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Abstract

Overvoltages are one of the most frequently encountered problems during line energization. At the time of restoration transmission line switching
is also one of the major causes, which creates overvoltage. The magnitude and shape of the switching overvoltages vary with the system parameters
and network configuration and the point-on-wave where the switching operation takes place. Though detailed electromagnetic transient studies
carried out for the design of transmission systems, such studies are not common in a day-to-day operation of power system. However it is important
for the operator to ensure that peak overvoltages resulting from the switching operations are well within safe limits. This paper presents an Artificial
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eural Network (ANN)-based approach to estimate the peak overvoltage generated by switching transients during line energization.
ethodology Levenberg–Marquardt method is used to train the multilayer perceptron. The developed ANN is trained with the extensive

esults, and tested for typical cases. The simulated results presented clearly show that the proposed technique can estimate the p
witching overvoltages with good accuracy.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The insulation level of EHV and UHV ac systems is largely
etermined by the magnitude of switching overvoltages. Switch-

ng overvoltages are therefore a focal point in studies of these
ystems. Switching transients are fast transients that occur in the
rocess of energizing transmission line and busload capacitances

mmediately after a power source is connected to the network.
nductance of transmission line and power sources interacts with
apacitance to cause very fast oscillations in the process[1]. In
eintegration phase of restoration, it is desirable to energize as
arge a section of high-voltage transmission as switching tran-
ient voltages would allow. Energizing small sections tends to
rolong the restoration process. During this phase of restoration
f high voltage overhead transmission lines, transient voltages
r switching surges are caused by energizing large segments of
transmission system or by switching capacitive elements[2].
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The magnitude and shape of the switching overvoltages
with the system parameters and network configuration.
with the same system parameters and network configur
the switching overvoltages are highly dependent on the ch
teristics of the circuit breaker operation and the point-on-w
where the switching operation takes place.

The reliable operation of any electrical power system is d
mine to a great extent by the amplitude, duration and frequ
of the transient voltages appearing in different places in the
work. Power transformers, surge arresters and circuit bre
will be the equipment earliest affected by overvoltages. T
sient overvoltages are usually a significant factor at transmi
voltages above 400 kV. At higher transmission voltages, o
voltages caused by switching may become significant, be
arrester operating voltages are relatively close to normal sy
voltage and lines are usually long so that the energy store
the lines may be large. Overvoltage will put the transformer
saturation, causing core heating and copious harmonic cu
generation. Circuit breaker called upon to operate during
ods of high voltage will have reduced interrupting capability
some voltage even the ability to interrupt line-charging cur
pk@ee.iisc.ernet.in (H.P. Khincha), sulabh@ee.iisc.ernet.in (S. Khandelwal).will be lost [1]. The energy stored in long high voltage lines is
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large causing significant transient overvoltages, must carefully
be considered during line energization.

Extensive EMTP simulation studies are carried out during
planning stage of transmission system. A line energization is
an intended operation, certain initial condition are required in
the studies and the main purpose of studies is to provide proper
protection system, such as lightning arrester, shunt reactor etc.
to limit the overvoltages to specified design limits as per the
utility practice. However during system operation, a large dis-
turbances or a partial blackout, the system condition can be very
abnormal. Thus during such situation many transmission lines
indented to be energized. At this stage the operator should fol-
low the switching sequence, which is safe and lead to successful
energization.

Digital computer tool such as Electro Magnetic Transients
Program (EMTP)[3,4] is universally accepted as industry stan-
dard for computation of both switching and temporary over
voltages. At the planning stage the insulation level of apparatus
is decided on the basis of peak value of transient over voltages,
but enormous numbers of cases have to considered to arrive at
the maximum magnitude. However during day-to-day operation
such studies, by the operators are prohibitive due to actual detail
data required and also large computational time involved. Dur-
ing power system restoration there is a need for real time tool,
which can provide crucial values of peak overvoltages, gener-
ated during energization of transmission line.
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Fig. 1. Sample system G: generator S: switch R: reactor.

