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Abstract

An important yet underexplored question in the PAC-Bayes literature is how much
tightness we lose by restricting the posterior family to factorized Gaussian distribu-
tions when optimizing a PAC-Bayes bound. We investigate this issue by estimating
data-independent PAC-Bayes bounds using the optimal posteriors, comparing them
to bounds obtained using MFVI. Concretely, we (1) sample from the optimal Gibbs
posterior using Hamiltonian Monte Carlo, (2) estimate its KL divergence from the
prior with thermodynamic integration, and (3) propose three methods to obtain
high-probability bounds under different assumptions. Our experiments on the
MNIST dataset reveal significant tightness gaps, as much as 5-6% in some cases.

1 Introduction

PAC-Bayes is a tool to give high-probability generalization bounds for (generalized?) Bayesian
learning algorithms. The main goal is to produce empirical bounds, also called risk certificates (RC),
that are nonvacuous even in complex settings such as neural networks (NN). Current methods for
NNs train a Bayesian Neural Network (BNN) use mean-field variational inference (MFVI) with
an objective derived from a PAC-Bayes bound [7, 21] to obtain nonvacuous bounds. However, the
resulting bounds are only tight for relatively simple datasets (e.g. MNIST, CIFAR-10) and require
data-dependent priors [7, 21, 17]. MFVI has been widely promoted in the PAC-Bayes literature as an
efficient and accurate alternative to MCMC methods [2, 13]. In the Bayesian learning community,
there is more controversy about the expressivity of MFVI [11, 9]. Figure 1 illustrates the trade-offs
between MFVI and MCMC methods on the 2 dimensional Rosenbrock function [23].

We contribute to this debate by empirically estimating how tight PAC-Bayes bounds can be, compared
to those obtained by MFVI. We consider data-independent bounds since these are always loose,
hence the effects of using better weight distributions are more visible. For the bounds in our interest,
the optimal (minimizing) probability measure on the weights has the form of a Gibbs distribution
[1]. We use Hamiltonian Monte Carlo (HMC) [6, 5] to approximately sample from this distribution
and then estimate the bound. We find that, especially for small datasets, our RCs can improve on
MFVI significantly, such as an 5-6% improvement over MFVI, resulting in a 10.8% RC on Binary
MNIST. This demonstrates the potential to significantly tighten PAC-Bayes bounds by considering
more complicated distributions than factorized Gaussians.

*Corresponding author
2generalized Bayesian learning extends Bayesian learning by allowing more general losses and priors [13].
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Figure 1: Illustration of the trade-offs of using MFVI and MCMC methods (e.g. HMC) in PAC-Bayes
estimation. Our method solves the ‘hard KL estimation’ problem. The 2-dimensional Rosenbrock
function is used as loss function [23]. The prior is centered at (0, 1.5) and has unit variance. Both
methods are initialized at (0, 3).

Concretely, our contributions are as follows:

1. We estimate data-independent PAC-Bayes bounds via (1) approximately sampling from the
optimal Gibbs posterior, (2) computing the KL divergence with thermodynamic integration and
(3) ensuring a high-probability bound.

2. We thereby demonstrate on versions of MNIST that MFVI bounds can be tightened significantly.

3. We justify our approach by extensive diagnostic analysis on our HMC samples.

2 Background

We consider supervised classification tasks. Let Z = X’ x ) be a measurable space, where X C R?
is the space of data samples, and ) C R is the space of K labels. Let M;(Z) denote the set of
probability measures on Z. Let D be an unknown distribution D € M;(Z). A learning algorithm
receives a set of n ii.d. samples S = (z1,..., 2,), i.e. S ~ D". Further, we fix a weight space
W C RP containing all possible weights. Each weight vector w maps to a predictor function
hw : X — ) that assigns a label y € ) to any input x € X. We seek a predictor function that
minimizes the risk (expected loss) L(w) := E,..p [[(w, z)], where [ : W x Z — [0,00) is a
measurable loss function. Let [°® and [°~! denote the cross-entropy and 0 — 1 loss (error) functions,
respectively. The data-generating distribution being unknown, L(w) is not observable, hence in

practice, we compute the empirical risk, which depends on our sample set S and is defined as

Ls(w):= 15" I(w, z). PAC-Bayes bounds are stated for randomized predictors. Given a data

sample z, a randomized predictor makes a prediction at its label using a random sample of weights
w ~ @, where Q € M;(W). We may identify the randomized predictor with its distribution Q.
The risk of @ is defined as L(Q) := Ew~q[E.~p [I[(W, 2)]]. The empirical risk of () is given by
Ls(Q) := 13" | Ewn~g [l(w, 2;)]]. We use notations L°(Q), LE(Q), L°~*(Q) and LY '(Q) for
our risk functionals.

PAC-Bayes bounds We consider the following PAC-Bayes bounds. For proofs, see [19], [25], [1].

