- en(m7HGh), 7 H(Ga),c,d) =
2 (e.dyep En(G1, Gz, ¢, d), which is the node cost for y*. We can obtain the same result for edge
costs. Thus, ;* and v have the same cost, and v is optimal.

Finally, since (w, z) € p*, we have that (u,v) = (7(w), 7(z)) € v by construction. O

E DATASETS

In this section, we discuss details about the datasets we use and introduce in the paper, including
instructions on how to download and how to use them.

In our experiments, we consider the established SimGNN (Bai et al., 2019) datasets AIDS, LINUX
and IMDB. In particular, AIDS and LINUX contain graphs up to 10 nodes, and thus were provided
with ground truths. On the other hand, IMDB contains graphs with up to 50 nodes. In the original
datasets, ground truths were provided only for graphs with up to 10 nodes, and suboptimal values
for others. Instead, we take the subset of graphs up to 16 nodes, and compute optimal matchings.
We denote this dataset as IMDB-16. AIDS is endowed with node labels, but no edge labels. LINUX
and IMDB on the other hand have unlabeled node and edges.

Moreover, we generate three additional datasets, taking all graphs from the ZINC, molhiv and code2
datasets (Gomez-Bombarelli et al.l 2018} [Hu et al.l 2020b). Due to computational constraints in
computing the optimal matchings, we select the subsets of graphs with up to 16, 16 and 22 nodes,
respectively. We denote these datasets as ZINC-16, molhiv-16 and code2-22. code?2 is endowed
with node labels, but no edge labels. ZINC and molhiv have labels on both node and edges, but we
also consider a version with no edge labels.

The graph datasets that we consider cover multiple domains, including molecular graphs (AIDS,
molhiv-16, ZINC-16), software networks (LINUX), movie collaboration networks (IMDB-16), and
Python program syntax trees (code2-22).
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We randomly split the graphs into training, validation, and test sets using a 60:20:20 ratio. Jain et al.
(20244)) identified that the established GED benchmark datasets are polluted by isomorphic graphs.
Their approach is to remove isomorphic copies of graphs. Instead, we retain all graphs, but we
ensure that no two graphs across different splits are isomorphic to prevent data leakage. Retaining
isomorphic copies allows us to have a consistent number of graphs with previous works, and to
include (both for training and testing purposes) instances where the edit distance is 0.

Table [6] reports some statistics about the datasets. In particular, we report the number of graphs,
the number of unique graphs up to isomorphism, the average number of nodes and edges, and the
number of node and edge labels. Moreover, we report the number of pairs of graphs for which the
optimal GED (with unit costs) and a corresponding matching was computed, as well the average,
minimum and maximum value of such GEDs.

Dataset # graphs # iso. # nodes avg. #  #node #edge # pairs GED
classes avg. min. max. edges labels  labels avg. min. max.
AIDS 700 667 8914 2 10 8.8t1s 29 - 245350 9.0:27 0 23
LINUX 1000 89 7605 4 10 6.9+1.9 - - 500500 4.7:26 O 16
IMDB-16 1185 167 9.6e25 7 16 33.4eis0 - - 175773 22.1t67 0 101
ZINC-16 836 835 14.5016 9 16 15.0£1.0 16 3 349866 14.2:27 0 27
molhiv-16 | 6734 6733  13.5:25 2 16 141125 41 4 455993  16.9:42 0 37
code2-22 2087 785 212412 11 22 20.2¢1.2 58 - 435008 12.8:60 0 46

Table 6: Summary of dataset statistics.

Moreover, for ZINC and molhiv we additionally create a second test set “larger” with graphs
from 17 to 24 nodes, and for code2 from 23 to 30 nodes, which are meant to probe the generalization
abilities of GED prediction models.

For each dataset and each split, we generate graph pairs by randomly sampling from the available
graphs, and compute the ground-truth graph edit distances and corresponding matchings using the
Mipr-F2 (Lerouge et al.l|2017) formulation of GED as an integer linear programming (ILP) problem.
The ILPs are solved using the Gurobi (Gurobi Optimization, LL.C, 2024) solver, with warm-starts
given by the REFINE local search heuristic (Blumenthal et al., [2020).

