Published as a conference paper at ICLR 2023

GENERALIZE LEARNED HEURISTICS TO SOLVE
LARGE-SCALE VEHICLE ROUTING PROBLEMS IN REAL-
TIME

Qingchun Hou, Jingwei Yang, Yigiang Su, Xiaoqing Wang, Yuming Deng
Alibaba Group
hougingchun.hgc@alibaba-inc.com, hgclé6@tsinghua.org.cn

ABSTRACT

Large-scale Vehicle Routing Problems (VRPs) are widely used in logistics, trans-
portation, supply chain, and robotic systems. Recently, data-driven VRP heuristics
are proposed to generate real-time VRP solutions with up to 100 nodes. Despite
this progress, current heuristics for large-scale VRPs still face three major chal-
lenges: 1) Difficulty in generalizing the heuristics learned on small-scale VRPs
to large-scale VRPs without retraining; 2) Challenge in generating real-time so-
lutions for large-scale VRPs; 3) Difficulty in embedding global constraints into
learned heuristics. We contribute in the three directions: We propose a Two-stage
Divide Method (TAM) to generate sub-route sequence rather than node sequence
for generalizing the heuristics learned on small-scale VRPs to solve large-scale
VRPs in real-time. A two-step reinforcement learning method with new reward
and padding techniques is proposed to train our TAM. A global mask function
is proposed to keep the global constraints satisfied when dividing a large-scale
VRP into several small-scale Traveling Salesman Problems (TSPs). As result, we
can solve the small-scale TSPs in parallel quickly. The experiments on synthetic
and real-world large-scale VRPs show our method could generalize the learned
heuristics trained on datasets of VRP 100 to solve VRPs with over 5000 nodes in
real-time while keeping the solution quality better than data-driven heuristics and
competitive with traditional heuristics.

1 INTRODUCTION

Vehicle Routing Problems (VRPs) are widely used in logistics, supply chain, transportation, and
robotic systems (Toth & Vigol 2002bj (Golden et al., [2008} [Bullo et al.| [2011)). For instance, on
e-commerce platforms, hundreds and thousands of goods are sold in real-time and then transported to
customers with maximum efficiencies, minimum number of vehicles, and shortest distance. Therefore,
more large-scale VRPs need to be solved in real-time to improve logistics or transportation efficiency
(Dong et al.|[2021; [Duan et al.,[2020). Although VRP is one of the most well-studied combinatorial
optimization problems, the large-scale VRP is still challenging due to its NP-hard characteristic
(Golden et al.l[2008). Exact methods or solvers (such as branch and bound (Toth & Vigo, [2002al),
branch and cut (Naddef & Rinaldi, [2002), column generation (Chabrier}, |2006)), Gurobi, and Cplex)
could obtain global optimal solutions on small-scale VRPs with theory guarantee. However, these
methods are time-consuming and hard to be extended to large-scale VRPs because permutation
number is growing exponentially. Traditional heuristics or solvers could solve small-scale VRPs
quickly with near-optimal solutions. Some heuristics could be extended to solve large-scale VRPs
(Ortools (Perron & Furnon), LKH3 (Helsgaunl 2017), HGS (Vidal, 2022; [Vidal et al., 2012), and
SISRs (Christiaens & Vanden Berghe| 2020)). However, massive iterations are needed to obtain good
solutions. The algorithm for solving large-scale VRP in real-time (seconds) still lags behind.

Recently, data-driven methods are proposed to learn heuristics for constructing VRP solutions directly
(Vinyals et al.,[2015). Deep learning methods like Transformer (Vaswani et al., 2017 Kool et al.|
2019; [Peng et al.|2020) and Graph neural network (Kipf & Welling| 2016} Khalil et al., 2017} [Joshi
et al., [2019) are used to extract hidden states of VRPs and TSPs, which is called Encoder. The
solution sequences of VRPs are then generated in an autoregressive way from the hidden states,

Published as a conference paper at ICLR 2023

which is called Decoder. Reinforcement learning techniques are also applied to train the encoder-
decoder model (sequence-to-sequence model) to improve its accuracy (Nazari et al., 2018)). These
learn-to-construct heuristics can outperform or be comparable to traditional VRP heuristics with up
to 100 nodes. However, when it comes to large-scale VRPs (over 1000 nodes), the learned heuristics
still face three challenges: 1) the training of data-driven large-scale VRP model is time-consuming
and computationally expensive. For instance, the computation complexity and memory space of
training the Transformer are quadratic to the lengths of the input sequence (nodes number of VRP)
(Kool et al., 2019} Kitaev et al., [2019); 2) the model trained on small-scale VRPs is difficult to be
generalized to large-scale VRPs because the nodes distribution of large-scale VRPs in test dataset
is different from that of the small-scale VRPs in the training dataset; 3) the global constraints like
maximum vehicle number are hard to be encoded in the encoder-decoder model because global
constraints become active only at the end of the sequence.