Theorem 2.1. Fix a loss functionl : W x Z — [0, 1] and fix arbitrary 6 € (0, 1). For any data-free
distribution P over W, simultaneously for all distributions () over W, with probability at least 1 — 6,
we have

KL(Q||P) +log(**)

kl bound: XI(Ls(Q)||L(Q)) < (1)

Further, simultaneously for all Q € W and X € (0, 2), we have the below relaxation of the kl bound

Ls(Q)  KL(Q|[P) + log(2L)
1-3 nA(1-3%) )

Abound: L(Q) <

@)

Theorem 2.2. For fixed A € (0,2), the optimal stochastic predictor corresponding to the \
bound with prior P that has density p(w) is a Gibbs measure Q3 with density g3 (w|z) =

e—n)\ﬁs (w)p<W)/]Ew~P [e—n)\ﬁs (w)] )



Algorithm 1 PAC-Bayes estimation with HMC
Sample w ~ Q* with HMC,

Estimate I:gfl (Q*) from w using a high-probability bound, > Suppl. M. 6.2.5
for (3 in [0, 1] discretization do

Sample ws ~ Q*# o e=BLE (W)p(w) with HMC,

Estimate L (Q*?) from w using a high-probability bound > Suppl. M. 6.2.5
end for
Estimate log p(z) with thermodynamic integration, > Eqn. 4
Compute KL(Q*||P), > Prop 2.3

Compute bounds in Egs. 1, 2 using I:%_l(Q*) and KL(Q*||P) .

For simplicity, we use the A bound with A = 1 fixed. Even this simple setting improves over MFVI
risk certificates (RCs) .

Empirical estimation of PAC-Bayes bounds RCs are most often computed using MFVI on a
BNN with an objective function derived from a PAC-Bayes bound. For posterior sampling, a bounded
version of the cross-entropy loss [°¢ (defined in Supplementary Material 6.3.1) is used. We use
notation LE (Q) for when we use the compute empirical risks with [°¢. The final RCs can be
computed in terms of the 0 — 1 loss too. The KL divergence of the final approximate posterior
with respect to the prior is available analytically. The risk Lg(Q) is approximated as a Monte Carlo
average over samples w ~ (). The following concentration inequality is then used to ensure an
upper-bound on L(Q)) with pre-specified probability 1 — ¢ [16].

Theorem 2.3. Suppose Wi, Wy, ... W,, ~ @ are i.id., and Qm = Z;nzl dw, 1is their
empirical distribution. Then for any & € (0,1) with probability 1 — &', we have that

Ls(Q) <K (Ls(Qm), £ log(2)) -
3 Method

Our goal is to adapt the above pipeline to more general posterior approximations, specifically HMC
samples with a Gibbs target density. Our method is summarized in Algorithm 1. The key challenges
are estimating KL(Q*|| P) and the fact that MCMC samples are not independent.

Approximate sampling from the Gibbs posterior As HMC requires gradients of the unnormalized

target distribution, the [°¢ loss is used to generate samples with the numerator of the Gibbs density
formula in Theorem 2.2 as the target density.

Estimating the KL divergence Having obtained approximate samples from QQ* as described above,
we now estimate KL(Q*||P) by reducing the problem to (generalised) marginal likelihood estimation
via the following fact.

Proposition 3.1. Fix a prior measure P with density p(w) and define a (possibly generalized)

likelihood p(z|w). For any distribution Q) that is dependent on the data z, with density q(w|z) the
following holds

KL(gq(w|2)[lp(w)) = Eq [log(p(z|w))] — log(Z) + KL(g(w|2)||p(w|2)). 3)
where Z = p(z), the (generalised) marginal likelihood.

For Q = @Q* the true posterior, the last term is 0 and the term of most interest becomes the generalised
log marginal likelihood log(Z). We estimate this term using thermodynamic integration [18] as

1 3
—log(Z) = / Ew~rs [nﬁs(w)} dB, where 5 oc e PLs(Wp(w). 4
0

Notice that 7g is itself a Gibbs distribution, hence computing the thermodynamic integral reduces to
sampling from Gibbs distributions for values of 3 € [0, 1]. The details of this derivation are given in
Supplementary Material 6.2.3. When computing the integral, to control the tail of our bound, it is
necessary to ensure that we overestimate its true value with high probability. We use the trapezium
rule, which we show in Supplementary Material 6.2.4 to upper-bound the integral.
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Figure 2: HMC diagnostics for MNIST - half, over 4 chains of length 5000, for each value of j3.

High-probability upper bounds The last step is to control the overall probability of our bound
using concentration inequalities on the tails of all of our estimators. Note that Theorem 2.3 used
with MFVTI is valid only for independent samples. We propose the following three options for the
general setting. Each has different assumptions and their comparison serves as a sanity check on the
magnitude of our estimates. Derivations are given in Supplementary Material 6.2.5.

* We use Theorem 2.3 after thinning our samples to reduce autocorrelations.
This is the simplest option, but we can only guarantee uncorrelatedness.

* An asymptotic, probability (1 — «/2) confidence interval of the form [0, ¢), where

m

(1+€)6, 1 .
= —_— L 1) 5
c 5o m ;:1 s(wi) (&)

This bound requires assumptions on the order of the bias and variance of our estimator

% > ﬁs(wi), where w; ~ @, and a consistent estimator of its asymptotic variance [24].
This gives the tightest RCs, and has reasonable assumptions but they are hard to check.

* Using a sanity-check bound KL(Q||P) < nEq [de(w)] + KL(G||P). In Prop. 6.4, we prove
this result for any G satisfying KL(Q||Q*) < KL(G||Q*) + nEq [de(w)], where Q* is the
Gibbs posterior. Taking G to be the Gaussian from MFVI, the assumption only requires that
@ is not much further from the true posterior and G. If Eq [Egﬁl (W)] <Eqg [f%fl (w)} , this

bound can be tighter than MFVI.
This has the mildest assumptions and hence is easiest to estimate, but is the most conservative.