We make our dataset publicly available and easily installable, in order to offer a fairer evaluation
benchmark also for future research. The code can be obtained from GitHub:

git clone git@github.com:BorgwardtLab/Gelato.git

Then, our dataset class can be easily used, for example, as follows:

from Gelato.src.dataset import GraphMatchingDataset

dataset = GraphMatchingDataset (name='aids', num_pairs=1000, split='test')
for data in dataset:

print (data.x_s.shape, data.edge_index_s.shape, data.edge_attr_s.shape) # source graph
print (data.x_t.shape, data.edge_index_t.shape, data.edge_attr_t.shape) # target graph
print (data.matching.shape) # matching

F EXPERIMENTAL SETUP

In this section, we discuss additional details about the experimental setup.

F.1 BASELINES

For GREED (Ranjan et al., [2022)), we used the default parameters suggested by the authors. Specif-
ically, we set the number of GIN layers to 8 with a hidden dimension of d = 64. We used all
available graph pairs from the training set for training, and, analogously, the complete validation set
for validation. GREED minimizes RMSE in the loss function using the Adam optimizer (Ir=10~%),
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and training continued until the pre-implemented early stopping criterion was met. We report the
mean and standard deviation over five runs, each using 1000 graph pairs. We utilize the same test
sets used as in all other methods. Since GREED outputs continuous regression values, we round the
predictions to the nearest integer in case of EHR statistics.

For MATA* (Liu et al., 2023b), we largely adhered to the default parameter settings recommended
by the authors. The model consists of three GNN layers (i.e. SEGen layers), each with a hidden
dimension of d = 64. The model uses a binary cross-entropy loss function using an Adam optimizer,
with a learning rate set to 10~3. Training was conducted on all available training graph pairs. During
training, MATA* employs mini-batch gradient descent with a batch size of 128. Model evaluation
was performed every 200 epochs over a total of 10,000 epochs. We chose the model with the best
validation performance, measured in terms of nMAE. In all experiments, we set the parameter top-
k = 4, which governs the number of explored matches for each node. To calculate the GED, we first
extracted the matchings considered internally by MATA*. During this process, we modified line 133
in file Mat a . cpp by swapping the inputs g and g (i.e., the source and target graphs) in the function
call app->init (g, g, ...). We believe this was the intended order based on the function’s
definition and description. Notably, with this adjustment, the results either remained consistent or
even showed a significant improvement. Finally, we report the mean and standard deviation over
five runs, each using 1000 graph pairs. We use the same test sets considered as in all other methods.

For GEDGNN (Piao et al., [2023), we used the default parameters provided by the original authors.
Specifically, the model consists of three GIN layers with hidden dimensions of 64, 32, and 16,
respectively. A binary cross-entropy loss is used to minimize the discrepancy between the predicted
and ground truth matchings, optimized using Adam optimizer with a learning of 1073, We train
on all available training graph pairs over a total of 20 epochs. Model selection was based on the
best validation performance in terms of nMAE. We set the parameter £ = 100, which governs the
number of considered node matchings and from which the best is finally selected. For evaluation,
we report the mean and standard deviation over five runs, each conducted on 1000 graph pairs, using
the same test sets as in all other methods.

In case of GEDHOT (Cheng et al.,[2025), we adopted the default parameters specified by the authors.
Specifically, the model architecture consists of three GIN layers with hidden dimensions of 128, 64,
and 32. GEDHOT is an ensemble method that combines GEDIOT and GEDGW. While GEDGW
is an unsupervised method that produces matchings via solving a surrogate optimization problem,
GEDIOT is trained using a loss function consisting of an MSE loss and a binary cross-entropy loss,
which is optimised via the Adam optimizer at a learning rate 10~3. We train the model on all
available graph pairs for 20 epochs and select the best-performing model based on the validation
nMAE value. We set the parameter £ = 100, i.e., the number of considered matchings, from which
the best is finally selected. For evaluation, we report the mean and standard deviation over five
runs, each using 1000 graph pairs We use the same test sets as for all other methods to ensure a fair
comparison.