Although the limitations of traditional and data-driven methods, we ask: Could we generalize the
learned heuristics to solve large-scale VRPs in real-time by taking advantages of both data-driven
and traditional methods? We try to answer this question from the following perspectives:

1) Although the traditional heuristic methods are time-consuming when solving large-scale VRPs,
they can quickly obtain optimal or near-optimal solutions with some theory guarantees when solving
small-scale VRPs. We observe that vehicle capacity for real-world large-scale VRPs is limited, and
each vehicle serves a few customers. If we know the customers that each vehicle needs to serve, then
the original large-scale VRP could be divided into several small-scale TSPs, which could be solved
by traditional heuristics quickly and parallelly.

2) The generalization of data-driven heuristics to large-scale VRPs is difficult because the sequence-
to-sequence model needs to learn the distribution of each node in the long sequence. We observe that
if we just model the distribution of sub-routes and ignore the order of nodes inside a sub-route, then
we could possibly better generalize the model trained on small-scale VRPs to solve large-scale VRPs.

3) Although the global constraints are only active at the end of the sequence, we could design a
global mask function with theory guarantee to prevent the infeasible solution beforehand. In addition,
the global constraints could include some prior information, which helps improve the generalization
of the learned heuristics. For instance, we observe that the predefined maximum vehicle number
could provide some global information about the possible range of the optimal vehicle number in the
testing dataset, which could help identify the minimum travel length.

Prior or global
information
Learn to divide VRP into sub-TSPs
with global mask function

Large-scale VRP

Original subroute 1 Original subroute 2 Original subroute N

Padding the original subroute to

same length
Subroute 1 Subroute 2 Subroute N
Heuristics Heuristics Heuristics
Optimal Subroute 1 Optimal Subroute 2 Optimal Subroute N
Combine

Final VRP Route

Figure 1: Our TAM framework. In the first stage (green), a learned model divides large-scale VRP
into several small TSPs while satisfying VRP constraints like capacity and maximum vehicle number.
Then, the original TSPs are padded to the same number of nodes at the training time. In the second
stage (orange), all TSPs or sub-routes with simple constraints are optimized in parallel.

Driven by the above analysis, we present a Two-stage Divide Method (TAM) in Figure [I] for
generalizing the learned heuristics to solve large-scale VRPs in real-time with a zero-shot way. Our
TAM combines the real-time advantages of data-driven methods and the generalization advantages of
traditional heuristics. It first divides a large-scale VRP into several smaller sub-routes by generating

Published as a conference paper at ICLR 2023

(b) Original sub-routes sequence with constraints satisfied

(a) Original VRP-13 while ignoring nodes order inside sub-route (c) Three sub-routes: TSP-5 (d) Final route VRP-13
° . - o
TAM Padding the o Optimized
generates ° sub-TSPs to ° by TSP L d
* sub-routes ° * the same o ok heuristics in o %
sequence length o] parallel
° []

Depot used
for padding

Figure 2: Illustration of dividing a VRP 13 into three TSP-5s, which are optimized in parallel.

1350 . AM - 500 — AM
300 TAM-AM w00 TAM-AM
250 LKH3 . LKH3
«— TAM-LKH3 : «— TAM-LKH3
= = 300
) 200 o -
g . 2
= 150 - £ 200
4
100
100
/
50
- e L
04 e—w—e——— o
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Size of VRP Size of VRP
(a) (b)

Figure 3: The performance of TAM and benchmark methods agaist the size of VRP (a) Route length
(b) Solving time. TAM-LKH3: Our TAM with LKH3 as the second-stage solver; TAM-AM: Our
TAM with Attention Model as the second-stage solver; AM: Attention Model; LKH3: LKH3 solver.

sub-route sequence using a learned encoder-decoder model. The encoder-decoder model is trained
by a two-step Reinforcement Learning (RL) with a novel reward that encodes the distribution of
sub-route sequence. To accelerate the training process, we propose a padding technique to pad the
original TSPs to the same number of nodes at the training time. A global mask function is also
proposed to encode global constraints like maximum vehicle number in this stage. In the second
stage, all small-scale sub-routes could be solved in parallel using traditional heuristics or learned
heuristics. To better understand our method, we illustrate the process by splitting a VRP 13 into three
smaller TSP-5s and obtaining the final route by combining the three optimized TSPs in Figure 2]

Technically, we summarize our key contributions as follows:

(1) We propose a new formulation and Two-stage Dividing Method for generalizing the learned
heuristics trained on small-scale VRPs to solve large-scale VRPs in a real-time and zero-shot way.

(2) We propose three techniques to improve the zero-shot generalization ability of our TAM: 1)
Propose generating sub-route sequence to take advantages of both learned and traditional heuristics;
2) Propose a two-step RL training method with new reward and padding method to accelerate
training process and make the TAM invariant to node sequence of sub-route; 3) Propose a global
mask function to encode maximum vehicle number constraint with theory guarantee. A proof of the
mask function and a generalization analysis of TAM are provided in Section [A.4]of Appendix.

