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ABSTRACT

3D scene understanding is fundamental for embodied AI and robotics, support-
ing reliable perception for interaction and navigation. Recent approaches achieve
zero-shot, open-vocabulary 3D semantic mapping by assigning embedding vec-
tors to 2D class-agnostic masks generated via vision-language models (VLMs)
and projecting these into 3D. However, these methods often produce fragmented
masks and inaccurate semantic assignments due to the direct use of raw masks,
limiting their effectiveness in complex environments. To address this, we lever-
age SemanticSAM with progressive granularity refinement to generate more ac-
curate and numerous object-level masks, mitigating the over-segmentation com-
monly observed in mask generation models such as vanilla SAM, and improving
downstream 3D semantic segmentation. To further enhance semantic context, we
employ a context-aware CLIP encoding strategy that integrates multiple contex-
tual views of each mask using empirically determined weighting, providing much
richer visual context. We evaluate our approach on multiple 3D scene understand-
ing tasks, including 3D semantic segmentation and object retrieval from language
queries, across several benchmark datasets. Experimental results demonstrate sig-
nificant improvements over existing methods, highlighting the effectiveness of our
approach.

1 INTRODUCTION

Accurate understanding of 3D environments at the object level is a fundamental requirement for em-
bodied AI, robotics, and augmented/virtual reality applications (Anderson et al., 2018; Batra et al.,
2020; Szot et al., 2021; Gu et al., 2023). Tasks such as robotic manipulation (Zeng et al., 2020;
Xu et al., 2020a) and autonomous navigation (Xu et al., 2020b) depend on reliable 3D scene rep-
resentations, while AR/VR systems require precise object-level maps to anchor virtual content in
the physical world (Kerr et al., 2023). 3D semantic segmentation directly enables these capabilities
by assigning category labels to each point in a scene, yielding dense and structured maps that sup-
port high-level reasoning and interaction (Qi et al., 2017). Beyond dense labeling, many practical
applications require agents not only to segment and recognize objects but also to retrieve specific
objects from natural language queries—for example, “find the chair closest to the table“ or “locate
the the vase on the shelf“(Chen et al., 2020; Achlioptas et al., 2020). Such capabilities are essential
for interactive agents operating in open and cluttered real-world environments.

Despite progress in supervised 3D scene understanding methods, constructing accurate 3D semantic
maps in cluttered, real-world environments remains highly challenging, due to occlusions, incom-
plete observations, and the prohibitive cost of acquiring large-scale annotated 3D data(Patel et al.,
2025; Yu et al., 2025). To reduce reliance on expensive 3D annotations, recent works (Gu et al.,
2023; Jatavallabhula et al., 2023) have explored open-vocabulary 3D scene understanding by com-
bining segmentation models with vision–language models. These approaches first extract object
masks from 2D images using a segmentation backbone, then assign semantic embeddings to each
mask by a vision–language model such as CLIP (Radford et al., 2021). Projecting these embedded
masks into 3D yields semantic maps without requiring task-specific training which enables zero-
shot labeling and responding to complex 3D language query tasks. Despite the benefits of these
approaches, they encounter some challenges that should be accurately handled. First, 2D segmenta-
tion backbones such as SAM (Kirillov et al., 2023) often generate fragmented or incomplete masks,
especially in cluttered indoor environments, leading to severe over-segmentation. Second, applying
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Natural language query: 
“Facing the cabinet, on which 

side of the cabinet is the door?”
Object Retrieval 

Framework

𝑥𝑑𝑜𝑜𝑟
𝑦𝑑𝑜𝑜𝑟
𝑧𝑑𝑜𝑜𝑟 𝑥𝑐𝑎𝑏𝑖𝑛𝑒𝑡

𝑦𝑐𝑎𝑏𝑖𝑛𝑒𝑡
𝑧𝑐𝑎𝑏𝑖𝑛𝑒𝑡

View = 0°selected by 
VLM to face the cabinet

left

Figure 1: Illustration of object retrieval from natural language in a 3D scene. A natural language
query specifies a target and spatial relation (“Facing the cabinet, on which side of the cabinet is the
door?”). Our framework retrieves object embeddings, grounds them in 3D coordinates, selects the
appropriate view to face the cabinet using VLM, and reasons about spatial orientation to output the
correct relation.