To evaluate Verma et al.| (2025)), we used all functions discovered by GRAIL that were provided by
the authors. To select the optimal programs, we ran all 43 function ensembles on a validation set
of 1000 randomly selected graph pairs and chose the one with the lowest nMAE value for testing.
We note that we modified the matching cost computation to correct a rare issue in the original
implementation that occurred when singleton nodes were present. Results are reported as the mean
and standard deviation over five independent runs, each using 1000 graph pairs, employing the same
test sets as for all other methods for consistency.

For GRAPHEDX (Jain et al.| [2024a), we followed the parameter choices recommended by the au-
thors. Specifically, we utilized the model designed to take into account node labels. For edge edits,
we employed the XOR neural surrogate function, and for node edits, we used AlignDiff, as sug-
gested by the overall best performance in the original study. We trained the model on all available
training graph pairs and validated it on all available validation graph pairs. Model selection was
based on the best validation performance, measured using nMAE. Training was halted when the
validation performance did not improve for 10 consecutive epochs. The model was optimized us-
ing Adam with a learning rate of 0.001, minimizing a bounded loss term on edge, node, and label
alignment distances. For evaluation, we report the mean and standard deviation over five runs, each
conducted on 1000 graph pairs, using the same test sets as those used in all other methods.
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F.2 SETUP FOR GELATO

GELATO is implemented in PyTorch Geometric (Fey & Lenssen| 2019). The action predictor is
a GNN model, implemented following the formulas in Section 4.2] At inference time, given an
instance (G4, G2, ), we first transform it into a single PyTorch Geometric graph (i.e. as a tuple x,
edge_index and edge_attr), following the specification described in Section[4.1] Note that at
the first step, no reduction is performed.

Recall that, at each step, given a graph-encoded instance (G4, Ga, 1), we choose the next match
to be arg max(,, »)e A(G,,Ga,u) Ou,o and we create a new instance (G, Go, U {(u,v)}). This is
implemented by simply adding the edge (u,v) and its label to the edge_index and edge_attr
vectors. Then, the reduction is performed by identifying the nodes that would be deleted by the
reduce map, and removing all edges adjacent to them. From the message-passing perspective this is
the same as deleting the nodes, but it allows to avoid re-indexing the representation of the graphs at
each step. We note that, in the presence of BatchNorm, the embeddings of these isolated nodes can
still marginally influence the embeddings of the non-deleted nodes during training (but not during
inference), although this does not seem to affect the performance empirically. This reduced graph is
then fed to the action-predictor GNN.

In the experiments, unless otherwise specified, we fix the number of GNN layers to £ = 5 and the
embedding dimension to d = 128. We train the link prediction task using the cross-entropy loss with
the Adam optimizer, with learning rate Ir = 102 and no weight decay, for 30 epochs. We use up to
2 - 10° randomly selected pairs of training graphs, subsampling from each 40 random sub-instances,
as described in Section@ Model selection is based on the validation nMAE, which is computed at
the end of each training epoch. At inference time, we use ensembling with &£ = 32, unless otherwise
stated, and the matching attaining the lowest cost is returned.

We now describe the setup for ablation studies. For the “No sequential process” row, we train only
with instances with no fixed partial matchings. At inference, we do the following. Given two graphs
G and G, we compute the logits o, , between vertices v € V; and v € V5. We then compute
log-likelihoods as 1, , = log(sigmoid (o, ,)). We then compute the matching corresponding to the
optimal linear assignment between V; and V3. |, ie., uj 4 = argmax, Z(u)v)eu ly,v. Assuming
independence between choices, this maximizes the likelihood of the matching. For the “No in-
stance reduction” row, we perform both training and inference without reducing the instances with
the map reduce. Finally, for the “Automorphic matches” row, we perform training with the naive
strategy which for an instance (G, Ga, 1) selects the set p* \ p as positive links and all others
A(G1,Ga, M)\ u* as negatives. Inference is performed in the same way as in the standard model.