(3) We validate our TAM on synthetic and real-world large-scale VRPs. The results show our TAM
could generalize the learned heuristics trained on VRP 100 to solve VRPs with over 1000 nodes in
real-time while keeping the solution quality competitive with traditional heuristics. For VRP 2000,
the solution quality of our TAM is over 50% better than the data-driven Attention Model. Example
results of generalizing to VRP 2000 and real-world VRP 1040 are shown in Figure [5]of Appendix.

(4) Our TAM can scale to VRPs with over 5000 nodes. For VRP 7000, the solution quality of our
TAM is about 20% better than LKH3 with only 6.6% solution time. The scalability performance of
our TAM (TAM-LKH3 and TAM-AM) against the size of VRP is shown in Figure[3] Example results
of generalizing to VRP 7000 and 5000 are shown in Figure [7]and [§] of Appendix.

Published as a conference paper at ICLR 2023

2 RELATED WORK

As above mentioned, VRPs are usually solved by exact methods, traditional heuristics, and data-
driven methods. The exact methods are time-consuming and incapable of solving large-scale VRPs in
a reasonable time. Therefore, we mainly focus on the traditional heuristics and learned methods. In
the following part, we summarize the related work about the learned methods. More comprehensive
reviews about the traditional heuristics and learned methods could be found in Appendix [A.5]

Learned methods include learn-to-construct method and learn-to search method. The learn-to-
construct method constructs good VRP solutions in real-time directly without iterations. Vinyals et
al. first proposed using pointer network (PN) to generate TSP solution in real-time (Vinyals et al.,
2015)). From there, several improvements are witnessed (Nazari et al., 2018} Kool et al.,[2019;2021).
The learn-to-construct ideas are also applied in other variant VRPs and get promising results (Delarue
et al., [2020; |Peng et al.l 2020; Falkner & Schmidt-Thieme} 2020; Xin et al., [2020). However, due to
the difficulty of training the model on large-scale VRPs, generating solutions for VRPs with over 400
nodes is still challenging (Fu et al.| 2021} |Joshi et al., |2020; Ma et al.,|2019). Different from previous
works, our TAM generalizes the learned heuristics to solve VRPs with over 1000 nodes in real-time
by taking the advantages of traditional heuristics, data-driven heuristics, and prior information. To
the best of our knowledge, our TAM is the first learn-to-construct method that could solve VRPs with
over 5000 nodes in seconds with zero-shot generalization. In contrast, the learn-to-search method
is mainly used in exact methods (Gasse et al.,[2019) and traditional heuristics (Lu et al.,[2019; Khalil
et al.,2017; (Chen & Tian, |[2019; Hottung & Tierney, [2019; | Xin et al., [2021; |Chen et al., 2020), such
as learning better large neighborhood search heuristics (Hottung & Tierney, 20195 |Chen et al.| [2020)),
designing better constructors, destructors, and improvement operators (Lu et al., 2019; [Khalil et al.,
2017) to accelerate the search process. However, the iterative search is still necessary.

Decomposition technique has been used in traditional heuristics (Queiroga et al., 2021; Zhang et al.,
2021;Bosman & Poutré, 2006; |Ventresca et al., 2013} [Alvim & Taillard, [2013} [Lalla-Ruiz & Voss,
2016; Taillard & Helsgaun, 2019). Recently, the decomposition ideas are introduced to data-driven
heuristics for solving TSP and VRP (Fu et al., |2021), such as divide and conquer networks for
TSP (Nowak et al.| 2018) and learn-to-delegate method for VRP(Li et al.,[2021)). They both belong
to learn-to-search methods. Different from previous works, our TAM contributes to generalize
learn-to-construct heuristics in real-time, which decomposes VRP as independent sub-routes and
just call sub-problem solver once in parallel. Besides, our work could easily encode other VRP
constraints by changing mask functions, which is more difficult for the learn-to-search method. In
the following sections, we will focus on the learn-to-construct method.

3 PRELIMINARY WORK

VPR definition VRPs are usually defined as serving all customers’ demands from a depot with
user-defined objectives while considering some constraints. In this paper, we investigate the CVRP
(capacitated vehicle routing problem) with maximum vehicle number constraints /,,, while minimizing
travel length. Assuming CVRP with n customers, the inputs are points set Q = {Io, I1,...,I,},
where [represents depot; I; represents it" customer. Each customer I; = (x4, i, d;) contains three
features: x-coordinate z;, y-coordinate y;, and demand of customer d;. The demand that each vehicle
serves is constrained by the vehicle’s capacity C. The number of available vehicles is limited by /,,.
Our objective is to find an optimal permutation 7@ = {7, 71, ..., T4} of Q to minimize Euclidean
travel length, where I is visited [times. A detailed model is shown in Appendix[A.T]

Markov Decision Process Model Previous learn-to-construct methods such as Attention Model
(AM) (Kool et al., 2019) use RL to train a sequence-to-sequence policy for solving the VRPs directly.
The corresponding MDP (Markov Decision Process) model is as follows: 1) State:The current partial
solution of VRP. 2) Action: Choose an unvisited customer. The action space is the set of unvisited
customers. 3) Reward: The negative value of travel distance.