CLIP directly to individual masks provides limited semantic context. Third, aggregating predic-
tions across multiple frames can introduce inconsistencies, as the same object may receive different
contextual embeddings depending on viewpoint. As a result, existing foundation-model-based ap-
proaches still struggle to construct coherent and reliable 3D semantic maps.

In this work, we present a training-free pipeline that overcomes these challenges by improving both
segmentation and embedding generation through progressive refinement and context-aware encod-
ing. First, we leverage SemanticSAM (Li et al., 2023a) with progressive granularity adjustment
to generate accurate and complete class-agnostic object-level masks, mitigating the fragmentation
issues of vanilla SAM. Second, we introduce a context-aware CLIP encoding strategy that aggre-
gates multiple complementary views of each mask with empirically chosen weighting, providing
the semantic context necessary for robust classification. Finally, we enforce multi-view consistency
by merging overlapping masks in 3D and filtering incomplete or spurious segments with geometric
heuristics. Together, these components enable the construction of coherent, high-quality 3D seman-
tic maps in an open-vocabulary, training-free setting, without requiring any 3D supervision.

Beyond 3D semantic segmentation, we extend our framework to object retrieval from natural lan-
guage instructions. Queries are processed with a large language model (LLM) to extract the target
and anchor categories and relational constraints (e.g., “nearest to the door“ or “on top of the table“),
which are then matched against our fused 3D object embeddings. We also leverage vision large
language models to confirm the candidates of target and anchor objects and generate final output by
processing the language query together with 3D positions of the confirmed objects. This enables
retrieval grounded in both category semantics and spatial relations.

Our main contributions are:

• We introduce a SemanticSAM refinement strategy that incrementally adjusts granularity,
yielding more accurate and complete masks than vanilla SAM.

• We propose a context-aware CLIP feature aggregation scheme that combines multiple con-
textual views of each mask to ensure robust open-vocabulary classification.

• We enforce reliable multi-view semantic 3D map by merging overlapping predictions in
3D and filtering incomplete or spurious masks using geometric heuristics.

• We perform the zero-shot 3D semantic segmentation on Replica (Straub et al., 2019) and
ScanNet (Dai et al., 2017) datasets.

• We also extend the pipeline to open-vocabulary 3D object retrieval, using LLM-based query
parsing to handle relational constraints in natural language, and evaluate this on the SR3D
(Achlioptas et al., 2020) benchmark.
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• Our method achieves superior results on Replica, ScanNet, and SR3D, outperforming prior
open-vocabulary approaches in mIoU, f-mIoU, and mAcc for segmentation, while also
demonstrating strong retrieval performance.

2 RELATED WORK

2.1 FOUNDATION MODELS FOR VISION–LANGUAGE ALIGNMENT

Large-scale vision–language models have become the cornerstone of open-vocabulary perception.
Contrastive pretraining approaches such as CLIP (Radford et al., 2021) learn aligned image and text
embeddings from massive web corpora, enabling zero-shot classification, retrieval, and multimodal
reasoning without task-specific finetuning. Building on this paradigm, ALIGN (Jia et al., 2021)
and Florence (Yuan et al., 2021) improved representation quality, while region-level extensions such
as GLIP (Li et al., 2022c) and GroupViT (Xu et al., 2022) extended open-vocabulary capabilities
to detection and segmentation. Subsequently, BLIP (Li et al., 2022b) and BLIP-2 (Li et al., 2023b)
enhanced grounding and enabled integration with large language models. Also, OVSeg (Liang et al.,
2022) addresses the CLIP bottleneck in two-stage segmentation by finetuning on masked regions and
introducing mask prompt tuning. These models provide rich semantic embeddings that are widely
adopted as the backbone for open-vocabulary 2D and 3D pipelines.