ponent. A load rejection accompanied by a fault can give rise to
severe power frequency over voltages[5]. In an interconnected
system the effect of this cause is some what alleviated. Full load
rejection on an interconnected system is not likely since there
are other lines or real load, which offer some outlet for power.
In general, the highest switching overvoltage in a high voltage
network is caused by energizing and re-energizing of unloaded
line. When the line is connected to the source, travelling wave
will start to travel along the line towards the receiving end and
double there at the open end with an overvoltage near to 2 p.u.
[6]. Switching transients usually exhibit complex waveforms for
which the fundamental frequency usually lies in the range 100
to −1000 Hz but in some cases a very steep voltage rise or col-
lapse can occur. In EHV and UHV systems there are a number
of switching operations, which require special consideration as
they may lead to magnitudes of the switching transient, which
influence the choice of the system insulation level. However
the overvoltages produced during the switching of reactors and
transformers may readily be limited by surge diverters[5] and
are therefore not considered here. Of the other switching oper-
ations, line closing and reclosing generally produce the larger
overvoltages and consequently we concentrate on line energiza-
tion in this paper.

The sample system considered for explanation of the pro-
posed methodology is a 400 kV EHV network shown inFig. 1.
The normal peak value of any phase voltage is 400
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This paper presents the ANN application for estimatio
eak over voltages under switching transients during line c

ng. A tool such as proposed in this paper that can give the m
um switching overvoltage will be helpful to the operator. It
e used as training tool for the operators. The proposed AN
xpected to learn many scenarios of operation. To give the

mum peak overvoltage in a shortest computational time w
s the requirement during online operation of power syst
n the proposed ANN we have considered the most impo
spects, which influence the transient overvoltages such a

ength, switching angle, source strength and receiving end
or. This information will help the operator to select the pro
equence of transmission line to be energized safely with
ients appearing safe within the limits. Results of the stu
re presented for a sample system and also for an equi
HV system of Indian southern grid to illustrate the propo
pproach.

. Switching transients

An electrical transient is the outward manifestation of
udden change in circuit conditions, as when a switch ope
lose or a fault occurs on a system. Generally a switching o
ion in a power system changes the state of the system from
onditions existing prior to switching to those existing after
peration, this generates transient phenomena. The pow
uency voltage before and after the switching operation m
f a different value due to the change in the state of the sy
his means that the total amplitude of the overvoltage du
witching may be considered in two parts; namely a tran
omponent which is superimposed on a power frequency
e
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-
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nd this value is taken as base for voltage p.u. In the sy
tudies 400 kV line-to-line base voltage and 100 MVA as a
ower is considered.Fig. 2 shows the switching transient
us 3 when line is energized. In practical system a numb

ig. 2. Switching transient overvoltage at bus 3 without reactor at bus 3
eak absolute value is 2.08, 2.06 and 2.02 p.u. in phase A, B and C, respe
ith switching angle 90◦.
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Table 1
Parameters inherent to the network and the circuit breaker influencing the switch-
ing overvoltages

Factor/parameter Influence

1. Line length S
2. Degree of shunt compensation S
3. Line termination S
4. Trapped charges when PIR is not used S
5. Value of closing resistors S
6. Insertion times of closing resistors S
7. Pole closing instants S
8. Nature of source-inductive or complex S
9. Total short circuit level S

10. Total pole closing span M
11. Trapped charges when PIR is used M
12. Line parameters M
13. Frequency dependence of line parameter M
14. Saturation of reactor M
15. Corona of lines W

S: strong, M: medium and W: Weak.

factors affect the overvoltages factors due to energization or re-
closing. The influence of various factors can be grouped into
three broad categories, such as strong, medium and weak as
given inTable 1 [5]. On re-closure the power frequency voltage
on the feeding point side across the breaker gap is superimposed
on the voltage corresponding to the trapped charges, the transient
is correspondingly increase and result in a higher overvoltage
[6].