Therefore, the corresponding stochastic policy p(m;|s;) represents the probability to choose an
unvisited customer 7, as the next customer, given the current state s;, which contains the information
of the instance and current partial solution. Then, the policy for optimal route 7 could be modeled as:

n+l

Pa(mls) = [pe (milse) (1)
t=1

4

Published as a conference paper at ICLR 2023

where [is the vehicle number or sub-route number; « is the parameter of the stochastic policy. In this
formulation, the possibility of the next customer should be accurately modeled for each unvisited
customer. For large-scale VRPs, generalizing the model to calculate this possibility is much more
difficult because of the distribution shift from the training dataset. This is also one of the main reasons
behind the generalization failure of current learn-to-construct heuristics.

4 METHOD

4.1 GENERAL FORMULATION OF TAM

For our TAM in Figure([T] global information is learned in the first stage, while local information like
nodes’ sequence inside each sub-route is handled in the second stage. Therefore, the most challenging
part is learning the best global split while considering complex constraints. To this end, we propose
generating sub-route sequence rather than node sequence. The MDP model is designed as follows:

1) State: The current partial solution, composed of the chosen sub-routes of VRP.

2) Action: Choose an unvisited sub-route. The sub-route for VRP here is defined as the set of
customers that a vehicle could serve. The action space is the set of unvisited sub-routes.

3) Reward: The negative value of minimal distance of the chosen sub-route.

Therefore, our policy becomes pg (7|), representing the probability to choose an unvisited sub-route
r¢. The optimal sub-route split 7 could be modeled as:

l
po(rls) = [po (rilse) @)
t=1

where 6 is the parameter of the stochastic split policy. In this formulation, we ignore the visiting
order of customers (also called nodes) inside each sub-route 7;. This configuration is more beneficial
for generalizing the learned model to large-scale VRPs because the distribution of sub-routes could
be similar between testing dataset and training dataset, although the number and distribution of nodes
are different between the two datasets. After generating the optimal sub-route 7, the optimal route 7
could be modeled as:

! Il
p(m|s) = (Hpe (7"t|8t)> (H Hpﬁ (7Ti7’t,7Tt,0:z—1)> 3

t=11i=1

This formulation means we first obtain the optimal sub-route split and then determine the node
sequence in each sub-route independently. The /; is number of node in the route r;. The 5 denotes
the parameters of the policy that determines the customer’s order inside a sub-route. The 7 o.;—1
represents the chosen partial sequence inside sub-route r;. In this paper, we solve the sub-problems
using learned or traditional heuristics in parallel. Based on Equation 3] a generalization analysis
about why our TAM works is shown in Appendix

4.2 GENERATING SUB-ROUTE SEQUENCE WITH SEQUENCE-TO-SEQUENCE MODEL

Modeling the policy in Equation [2] faces two challenges. First, the action space is much larger
and we need to sample all nodes inside a sub-route while ignoring the nodes’ order. Second, mask
function for constraints is harder to encode without node sequence (Kool et al.|[2019; Nazari et al.|
2018). To bridge this gap, we propose to transform the policy in Equation [2] into an equivalent
sequence-to-sequence policy (Equation) with novel reward to eliminating the effect of nodes’ order
(Equation[5)). We assume the nodes between two depots belong to the same sub-route:

n+l

po(rls) = [po (milse)

7r07-...,7ri,...71'l S {Io}. 4
{ﬂ'ziliﬂ'j,ﬂj_,_l...,ﬂl}eri Vi=1,...,1

TiG@i VZZI,,Z

1<l

Published as a conference paper at ICLR 2023

where 7’ is the depot visited in 7*" time; r; is 7" sub-route; ©; represents the feasible space of ;.
The first line of Equation[d]is a sequence-to-sequence policy. The second line shows the times to visit
the depot. The third line transforms the sequence of nodes between two depots into the set of nodes (a
sub-route problem). The fourth line shows each sub-route should satisfy some local constraints such
as capacity constraint. The fifth line shows the global constraint for maximum vehicle number. With
this formulation, we could generate sub-route sequence with sequence-to-sequence model. However,
the nodes’ order inside sub-route still affects the performance of the policy.