2.2 FOUNDATION MODELS FOR MASK GENERATION

Complementing semantic embeddings, class-agnostic segmentation priors have shown remarkable
generalization across diverse domains. MaskFormer (Cheng et al., 2021b) unified semantic and in-
stance segmentation by reformulating both tasks as per-pixel mask classification, while its successor
Mask2Former (Cheng et al., 2021a) introduced masked attention to achieve strong panoptic segmen-
tation performance with improved efficiency. MaskDINO (Li et al., 2022a) further integrates detec-
tion and segmentation in a unified transformer, showing strong generalization to unseen categories.
Also, FreeSeg (Qin et al., 2023) proposes a unified framework that handles semantic, instance, and
panoptic segmentation through multi-task training and adaptive prompt learning. The Segment Any-
thing Model (SAM) (Kirillov et al., 2023), trained on billions of masks, demonstrated that a single
backbone can transfer across domains and serves as a universal prior for open-vocabulary pipelines.
However, SAM often produces fragmented or incomplete masks in cluttered indoor scenes. Seman-
ticSAM (Li et al., 2023a) alleviates this through progressive multi-granularity refinement, yielding
more coherent object-level masks particularly beneficial for downstream tasks requiring consistent
segmentation.

2.3 OPEN-VOCABULARY 3D SCENE UNDERSTANDING

Foundation models provide strong 2D priors, and recent works extend open-vocabulary perception
into 3D settings, which is crucial for robotics and embodied AI. A key trend is integrating vision–
language models with 3D representations for mapping, scene understanding, and grounding. Con-
ceptFusion (Jatavallabhula et al., 2023) introduces open-set 3D mapping by fusing image features
with 3D reconstructions for dense semantic labeling of novel concepts. ConceptGraphs (Gu et al.,
2023) propose open-vocabulary 3D scene graphs that align CLIP features with geometry, support-
ing perception and planning. VoxPoser (Huang et al., 2023) applies LLMs and VLMs to synthesize
3D value maps, enabling zero-shot, open-set robot manipulation. The Open-Vocabulary Octree-
Graph (Wang et al., 2024) uses adaptive octrees to encode occupancy and semantics compactly,
while Beyond Bare Queries (BBQ) (Linok et al., 2025) leverages 3D scene graphs and LLM reason-
ing for precise language-conditioned object retrieval. For robotics, Hierarchical Open-Vocabulary
3D Scene Graphs (HOV-SG) (Werby et al., 2024) construct hierarchical floor-room-object graphs
for long-horizon language-grounded navigation. In 2D, Pixels-to-Graphs (PGSG) (Li et al., 2024)
generates scene graphs from images using a generative VLM, supporting both novel relations and
downstream vision–language tasks. These works collectively highlight the importance of combining
open-vocabulary semantics with 3D or 2D representations to advance perception, mapping, manip-
ulation, and robot interaction.
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Figure 2: Overview of our training-free open-vocabulary 3D semantic segmentation and retrieval
pipeline. Given RGB–D image sequences, we first generate progressive multi-granularity 2D masks
(Mt) to mitigate fragmentation. Each mask is encoded with CLIP using multiple contextual crops
(mask, bounding box, large, huge, surroundings), and their embeddings are aggregated via weighted
averaging. In parallel, depth maps and poses are fused into a 3D point cloud, where embeddings are
assigned per point-cloud mask. Multi-view predictions are merged and refined with DBSCAN clus-
tering to enforce consistency, resulting in a coherent 3D semantic map with point-cloud embeddings
that support both open-vocabulary segmentation and object retrieval.

3 METHOD

Let {(It, Dt,Tt)}Tt=1 denote a sequence of RGB images It ∈ RH×W×3, depth maps Dt ∈ RH×W ,
and corresponding camera poses Tt ∈ SE(3), where each pose encodes the position and orientation
(roll, pitch, yaw) of the camera at time step t. Given Dt and Tt, each pixel p = (u, v) can be back-
projected into a unique 3D point xp ∈ R3, thereby allowing us to reconstruct the 3D environment
across frames (Curless & Levoy, 1996; Hartley & Zisserman, 2003; Newcombe et al., 2011). Our
framework leverages this setup to progressively build semantically meaningful 3D object represen-
tations from raw multi-view observations. Starting from 2D instance masks obtained with a refined
segmentation strategy, we compute context-aware embeddings that integrate both object-level details
and surrounding visual cues. These per-view masks and embeddings are then lifted into 3D, where
multi-view consistency and spatial clustering are enforced to merge redundant detections and split
over-merged instances. The resulting 3D object candidates are associated with unified embeddings
that enable open-vocabulary semantic labeling via CLIP text-image alignment. Finally, we support
natural-language object retrieval by grounding query semantics in the labeled 3D scene, allowing
objects to be localized based on category, context, and orientation cues.

