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Abstract

Overvoltages are one of the most frequently encountered problems during line energization. At the time of restoration transmission line switch
is also one of the major causes, which creates overvoltage. The magnitude and shape of the switching overvoltages vary with the system paran
and network configuration and the point-on-wave where the switching operation takes place. Though detailed electromagnetic transient stu
carried out for the design of transmission systems, such studies are not common in a day-to-day operation of power system. However it is impol
for the operator to ensure that peak overvoltages resulting from the switching operations are well within safe limits. This paper presentalan Artifi
Neural Network (ANN)-based approach to estimate the peak overvoltage generated by switching transients during line energization. In propc
methodology Levenberg—Marquardt method is used to train the multilayer perceptron. The developed ANN is trained with the extensive simula
results, and tested for typical cases. The simulated results presented clearly show that the proposed technique can estimate the peak val
switching overvoltages with good accuracy.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction The magnitude and shape of the switching overvoltages vary
with the system parameters and network configuration. Even
The insulation level of EHV and UHV ac systems is largely with the same system parameters and network configuration,
determined by the magnitude of switching overvoltages. Switchthe switching overvoltages are highly dependent on the charac-
ing overvoltages are therefore a focal point in studies of theseeristics of the circuit breaker operation and the point-on-wave
systems. Switching transients are fast transients that occur in thrhere the switching operation takes place.
process of energizing transmission line and busload capacitances The reliable operation of any electrical power system is deter-
immediately after a power source is connected to the networkmine to a great extent by the amplitude, duration and frequency
Inductance of transmission line and power sources interacts withf the transient voltages appearing in different places in the net-
capacitance to cause very fast oscillations in the prddgskr ~ work. Power transformers, surge arresters and circuit breakers
reintegration phase of restoration, it is desirable to energize asill be the equipment earliest affected by overvoltages. Tran-
large a section of high-voltage transmission as switching transient overvoltages are usually a significant factor at transmission
sient voltages would allow. Energizing small sections tends twoltages above 400 kV. At higher transmission voltages, over-
prolong the restoration process. During this phase of restoratiovoltages caused by switching may become significant, because
of high voltage overhead transmission lines, transient voltagearrester operating voltages are relatively close to normal system
or switching surges are caused by energizing large segments wiltage and lines are usually long so that the energy stored on
a transmission system or by switching capacitive elem@jts the lines may be large. Overvoltage will put the transformer into
saturation, causing core heating and copious harmonic current
generation. Circuit breaker called upon to operate during peri-
"+ Corresponding author. Tel.: +91 80 22932362; fax: +91 80 23600444,  ©0S OF high voltage will have reduced interrupting capability. At
E-mail addresses: dtram@ee.iisc.emet.in (D. Thukaram), some voltage even the ability to interrupt line-charging current
hpk@ee.iisc.eret.in (H.P. Khincha), sulabh@ee.iisc.ernet.in (S. Khandelwal)will be lost[1]. The energy stored in long high voltage lines is
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large causing significant transient overvoltages, must carefully S

be considered during line energization. @ i | |
Extensive EMTP simulation studies are carried out during J_|

planning stage of transmission system. A line energization is G 1 2 e 3

an intended operation, certain initial condition are required in ECD R

the studies and the main purpose of studies is to provide proper S:j’

protection system, such as lightning arrester, shunt reactor etc.