Transient on re-closure can heavily be damped by pre-
insertion resister (PIR). The optimum pre insertion resistance is
not only a function of the line shunt compensation but also the
short circuit power of the feeding network and the line length
[5]. For an existing system PIR value and PIR duration tim-
ings remain fixed and the effect of trapped charge comes in
medium category. On the other hand the resistor equipped cir-
cuit breaker are more expensive. These complex breakers shows
mechanical mal functions as the most common cause of circuit
breaker failures. Reduction of mechanical complexity should
greatly improve reliability. So in this paper study is done with-
out PIR. The metal oxide surge arrester is a good substitute of
PIR to control the overvoltages.

The shunt compensation effect is shown inFig. 3. A
50 MVAR shunt reactor is connected at the receiving end bus of
a 400 kV system, which cause the maximum overvoltage come
down to the value 1.778 p.u.[7,8], which was 2 p.u. without shunt
reactor. The effect of variation in receiving end reactor value is
s ed
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Fig. 3. Switching transient overvoltage at bus 3 with 50 MVAR reactor at bus
3. Max peak absolute value is 1.563, 1.602 and 1.778 p.u. in phase A, B and C,
respectively with switching angle 90◦.

Fig. 4. Voltage peak at bus 3 as source strength increases, while the switching
angle is kept fixed at 50◦ with PIR.

Controlled switching of high-voltage ac circuit breakers has
become a commonly accepted means of reducing switching
transients in power systems. The primary motivation for using
controlled switching of transmission lines is to minimize the
switching overvoltages during energization. If switching take
place at the voltage maximum i.e. at 90◦ the voltage at first oscil-
late along the whole the line length to almost twice the value of
the system voltage[7] as shown inFig. 2. Overvoltage can be
limited by controlled switching of circuit breaker as shown in
Fig. 5, in which line closing is done at 0◦. Fig. 6shows that for a

Fig. 5. Voltage peak at bus 3 as source strength increases, while line length is
300 km with PIR.
hown inFig. 7. The study is performed with fully transpos
ines. So the factors, which strongly affect the switching o
oltage are switching angle, fault level of the sending end
ransmission line length and receiving end reactor[9].

System size (source strength) affect the overvoltage stro
vervoltage reduces as the size of system increases. This
ion is due to the superposition of a number of different freq
ies not due to the damping of switching overvoltage[10,11].
igs. 4 and 5show the effect of source strength on overvolt
t different line length and switching angle, respectively. As
ource become stronger it will keep the transient voltage lo
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Fig. 6. Voltage peak at bus 3 as line length increases, while the source strength
is 1000 MVA with PIR.

particular line length and source strength transient voltage will
be more at 90◦ than 0◦. The effect of transmission line length is
shown inFigs. 4, 6 and 7, as line length increases charging cur-
rent also increases which creates higher overvoltage at receiving
end bus.

As discussed above for an existing system the main factors
witch affect the peak value of switching overvoltage are switch-
ing angle, line length, source strength and shunt reactor. Here
it should be mentioned that a single parameter often cannot be
regarded independently from the other important influencing
factors. The magnitude of the overvoltages normally does not
depend directly on any single isolated parameter and a vari-
ation of one parameter can often alter the influence of another
parameter, in other words there exists an interaction between the
various system and breaker parameters. This forbids the deriva-
tion of precise generalized rule of simple formulae applicable
to all cases[5]. So an ANN can help to estimate the peak value
of switching overvoltages generated during line energization.
An ANN is programmed by presenting it with training set of
input/output patterns from which it then learns the relationship
between the inputs and outputs. In next section a ANN-based
approach is described which can give a acceptable solution of
switching transients by the help of which an operator can take a
quick decision at the time of operation.

F with
o
r

Fig. 8. Proposed MLP-based ANN architecture.