3.1 MASK GENERATION

Instead of relying on vanilla SAM (Kirillov et al., 2023) for 2D instance segmentation, which often
produces fragmented masks in cluttered indoor scenes, we employ SemanticSAM (Li et al., 2023a), a
variant of SAM that exposes a granularity parameter g ∈ R+ controlling the scale of segmentation.
Small values of g yield coarse masks, while larger values produce finer-grained segments. However,
using a single granularity level is suboptimal: coarse values may miss small objects, whereas fine
values tend to over-segment large objects into multiple inconsistent parts.

To address this, we introduce a progressive refinement strategy. For each image It, we generate
segmentations at an increasing sequence of granularity levels {g1, g2, . . . , gK}. At each step k,
SemanticSAM produces a set of Nk candidate masks, denoted as

M(k)
t = {m(k)

t,1 , . . . ,m
(k)
t,Nk
},

4
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where Nk is the total number of masks generated at granularity level gk. We then retain only those
masks whose area has less than a threshold overlap with any mask discovered at previous levels:

M̂(k)
t =

{
m ∈M(k)

t

∣∣ max
m′∈∪j<kM̂(j)

t

|m ∩m′|
|m|

< τk

}
,

where τk ∈ [0, 1] denotes the overlap threshold used when adding masks from granularity level
gk. In practice, τk is varied across levels to balance redundancy removal and coverage: stricter
thresholds are applied at coarser levels, while more permissive thresholds are used at finer levels.

The final mask set for frame t is then

Mt =

K⋃
k=1

M̂(k)
t .

In addition, we apply two lightweight filtering steps to further improve mask quality: (i) removing
very small or marginal masks whose area falls below a minimum threshold, and (ii) applying DB-
SCAN clustering (Ester et al., 1996) directly on the pixel regions of each mask to merge fragmented
parts and suppress spurious subdivisions of the same object.

This procedure ensures that each new granularity level contributes novel object candidates without
introducing redundant fragments. Intuitively, large objects are captured at coarse levels, while fine
details and small objects are progressively added at higher granularity. By enforcing the threshold
τ and applying these additional filters, we prevent duplicated or noisy masks, leading to a more
accurate and complete set of object proposals.

3.2 CONTEXT-AWARE CLIP EMBEDDING

Given the refined 2D masksMt, we next compute semantic embeddings for each object candidate.
A direct approach would be to crop the mask region and feed it into CLIP (Radford et al., 2021).
However, CLIP relies heavily on visual context, and isolated object crops often lead to ambiguous
or incorrect embeddings (e.g., a cropped chair leg being misinterpreted as a stick). To mitigate
this, we construct a set of complementary visual crops for each mask that balance object detail with
surrounding scene context.

Specifically, for each mask m, we extract five complementary crops from the RGB frame It: (i)
mask crop (Imask), where pixels outside the mask are set to zero; (ii) bounding box crop (Ibbox),
the tight bounding box enclosing the mask; (iii) large-context crop (I large), an expanded bounding
box with scale factor 2.5; (iv) huge-context crop (Ihuge), an expanded bounding box with scale
factor 4; and (v) surroundings crop (Isur), obtained by expanding the bounding box with scale
factor 3 and blacking out the mask itself so that only the surrounding environment is visible.

Each of these crops is passed through the CLIP image encoder to obtain embeddings:

emask, ebbox, elarge, ehuge, esur ∈ Rd,

where d is the CLIP embedding dimension.

We then compute a context-aware embedding for mask m by taking a weighted combination of these
representations:

e(m) = wmaske
mask + wbboxe

bbox + wlargee
large + whugee

huge − wsure
sur,

where the weights {wmask, wbbox, wlarge, whuge, wsur} are empirically tuned. Note that the surround-
ings embedding is subtracted with negative weight, enforcing contrastive context by penalizing fea-
tures dominated by the environment rather than the object itself.

Finally, the embedding is normalized:

e(m)← e(m)

∥e(m)∥2
.

These per-view embeddings serve as initial semantic descriptors. During the subsequent 3D merging
step, embeddings corresponding to the same physical object observed across multiple views are
averaged to form unified object-level representations.