to limit the overvoltages to specified design limits as per the
utility practice. However during system operation, a large dis-
turbances or a partial blackout, the system condition can be very
abnormal. Thus during such situation many transmission lineBonent. A load rejection accompanied by a fault can give rise to
indented to be energized. At this stage the operator should fofevere power frequency over voltagés In an interconnected
low the switching sequence, which is safe and lead to successfystem the effect of this cause is some what alleviated. Full load
energization. rejection on an interconnected system is not likely since there
Digital computer tool such as Electro Magnetic Transients’® other lines or real load, which offer some outlet for power.
Program (EMTP]3,4] is universally accepted as industry stan- In general, the highest switching overvoltage in a high voltage
dard for computation of both switching and temporary overetwork is caused by energizing and re-energizing of unloaded
voltages. At the planning stage the insulation level of apparatu¥ne. When the line is connected to the source, travelling wave
is decided on the basis of peak value of transient over voltage¥ill start to travel along the line towards the receiving end and
but enormous numbers of cases have to considered to arrive @@uble there at the open end with an overvoltage near to 2 p.u.
the maximum magnitude. However during day-to-day operatiorﬁe]- Switching transients usually exhibit complex waveforms for
such studies, by the operators are prohibitive due to actual detaihich the fundamental frequency usually lies in the range 100
data required and also large computational time involved. Durt® —1000 Hz but in some cases a very steep voltage rise or col-
ing power system restoration there is a need for real time tool@Pse can occur. In EHV and UHV systems there are a number
which can provide crucial values of peak overvoltages, generof switching operations, which require special consideration as
ated during energization of transmission line. they may lead to magnitudes of the switching transient, which
This paper presents the ANN application for estimation ofinfluence the choice of the system insulation level. However
peak over voltages under switching transients during line charghe overvoltages produced during the switching of reactors and
ing. A tool such as proposed in this paper that can give the max{ransformers may readily be limited by surge diver{&jsand
mum switching overvoltage will be helpful to the operator. It can@re therefore not considered here. Of the other switching oper-
be used as training tool for the operators. The proposed ANN iations, line closing and reclosing generally produce the larger
expected to learn many scenarios of operation. To give the mavervoltages and consequently we concentrate on line energiza-
imum peak overvoltage in a shortest computational time whiction in this paper.
is the requirement during online operation of power systems. The sample system considered for explanation of the pro-
In the proposed ANN we have considered the most importanosed methodology is a 400 kV EHV network showrfig. 1
aspects, which influence the transient overvoltages such as lifde normal peak value of any phase voltage isv2pv/3 kV
length, switching angle, source strength and receiving end rea@nd this value is taken as base for voltage p.u. In the system
tor. This information will help the operator to select the properstudies 400kV line-to-line base voltage and 100 MVA as a base
sequence of transmission line to be energized safely with trarfROWer is consideredrig. 2 shows the switching transient at
sients appearing safe within the limits. Results of the studie8Us 3 when line is energized. In practical system a number of
are presented for a sample system and also for an equivalent
EHV system of Indian southern grid to illustrate the proposed

Fig. 1. Sample system G: generator S: switch R: reactor.

Phase A
approach. 254 L. Phase B

2| A S — NN e

2. Switching transients

An electrical transient is the outward manifestation of the
sudden change in circuit conditions, as when a switch opens or
close or a fault occurs on a system. Generally a switching opera-
tion in a power system changes the state of the system from those
conditions existing prior to switching to those existing after the 17
operation, this generates transient phenomena. The power fre- -1.57
quency voltage before and after the switching operation may be 2
of a different value due to the change in the state of the system.  -25-
This means that the total amp“tUde of the OverVOItage due t(lgig. 2. Switching transient overvoltage at bus 3 without reactor at bus 3. Max

switching may be considered in two parts; namely a transie€neak absolute value is 2.08, 2.06 and 2.02 p.u. in phase A, B and C, respectively
component which is superimposed on a power frequency conwith switching angle 90

-0.5 9

Voltage p.u.
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Table 1 —— Phase A
Parameters inherentto the network and the circuit breaker influencing the switch- 254 e Phase B
ing overvoltages 5 Phase C
Factor/parameter Influence 1.5 1
1. Line length S . iy
2. Degree of shunt compensation S g 0.5
3. Line termination S o o
4. Trapped charges when PIR is not used S g
5. Value of closing resistors S ;: 054
6. Insertion times of closing resistors S -14
7. Pole closing instants S 1.5 A
8. Nature of source-inductive or complex S
9. Total short circuit level S 21
10. Total pole closing span M 2.5 -
E Iir:gpz(:acgztrgfss when PIR is used MM Fig. 3. Switching transient overvoltage at bus 3 with 50 MVAR reactor at bus
' P . 3. Max peak absolute value is 1.563, 1.602 and 1.778 p.u. in phase A, B and C,
13. Frequency dependence of line parameter tively with switchi le 90
14. Saturation of reactor M respectively with switching angle
15. Corona of lines w
S: strong, M: medium and W: Weak. 2.1 4 ¢— 300 km
2 ¢ —®— 100 km
& 1.9 A
factors affect the overvoltages factors due to energization or re- ;L 1.8
closing. The influence of various factors can be grouped into 'S 1.7 -
three broad categories, such as strong, medium and weak as'i; 1.6
given inTable 1 [5] On re-closure the power frequency voltage E 1.5 \raf_._,_,.
on the feeding point side across the breaker gap is superimposedé 1.4 4 1\"‘1-1
onthe voltage corresponding to the trapped charges, the transient 1.3 - .1'"’.—-‘._7.7_. -
is correspondingly increase and result in a higher overvoltage 1.2 - ; : 1
[6]. 1000 3000 5000 7000 9000
Transient on re-closure can heavily be damped by pre- Source Strength MVA