4.3 NEW REWARD

To make the reward of the chosen sub-route r; invariant to the order of nodes inside that sub-route,
we propose to use the optimal length of the sub-route as its reward R;:

Ri = *Hgndist((ﬁ(ﬁ;)) Vi = 1,...,[(5)

where ¢() is permutation function; dist() is distance function used to calculate route length. Because
the optimal length is invariant to the order of inputs, the reward is then invariant to the order of
nodes inside the sub-route. The optimization method could be exact methods, traditional or learned
heuristics. The accumulated reward R is then used to train our policy (details in Section [4.5):

l
R=> R (6)
i=1

In doing so, we could find the next route while using mask function to satisfy complex constraints.

4.4 GLOBAL MASK FUNCTION

For CVRP, each sub-route should satisfy vehicle capacity constraints (local constraints); the whole
route should satisfy the predefined maximum vehicle number constraints (global constraints). The
global constraints, however, could only be active at the end of a sequence, making it hard to adjust the
sequence when the constraints are active and to obtain a feasible solution. Therefore, we propose a
new global mask function for global constraints. According to our formulation in Equation[d] the time
of visiting depot is equal to the number of vehicles. Therefore, we could constrain the probability
to visit depot py (m; = Ip|s;) beforehand. If the capacity of unused vehicles cannot serve the rest
demand, then the current vehicle can not visit the depot:

T .
tanh (\‘}‘%) if ZieQu di <Cx (I, — 1y)
—00 otherwise.

po (¢ = Ip|sy) = softmax(ug), ug = { @)
where q is the context query; kg represents the key of the depot; €2, is the set of unvisited nodes; ,,,
represents the maximum vehicle number; [, is the number of used vehicles, including the current
vehicle; dimy is the dimension of hidden state. The calculation methods of q and kg are shown in
Section of Appendix. With Equation[7} we could prevent the violation of the maximum vehicle
number constraints by making full use of the current vehicle’s capacity.

Theorem 1 (Global mask function for maximum vehicle number constraint). Assume that 1) the total
capacity of vehicles is larger than the total demand of customers l,, x C > . d;; 2) the maximum
demand of a single customer is much less than the capacity of vehicle max;ec ;... ny di < C. Then,
the proposed global mask function enforces the satisfaction of the maximum vehicle number constraint
l S l77L‘

The theoretical proof and remarks of Theorem 1 are provided in Appendix For local
constraints like capacity, we use the mask function in Kool et al.| (2019) (see Appendix [A.3.4).

AM as dividing model: As above mentioned, we could reformulate our dividing model as a sequence-
to-sequence model with new reward and global mask function. In this paper, we modify the Attention
Model (Kool et al., [2019) as dividing model. The architecture of the dividing model is shown in
Figure[4(a)] The input and Encoder are the same as AM, while the Decoder is modified to encode
our global mask function in Section[#.4] The output of the autoregressive Decoder is the nodes
permutation 7r, which could divide the VRP into several sub-routes 7 using Equation[d] The details
of AM are shown in Section [A.3.3]of Appendix. It should be noted that our main contribution is
the two-stage dividing formulation and generalization techniques rather than sequence-to-sequence
model. Other models like Graph neural network could also be encoded in TAM.

Published as a conference paper at ICLR 2023

Encoder Decoder

1 I
1 1
v ko k1 Attention 1 Generate TSP Train second-stage
! ! Step I: Training TSP solver dataset TSP model with RL
1 I I l Mask Function : P s
I with global T et T TS U S
1
1 ho hy constrains | Step II: Training first stage VRP model Provide learned TSP solver
vt t q |

1
H Choose next | Generate VRP ___ Split VRP to sub-TSPs Pad sub-TSPs to the
H) . node | dataset with current policy same length
| Multi-Head Attention | t |

I
1

1
: 1 1 1 N N Optimize multiple sub-TSPs in
\ he ha B | Update policy with RL parallel after padding
| Iy I Lgs N1sts Npre |
1 ! Provide reward

(b)

Figure 4: (a) Attention-based model for TAM. (b) Two-step training process of TAM.

4.5 TWO-STEP TRAINING ALGORITHM

According to Equation [6] our reward is the sum of the negative optimal length of all sub-routes.
However, if we calculate the optimal length of the sub-TSPs with traditional heuristics or exact
solvers for training our TAM, two problems arise: 1) we cannot use GPU to accelerate the training
process; 2) calculating the optimal solution for each sub-route is relatively time-consuming. To this
end, we propose a two-step training algorithm in Figure 4(b)| for our TAM by using a learned TSP
heuristic to approximately calculate optimal reward. The learned TSP heuristics such as AM have
been proved to be effective for small-scale TSPs in previous works (Kool et al.,|2019; Bello et al.,
2016; Joshi et al., [2020).

Algorithm [T)in Appendix [A.3.T|reports the implementation details of our training algorithm. The
main training process is as follows. Step I: we first train a TSP solver with AM using generated
dataset for small-scale TSPs. Step II: we initialize TAM to split original VRPs in the training
dataset into several sub-TSPs. The sub-TSPs are padded to the same length by the proposed padding
technique. The sub-TSPs are optimized by the well-trained AM in GPU parallelly after padding. The
reward is then calculated using Equation [6]to update the parameters of TAM. The process is repeated
iteratively until finding an acceptable policy.