5
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3.3 3D MASK MERGING AND REFINEMENT

With both 2D masksMt and their associated embeddings e(m), we lift the masks into 3D to enforce
multi-view consistency and refinement. Given depth maps Dt and camera poses Tt, each pixel
p = (u, v) belonging to a mask m is back-projected into 3D: (Hartley & Zisserman, 2003)

xp = Tt

[
Dt(p)K

−1p̃
1

]
,

where K is the camera intrinsics matrix and p̃ = (u, v, 1)⊤ denotes the homogeneous pixel coordi-
nate.

Projecting all pixels of mask m yields a 3D point set X (m), from which we compute its volumet-
ric occupancy V (m) using a voxelization procedure. To consolidate multi-view observations, we
evaluate the volumetric intersection between two candidate masks ma and mb as

IoV(ma,mb) =
Vol(X (ma) ∩ X (mb))

Vol(X (ma))
, IoV(mb,ma) =

Vol(X (ma) ∩ X (mb))

Vol(X (mb))
.

We merge ma and mb into a single 3D object if and only if the following conditions are satisfied:

IoV(ma,mb) > γ, IoV(mb,ma) > γ, and |IoV(ma,mb)− IoV(mb,ma)| < δ,

where γ ∈ [0, 1] is the minimum overlap threshold and δ ∈ [0, 1] limits the allowable asymmetry
between the two ratios.

This symmetric–balanced IoV criterion ensures that two masks are merged only when they exhibit
both high mutual overlap and comparable volumetric support. It prevents degenerate cases where
one object is almost fully contained within another but not vice versa—for example, a small cushion
lying on a large couch—by rejecting merges with large asymmetry in overlap.

Along with merging their point clouds, we also average their embeddings:

emerged =
1

n

n∑
i=1

e(mi),

where m1, . . . ,mn denote masks that have been merged.

When a single 2D mask spans multiple distinct objects that are spatially close in the image but
separated in 3D space (e.g., a vase in front of a couch), we refine it by applying DBSCAN clustering
(Ester et al., 1996) to X (m). This step separates the projected 3D points of m into distinct clusters,
each corresponding to a potential object. Each cluster is treated as a new candidate instance: we
project it back to the image plane, generate the corresponding 2D mask, and re-apply our multi-
crop CLIP embedding procedure. This ensures that each physically distinct object obtains its own
semantic descriptor, even if they were originally fused into a single 2D segmentation.

After applying merging and splitting, we obtain the final set of refined 3D masks:

M3D = {M3D
1 ,M3D

2 , . . . ,M3D
N },

where each M3D
i is associated with a unified point cloud and an averaged embedding e(M3D

i ).

3.4 OBJECT RETRIEVAL

We extend our pipeline to natural-language object retrieval, where the goal is to localize the specific
instance referenced by a free-form query q. The task requires reasoning over objects, their spatial
relations, and their orientation cues. Our retrieval pipeline consists of four stages.

Query structuring. We first convert the input query q into a structured form

Π(q) = (m, R, Ω),

where m denotes the name and attributes of the main object , R is a set of referenced object names
and Ω encodes orientation constraints (e.g., “front of the cabinet”). A lightweight LLM extractor
produces Π(q) deterministically.

6
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3D Scene with Point-
Cloud Embeddings
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Candidate Mining
(CLIP + DBSCAN)

Candidate Clusters

VLM

Verified Candidates

VLM
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𝛺
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Candidate frames

𝑚,ℛ
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the trashcan on your 
left.”

Final Prediction

Figure 3: Pipeline for natural-language object retrieval. A free-form query is parsed into structured
form Π(q) = (m,R,Ω). Candidate objects are mined using CLIP similarity and DBSCAN clus-
tering, projected into frames, and verified by a VLM restricted to bounding boxes. If orientation
constraints Ω are present, canonical views are rendered and resolved with a VLM. Finally, an LLM
reasons over the verified candidates, referenced objects R, and orientation cues to select the final
prediction.

Candidate mining. For each object name x ∈ {m} ∪ R, we compute CLIP similarity using pre-
computed object embeddings and retain the top-K matches. Each match corresponds to a 3D point
cluster. To remove duplicates, we voxelize the clusters and discard clusters that overlap more than a
fix threshold with a larger neighbor.

View selection and VLM verification. Each candidate cluster is then projected into the set of RGB
frames. We select the frame that maximizes 3D–2D overlap while penalizing occlusion by other
candidate clusters. A VLM is prompted with the bounding box region and asked a binary question
to determine whether the object is present. Only candidates passing this check are retained.