Insertion reS|ste_r (PIR)' Th_e optimum pre Insem_on resistance Ilgig. 4. \oltage peak at bus 3 as source strength increases, while the switching
not only a function of the line shunt compensation but also thengie is kept fixed at 50with PIR.

short circuit power of the feeding network and the line length

Wntrolled switching of transmission lines is to minimize the

mechanlcgl mal funct|on§ as the most common cause of circu tWitching overvoltages during energization. If switching take
breaker failures. Reduction of mechanical complexity shoul lace at the voltage maximum i.e. atabe voltage at first oscil-

greatly improve reliability. So in this paper study is done Wlth'I te along the whole the line length to almost twice the value of

out PIR. The metal oxide surge arrester is a good substitute e system voltag¥] as shown irFig. 2 Overvoltage can be

PIR to control the overvoltages. limited by controlled switching of circuit breaker as shown in

The shunt compensation effect is shown kig. 3 A : : - I .
50 MVAR shunt reactor is connected at the receiving end bus ol?lg' 5 inwhich line closing is done atOFig. 6shows that for a

a 400 kV system, which cause the maximum overvoltage come
downtothe value 1.778 p.i7,8], whichwas 2 p.u. without shunt —— 0 Degree
reactor. The effect of variation in receiving end reactor value is —#— 90 Degree
shown inFig. 7. The study is performed with fully transposed 3 3
lines. So the factors, which strongly affect the switching over-  x
voltage are switching angle, fault level of the sending end bus, n{,_'; 1.8 -
transmission line length and receiving end reaf@pr 0 47

System size (source strength) affect the overvoltage strongly, ‘_-05
overvoltage reduces as the size of system increases. This reduc- = B
tion is due to the superposition of a number of different frequen- 1.5 T w T T '
cies not due to the damping of switching overvoltgge,11] 1000 1200 1400 1600 1800 2000
Figs. 4 and Show the effect of source strength on overvoltage Source Strength MVA

at different line Iength a”o_' sm_ntchmg angle, re_SpeCtNEIy' As theFig. 5. Voltage peak at bus 3 as source strength increases, while line length is
source become stronger it will keep the transient voltage low. 300 km with PIR.



262 D. Thukaram et al. / Electric Power Systems Research 76 (2006) 259-269

—&— 30 Degree
22 —— 0 Degree
5 —— 50 Degree
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100 150 200 250 300
Line Length kms input hidden output
Fig. 6. Voltage peak at bus 3 as line length increases, while the source strength layer layer fayer
is 1000 MVA with PIR. Fig. 8. Proposed MLP-based ANN architecture.

particular line length and source strength transient voltage wilB. The artificial neural network
be more at 90than 0. The effect of transmission line length is
shown inFigs. 4, 6 and fas line length increases charging cur-  The proposal in this work considers the adoption of feed for-
rent also increases which creates higher overvoltage at receivingard Multilayer Perceptron (MLP) architecture. A MLP trained
end bus. with the back-propagation algorithm may be viewed as a prac-
As discussed above for an existing system the main factorcal vehicle for performing a nonlinear input—output mapping
witch affect the peak value of switching overvoltage are switch-of a general nature. Function approximation by feed forward
ing angle, line length, source strength and shunt reactor. HefdLP network is proven to be very efficient, considering various
it should be mentioned that a single parameter often cannot dearning strategies like simple back propagation or the robust
regarded independently from the other important influencind_evenberg—Marquardt. Its ability to perform well is affected by
factors. The magnitude of the overvoltages normally does nahe chosen training data as well as training scheme. A simple
depend directly on any single isolated parameter and a varMLP neural network composed of single hidden layer and output
ation of one parameter can often alter the influence of anothdayer is capable of solving difficult and complex problejh].
parameter, in other words there exists an interaction between tfithe schematic diagram of the proposed MLP neural networks
various system and breaker parameters. This forbids the derivarchitecture is shown ifig. 8 The composition of the input
tion of precise generalized rule of simple formulae applicablevariables for the proposed neural networks has been carefully
to all case$5]. So an ANN can help to estimate the peak valueselected. In proposed methodology two schemes are adopted to
of switching overvoltages generated during line energizationestimate the peak overvoltages.
An ANN is programmed by presenting it with training set of
input/output patterns from which it then learns the relationshifs.1. Scheme 1
between the inputs and outputs. In next section a ANN-based
approach is described which can give a acceptable solution of In this scheme itis assumed that the receiving end reactor has
switching transients by the help of which an operator can take fixed value. Then the parameters, which influence the voltage
quick decision at the time of operation. peak are:

e switching angle;