F.3 COMPUTING INFRASTRUCTURE

The experiments are run on a cluster equipped with Intel(R) Xeon(R) Silver 4116 CPUs and
NVIDIA H100 GPUs. The code is based on PyTorch and PyTorch-Geometric.

G HYPERPARAMETER STUDIES FOR GELATO

In this section, we discuss the sensitivity of GELATO to its hyperparameters. In particular, we study
the effect of the use of batch normalization and residual connections, as well as the embedding
dimension d, the number of GNN layers £, and the ensemble size k.

First, Figure [7]reports, for all datasets, the EHR () when ablating batch normalizations or residual
connections from the GNN layers. We fix d = 128, £ = 5 and k = 32, which are the values used
for Table|l} Here, we see that the ablation consistently decreases solution quality, albeit with only a
minor degradation.

Figure (8] reports, for all datasets, the EHR (]) when varying the embedding dimension d =
{32,64, 128,256}, and while keeping £ = 5 and k = 32, which are the values used for Table
The results show that, generally, the solution quality increases with the dimensionality, and that
lowering the embedding dimension from the default of d = 128 reduces model capacity. On the
other hand, increasing the dimensionality to d = 256 yields modest gains, but increases the memory
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Figure 7: Solution quality for GELATO w.r.t. EHR (), ablating the batch normalization and the skip
connections in the GNN layers. We report mean and standard deviation over five runs.

requirements (from roughly 200k parameters to 800k) and runtimes (e.g. from 4.24+0.1t0 4.8 +0.1
milliseconds per pair on ZINC).
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Figure 8: Solution quality for GELATO w.r.t. EHR ({), varying the embedding dimension d =
{32,64, 128,256} with £ = 5 and k = 32. We report mean and standard deviation over five runs.

FigureElreports, for all datasets, the EHR ({) when varying the number of GNN layers £ = {3, 5,7},
and while keeping d = 128 and k = 32, which are the values used for Table [} Similarly to
the analysis above, the results show that increasing the number of GNN layers generally improves
solution quality, at the expense of increased runtime (e.g. 4.8 £ 0.1 milliseconds per pair on ZINC
for £ = 7) and memory requirements. Once again, moving from £ = 5 to £ = 7 yields diminishing
returns, but decreasing it to £ = 3 significantly decreases the capacity. Interestingly, choosing
L =1, i.e. considering only one-hop neighborhoods, drastically reduces the solution quality. For
example, on AIDS, the EHR drops to only 13%.

Finally, Figure @ reports, for all datasets, the EHR (]) when varying the size of the ensemble
k = {2,2% 25 27}, with d = 128 and £ = 5. As already reported in TableEI, ensembling yields
considerable gains to the solution quality, as it alleviates the sensitivity to the choice of the first
match. The results show that increasing the number of ensembles monotonically increases the so-
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Figure 9: Solution quality for GELATO w.r.t. EHR ({), while varying the number of GNN layers
L ={3,5,7} with d = 128 and k = 32. We report mean and standard deviation over five runs.

lution quality, albeit at the cost of increased runtimes. Indeed, increasing k to 128 increases the
inference time on ZINC to 6.3 £ 0.1 milliseconds per pair. Interestingly, on ZINC, moving from the
standard k& = 32 to k = 128 improves the EHR from 91% to 97%, significantly reducing the gap to
optimality.
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Figure 10: Solution quality for GELATO w.r.t. EHR ({), while varying the size of the ensemble
k={2,23 25 27}, with d = 128, £ = 5. We report mean and standard deviation over five runs.

In conclusion, the hyperparameter study shows that the choices of hyperparameters used in the
main results are sensible choices that balance good solution quality with memory requirements and
runtimes. However, they also showcase that, if better solution quality is required, GELATO can yield
even better results by increasing its dimensionality, its number of GNN layers, and the number of
ensembles.