3. The artificial neural network

The proposal in this work considers the adoption of feed for-
ward Multilayer Perceptron (MLP) architecture. A MLP trained
with the back-propagation algorithm may be viewed as a prac-
tical vehicle for performing a nonlinear input–output mapping
of a general nature. Function approximation by feed forward
MLP network is proven to be very efficient, considering various
learning strategies like simple back propagation or the robust
Levenberg–Marquardt. Its ability to perform well is affected by
the chosen training data as well as training scheme. A simple
MLP neural network composed of single hidden layer and output
layer is capable of solving difficult and complex problems[12].
The schematic diagram of the proposed MLP neural networks
architecture is shown inFig. 8. The composition of the input
variables for the proposed neural networks has been carefully
selected. In proposed methodology two schemes are adopted to
estimate the peak overvoltages.

3.1. Scheme 1

In this scheme it is assumed that the receiving end reactor has
fixed value. Then the parameters, which influence the voltage
peak are:

• switching angle;
•
•

s as
m -
o ined
ig. 7. Voltage peak at bus 3 at various values of receiving end reactor and
ut PIR, source strength is 1000 MVA and switching angle 90◦. W.R. = without
eactor.
-

source strength;
transmission line length.

In this scheme input vector consist only three variable
ention above as shown inFig. 9. In case of with and with
ut receiving end reactor different neural network is tra

Fig. 9. Proposed Scheme 1.
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Fig. 10. Proposed Scheme 2.

and for different value of reactor different neural network
is used.

3.2. Scheme 2

In this Scheme it is assumed that the receiving end reactor
is switchable and has various values. In this condition reactor
also affect the voltage peak, so the value of receiving end reactor
also considered as the input parameters as shown inFig. 10. This
scheme consist only one neural network with the parameters in
input vector are:

• switching angle;
• source strength;
• transmission line length;
• receiving end reactor value.

In both the schemes output is the absolute maximum value
of peak voltage of any phase at the receiving end bus. The othe
parameters which influence the switching overvoltage are kep
constant. ANN can predict the peak value in each phase als
but we have to modify the ANN architecture. This aspect is
discussed briefly inAppendix A. However our concern in the
present scope is to obtain the worst peak overvoltage irrespectiv
of the phase so the ANN is trained for peak value among three
p

for
M N
f an-
s ANN
E NN

output. This error is used to adjust the weight of connection.
Since the switching transient demands a solution with high pre-
cision, the neural network has to be trained considering a very
small stopping criterion. Output values of the trained neural net-
works must be capable of computing the voltages with very
good precision. Gradient-based training algorithms, like back-
propagation, are most commonly used for training procedures.
They are not efficient due to the fact that the gradient vanishes
at the solution. Hessian-based algorithms allow the network to
learn more subtle features of a complicated mapping. The train-
ing process converges quickly as the solution is approached,
because the Hessian does not vanish at the solution. To benefit
from the advantages of Hessian based training, we focused on
the Levenberg–Marquardt (LM) algorithm reported in[13].

3.3. Levenberg–Marquardt (LM) algorithm

Suppose that we have a functionξ(x) which we want to min-
imize with respect to the parameter vectorx, where

ξ(x) =
N∑

i=1

ei
2(x)

Then the Marquardt–Levenberg modification to the
Gauss–Newton method is

�
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Supervised training of ANN is a usual training paradigm

LP architecture.Fig. 11shows the supervised learning of AN
or which input is given to EMTP to get the peak values of tr
ient overvoltages and the same data is used to train the
rror is calculated by the difference of EMTP output and A

Fig. 11. Supervised learning of ANN.
r
t
o

e

.

x = [JT(x) J(x) + µI]
−1

JT(x) e(x)

he parameterµ is multiplied by some factorβ whenever a ste
ould result in an increasedξ(x). When a step reducesξ(x), µ is
ivided byβ. Notice that whenµ is large the algorithm becom
teepest descent; while for smallµ the algorithm become
auss–Newton. The LM algorithm is very efficient when tr

ng networks have up to few hundred weights. Although
omputational requirements are much higher for the each
ion of the LM algorithm, this is more than made up for by
ncreased efficiency. This is especially true when high prec
s required.