3.2 1 ——W.R. e source strength;
—8— 50 MVAR e transmission line length.
34 —— 80 MVAR
3
T F In this scheme input vector consist only three variables as
§ mention above as shown ifig. 9. In case of with and with-
© 261 out receiving end reactor different neural network is trained
S /
© 244
> 4
22 —
: e Line Length
2 T T T T T \ e Source Strength Voltage
100 150 200 250 300 350 400 « Switching Angle Peak
Line Length km
Fig. 7. Voltage peak at bus 3 at various values of receiving end reactor and with-

out PIR, source strength is 1000 MVA and switching angle 9@R. = without

reactor. Fig. 9. Proposed Scheme 1.
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output. This error is used to adjust the weight of connection.
Since the switching transient demands a solution with high pre-
cision, the neural network has to be trained considering a very
Volage small stopping criterion. Output values of the trained neural net-
Peak works must be capable of computing the voltages with very
good precision. Gradient-based training algorithms, like back-
propagation, are most commonly used for training procedures.
They are not efficient due to the fact that the gradient vanishes
at the solution. Hessian-based algorithms allow the network to
Fig. 10. Proposed Scheme 2. learn more subtle features of a complicated mapping. The train-
ing process converges quickly as the solution is approached,
and for different value of reactor different neural network because the Hessian does not vanish at the solution. To benefit
is used. from the advantages of Hessian based training, we focused on
the Levenberg—Marquardt (LM) algorithm reported13].

¢ Reactor Value
e Line Length
e Source Strength

D>
S/
K
%

%

S

¢ Switching Angle

3.2. Scheme 2
3.3. Levenberg—Marquardt (LM) algorithm
In this Scheme it is assumed that the receiving end reactor
is switchable and has various values. In this condition reactor Suppose that we have a functigfx) which we want to min-
also affect the voltage peak, so the value of receiving end reactémize with respect to the parameter vectowhere
also considered as the input parameters as shofiginQ This N
scheme consist only one neural network with the parameters |§(X) _ Zez'z ®)

input vector are: —
1=

e switching angle; Then the Marquardt—Levenberg modification to the
e source strength; Gauss—Newton method is

e transmission line length; T 1.7

e receiving end reactor value. Ax = [J7(x) J(x) + u1] “J (x) e(x)

The parameteg is multiplied by some facto whenever a step

In both the schemes output is the absolute maximum valug,ould result in an increasex). When a step reducéx), i is
of peak voltage of any phase at the receiving end bus. The othgjvided byg. Notice that when is large the algorithm becomes
parameters which influence the switching overvoltage are ke@teepest descent; while for small the algorithm becomes
constant. ANN can predict the peak value in each phase alsgauss—Newton. The LM algorithm is very efficient when train-
but we have to modify the ANN architecture. This aspect ising networks have up to few hundred weights. Although the
discussed briefly irAppendix A However our concern in the computational requirements are much higher for the each itera-
present scope is to obtain the worst peak overvoltage irrespectiygyn of the LM algorithm, this is more than made up for by the
of the phase so the ANN is trained for peak value among thregcreased efficiency. This is especially true when high precision
phases. is required.

Supervised training of ANN is a usual training paradigm for |y order to get good generalization capability of the neu-
MLP architecturefig. 11shows the supervised learning of ANN | networks, the composition of training data consider different
for which inputis given to EMTP to get the peak values of tran-soyrce levels, various switching angles and line lengths. Depend-
sient overvoltages and the same data is used to train the AN on the analysis to be conducted it is possible to increase or
Error is calculated by the difference of EMTP output and ANN gecrease the quantity of training cases. The PIR values and dura-

tion time is not considered for the training data.

input : EMTP Voltage peak 4. Simulated studies and results

parameters

4.1. System study

The proposed scheme is tested with a sample three-bus
400 kV system. Single line diagram is showrHig. 1. The case
:> ANN of power system restoration stage is taken as an example for the

proposed methodology. The source is an inductive type source
and remains fixed in study. Studies are carried out with and
/ Error without the receiving end reactor at bus 3. Switching transients

are simulated for various combinations of system parameters as
Fig. 11. Supervised learning of ANN. follows:
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e source strength: 1000—10000 MVA in step of 1000 MVA
e line length: 100—400 km in step of 50 km
e switching angle: 0-90in step of 30

10° Performance is 0.00998612, Goal is 0.001

In the case of reactor presence at bus 3, the standard reactor 1o}
values 50, 63 and 80 are considered.