4 Experiments and results

We apply our method to three versions of the MNIST train dataset: Binary MNIST, where labels are
mapped y — y (mod 2), MNIST reduced to 14 x 14 pixels and full MNIST. We also compare results
when using only half of the 60,000 datapoints. We use a data-independent factorized Gaussian prior
and small MLPs. For each configuration, we generate 4 independent HMC chains of 5000 samples
each. We compare results to estimating the same RCs with MFVI. All RCs are valid with probability
at least 0.95. Further details are given in Supplementary Material 6.3.4.

HMC diagnostics Figure 2 shows HMC diagnostics for the MNIST-half dataset. The rest of the
diagnostic results are supplied in Supplementary Material 6.4. We report expected calibration error,

HMC acceptance probability, effective sample size, MCMC standard error and R statistics along with
cross-entropy and 0 — 1 losses for all datasets and ( values. Unsurprisingly, performance increases
as [ increases, since our samples get more similar to the true posterior. The R statistic is very close
to 1.0 both in weight and function space, indicating approximate convergence in our chains.



Table 1: Training and test metrics and RC estimates using our three bounds. Bold numbers indicate
the tighter certificate out of the Gibbs and MFVI ones for the same dataset.

Setup Train/test stats 0-1 RC with kl bound 0-1 RC with A bound
Method  Dataset Model Train 0-1 Test0-1 KL/n klinverse asympt naive  klinverse asympt naive
MFVI Binary Half  IL 0.0924 0.0982  0.0106 0.1600 0.1426  0.1600 0.2385 0.2090  0.2385
Gibbs p. Binary Half 1L 0.0562 0.0561  0.0205 0.1342 0.1065 0.1417 0.1820 0.1428  0.1877
MFVI Binary 1L 0.0960 0.0928  0.0105 0.1640 0.1452  0.1640 0.2452 0.2136  0.2452
Gibbs p.  Binary 1L 0.0404 0.0415  0.0195 0.1080 0.0702 0.1184 0.1435 0.0969 0.1566

MFVI 14 x 14 Half 2L 0.1348 0.1319  0.0148 0.2449 0.2059  0.2449 0.3595 0.3070  0.3595
Gibbs p. 14 x 14 Half 2L 0.0954 0.1010  0.0477 0.1888 0.1805  0.2324  0.3273 0.2481  0.3180
MFVI 14 x 14 2L 0.1389 0.1313  0.0140 0.2379 0.1991  0.2379  0.3595 0.2930  0.3595
Gibbs p. 14 x 14 2L 0.0695 0.0723  0.0381 0.1855 0.1335  0.1920 0.2507 0.1810  0.2600

MFVI MNIST Half 2L 0.1256 0.1264  0.0199 0.2302 0.2025 0.2302 0.3387 0.2911  0.3387
Gibbs p. MNIST Half 2L 0.0898 0.0970  0.0428 0.2248 0.1740  0.2247 0.3091 0.2377  0.3068
MFVI MNIST 2L 0.1236 0.1200  0.0196 0.2070 0.1987  0.2070  0.2977 0.1714  0.2977
Gibbs p. MNIST 2L 0.0653 0.0691  0.0334 0.1759 0.1269 0.1880 0.2381 0.2822  0.2553

Bound calculation results Table 1 shows the results of our RC estimation, compared to MFVI.
Our method always improves 0 — 1 RCs, most significantly for Binary MNIST, where the gap can
reach 10% in some configurations. The gap increases when more data is used. More analysis is given
in Supplementary Material 6.5.

5 Discussion

Related work Our work opposes the view that MFVI does not considerably loosen PAC-Bayes
bounds. The theoretical paper Alquier et al. [2] argues for this view by showing that Gibbs pos-
teriors concentrate around the global minimum of the loss at the same rate as their best Gaussian
approximations. However, their result is proven for binary linear classification only, and the best
possible Gaussian approximation may not be attainable in practice. Many other works criticize
MFVI especially for small neural nets, including Foong et al. [11] and Farquhar et al. [9] in Bayesian
learning. In the PAC-Bayes setting, Pitas [22] experimentally demonstrates the limitations of MFVI
in PAC-Bayes and improves RCs using a simplified KFAC Laplace approximation. To our knowl-
edge, we are the first to tightly estimate the optimal value of PAC-Bayes bounds (i.e. in the Gibbs
posterior), with the closest work being Dziugaite and Roy [8], who attempt this task in the context of
data-dependent priors. They find that their bound is very loose in practice, which may be due to not
using tempering in the KL estimation. The work Foong et al. [10] evaluates the tightness limits of the
whole PAC-Bayes framework (rather than specific bounds) and restricts to very small datasets (30-60
datapoints). Our work builds on Izmailov et al. [14] and Wenzel et al. [26] who scaled HMC up to
neural networks.

Limitations The chief limitation of our method is that PAC-Bayes bound estimates require assump-
tions that are impossible to completely verify for MCMC samples. What is possible are empirical
estimates accompanied by robust diagnostics. Hence we make claims under sets of assumptions of
varying strength. Even our most conservative estimates demonstrate the inaccuracy of MFVI.