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report additional experimental result that were excluded from the main paper for
space constraints.
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Additional metrics First, in Table [7] and in Table [8] we report the results of Table [I] using two
additional metrics. In particular, we report respectively the mean average error (MAE) and the root
mean squared error (RMSE).

The MAE is defined as 1/~ vazl |g; — y:| where y; denotes the true GED value and §; the value
of the predicted matching. For GREED, which does not return a matching, we take g, as the scalar
predicted GED. Note that for all methods except GREED, the returned matchings must be upper
bounds to the optimal solution, so we have ¢; — y; > 0.

Similarly, the RMSE is defined as (1/~ SN, (45 — v:)?) "2 Where y; denotes the true GED value
and ¢; the value of the predicted matching. For GREED, which does not return a matching, we take
y; as the scalar predicted GED.

The results show that, even when evaluating the models using these different metrics, GELATO
retains state-of-the-art solution quality, with a wide margin to the second-best performing method,
on all datasets except LINUX and IMDB-16. On these two latter datasets, both GRAIL and GELATO
provide near-optimal solutions, with the former method yielding slightly better solution quality, as
observed in Table[T]

Method AIDS LINUX IMDB-16 ZINC-16  molhiv-16  code2-22
GREED 0.814%0.022  0.485+0.014 1.0304+0.064 1.351+0.030 1.537+0.034 1.025+0.029
GRAPHEDX  0.586+0.013 0.382+0.008 3.258+0.190 0.92+0.015 1.530+0.026 0.418+0.015
MATA* 0.509+0.044  0.24440.026 0.086+0.021  2.468+0.078 2.170+0.032 0.651+0.013

GEDGNN 1.741+0.0a3  0.394+0.031  0.357+0.071 6.490+0.160  5.035+0.031 2.320+0.082
GEDHOT 0.524+0.025  0.037+0.007  0.050+0.019  3.753+0.088 3.365+0.037  0.966+0.023
GRAIL 0.224+0.008  0.000+0.001  0.002+0.004 1.759%0.055 1.323+0.010 0.708+0.026

GELATO 0.012£0.004  0.002:0.002  0.004%0.003  0.098+0.015 0.053+0.000  0.054+0.010

Table 7: Overall solution quality of methods w.r.t. MAE ().

Method AIDS LINUX IMDB-16 ZINC-16  molhiv-16  code2-22
GREED 1.029:0.017  0.655+0.014 1.949+0.086 1.719%0.027 2.069+0.060 1.482+0.07s
GRAPHEDX 0.740+0.017 0.503+0.015 5.942+0.267 1.188+0.032 1.978+0.047  0.579+0.025
MATA* 0.966+0.0a8  0.84940.061  0.728+0.154  2.941+0.078  2.730+0.040 1.183+0.031

GEDGNN 2.697+0.070  1.177+0.062  1.947+0.273  7.371+0.131  5.914+0.020 3.704%0.002
GEDHOT 0.998+0.025  0.270+x0.027  0.468+0.106 4.441+0.100 4.190+0.042 1.627+0.0s4
GRAIL 0.563+0.010  0.013x0.028 0.061+t0.086 2.250+t0.066 1.883+0.010 1.293+0.044

GELATO 0.167+0.0a7  0.054%0.058 0.120+0.056 0.339t0.034 0.273+0.053 0.286+0.037

Table 8: Overall solution quality of methods w.r.t. RMSE ({).

Moreover, in Table [9] and Table [I0] we report the results on the edge-unlabeled variants of the
datasets, as done in Table [2] with respect to MAE and RMSE, respectively. Similarly to the results
in the main paper, GELATO achieves the best solution quality also with respect to these two metrics.

Moreover, in Figure[TT} we report the results of the experiments on generalization to larger graph
sizes, as reported in Figure 5] with respect to nMAE (lower is better). We can see that general trend
is the same as reported in Figure [5] with GELATO providing better solution quality compared to all
baselines for all instance size ranges.

Non-unit edit costs While in the main paper we performed all experiments with unit edit costs,
GELATO can natively support any edit cost function. On the other hand, all other methods that return
matchings which were considered as baselines do not seem to support non-unit edit costs.