Training

4.2. Generalization and normalization
102

One of the most critical problems in constructing the ANN
is the choice of the number of hidden layers and the number of
neurons. Using too few neurons in the hidden layer may prevent 103 . . . . ! . . 1
the training process to converge, while using too many neurons 0 5 10 15 20 25 30 35 40
would produce long training time, and/or result in the ANN to 42 Epochs
lose its generalization attribute. In this study, a number of testfig 12, squared error against epoch curve for the data with 50 MVAR in
were performed varying with the one or two hidden layers ascheme 1.
well as varying the number of neurons in each hidden layer. A

MLP with one hidden layer and 10 hidden units is found to be¢ \ye yse the frequency dependency of line parameters during
sufficient to get good accuracy and generalization for IorolooseEkNitching studies the transient wave shape will contain less har-
both schemes. ) ) monics and peak overvoltages will also have less magnitude as
Neural networks learn more quickly and give better perfor-.omnared to when frequency dependency of line parameters are
mance if the input variables are pre-processed before being usgdl; considered in the study. Considering the higher value of peak
to train the network. Using zero mean inputs can minimize thg,yeryoltages for training the ANN will lead to safer estimation.
learning time. The inputs presented after firsthidden layer shoulgyq sets of data are generated one without reactor and also with
also be zero mean to speed up the leaming. An antisymmetrig,; or of three standard values of 50, 63 and 80 MVAR used in

activation function like the hyperbolic tangent function is betteri,« |ndian southern grid. The total numbers of patterns obtained
than logistic function which permits the output of neurons in they, training are about 1120.

interval (1, 1), in which case it is likely for its mean to zero

[14]. Input variables have different range like line length is in

the order of 100 km, switching angle is in the order of 20d ~ %3-/- S‘ﬁeme 1 . )
source strength is in the order of 1000 MVA. Normalization of Four different neural network of same architecture are trained

data is done to preprocessed inputs and single output, which tsing the results of simulated conditions one for without reactor
peak voltage in the range of 1-3 p.u. and which scaled into thand other three for the different values of reactor. The second

range of (-1, 1). As the dimension of input vector is three and ©"der Levenberg-Marquardt training method is adopted to get
four in Scheme 1 and 2, respectively, curse of dimensionalit"i9h Precision accuracy as mentioned in Secioiach Neural

do not affect the convergence of learning. The hyperbolic tatV€tworkis trained with the goal of mean square error (MSE) 1e-

sigmoid function is used in hidden neurons and linear activatiorf- Fi9- 12shows the training of ANN2 Neural Networkable 2
function is used at output neuron. shows the learning time and number of epoch for each ANN in

Schemes 1 and 2.

4.3. Training
4.3.2. Scheme 2

A set of training data is obtained for numerous cases by using Single neural network ANNS5 is used with additional input the
EMTP developed by Prof. D. Thukaram at Indian Institute ofreactor value. Neural Network is trained with the goal of Mean
Science, Bangalore, India which has all features like frequenc$quare Error (MSE) 1e-2 which takes more time in learning and
dependence, saturation of reactors, lighting arrestors, nonlimumber of epochs as the number of sample is increased and also
earity of various components, etc. This program has been extenow the input vector has four input variable which has increased
sively used in planning studies of Indian EHV system. We havehe dimensionality of problent-ig. 13 shows the training of
used this EMTP program to generate results for various caseANNS5.