Conclusion We have demonstrated that using MFVI in PAC-Bayes estimation leads to data-
independent bounds that are much looser than necessary. We provided estimates of optimal bounds
on MNIST versions, using HMC and thermodynamic integration. Our estimates have plausible
magnitude and are supported by extensive diagnostic analysis. The improvement over MFVI is largest
for small models and adding more data tightens our estimates more than their MFVI approximations.
Our results demonstrate the need for better posterior approximations for tight bounds.
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6 Supplementary Material

6.1 Overview of contents

The supplementary material is structured as follows. Section 6.2.1 proves the simple result needed to
deduce KL estimation to marginal likelihood estimation. Sections 6.2.2, 6.2.3 and 6.2.4 are centered
around thermodynamic integration. We introduce the method, apply it in our setting and justify why
the trapezium rule gives an upper bound on our thermodynamic integral. Section 6.2.5 details our
high-probability bounds used to control the probability of our PAC-Bayes estimates, including their
assumptions. Then, Section 6.3 details technical aspects of the implementation and hyperparameters
used. Finally, Sections 6.4 and 6.5 supply further diagnostic and RC estimation results and analysis.

A note on notation Throughout the supplementary material, for the sake of generality, we state

our results for general \ values. However, the reader should keep in mind that we fix A = 1 in our
experiments.

6.2 Details on the method
In this section, we provide further details, derivations, and proofs necessary for our method.

6.2.1 Proof of Proposition 3.1

Proof. we can write the ELBO in two ways:

p(zw)] _ p(w)p(zlw) ] _ p(2)p(w|2)
B o ey | = B s P | = B g PR ©
We can expand both terms as:
p(w) | _ p(w|z)
E, [log p(z|w)] + E, {log q(w|z)} =E, [logp(z)] + E, {log q(w|z)} , 7
which we can rewrite as
q(wlz)] _ B q(wlz)
E, [log p(z|w)] — E, {log P } =E, [logp(z)] — E, {log p(w|z)} . 8)
We can now rewrite this as KL divergences and notice that p(z) is independent of w, hence
Eq [log p(z|w)] — KL[g(w|2)||p(w)] = log p(2) — KL[g(w][2)||p(w]2)]. ©)
We can reorder this as:
KL[g(w|2)||p(w)] = Eq [log p(2|w)] —log p(2) + KL[g(w|z)|[p(w]2)]. (10)
O

6.2.2 Introduction to Thermodynamic Integration

Thermodynamic integration (TT) is a physics-inspired method that allows us to approximate intractable
normalizing constants of high dimensional distributions [18]. The main insight is to transform the
problem into estimating the difference of two log normalizing constants. Since we are required to
estimate log(Z), this framework suits our purposes.

Consider two probability measures 11, I, € M; (W) with corresponding densities 71 (W), w2 (W)
and their unnormalized versions

i (w)

mi(w) = W

17 :/ﬁ(w)dw, i€ {0,1}. (11)
To apply TI, we form a geometric path between 7o (w) and 71 (w) via a scalar parameter 3 € [0, 1]:

= 1 (w)B 70 (w) L8
Ws W

The central identity of thermodynamic integration is as follows. The right-hand side of Equation 13

is referred to as the thermodynamic integral.




Proposition 6.1. Define the potential as Ug(w) = log 7tg(w) and let Ug(w) := %Uﬁ (w). Then,
1
log (W) ~ log (Wo) = [ Euwes, [Uj(w)] 45, (13)
0

Proof. Please refer to Appendix A in [18]. O

6.2.3 Using Thermodynamic Integration

As seen in Section 6.2.2, thermodynamic integration requires defining two probability measures
with unnormalized densities, 77;(w) and calculates the difference of the log normalizing constants
log(W7) — log(Wy). If 7rg is defined such that Wy = 1, then TI calculates the log normalizing
constant of 771. We thus define

To(w) = p(w), 71(W):=p(z,w), (14)

thus Wy = 1 and Wi = [ p(z,w)dw = Z. In TI, we then define the geometric path for 8 € [0, 1]:
a(w) = p(z, w) p(w)' =7, (15)
Then we have that Ug(w) = log 7g(w) = Slogp(z,w) + (1 — ) log p(w) and thus

p(z,w)

e—miﬁ;(w)p(w)
w) = log = log
(w) p(w)

287" p(w)

Then, the thermodynamic integration formula (Equation 13 yields the following form for the log
normalizing constant

= —nALE(W). (16)

1 ~
log(Z) = /O Eyry [—nALE ()] dB. (17)

We will estimate Ev, ., [—n)\ige(w)] with a Monte Carlo average, using samples w ~ 7g. To
sample from each g, we can use HMC again to draw from the log joint

log 71g(w) = Blogp(z, w) + (1 — ) log p(w) (18)
= —BAnLE (w) + Blogp(w) + (1 — B) log p(w) (19)
= —BALE (W) + log p(w). (20)

6.2.4 The trapezium rule upper bounds the thermodynamic integral

In this section, we state our results for the negative log normalizing constant, — log(Z) for conve-
nience. A naive strategy for calculating the integrand for log(Z) is to use a Monte Carlo average for
the integral.

1
—log(Z) = /0 Evry [RALE (w)] B Q1)
1 B—1 _
~ bz:% [EWW% [n)\Lge(w)H (22)

Notice that the right-hand-side in Equation 21 is a left Riemann sum (i.e. the integral is approximated
at the left end of each subinterval of [0, 1]) on the function w — Ew~r,, [n/\zg?(w)] , Where each
subinterval has length %.