In order to get good generalization capability of the n
al networks, the composition of training data consider diffe
ource levels, various switching angles and line lengths. Dep
ng on the analysis to be conducted it is possible to increa
ecrease the quantity of training cases. The PIR values and

ion time is not considered for the training data.

. Simulated studies and results

.1. System study

The proposed scheme is tested with a sample thre
00 kV system. Single line diagram is shown inFig. 1. The case
f power system restoration stage is taken as an example f
roposed methodology. The source is an inductive type s
nd remains fixed in study. Studies are carried out with
ithout the receiving end reactor at bus 3. Switching trans
re simulated for various combinations of system paramete

ollows:
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• source strength: 1000–10000 MVA in step of 1000 MVA
• line length: 100–400 km in step of 50 km
• switching angle: 0–90◦ in step of 30◦

In the case of reactor presence at bus 3, the standard reactor
values 50, 63 and 80 are considered.

4.2. Generalization and normalization

One of the most critical problems in constructing the ANN
is the choice of the number of hidden layers and the number of
neurons. Using too few neurons in the hidden layer may prevent
the training process to converge, while using too many neurons
would produce long training time, and/or result in the ANN to
lose its generalization attribute. In this study, a number of tests
were performed varying with the one or two hidden layers as
well as varying the number of neurons in each hidden layer. A
MLP with one hidden layer and 10 hidden units is found to be
sufficient to get good accuracy and generalization for proposed
both schemes.

Neural networks learn more quickly and give better perfor-
mance if the input variables are pre-processed before being used
to train the network. Using zero mean inputs can minimize the
learning time. The inputs presented after first hidden layer should
also be zero mean to speed up the learning. An antisymmetric
a tter
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Fig. 12. Squared error against epoch curve for the data with 50 MVAR in
Scheme 1.

If we use the frequency dependency of line parameters during
switching studies the transient wave shape will contain less har-
monics and peak overvoltages will also have less magnitude as
compared to when frequency dependency of line parameters are
not considered in the study. Considering the higher value of peak
overvoltages for training the ANN will lead to safer estimation.
Two sets of data are generated one without reactor and also with
reactor of three standard values of 50, 63 and 80 MVAR used in
the Indian southern grid. The total numbers of patterns obtained
for training are about 1120.

4.3.1. Scheme 1
Four different neural network of same architecture are trained

using the results of simulated conditions one for without reactor
and other three for the different values of reactor. The second
order Levenberg–Marquardt training method is adopted to get
high precision accuracy as mentioned in Section3. Each Neural
Network is trained with the goal of mean square error (MSE) 1e-
2.Fig. 12shows the training of ANN2 Neural Network.Table 2
shows the learning time and number of epoch for each ANN in
Schemes 1 and 2.

4.3.2. Scheme 2
Single neural network ANN5 is used with additional input the

reactor value. Neural Network is trained with the goal of Mean
S and
n d also
n ased
t f
A

T
N

S 3, 80
T
N

ctivation function like the hyperbolic tangent function is be
han logistic function which permits the output of neurons in
nterval (−1, 1), in which case it is likely for its mean to ze
14]. Input variables have different range like line length i
he order of 100 km, switching angle is in the order of 10◦ and
ource strength is in the order of 1000 MVA. Normalization
ata is done to preprocessed inputs and single output, wh
eak voltage in the range of 1–3 p.u. and which scaled int
ange of (−1, 1). As the dimension of input vector is three
our in Scheme 1 and 2, respectively, curse of dimension
o not affect the convergence of learning. The hyperbolic
igmoid function is used in hidden neurons and linear activ
unction is used at output neuron.

.3. Training

A set of training data is obtained for numerous cases by u
MTP developed by Prof. D. Thukaram at Indian Institute
cience, Bangalore, India which has all features like frequ
ependence, saturation of reactors, lighting arrestors, no
arity of various components, etc. This program has been e
ively used in planning studies of Indian EHV system. We h
sed this EMTP program to generate results for various c

able 2
umber of epoch and learning time for various ANN

ANN 1 ANN 2

hunt reactor at bus 3 (MVAR) No reactor 50
ime (s) 7.797 7.844
o. of epoch 45 42
-
-

s.

quare Error (MSE) 1e-2 which takes more time in learning
umber of epochs as the number of sample is increased an
ow the input vector has four input variable which has incre

he dimensionality of problem.Fig. 13 shows the training o
NN5.