We report results on AIDS and ZINC-16, using two sets of non-unit edit costs. First, we consider
the case where node operations are more expensive than edge operations. In particular, according to
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Method ZINC-16  molhiv-16 Method ZINC-16  molhiv-16
GREED 1.141+0.0a7  0.842+0.035 GREED 1.447+0.0aa  1.074x0.046
GRAPHEDX  0.686+0.015 0.654+0.024 GRAPHEDX  0.875+0.022  0.828+0.026
MATA* 2.299:0.0a7  2.302+0.025 MATA* 2.74T+0.037  2.813+0.041
GEDGNN 5.938+0.000 5.272+0.076 GEDGNN 6.799%0.004  6.253+0.104
GEDHOT 2.614+0.0a6  2.126+0.058 GEDHOT 3.132+0.000  2.731+0.064
GRAIL 1.011+0.03a  0.763+0.024 GRAIL 1.444+0.020 1.22110.033
GELATO 0.086+0.000  0.052+0.009 GELATO 0.340+0.042  0.264+0.041
Table 9: Overall solution quality of methods on ~ Table 10: Overall solution quality of methods
edge-unlabeled datasets w.r.t. MAE (). on edge-unlabeled datasets w.r.t. RMSE ().
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Figure 11: Performance of methods across graph sizes measured by nMAE ({) in %. Training was
conducted on graph pairs up to size 16 or 22. The dashed line separates in-distribution from out-of-
distribution graphs.

Definition 3| we set 07, = 0t = 04 = 10 and 05, = o5, = 05, = 1. For brevity, we denote
this 6™ = 10, ¢ = 1. Second, we consider the case where edge operations are more expensive than

node operations. In particular, we set §" = 1, 6¢ = 10.

Results, reported in Table [TT} show that GELATO shows state-of-the-art performance also in the
presence of non-unit edit costs, with solution quality generally aligning with the solution quality on
datasets with unit edit costs.

AIDS ZINC-16
5 = 10, 0° = h=1,0°=10 " =10, 6°= 2 =1, 5°=10
nMAE EHR nMAE EHR nMAE EHR nMAE  EHR

MiP-F2.15) 0.8+0.1 89.0+1.4 31.7+1.6 57.6+1.9 8.5+0.3 18.8+1.5 72.5+0.9 3.8+0.8
BRANCH 20.0+1.2 3.4to.2 247.3+12.8 1.8:03 24.0x0.2 1.0z0.3 195.9+1.0 1.0z0.3
REFINE 7911 422013 121.7+135  16.4e15 12,4407 5.2+03 155.5+30.0 0.8+0.4

GREED 7.5+03  12.3t00 15.6+0.9 6.9+0.8 6.8+0.3 8.T+0.8 14.8+0.1 3.8+05
GELATO 0.2+0.2 98.3+0.5 0.9£1.0 98.9+0.2 0.9%0.0 83.0x0.8 0.7+0.1 77.8+0.7

Method

Table 11: Solution quality of methods with non-unit edit costs, w.r.t. nMAE () and EHR (1) in %.

Transfer-learning across datasets An interesting question is whether the weights learned for one
datasets can be used at inference time for another dataset in a transfer learning fashion, or whether
the weights are dataset-specific.

26



Published as a conference paper at ICLR 2026

An issue to take into account is that for different datasets, node and edge features might have dif-
ferent meanings. For example, the same one-hot encoding which represents a carbon atom in the
molhiv-16 dataset represents a type of Python function in the code2-22 dataset. Even across datasets
from the same field, the problem persists. Indeed, in the ZINC molecular dataset, atom types are
indexed differently form the molhiv-16 dataset. Therefore, a model would be unable to transfer the
patterns learned on one dataset to another one.

This issue does not arise in unlabeled datasets, such as LINUX and IMDB-16, as the model exploits
only the graph topology. Table [12|reports the EHR (7) in this transfer learning setting on the two
unlabeled datasets. We notice that while there is some degradation, likely due to the differences in
the graph distributions across the two datasets, the solution quality remains quite satisfactory.