The fact that this quantity upper bounds the KL divergence is established in [18] by showing that the
integrand is a decreasing function of 3. Let g(3) = Ewnr, [—Ué (w)] = Ew~rg {n)\zge(w)], our
integrand. We notice that Ug(w) = —n/\ZCSe(w) is independent of 3, hence we may abandon the
subscript and use notation U’(w) = —nALg (w)). [18] show that

Proposition 6.2. 8%—(? = —Varyeg, [U'(w)] <0



Proof. Please refer to Appendix A in [18]. Note that they define g(/3) as the negative of our g(3). O

Hence Ev ., [~U’(w)] is a monotonically decreasing function, and this shows that calculating the
left sums upper bounds our integral. In fact, we can show more. Below we show that g(/3) is convex,
hence the trapezium rule can also be used to upper bound this integral.

Proposition 6.3. Let g(8) = Ewrr, [~U'(W)] = Ewr, [n/\nge(W)} Then we have that 829(2{3) >
0, hence g(3) is convex.

Proof. We make use of the fact that %]EWN,W [-U'(w)] = —Varw~r, [U'(w)], proved in [18]

(note that they define g(3) to be the negative of our g(§3), hence the two statements differ by a minus
sign). Plugging this in and expanding the variance, we obtain

»’g(B)  &? /
2 = e U (W) (23)
= 3 (B, [0 W)?] ~ B, [0 @4
0 / 2 / 0 /
= —%Ewww [(U"(W))?] + 2Ewer, [U'(W)] %EWNWB [U"(w)] (25)
= A+ B. (26)

For B we can use the above, i.e.
B = 2Ew~r, (U (W)] Varyr, [U'(W)] 27
= 2, [U (W) Ewry [(U'(W))?] — 2B, [U' (W) (28)

For A, note that U’(w) is independent of (3, hence we can directly plug into equation (30) in [18],
noting that we have an extra U’(w) term and we need the negative of their expression:

A= /(U’(W))Zﬂﬁ(w)EWNM(W) [U'(w)]dw — /(U’(W))Bﬂ'ﬂ(w)dw (29)
= By [U7(W)] By [(U'(W))?] = B, [(U7(W))?] (30)

Hence A + B is

A+ B =—2Eqr, [U' (W)

- EWNM [(UI(W))3] + 3Ewwr[a [U/(W)] EWNM [(U/(W))2] .
(31)

Since U'(w) = —nALg(w), it is negative. The function z — 2 is concave on (—oo, 0), while the
function z + 22 is convex. Hence Jensen’s inequality gives:
EWNM [U/(W)]g > ]EWMTB [(U/(W»?)] (32)
Eumry [U'(W)] < By, (U (W))?] - (33)
Thus,
g(B 3 2
A8 =TI 5 5 [ B, 0] + B, [0(9)] Eurns, 0] 39
= 3 [~Bwer, [U' (W) + Ewer, [U'(w)]*] =0, (35)
thus g(8) is convex. O

6.2.5 High-probability bounds

The Kl inverse bound To ensure approximate independence, the bounds were calculated on a
thinned version of the Gibbs samples, which ensured that the ESS of the thinned sample is close to
the remaining sample size. This resulted in retaining 1000-3000 samples out of 19800, depending on
the dataset. For comparison, MFVI was also evaluated using the same amount of (exact) Gaussian
samples.
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The asymptotic bound The Markov chain Central Limit Theorem (MCCLT) provides a confidence
interval, but the conditions of this theorem are very strong. Fortunately, [24] provide a similar, but
weaker confidence interval that does not require the MCCLT. The assumptions on our estimator

Ly Z%C(Wi), w; ~ Q are as follows.

i=
1. O (%) variance of the estimator

2. Bias of order smaller than O (ﬁ)

3. An estimator 6, for the asymptotic variance o := lim,_,oc mVaryw.g [de(w)} that con-
verges in probability.

Assumptions 1. and 2. are typical in MCMC applications [24]. For assumption 3, we estimate the

asymptotic variance using the fact that the MCMC standard error converges to ﬁ, following one of

the suggestions of [24]. The (one-sided) version on the confidence interval in [24] has form

1 o= ; 1 ,
In.e=10,— Z Lg(w;) + M= 6, (2a0) : (1+ e)) with prob. at least 1 — «, (36)
m

i=1
where m is the number of samples, ., is an estimate of the asymptotic variance, and € appears in the
proof when formalizing Assumption 3. We take € = 0.01. Fair comparison to MFVI demands that
we use the classical CLT to obtain an asymptotic confidence interval in this case. This is valid as
both the transformed cross-entropy and the 0 — 1 losses are bounded. The CLT confidence interval

has form I, = [O, % ZZI ﬁs(wi) + qa f/%), where q,, is the appropriate quantile of the standard

Gaussian distribution’.

The naive bound Given the difficulties in verifying assumptions for MCMC samples, the reader
may wonder if we can give, perhaps looser, estimates for C'(Q%, A) with milder assumptions. Let
@ denote the underlying distribution of our HMC samples, which may not be Gibbs posterior. The
following simple proposition can be used to give a (loose) bound for KL(Q|| P) only requiring that
@ is not much further from the Gibbs posterior than the mean-field approximation. We expect that )
is much closer to the Gibbs posterior than MFVI, hence this is a very mild assumption.