Padding TSPs to the same length: The sub-TSPs divided by our TAM have a different number of
nodes. Therefore, the length of the input vector is different for different sub-TSPs, which cannot be
calculated by GPU in parallel. We borrow the idea padding from CNN (LeCun et al., 2010) to our
TAM. We pad the sub-TSPs to the same length by adding depot nodes in sub-TSP input vectors. In
this way, we could compute the reward in parallel using the learned TSP model to accelerate the RL
training process while with little impact on the optimal reward.

4.6 INFERENCE

At inference time, we use the trained TAM to divide the large-scale VRP into several sub-TSPs
without padding. Then, the small-scale sub-TSPs could be solved by traditional heuristics in CPU
parallelly or by learned heuristics (Algorithm[2]and [3). If we use learned TSP heuristics as second-
stage solver, we train several models on datasets of TSP 20, 50, and 100, respectively. At the inference
time, we choose the trained TSP model with the closest nodes number to the sub-TSPs as solver.
Search strategy in the first stage also matters at the inference time. We use three strategies in our
TAM: greedy search, sample search, and beam search. The details of the three strategies are described
in Appendix In our experiments, we use beam search with beam size 10 as the default strategy.

5 EXPERIMENTS
5.1 DATA-GENERATION

We set maximum vehicle number [,,, as following:

We follow the |[Nazari et al.| (2018)); [Kool et al.| (2019) in the dataset generation for CVRP 100,
400, 1000, 2000, 5000, and 7000. We sample the coordinates of depot and n nodes with uniform

Published as a conference paper at ICLR 2023

Table 1: Route length and solving time (second) of CVRP with our TAM and benchmark methods
that are trained on CVRP100 dataset

CVRP METRIC TAM-AM TAM-LKH3 TAM-ORTOOLS AM POMO DPDP OrTOOLS LKH3
LENGTH 74.314 1.42 64.78+ 1.18 65.1241.18 114.36= 2.15 485.42420.12 ; 68.474 0.98 64.93+1.48
2000 v 2.240.00 5.63+0.11 11.1040.69 1.87+0.00 4.4240.08 . 100.014 0.00 20.29+0.05
l00p LENGTH 50.06: 0.98 46.34: 0.84 46.47£0.84 6142 176 160.43+7.21 ; 48.8140.75 46.44-0.84
TIME 0.76+ 0.00 1.824+0.03 6.0340.01 0.59+0.00 2.27+ 0.08 ; 50.004 0.00 6.154 0.01
4o LENGTH 27.03:£0.51 2593+ 0.46 25.96:047 29.33+ 059 29.93:+.34 ; 27.014 0.47 24.6740.46
TIME 0.3040.00 1.35+0.03 4.8340.00 0.2040.00 1.80%0.00 ; 30.364+ 0.16 4.1040.01

LENGTH 16.19£0.34 16.084+0.33 16.08+0.33 16.42+0.36 15.69£0.26 16.57+0.37 16.68+ 0.36 15.58+0.34

100 7y 0.09+0.00 0.86+ 0.01 3.384+0.00 0.06+ 0.00 0.60+0.00 0.8+0.01 20.03£0.01 2.1240.00

distribution from the domain of [0 1]. The demand of each node is normalized by vehicle capacity. We
sample 1280000 CVRP100 instances on the fly as training datasets. And then we test our TAM and
benchmark algorithms on 100 instances for CVRP 100, 400, 1000, 2000, 5000, and 7000. We trained
second-stage TSP model on datasets of TSP 20, 50, 100. More details are shown in Appendix [A.2.T]

5.2 CONFIGURATION

For a fair comparison, all our training hyperparameters are the same as AM. We trained TAM for 100
epochs with batch size 512 on the generated dataset. We choose 3 layers transformer in the encoder
with 8 heads. The learning rate is constant 7 = 10~%. All models are trained on a single GPU Tesla
V100. The rest of the parameters such as dimension of hidden state is listed in Kool et al.| (2019).
We compare our methods (TAM-AM, TAM-LKH3, TAM-Ortools) with three learn-to-construct
benchmarks (AM, POMO, DPDP) and two traditional heuristic benchmarks (LKH3 and Ortools).

AM: data-driven Attention Model (Kool et al.,2019). POMO: Policy Optimization with Multiple
Optima, which is an extension of AM with diverse rollouts (Kwon et al.,[2020). DPDP: Deep Policy
Dynamic Programming, which generates VRP solutions from a trained heat-map (Kool et al.l 2021).

LKH3: An open-source VRP solver based on Lin-Kernighan-Helsgaun algorithm (Helsgaun, 2017
2009). Ortools: An open-source heuristic solver from Google.