Table 2
Number of epoch and learning time for various ANN
ANN 1 ANN 2 ANN 3 ANN 4 ANN5
Shunt reactor at bus 3 (MVAR) No reactor 50 63 80 Without and with 50, 63, 80
Time (s) 7.797 7.844 7.797 7.812 20.75

No. of epoch 45 42 44 46 72
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10! Performance is 0.00996226, Goal is 0.01 5 —+—EMTP
3 —=— ANN
] 5 I Tpe— _
10° J :‘_ 25944
3 -]
o
o o
g e 21
810 3 8
= o
> 1.5
102
1 T T T |
] 40 50 60 70 80
1078 ‘ . ‘ . . . . Switching Angle Deg.
(¢} 10 20 30 40 50 60 70
73 Epochs Fig. 14. ANN1 output: voltage peak at bus 3 simulated by ANN and EMTP

while source strength 1500 MVA and line length 225 km without receiving end
Fig. 13. Squared error against epoch curve for the data of Scheme 2. reactor.

4.4. Testing 28 4
All experiments have been repeated for different system zj i
parameters. After learning, all parameters of the trained net- :- 5% o
works have been frozen and then used in the retrieval mode for § , |
testing the capabilities of the system on the data not used in % id
learning. The testing data samples have been generated throughg 16
the EMTP program by placing the parameter values notusedin 8 ., |
learning, by applying different source strength values, and dif- l
ferent switching angle and line length. A large number of testing . . . . . .

data have been used to check the proposed solution in the most 100 150 500 550 300 350 400
objective way at practically all possible parameters variation.
Line length varied in steps of 25 km, switching angle in steps of
10° and source Strength in Steps of 500 MVA. Results for a SamElg 15. ANNZ2 output: voltage peak at bus 3 simulated by ANN and EMTP while
ple test data are presentedTiables 3 and 4nd also shown in source strength 1500 MVA and switching angtenith 50 MVAR receiving end

. . reactor.

Figs. 15—-19Table 3contains the some sample result of test data

of Scheme 1 andlable 4has some sample test data of Scheme 2,
Values in column EMTP are the absolute values of peak voltagat bus 3 calculated by EMTP program where the ANN values are

fhe values simulated by trained network. Error and percentage
error are calculated as:

Table 3 . IANN — EMTP|
Scheme 1 some sample testing data and output error = — v

L.L (k S.S. (MVA)  S.A. EMTP ANN E Error (%
(k) (MVA) 0 fror _ Ewor (%) percentage error (%)= errorx 100

Line Length kms

ANN1
125 1500 0 2.165 2.095 0.070 3.222 The proposed model tested with 11-bus system. Various cases of
225 5500 45 2.469 2537 0068 2755 |ine energization are taken into account and corresponding peak
225 5500 50 2521 2.580 0059 2345 values estimated from trained model. Detailed result is shown

ANN2 in Sectiond.5.

125 1500 0 2017 2.046 0.029 1.450
375 1500 0 2463 2488 0.025 1.001
225 5500 40 2322 2388 0066 2835  44.1. Schemel _ o

ANNZ Fig. 14shows the voltage peak at bus 3 against the switching
305 5500 9 2504 2478 0046 1830  angle, otherparameterslike linelength, source strength, constant
375 5500 90 2845 2853 0.008 0.267 at 225km, 1500 MVA, respectively and without receiving end
225 5500 75 2563 2554 0.009 0.366 reactorFig. 15shows the voltage peak as line length varies from
325 2500 0 2149 2222 0073 3413 125t 375km at constant source strength, switching angle and

ANN4 with 50 MVAR reactor at bus Jig. 16shows the voltage peak
225 1500 90 2256 2301 0.045 1.992 at bus 3 as source strength varies in step of 1000 MVA from
225 5500 60 2439 2482 0043  1.780 1500 to 5500 MVA with constant line length, switching angle
375 9500 90 2679 2685 0.006 0.241

with 63 MVAR reactorFig. 17shows the results of ANN4 with
L.L.=line length, S.S. = source strength and S.A. = switching angle. varying source strength from 5500 to 9500 MVA, line length and
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Table 4
Scheme 2 some sample testing data and output
R.R. (MVAR) L.L. (km) S.S. (MVA) S.A. () EMTP ANN Error Error (%)
0 125 1500 0 2.165 2.128 0.037 1.732
0 325 5500 90 2.598 2.570 0.028 1.061
0 225 5500 45 2.469 2.462 0.007 0.275
50 275 1500 0 2.178 2.178 0.000 0.012
50 225 5500 45 2.391 2.407 0.016 0.675
63 375 1500 75 2.649 2.680 0.031 1.158
63 225 5500 50 2421 2451 0.030 1.237
63 325 8500 90 2.394 2411 0.017 0.698
80 125 1500 0 1.977 1.981 0.004 0.194
80 225 5500 10 2.044 2.059 0.015 0.734
80 225 5500 70 2.515 2.468 0.047 1.860
80 375 6500 90 2.783 2.818 0.035 1.241