Proposition 6.4. Let P be the prior, and let Q) denote the corresponding (Gibbs) posterior Q5

e_"LAZEe(W)p(W). Suppose that we are able to simulate from a distribution Q). Let G be another
distribution (in our case, a Gaussian) such that KL(Q||Q%) < KL(G||Q3) + nEq [LCSC(W)] Then,

KL(Q||P) < nAEq [L§ (w)]| + KL(G|| P). 37)
Proof. We defer the proof until the end of this section. O

Let us denote our bound objectives as C'(Q, \). We can use this estimate to obtain an upper bound on
C(Q, \), which we denote by CYB(Q, ). For this, we need an estimate for L5 (Q), for which we
use the kl inverse bound (Theorem 2.3). It can be shown easily that we have CVB(Q, \) > C(G, \)
if we use the A bound and the cross-entropy loss. However, we are most interested in risk certificates
in terms of accuracy. For the 0 — 1 loss, our upper bound on the A bound becomes

Lo! KL(G||P) + log(2/n/8)  L(G
L(Q) < 15_(6/2\2) n ( ||n>?(‘f_gé\() Vn/o) n 15_( /2\)

This can result in CYB(Q, \) < C(G, \) if Q has lower 0 — 1 loss than G. The difference between
this and the true A bound on L%!(Q) is precisely KL(G||Q%) — KL(Q||Q%) + LE¥(Q). We will use
this bound for a sanity check on our results. If our computed value for C(Q, A) is much higher than
this bound, then we likely overestimated the true value, even if our bound is smaller than the one
with MFVL If, on the contrary, our estimate is much lower than this upper bound, that means that

=: CVB(Q, ). (38)

3 Although the population variance is unknown, we decided to use this instead of the Student-t distribution to
ensure comparability to I, ., and because we have a large sample size, m = 20, 000 across the four chains.
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either KL(G||Q%) — KL(Q||Q3%) + de(Q) is high or our chains did not even manage to achieve
KL(Q[IQ3) < KL(G||@3) + L (Q).
Proof of Proposition 6.4 We use Proposition 3.1 with P having density p(w), G having density

q(w|z) and Q% having density p(w|z) and Z = Ep [e‘"’\zcse(w)] being the marginal likelihood. We
get

KL(G||P) = —nAEq [LE (w)] — log(Z) + KL(G||Q3)- (39)
Reordering this, we obtain an estimate for — log(Z):

—log(Z) = KL(G||P) — KL(G||Q}) + nAEq [L% (w)] . (40)

This estimate can be used to calculate KI.(Q|| P), invoking Proposition 3.1 again.
KL(Q||P) = n\Ee [LE(w)] + KL(G||P)
+ (—nAEq [L$ (w)| + KL(QIIQ3) — KL(G|Q3))

Since we assumed that KL(Q||Q%) < KL(G||Q%) + nAEg [de(w)} , the last term is negative. By
ignoring it, we thus obtain an upper bound on KL(Q||P).

(41)

We note that for G = P, Equation 39 becomes Jensen’s inequality for the function — log, i.e.,
—logEq [e*”)‘LCS'e(W)] < —Eqg [log (e*"ALCS'e(W))} . (42)

6.3 Implementation details
6.3.1 Transforming the cross-entropy loss

PAC-Bayes bounds assume a loss function bounded in [0, 1]. However, the cross-entropy loss is
unbounded from above. Hence we transform [°®(w, y) = Zle y; log(p;) as follows.

— 3¢ | yilog(max(pi, pmin))
- log(pmin)

with some ppi, > 0, which now falls into [0, 1]. We will take pyi, = 10~%. The corresponding risk

functionals will be denoted by L¢(Q) and L(Q).

°(w, y) = : (43)

6.3.2 Estimating the kl bound

After arriving at a posterior distribution () either by sampling from the Gibbs posterior or MFVI, we
wish to compute a risk certificate on the error (0-1loss) L~ (Q) of the stochastic predictor given by
Q. The transformed cross-entropy loss is only used for sampling. To compute the risk certificate, we
use the k1 bound (Equation 1) since it is the tightest. To invert the Bernoulli KL, we define

kI (z,b) := sup{y € [z,1] : kl(z||y) < b}. (44)
This can be seen as a proper definition of the inverse Bernoulli KL. Our RC is then

2y/mn
L1(Q) < 1! (ioslm KL(Q||P) +log(*} )) | s)

n

6.3.3 Architectures

We use simple Multi-Layer Perceptron (MLP) architectures in our sampling experiments. Due to the
scalability limits of marginal likelihood estimation, the number of parameters are kept small. The
architectures along with the corresponding number of parameters are given in Table 2.

6.3.4 Hyperparameters

Prior hyperparameters We initialize the prior means randomly from a truncated Gaussian dis-
tribution of mean O and separate variance for each layer, given by \/%, where n;, is the input
dimensionality of the layer. The constants of the truncation are +2 standard deviations. The prior
covariance is set to 0.03 - I, matching [21]. We use the cross-entropy loss as our generalized likelihood

function, in the transformed version (Equation 43), with py,i, = 10~%. This ensures that our loss is
bounded.

12



Table 2: Our neural network architectures.