Moreover, to circumvent the issue with features on labeled graphs, we introduce a new molecular
dataset, moltox-16. This dataset is obtained from the OGB repository (Hu et al.,[2020b)), specifically
by taking all the graphs with less than 16 nodes from the ogbg-moltox21 dataset. Since molhiv-16
and moltox-16 both are obtained from OGB and belong to the same domain (molecules), they share
the same feature space. Table[I3|reports the EHR (1) when doing transfer learning between these two
molecular datasets. Indeed in this case we can observe that the drop in performance, albeit present,
is minimal. This shows that the model is indeed able to apply the molecular patterns learned on one
dataset to the other one, in both directions.

Finally, Table |[14| reports EHR (1) when doing transfer learning between labeled datasets that do
not share a common feature space. As expected, the degradation in solution quality is much more
pronounced. In this scenario, in light of the results of Table [5 on limited or noisy supervision, it is
better to spend some computational resources for producing a few ground truth matching, and using
those to train a specialized model for the data distribution at hand.

Training Testing Training Testing
LINUX IMDB-16 molhiv-16  moltox-16
LINUX 999501 74.841.4 molhiv-16 95.3+0.8 97.8+0.4
IMDB-16 88.5+1.1 99.9+0.1 moltox-16 91.7+0.7 98.1+0.3
Table 12: Transfer learning performance Table 13: Transfer learning performance

w.r.t. EHR (1) on unlabeled graphs from dif-
ferent domains.

w.rt. EHR (1) on molecular graphs with
shared features.

. . Testing
Training
ZINC-16 molhiv-16 code2-22
ZINC-16 91.1+11 19.0x0.0 19.8:1.7
IIlOlhiV-l6 39.810.9 95.3i0.8 58.211.9
code2-22 4.6+0.7 4.6+0.3 95.7+0.8

Table 14: Transfer learning performance w.r.t. EHR (1) on labeled graphs with different features.

Inference times on CPU In Table [I5] we report the inference running times of GELATO when
run on CPU rather than on GPU. Clearly, this results in slower inference times (by up to an order
of magnitude). However, inference with GELATO remains faster than other ML-based methods that
return matchings, especially for larger graphs. Finally, we remark that runtime considerations are
heavily dependent on the system at hand.

Training times We report the training times for all considered learning-based approaches. Ta-
ble[I6] provides the total runtimes of the complete training process for each method using the setups
described in Section[F] The reported times include both model training and the evaluation conducted
during training. Note that variation in runtimes across methods is also influenced by author-proposed
default parameter settings, the use of mechanisms such as early stopping, and whether a method sup-
ports native parallelization.
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Method AIDS LINUX IMDB-16 ZINC-16 molhiv-16 code2-22

GPU (H100) 3.2602  2.9%0:1 3.640.2 4.250.2 41401 5.3+0.1
CPU 11.5+0.1 8202 24.7x03  27.1ton  24.9r02  61.2+01

Table 15: Average inference runtime per graph pair (ms) on GPU and CPU.

Overall, GELATO requires lower training times compared to the other ML-based methods that return
solutions, i.e. MATA*, GEDGNN and GEDHOT.

Method AIDS LINUX IMDB-16 ZINC-16 molhiv-16 code2-22
GREED 929 610 2342 2188 2885 1582
GRAPHEDX 2806 6743 523 3820 7800 4962
MATA* 7592 7993 11349 8247 15738 75007

GEDGNN 26852 29564 13900 49694 57057 83584
GEDHOT 22148 36353 14523 36506 44731 56648

GELATO 5422 4760 7850 9194 11979 7216

Table 16: Total training runtime for the ML-based methods (s).

I USE OF LARGE LANGUAGE MODELS

Large Language Models have been used while writing this paper to polish writing (e.g., grammar,
spelling, word choice). Moreover, they have been used to write parts of the code (e.g. parsing files,
vectorizing tensor operations) used for the experiments.
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