ANN 3 ANN 4 ANN5

63 80 Without and with 50, 6
7.797 7.812 20.75

44 46 72
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Fig. 13. Squared error against epoch curve for the data of Scheme 2.

4.4. Testing

All experiments have been repeated for different system
parameters. After learning, all parameters of the trained net-
works have been frozen and then used in the retrieval mode for
testing the capabilities of the system on the data not used in
learning. The testing data samples have been generated through
the EMTP program by placing the parameter values not used in
learning, by applying different source strength values, and dif-
ferent switching angle and line length. A large number of testing
data have been used to check the proposed solution in the most
objective way at practically all possible parameters variation.
Line length varied in steps of 25 km, switching angle in steps of
10◦ and source strength in steps of 500 MVA. Results for a sam-
ple test data are presented inTables 3 and 4and also shown in
Figs. 15–19. Table 3contains the some sample result of test data
of Scheme 1 andTable 4has some sample test data of Scheme 2.
Values in column EMTP are the absolute values of peak voltage

Table 3
Scheme 1 some sample testing data and output

L.L. (km) S.S. (MVA) S.A. (◦) EMTP ANN Error Error (%)

ANN1
125 1500 0 2.165 2.095 0.070 3.222
225 5500 45 2.469 2.537 0.068 2.755

A

A

A

L

Fig. 14. ANN1 output: voltage peak at bus 3 simulated by ANN and EMTP
while source strength 1500 MVA and line length 225 km without receiving end
reactor.

Fig. 15. ANN2 output: voltage peak at bus 3 simulated by ANN and EMTP while
source strength 1500 MVA and switching angle 0◦ with 50 MVAR receiving end
reactor.

at bus 3 calculated by EMTP program where the ANN values are
the values simulated by trained network. Error and percentage
error are calculated as:

error = |ANN − EMTP|

EMTP
,

percentage error (%)= error× 100

The proposed model tested with 11-bus system. Various cases of
line energization are taken into account and corresponding peak
values estimated from trained model. Detailed result is shown
in Section4.5.

4.4.1. Scheme 1
Fig. 14shows the voltage peak at bus 3 against the switching

angle, other parameters like line length, source strength, constant
at 225 km, 1500 MVA, respectively and without receiving end
reactor.Fig. 15shows the voltage peak as line length varies from
125 to 375 km at constant source strength, switching angle and
with 50 MVAR reactor at bus 3.Fig. 16shows the voltage peak
at bus 3 as source strength varies in step of 1000 MVA from
1500 to 5500 MVA with constant line length, switching angle
with 63 MVAR reactor.Fig. 17shows the results of ANN4 with
varying source strength from 5500 to 9500 MVA, line length and
225 5500 50 2.521 2.580 0.059 2.345

NN2
125 1500 0 2.017 2.046 0.029 1.450
375 1500 0 2.463 2.488 0.025 1.001
225 5500 40 2.322 2.388 0.066 2.835

NN3
325 5500 90 2.524 2.478 0.046 1.830
375 5500 90 2.845 2.853 0.008 0.267
225 5500 75 2.563 2.554 0.009 0.366
325 2500 0 2.149 2.222 0.073 3.413

NN4
225 1500 90 2.256 2.301 0.045 1.992
225 5500 60 2.439 2.482 0.043 1.780
375 9500 90 2.679 2.685 0.006 0.241

.L. = line length, S.S. = source strength and S.A. = switching angle.
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Table 4
Scheme 2 some sample testing data and output

R.R. (MVAR) L.L. (km) S.S. (MVA) S.A. (◦) EMTP ANN Error Error (%)

0 125 1500 0 2.165 2.128 0.037 1.732
0 325 5500 90 2.598 2.570 0.028 1.061
0 225 5500 45 2.469 2.462 0.007 0.275