Dataset Architecture # params
Binary MNIST 784 20 - 2 15742
14 x 14 MNIST 196 128 128 10 43018
MNIST 784 128 128 10 118282
— B=005 — B=01 — B=02 — B=03 — B=05 — B=1.0

0.06

0.0

ESE(W)
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Figure 3: HMC sample traces for a single chain without burn-in (50), for various /3 values. The black
lines show the mean of each chain. The dataset is Binary MNIST - Half.

MFVI hyperparameters As optimizer, we used SGD with learning rate 0.005 and momentum
0.95 and train for 150 epochs. In the case of MFVI, the A bound objective can be easily optimized in
A too. To match our proposed method, we fix A = 1 for MFVI too.

We ran experiments with optimizing for A too, but the best RCs were achieved when A changed very
little during the training (at most 0.02 across our experiments). For these experiments, we followed
[21] in optimizing A separately using SGD with the same learning rate and momentum used for
MFVI. We have run initial experiments with higher learning rates for A, but these resulted in looser
risk certificates using the kl bound.

We choose our risk certificates to hold with probability 1 — ¢ with § = 0.05. We use 4; = 0.025 to
upper bound % >t Ls(w;), w; ~ @Q and then §; = 0.025 to compute bounds. This ensures a risk
certificate that holds with probability 0.95, via a union bound argument.

HMC hyperparameters We use full-batch HMC to sample from Gibbs posteriors of form o<
e LS Wip(w) for B € (0,1) using the JAX HMC implementation of [14]. We run HMC with
Metropolis-Hastings correction. We use constant step-sizes for the discretization of Hamiltonian
dynamics, which we calibrate individually by testing the values {2, 3,4,5,6,7,8,9,10, 20,30} x
1073 for each dataset and 3. The step-sizes were chosen from this set by running HMC for around
100 sampling iterations for each step size, targeting the ideal acceptance probability for HMC given
by 0.65 [3]. Longer trial runs were not possible due to computational constraints. Lower step sizes
were found suitable for higher 8 values. In every experiment, we use a trajectory length of 1.5. The
authors of [14] recommend a trajectory length of at least “22%°*  which is approximately 0.27 in our
case, but we choose higher than this in order to allow for more leapfrog steps. The chosen step-sizes
resulted in leapfrog steps between 50 and 750. The difference in leapfrog steps is motivated by
the fact that for lower g values, the generalized posterior is more similar to the prior and hence is
easier to sample from. Each chain was run for 5000 iterations including a burn-in of 50 iterations. A
low burn-in was chosen since we observed that the chains converge very quickly in function space
(L (w)). To support this choice, Figure 3 shows burned-in chains for the Binary MNIST - Half
dataset for various values of 3. To be able to test the convergence of the chains, we run four chains
started from independent seeds for each /3.

6.4 Diagnostics

This section contains the full description and results of our diagnostic analysis on the HMC samples.
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6.4.1 Diagnostic measures

Let (X®))22, be a Markov chain on state space A, whose initial distribution equals its stationary
distribution, hence X, X5, ... are identically distributed. Consider a square-integrable function
[+ A — R, whose expected value Ep, [f(X1)] we wish to estimate. Note that square integrability

impies Var[f(X;)] < oco.

Effective Sample Size First, we define the effective sample size (ESS), which quantifies the loss of
information caused by correlation.

Definition 6.1. (Effective Sample Size) The Effective sample size of (X(f/)){v:1 is given by

N
B v ) “o

where p(1) = Cor(f(X1), f(X14+)) denotes the autocorrelation at lag .

The ESS is typically lower than the number of samples, indicating the presence of positive correlations.
In MCMC, where states are typically positively correlated, an ESS equaling the number of samples
signals uncorrelated samples.

MCMC standard error
Definition 6.2. (MCMC standard error) The MCMC standard error of (XN | is

Var[f(X1)]

MCMC_SE[f] = ESS[f]

. (47)

The MCMC SE measures the concentration of a sample mean around the true mean, in the sense of the
Markov chain Central Limit theorem (MCCLT). It requires the above conditions on the Markov chain,
namely (i) stationary chain and (ii) square-integrable f and states that, for large NV, approximately

N
& D2 FX0) ~ N (B, [7(X0)], MCMC_SE[)). @)

In practice, we don’t have access to p(7) and Var[f(X;)], and estimate them from a finite set of
samples.

R statistic  Since ESS requires stationarity to be well-defined, we will also use the R (known also
as potential scale reduction) to check convergence by comparing multiple independent Markov chains

[12]. R measures how much the variance of the means between multiple chains exceeds that of
identically distributed chains. We have that R > 1, where R = 1 means perfect convergence. For

more discussion on R, please refer to [12], and for general discussion on MCMC and convergence
diagnostics, see [15] and [5].

Expected Calibration Error Following [14], we supply expected calibration error (ECE) estimates
averaged over all estimates for a given 3. ECE measures model calibration by quantifying how well a
model’s output pseudo-probabilities match the true (observed) probabilities [20].

6.4.2 Diagnostic results

Figures 4 5, 6 7, 8, 9 show diagnostic results for all datasets, respectively. The target acceptance
probability of 0.65 was not always achieved on average. On Binary MNIST, acceptance probabilities
were higher, around 70 — 80%. In these cases, increasing the step-size resulted in unstable behaviour,
with an acceptance probability close to 0. We followed the usual recommendation for these cases,
which is to keep the step-size slightly lower than the highest stable value [4]. On 14 x 14 MNIST,
acceptance probabilities were roughly as desired.