R.R. =receiving end reactor, L.L. =line length, S.S. =source strength and S.A. =switching angle.

switching angle are kept constant and with 80 MVAR reactorshows the results with varying line length while source strength
value. and switching angle are kept constant without receiving end
reactor.Table 4shows some sample testing data.
4.4.2. Scheme 2
Figs. 18 and 18how the output of ANNS with the variationof 4 5. An equivalent EHV system studies
various input parametefig. 18shows the voltage peak at bus 3
simulated by ANN and EMTP while source Strength 5500 MVA The proposed ANN approach is also tested with an 11-

line Iength 225 km with 50 MVAR receiVing end reaCtEig. 19 bus system R|g 201 which is an equiva|ent EHV system of

—4— EMTP
34 A —4—BMTP
—=— ANN —=— ANN
2.8
4 58 251 - 1
o =. . e
o244 d 2§=—
8 2.2 —_—————— *
- 0 15
g ] 5
8 181 &
5 g
2 164 £
1.4 4 > 0.5
2
; 0 . . . .
J . : T ! 0 20 40 60 80
1000 2000 3000 4000 5000 6000 Switching Angle Deg.

Source Strength MVA

Fig. 18. ANN5 output: voltage peak at bus 3 simulated by ANN and EMTP

Fig. 16. ANN3 output: voltage peak at bus 3 simulated by ANN and EMTPniie source strength 5500 MVA line length 225 km with 50 MVAR receiving
while switching angle 90and line length 325 km with 63 MVAR receiving end end reactor.
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Fig. 17. ANN4 output: voltage peak at bus 3 simulated by ANN and EMTP Fig. 19. ANN5 output: voltage peak at bus 3 simulated by ANN and EMTP
while switching angle ©and line length 375 km with 80 MVAR receiving end while source strength 1500 MVA and switching angteAithout receiving end
reactor. reactor.
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8

Fig. 20. An equivalent 11-bus EHV system of Indian southern grid.

Fig. 21. Indian southern grid.

Indian southern grid shown iRig. 21 The various cases of
line energization are taken into account and corresponding peak6- Optimal PIR
overvoltages are computed from EMTP program. Equivalent

. : . The system used for study in proposed methodology is an
source strengths were obtained at all buses for various condi-_ . . ; .
equivalent system of Indian southern grid. For a particular sys-

tions. Energization of lines from either end of a transmission{em the PIR values remain constant. When a line is energized

line is C(_)n5|de_re_d. Typical system scenarios are considered f%rough single step preinsertion resistors two temporally sepa-
exhaustive training patterns for proposed ANN. Scheme 2 o .
rated transients occur.

the proposed ANN is used to train the generated data. Summary
of few results are presented Table 5 It can be seen from the e The transients generated when the line is energized through
results that the ANN is able to learn the patterns and give results the resistor.

to acceptable accuracy. e The transients generated when the resister is short-circuited.
Table 5
Results for equivalent 11-bus EHV system
Line Switching end bus no. R.R. (MVAR) L.L. (km) SS (MVA) SA)( EMTP ANN Error (%)
11-5 11 0 295 4756 0 2.38 2.29 3.58
0 295 4756 60 2.56 2.54 0.62
63 295 4756 60 2.37 2.41 1.56
63 295 4756 90 2.27 2.34 3.09
5 0 295 1007 60 2.64 2.60 1.31
0 295 1007 90 2.64 2.68 1.58
11-4 11 0 257 4188 90 251 2.49 0.96
0 257 4188 60 2.69 2.70 0.59
50 257 4188 00 2.01 2.06 2.79
50 257 4188 90 2.40 2.37 1.24
4 0 257 3000 0 2.20 2.21 0.22
0 257 3000 60 2.58 2.58 0.20
11-10 11 0 282 4555 00 2.22 2.27 2.27
0 282 4555 90 2.37 2.38 0.14
50 282 4555 00 2.25 2.18 2.89
50 282 4555 90 2.35 2.35 0.06
10 0 282 1289 60 2.52 2.61 3.82
0 282 1289 90 2.59 2.71 472

R.R. =receiving end reactor, L.L. =line length, S.S. =source strength and S.A. =switching angle.
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2.5 4 estimator for switching transient overvoltages. The proposed
ANN approach is also tested on an equivalent EHV system of
21 . Indian southern grid. The simulated results clearly show that the

proposed approach can estimate the peak values of switching
15 w&w overvoltages with good accuracy. The ANN application can be

used an operator-training tool for estimation of switching over-
voltages during power system restoration. Further work can be
carried out by taking the various optimal values of PIR and PIR
duration timing. Additional parameters in input like presence of
trapped charges also can be considered.