50 275 1500 0 2.178 2.178 0.000 0.012
50 225 5500 45 2.391 2.407 0.016 0.675
63 375 1500 75 2.649 2.680 0.031 1.158
63 225 5500 50 2.421 2.451 0.030 1.237
63 325 8500 90 2.394 2.411 0.017 0.698
80 125 1500 0 1.977 1.981 0.004 0.194
80 225 5500 10 2.044 2.059 0.015 0.734
80 225 5500 70 2.515 2.468 0.047 1.860
80 375 6500 90 2.783 2.818 0.035 1.241

R.R. = receiving end reactor, L.L. = line length, S.S. = source strength and S.A. = switching angle.

switching angle are kept constant and with 80 MVAR reactor
value.

4.4.2. Scheme 2
Figs. 18 and 19show the output of ANN5 with the variation of

various input parameter.Fig. 18shows the voltage peak at bus 3
simulated by ANN and EMTP while source strength 5500 MVA
line length 225 km with 50 MVAR receiving end reactor.Fig. 19

Fig. 16. ANN3 output: voltage peak at bus 3 simulated by ANN and EMTP
while switching angle 90◦ and line length 325 km with 63 MVAR receiving end
reactor.

F
w
r

shows the results with varying line length while source strength
and switching angle are kept constant without receiving end
reactor.Table 4shows some sample testing data.

4.5. An equivalent EHV system studies

The proposed ANN approach is also tested with an 11-
bus system (Fig. 20), which is an equivalent EHV system of

Fig. 18. ANN5 output: voltage peak at bus 3 simulated by ANN and EMTP
while source strength 5500 MVA line length 225 km with 50 MVAR receiving
end reactor.
ig. 17. ANN4 output: voltage peak at bus 3 simulated by ANN and EMTP
hile switching angle 0◦ and line length 375 km with 80 MVAR receiving end

eactor.

F
w
r

ig. 19. ANN5 output: voltage peak at bus 3 simulated by ANN and EMTP
hile source strength 1500 MVA and switching angle 0◦ without receiving end

eactor.
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Fig. 20. An equivalent 11-bus EHV system of Indian southern grid.

Indian southern grid shown inFig. 21. The various cases of
line energization are taken into account and corresponding peak
overvoltages are computed from EMTP program. Equivalent
source strengths were obtained at all buses for various condi-
tions. Energization of lines from either end of a transmission
line is considered. Typical system scenarios are considered for
exhaustive training patterns for proposed ANN. Scheme 2 of
the proposed ANN is used to train the generated data. Summary
of few results are presented inTable 5. It can be seen from the
results that the ANN is able to learn the patterns and give results
to acceptable accuracy.

Fig. 21. Indian southern grid.

4.6. Optimal PIR

The system used for study in proposed methodology is an
equivalent system of Indian southern grid. For a particular sys-
tem the PIR values remain constant. When a line is energized
through single step preinsertion resistors two temporally sepa-
rated transients occur.

• The transients generated when the line is energized through
the resistor.

• The transients generated when the resister is short-circuited.

Table 5
Results for equivalent 11-bus EHV system

Line Switching end bus no. R.R. (MVAR) L.L. (km) SS (MVA) SA (◦) EMTP ANN Error (%)

11-5 11 0 295 4756 0 2.38 2.29 3.58
0 295 4756 60 2.56 2.54 0.62

63 295 4756 60 2.37 2.41 1.56
63 295 4756 90 2.27 2.34 3.09

5 0 295 1007 60 2.64 2.60 1.31
0 295 1007 90 2.64 2.68 1.58

11-4 11 0 257 4188 90 2.51 2.49 0.96
0 257 4188 60 2.69 2.70 0.59

50 257 4188 00 2.01 2.06 2.79
50 257 4188 90 2.40 2.37 1.24

3000 0 2.20 2.21 0.22

1

R S.A.
4 0 257
0 257

1-10 11 0 282
0 282

50 282
50 282

10 0 282
0 282

.R. = receiving end reactor, L.L. = line length, S.S. = source strength and
3000 60 2.58 2.58 0.20

4555 00 2.22 2.27 2.27
4555 90 2.37 2.38 0.14
4555 00 2.25 2.18 2.89
4555 90 2.35 2.35 0.06

1289 60 2.52 2.61 3.82
1289 90 2.59 2.71 4.72

= switching angle.
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Fig. 22. Data pattern generated by 850 cases with PIR of 300�.