However, the MNIST experiments resulted in some acceptance probabilities below 0.4. In these
cases, the ideal step-size is likely smaller. However, for MNIST, decreasing the step-size would have
meant the largest increase in running time. Furthermore, running short chains with smaller step-sizes
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Figure 4: HMC diagnostics for Binary MNIST - half, over 4 chains of length 5000, for each 3.
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Figure 5: HMC diagnostics for Binary MNIST - full, over 4 chains of length 5000, for each .

showed very similar values for the train and test losses. Hence a decision was made to use larger
step-sizes to be able to produce a longer chain.

The ESS values are relatively high, almost always retaining at least 5000 out of the 19800 samples
(burn-in removed) across the four chains. The MCMC SE values are also low. The sudden decrease
as f3 is increased is explained by the fact that the true variance of the Gibbs posterior decreases as 3
increases since the posterior becomes more concentrated around the minima of the loss landscape.
We observe low ECE values implying that our samples correspond to well-calibrated models. All R
statistics are very close to 1.0, showing that our chains are approximately stationary. This finding
motivates our use of the kl inversion bound (Theorem 2.3) which required an identically distributed
sample.
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Figure 6: HMC diagnostics for 14 x 14 MNIST - half, over 4 chains of length 5000, for each g.
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Figure 7: HMC diagnostics for 14 x 14 MNIST - full, over 4 chains of length 5000, for each 5.
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Figure 8: HMC diagnostics for MNIST - half, over 4 chains of length 5000, for each value of S3.
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Figure 9: HMC diagnostics for MNIST - full, over 4 chains of length 5000, for each value of (3.

6.5 Further results and analysis

Table 3 shows RC estimation results for the (bounded) cross-entropy loss. We first observe that there
are no bound violations, i.e. the test loss/error is always smaller than the corresponding RC. Further,
the RCs for MFVI and the Gibbs posterior have the same magnitude. This suggests that there are no

apparent problems with our estimates. Interestingly, the computed RCs for L& (Q) (denoted as ce
in the tables) are almost always better for MFVI than for the approximate Gibbs posterior samples,
despite the Gibbs posterior being the minimizer of the A bound. However, the RC-s on the 0 — 1
losses (Table 1 above) show considerable improvement with respect to MFVI, especially for Binary
MNIST. This discrepancy in cross-entropy and 0 — 1 losses may indicate that we have considerably
overestimated the KL divergence term. Since our KL divergences are small compared to the 0 — 1
losses, they affect the 0 — 1 RCs less. We are mainly interested in 0 — 1 RCs, hence this is not a
problem for us.

Out of the three high-probability bounds compared, the asymptotic bound gives the lowest risk
certificates, which is explained by the fact that (i) more samples were used, and (ii) that this interval
only guarantees a probability of 0.95 as the number of samples tends to infinity.

The gap between the 0 — 1 RCs for the Gibbs posterior and MFVI increases as the amount of train
data is increased. MFVI gives similar RCs in both cases while Gibbs RCs improve by 3 — 7% when
the amount of data is increased. This is reasonable since Gibbs posteriors concentrate more around
minima of the loss as n is increased. However, our results show that MFVI is not able to utilize the
extra data very well.
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Table 3: Training and test metrics and RC estimates using our three bounds, in terms of the cross-
entropy loss. Bold numbers indicate the tighter certificate out of the Gibbs and MFVTI ones for the
same dataset.

Setup Train/test stats ce RC with kl bound ce RC with A bound
Method Dataset Model Traince Testce KL/n  klinverse asympt klinverse asympt
MFVI Binary Half 1L 0.0256  0.0281 0.0106 0.0703 0.0581  0.0934 0.0756
Gibbs p. Binary Half 1L 0.0166  0.0166 0.0205 0.0706 0.0511  0.0915 0.0663
MFVI Binary 1L 0.0270  0.0272 0.0105 0.0707 0.0580  0.0941 0.0756
Gibbs p.  Binary 1L 0.0122  0.0125 0.0195 0.0598 0.0315  0.0777 0.0402
MFVI 14 x 14 Half 2L 0.0481  0.0481 0.0148 0.1238 0.0947  0.1710 0.1263
Gibbs p. 14 x 14 Half 2L 0.0335  0.0361 0.0477 0.1410 0.0946  0.1888 0.1237
MFVI 14 x 14 2L 0.0463  0.0460 0.0140 0.1196 0.0906  0.1631 0.1194
Gibbs p. 14 x 14 2L 0.0246  0.0259 0.0381 0.1118 0.0702  0.1484 0.0910
MFVI MNIST Half 2L 0.0430  0.0437 0.0199 0.1176 0.0966  0.1570 0.1263
Gibbs p. MNIST Half 2L 0.0324  0.0356 0.0428 0.1347 0.0935  0.1792 0.1223
MFVI MNIST 2L 0.0423  0.0419 0.0196 0.1010 0.0947  0.1317 0.1226
Gibbs p. MNIST 2L 0.0233  0.0253 0.0334 0.1065 0.0673  0.1401 0.0872

When increasing model size, the gap between the 0 — 1 RCs decreases as we move from Binary
MNIST to 14 x 14 MNIST and remains roughly the same as we move to MNIST. This supports the
hypothesis of variational approximations become more accurate as model depth is increased.
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