Voltage Peak p.u.

054 100km 150 Km 200km 250 km3 300 Km

0 T T T T |
0 200 400 600 800 1000

No of Cases Appendix A

Fig. 22. Data pattern generated by 850 cases with PIR 0f500 The peak occurrence in the different phases depends on the

) ) o instant of switching and other initial conditions. ANN can be
So an optimal value of PIR requires for switching to keepyrained for the maximum peak absolute value of each phase.

overvoltage low. The optimum value of PIR is the function of line Fig. A 1 shows the ANN architecture for the estimation of peak
shunt compensation, short-circuit power of the feeding network

and the line length to be energized. As the system conditions
vary the optimal value will also vary and one should be careful
about the PIR value.

The data pattern of various cases obtained with PIR value

(3002) maintained constant. The PIR 3Q0is optimal for Phase
around 200 km line length, which cause the clustering of peak A
voltages data close to the value 1.45 pRig(22). If the optimal
value of PIR used for each line length then the peak voltage
data pattern will be different. Hence further work needs to be Phase
carried out by taking the various optimal values of PIR and PIR B
duration time.
5. Conclusion
Phase
c

A Neural Network approach to estimate the peak over volt-
ages under switching transient is proposed and implemented.
The Levenberg—Marquardt second order training method has
been adopted for obtaining small mean square errors (MSES)
without losing generalization capability of ANN. The results
from this scheme are close to results from the conventional Input Hidden Output
method and helpful in predicting the over voltage of the other Layer  Layer Layer
case studies within the range of training set. A three-bus 400 k¥jg. a.1. Proposed MLP-based ANN architecture to estimate the voltage peak
system has been used to explain the proposed ANN-basetleach phase (Scheme 3).

Table A.1
Results for modified Scheme 3
R.R. (MVAR) L.L. (km) S.S. (MVA) S.A. () EMTP ANN Phase Error fANN-EMTP| Error (%)
0 125 1500 0 2.165 2.128 B 0.037 1.732
0 325 5500 90 2.598 2.570 B 0.028 1.061
0 225 5500 45 2.469 2.462 C 0.007 0.275
50 275 1500 0 2.178 2.178 B 0.000 0.012
50 225 5500 45 2.391 2.407 C 0.016 0.675
63 375 1500 75 2.649 2.680 C 0.031 1.158
63 225 5500 50 2.421 2.451 C 0.030 1.237
63 325 8500 90 2.394 2411 B 0.017 0.698
80 125 1500 0 1.977 1.981 B 0.004 0.194
80 225 5500 10 2.044 2.059 B 0.015 0.734
80 225 5500 70 2.515 2.468 C 0.047 1.860
80 375 6500 90 2.783 2.818 B 0.035 1.241

R.R.: receiving end reactor, L.L.: line length, S.S.: source strength and S.A.: switching angle.
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overvoltage of each phase. The results of this modified schen&o] K. Ragaller, Surges in High Voltage Networks, Plenum Press,
(Scheme 3) are shown ifable A.1 For the modified scheme 1980. _
the input vector is same as the previous schemes, but the OlH—l] D. Thukaram, HP .Khmcha, Sulabh Khandelwal, Neur.al _network

. . approach for estimation of peak over voltages under switching tran-
put contains maximum peak abso.lute value of three phases. In sients, in: Proceedings of the 13th National Power System Conference,
Table A.lresults are shown for this Scheme 3. It can be seen  pecember 27-30, India, 2004, pp. 624-629.
that results obtained for peak values are same as in Scheme[£] V. Leonardo Paucar, Marcos J. Rider, Artificial neural network for solv-

but now we have information of phase also in which phase peak ing the power flow problem in electric power system, Electr. Power Syst.
Res. 62 (2002) 139-144.

occurs.
[13] M.T. Hagan, M.B. Menhaj, Training feedforward networks with the
Marquardt algorithm, IEEE Trans. Neural Network 5 (6) (1994) 989—
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