So an optimal value of PIR requires for switching to keep
overvoltage low. The optimum value of PIR is the function of line
shunt compensation, short-circuit power of the feeding network
and the line length to be energized. As the system conditions
vary the optimal value will also vary and one should be careful
about the PIR value.

The data pattern of various cases obtained with PIR value
(300�) maintained constant. The PIR 300� is optimal for
around 200 km line length, which cause the clustering of peak
voltages data close to the value 1.45 p.u. (Fig. 22). If the optimal
value of PIR used for each line length then the peak voltage
data pattern will be different. Hence further work needs to be
carried out by taking the various optimal values of PIR and PIR
duration time.

5. Conclusion

A Neural Network approach to estimate the peak over volt-
ages under switching transient is proposed and implemented
The Levenberg–Marquardt second order training method ha
been adopted for obtaining small mean square errors (MSEs
without losing generalization capability of ANN. The results
from this scheme are close to results from the conventiona
method and helpful in predicting the over voltage of the other
case studies within the range of training set. A three-bus 400 kV
system has been used to explain the proposed ANN-base

estimator for switching transient overvoltages. The proposed
ANN approach is also tested on an equivalent EHV system of
Indian southern grid. The simulated results clearly show that the
proposed approach can estimate the peak values of switching
overvoltages with good accuracy. The ANN application can be
used an operator-training tool for estimation of switching over-
voltages during power system restoration. Further work can be
carried out by taking the various optimal values of PIR and PIR
duration timing. Additional parameters in input like presence of
trapped charges also can be considered.

Appendix A

The peak occurrence in the different phases depends on the
instant of switching and other initial conditions. ANN can be
trained for the maximum peak absolute value of each phase.
Fig. A.1shows the ANN architecture for the estimation of peak

F peak
o

T
R

R MTP ANN Phase Error =|ANN-EMTP| Error (%)

2.165 2.128 B 0.037 1.732
2.598 2.570 B 0.028 1.061
2.469 2.462 C 0.007 0.275

5 2.178 2.178 B 0.000 0.012
5 2.391 2.407 C 0.016 0.675
6 2.649 2.680 C 0.031 1.158
6 2.421 2.451 C 0.030 1.237
6 2.394 2.411 B 0.017 0.698
8 1.977 1.981 B 0.004 0.194
8 2.044 2.059 B 0.015 0.734
8 2.515 2.468 C 0.047 1.860
8 2.783 2.818 B 0.035 1.241

R .A.: switching angle.
able A.1
esults for modified Scheme 3

.R. (MVAR) L.L. (km) S.S. (MVA) S.A. (◦) E

0 125 1500 0
0 325 5500 90
0 225 5500 45
0 275 1500 0
0 225 5500 45
3 375 1500 75
3 225 5500 50
3 325 8500 90
0 125 1500 0
0 225 5500 10
0 225 5500 70
0 375 6500 90

.R.: receiving end reactor, L.L.: line length, S.S.: source strength and S
.
s
)

l

d
ig. A.1. Proposed MLP-based ANN architecture to estimate the voltage
f each phase (Scheme 3).
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overvoltage of each phase. The results of this modified scheme
(Scheme 3) are shown inTable A.1. For the modified scheme
the input vector is same as the previous schemes, but the out-
put contains maximum peak absolute value of three phases. In
Table A.1results are shown for this Scheme 3. It can be seen
that results obtained for peak values are same as in Scheme 2,
but now we have information of phase also in which phase peak
occurs.
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