Orientation grounding. If Ω specifies an orientation, we collect canonical views of each candidate at
discretized yaw bins. These views are tiled into a numbered grid, and a VLM is asked to select the
index corresponding to the orientation token (e.g., front). The chosen index is mapped back to a
yaw angle and stored with the candidate.

Final reasoning. The remaining candidates for m, together with centroids of related objects and any
orientation cues, are passed to an LLM. The LLM receives the original query and structured scene
geometry and outputs the index of the final prediction.

4 EXPERIMENTS

We evaluate our framework on two tasks: (i) 3D open-vocabulary semantic segmentation, where
the goal is to assign category labels to 3D object instances without task-specific training, and (ii)
natural-language object retrieval, where the goal is to localize objects in a 3D scene given free-form
text queries that may contain relational and orientation constraints. All experiments are conducted
on a workstation equipped with a single NVIDIA RTX4090.

4.1 3D OPEN-VOCABULARY SEMANTIC SEGMENTATION

Datasets. We conduct experiments on two standard benchmarks: Replica (Straub et al., 2019)
and ScanNet (Dai et al., 2017). Replica provides high-quality synthetic RGB-D scans of indoor
environments with accurate ground-truth meshes and semantic annotations, while ScanNet consists
of large-scale real-world RGB-D sequences with manually annotated 3D semantic and instance
labels. Following prior work, we use eight Replica scenes: room0, room1, room2, office0,
office1, office2, office3, and office4, and eight ScanNet scenes: 0011 00, 0030 00,
0046 00, 0086 00, 0222 00, 0378 00, 0389 00, and 0435 00. This subset selection ensures
comparability with previous zero-shot methods. For text–image alignment, we use the Eva2 CLIP
(Fang et al., 2023; Yang et al., 2024) vision-language model.

7
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GT Ours BBQ-CLIP ConceptGraphs ConceptFusion

basket cabinet door rug pillar plate picture indoor-plant
wall-plug blanket candle stool pot table floor lamp
plant-stand vent blinds chair sofa book switch vase
window wall cushion bin pillow

Figure 4: Qualitative comparison of 3D open-vocabulary semantic segmentation on Replica scenes.
The GT, BBQ-CLIP, ConceptGraphs, OpenFusion, ConceptFusion columns are adapted from Linok
et al. (2025), reproduced here under fair use for research comparison. Our method yields more
accurate segmentation boundaries and finer recognition of challenging categories; notably, it is the
only method that segments and labels the rug correctly, a class frequently missed or confused by
competing approaches.

Labeling protocol. For open-vocabulary labeling, we use the standard CLIP paradigm (Radford
et al., 2021): each refined 3D object mask is encoded into an embedding and compared against
a set of text embeddings corresponding to candidate categories. The category with the highest
similarity is assigned as the predicted label. This procedure enables zero-shot semantic segmentation
without task-specific training, while our multi-view refinement makes the assignments more robust
to occlusions and clutter.

Evaluation. We follow the evaluation protocol in prior work. For each predicted point cloud in-
stance, we assign a semantic label by finding the nearest ground-truth instance (based on centroid
distance) and transferring its label. For each scene, we restrict the text prompts to the classes present
in the ground-truth annotations, formatted as “a photo of <class name>.” We report mean accu-
racy (mAcc), mean intersection-over-union (mIoU), and frequency-weighted mIoU (fmIoU).

Baselines. We compare against recent zero-shot approaches for 3D semantic segmentation: Con-
ceptFusion (Jatavallabhula et al., 2023), ConceptGraphs (Gu et al., 2023), BBQ-CLIP (Linok et al.,
2025), OpenMask3D (Takmaz et al., 2023), and HOV-SG (Werby et al., 2024). Note that HOV-SG
reports results on a different subset of ScanNet, so we omit its numbers for fair comparison.

Results. Table 1 reports quantitative comparisons. Our method achieves the best performance
across all three metrics, outperforming previous zero-shot methods. In particular, the improve-
ments in mIoU and fwIoU highlight the benefit of our context-aware embeddings and multi-view
3D refinement, which produce more consistent object representations than 2D-based pipelines. We
also provide qualitative examples in Fig. 4. Visual comparisons on Replica scenes illustrate that
our method yields more accurate segmentation boundaries and finer recognition of challenging cate-
gories. Our method consistently detects objects across categories with higher fidelity than competing
approaches.