TAM-AM: Our TAM with AM as the second stage solver. TAM-LKH3: Our TAM with LKH3 as
the second stage solver. TAM-Ortools: Our TAM with Ortools as the second stage solver.

5.3 RESULTS ON CVRP

We first report average testing results on 100 instances in Table[T} The test performance on CVRP
400, 1000, and 2000 shows the generalization ability of the method. For our TAM methods, we
found that TAM-LKH3 obtains the best performance, while TAM-AM generates solution fastest.
Compared with three learn-to-construct methods, our TAM-LKH3 always generates the best
solution in less than 6s and outperforms AM and POMO significantly for CVRP with over 400
nodes, while the DPDP method can not generalize to large-scale VPRs directly. For CVRP 2000,
our TAM-LKH3 is over 50% better than AM and POMO. We also observe that the gap between
our method and AM and POMO is enlarging as the number of nodes increases. Compared with
traditional heuristics, we found that our TAM outperforms LKH3 and Ortools in both solution
quality and solving time for CVRP 1000 and 2000. Although the LKH3 obtains better solutions for
CVRP 400, it takes about 4 x computation time than our TAM. These results demonstrate that: 1) our
TAM could learn the sub-routes distribution and generalize the learned heuristic to solve large-scale
VRP in seconds; 2) the generalization ability of our TAM outperforms the SOTA learn-to-construct
methods such as AM, POMO, and DPDP; 3) our TAM is competitive with traditional heuristics like
Ortools and LKH3, while solving time is over 4 X faster. The example of CVRP 2000 in Figure [5(a)
of Appendix shows that good solutions usually have more decoupled sub-routes, which is consistent
with our experience. These observations indicate our TAM could find potential patterns for good
VRP solutions. More examples such as CVRP 1000 are shown in Appendix [A.2.6]

Scalability study: To validate the scalability performance of our TAM, we further scale our model
trained on CVRP100 datasets to CVRP 5000 and 7000. Figure |3| shows the performance of TAM-

Published as a conference paper at ICLR 2023

Table 2: Route length and solving time (second) of real-world CVRP with our TAM and benchmark
methods that are trained on CVRP100 dataset.

CVRP METRIC ~ TAM-AM TAM-LKH3 AM LKH3
LENGTH 21.28 20.29 29.35 31.08

1040 TIME 3.43 5.94 3.17 50.00

1299 LENGTH 28.85 22.06 40.56 26.69
TIME 3.72 10.87 3.64 50.33

963 LENGTH 12.68 12.05 44.34 13.04
TIME 3.31 6.74 2.96 50.00

564 LENGTH 24.77 2333 4222 39.79
TIME 3.05 5.61 2.66 50.00

630 LENGTH 42.32 40.02 58.05 48.45
TIME 2.38 6.84 2.09 30.00

821 LENGTH 19.26 18.62 34.29 18.46
TIME 2.81 5.34 2.56 100.35

817 LENGTH 15.87 15.56 26.70 14.99
TIME 2.74 4.69 2.49 100.22

LENGTH 23.58 21.70 39.36 27.50

AVERAGE(926) Tpyg 3.06 6.58 2.80 61.56

LKH3, TAM-AM, AM, and LKH3 against the size of VRP. Both the route length and solution time
are averaged on 100 testing instances. Figure [3(a) shows that the gap between our TAM-LKH3 and
benchmark methods (AM and LKH3) is enlarging as the size of VRP increases. For CVRP 5000
and 7000, both the TAM-AM and TAM-LKH3 are better than LKH3. In particular, the route length
of TAM-LKH3 outperforms LKH3 about 18% on CVRP 5000 while the solving time is about 11%
of LKH3. For CVRP 7000, the route length of TAM-LKH3 outperforms LKH3 about 20% while
the solving time is about 6.6% of LKH3. Figure[3(b) shows that the solution time of TAM-LKH3,
TAM-AM, and AM are stable while the solution time of the traditional heuristics LKH3 increases
quickly. These results show our TAM has much better scalability performance than AM and LKH3.
The example results for CVRP 7000 and CVRP 5000 are shown in the[7]and Figure [§]respectively.

Ablation studies about how our three techniques work are shown in Appendix [A.2.5] The com-
parisons with Learn-to-improve method and HGS are shown in Appendix[A.2.2]and[A.2.3] The
results on CVRPLIB are shown in Appendix Training time is shown in Appendix [A.2.7]

5.4 RESULTS ON REAL-WORLD CVRPS

For now, we investigate the performance of TAM on synthetic datasets with uniform distribution of
customers. However, the distribution of customers in real world is randomly and irregularly clustered.
To this end, we report the generalization of our model on real-world CVRPs. Our TAM has been
used for online application. Table [2]in Appendix summarizes the performance of our TAM, AM,
and LKH3 on seven real-world cases. On average, both our TAM-AM and TAM-LKH3 significantly
outperform AM and LKH3. The solving time of LKH3 is about 10 times of our TAM-LKH3. Figure
[[b) in Appendix shows the results of a real-world CVRP with 1040 customers. Our TAM-LKH3
finds the best route with length 20.29. The solution time is only about 10% of Ortools and LKH3.
Our TAM-AM model finds a good route within 3 seconds, whose length is over 30% shorter than
AM. These results mean our model also has a good generalization on real-world large-scale VRPs.
The visualization of solutions on the rest real-world VRPs is shown in Appendix [A.2.6]