4.2 NATURAL-LANGUAGE OBJECT RETRIEVAL

Implementation details. We use the EVA02 CLIP backbone (Fang et al., 2023) for visual–text
alignment, and qwen2.5-vl-32b-instruct as the vision–language model for multimodal en-
coding. Our first LLM, gpt-5-mini, is employed for object extraction, while the second LLM,
openai-o4-mini, handles the final decision-making stage.

Datasets. We evaluate on the Sr3D+ benchmark (Achlioptas et al., 2020), which provides diverse
referring expressions such as relational and orientation-based queries (e.g., “the table that is far

8
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Table 1: 3D open-vocabulary semantic segmentation benchmark.

Methods Replica ScanNet
mAcc↑ mIoU↑ fmIoU↑ mAcc↑ mIoU↑ fmIoU↑

ConceptFusion 0.29 0.11 0.14 0.49 0.26 0.31
OpenMask3D - - - 0.34 0.18 0.20
ConceptGraphs 0.36 0.18 0.15 0.52 0.26 0.29
HOV-SG 0.30 0.23 0.39 - - -
BBQ-CLIP 0.38 0.27 0.48 0.56 0.34 0.36
Ours 0.38 0.29 0.56 0.61 0.36 0.46

Table 2: Grounding accuracy on Sr3D+. Accuracy at IoU thresholds A@0.1 and A@0.25 across
subsets: Easy, Hard, View-dependent, and View-independent.

Methods Overall Easy Hard View Dep. View Indep.
A@0.1 A@0.25 A@0.1 A@0.25 A@0.1 A@0.25 A@0.1 A@0.25 A@0.1 A@0.25

OpenFusion 12.6 2.4 14.0 2.4 1.3 1.3 3.8 2.5 13.7 2.4
BBQ-CLIP 14.4 8.8 15.4 9.0 6.7 6.7 11.4 5.1 14.4 8.8
ConceptGraphs 13.3 6.2 13.0 6.8 16.0 1.3 15.2 5.1 13.1 6.4
BBQ 34.2 22.7 34.3 22.7 33.3 22.7 32.9 20.3 34.4 23.0
Ours 41.8 35.6 41.8 35.7 41.3 34.7 32.9 30.4 43.0 36.3

from the armchair” or “Facing the cabinet, pick the trashcan on your left.”). Following the BBQ
(Linok et al., 2025) setup, we use the same 661 sampled instructions. Each query is paired with a
ground-truth target (GT) and labeled as Easy, Hard, View-dependent, or View-independent, allowing
systematic evaluation across reasoning challenges.

Evaluation. Following prior work, we report grounding accuracy at two IoU thresholds: A@0.1
and A@0.25. A prediction is considered correct if the IoU between the predicted and ground-truth
bounding box exceeds the threshold. Accuracy is reported overall as well as separately for the four
difficulty subsets.

Baselines. We compare against recent zero-shot 3D grounding approaches, including OpenFusion
(Yamazaki et al., 2024), BBQ-CLIP (Linok et al., 2025), ConceptGraphs (Gu et al., 2023), and BBQ
(Linok et al., 2025).

Results. Table 2 summarizes quantitative results. Our method substantially outperforms all base-
lines across both IoU thresholds and all difficulty subsets.

5 CONCLUSION

We introduced CORE-3D, a training-free pipeline for open-vocabulary 3D perception that combines
progressive SemanticSAM refinement, context-aware CLIP embeddings, and multi-view 3D consol-
idation. This design reduces mask fragmentation, preserves semantic context, and yields coherent
object-level maps without requiring 3D supervision. Experiments on Replica and ScanNet show
consistent gains in mIoU and fmIoU, while on Sr3D+ our retrieval pipeline—based on structured
parsing, VLM verification, and geometric reasoning—achieves clear improvements in grounding
accuracy. Our results suggest that leveraging richer 2D segmentation and embedding strategies is
a powerful alternative to supervision-heavy pipelines, especially in cluttered, open-world environ-
ments. Beyond segmentation and retrieval, extending the framework with temporal consistency and
deeper integration with multimodal reasoning models could further enhance robustness and gener-
ality. In sum, CORE-3D demonstrates that careful refinement and context-rich embeddings make
zero-shot 3D mapping and language-grounded retrieval both practical and reliable.
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