6 CONCLUSION

In this paper, we propose generating a sub-routes sequence instead of a nodes sequence to improve
the generalization of the learned VRP model. Based on this idea, we propose a two-stage divide
model (TAM) to learn how to divide the large-scale VRPs into several small-scale TSPs, which could
be solved quickly in parallel. We show that our TAM trained on VRP 100 could generalize to solve
large-scale VRPs with over 5000 nodes in real-time. The generalization of our TAM outperforms
previous learn-to-construct heuristics on both synthetic and real-world cases. We also encode prior
information like maximum vehicle number and expert knowledge like expert-designed heuristics into
the data-driven model to improve its generalization. In doing so, we have opened up a new door to
generalize the learn-to-construct heuristics and apply them to solve various real-world cases. More
discussions about the main limitations and future works could be found in Appendix

Published as a conference paper at ICLR 2023

REFERENCES

Emile Aarts, Emile HL Aarts, and Jan Karel Lenstra. Local search in combinatorial optimization.
Princeton University Press, 2003.

Luca Accorsi and Daniele Vigo. A fast and scalable heuristic for the solution of large-scale capacitated
vehicle routing problems. Transportation Science, 55(4):832-856, 2021.

Adriana CF Alvim and Eric D Taillard. Popmusic for the world location-routing problem. EURO
Journal on Transportation and Logistics, 2(3):231-254, 2013.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Peter AN Bosman and Han La Poutré. Computationally intelligent online dynamic vehicle routing by
explicit load prediction in an evolutionary algorithm. In Parallel Problem Solving from Nature-
PPSN IX, pp. 312-321. Springer, 2006.

Francesco Bullo, Emilio Frazzoli, Marco Pavone, Ketan Savla, and Stephen L Smith. Dynamic
vehicle routing for robotic systems. Proceedings of the IEEE, 99(9):1482-1504, 2011.

Alain Chabrier. Vehicle routing problem with elementary shortest path based column generation.
Computers & Operations Research, 33(10):2972-2990, 2006.

Mingxiang Chen, Lei Gao, Qichang Chen, and Zhixin Liu. Dynamic partial removal: A neural
network heuristic for large neighborhood search. arXiv preprint arXiv:2005.09330, 2020.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
In Advances in Neural Information Processing Systems, 2019.

Jan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing
problems. Transportation Science, 54(2):417—433, 2020.

Jean-Francois Cordeau, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, and Frédéric Semet. A
guide to vehicle routing heuristics. Journal of the Operational Research society, 53(5):512-522,
2002.

Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with combi-
natorial actions: An application to vehicle routing. In Advances in Neural Information Processing
Systems, 2020.

Rodolfo Dondo and Jaime Cerdd. A cluster-based optimization approach for the multi-depot het-
erogeneous fleet vehicle routing problem with time windows. European journal of operational
research, 176(3):1478-1507, 2007.

Yuanyuan Dong, Andrew V. Goldberg, Alexander Noe, Nikos Parotsidis, Mauricio G. C. Resende,
and Quico Spaen. New Instances for Maximum Weight Independent Set From a Vehicle Routing
Application. Operations Research Forum, 2(4):48, dec 2021. ISSN 2662-2556. doi: 10.1007/
$43069-021-00084-x.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. /EEE computational
intelligence magazine, 1(4):28-39, 2006.

Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.
Efficiently solving the practical vehicle routing problem: A novel joint learning approach. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 3054-3063, 2020.

Jonas K Falkner and Lars Schmidt-Thieme. Learning to solve vehicle routing problems with time
windows through joint attention. arXiv preprint arXiv:2006.09100, 2020.

Houming Fan, Yueguang Zhang, Panjun Tian, Yingchun Lv, and Hao Fan. Time-dependent multi-
depot green vehicle routing problem with time windows considering temporal-spatial distance.
Computers & Operations Research, 129:105211, 2021.

10

Published as a conference paper at ICLR 2023

Marshall L Fisher and Ramchandran Jaikumar. A generalized assignment heuristic for vehicle routing.
Networks, 11(2):109-124, 1981.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474-7482, 2021.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The vehicle routing problem: latest
advances and new challenges, volume 43. Springer Science & Business Media, 2008.

Keld Helsgaun. General k-opt submoves for the lin—kernighan tsp heuristic. Mathematical Program-
ming Computation, 1(2):119-163, 2009.

Keld Helsgaun. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling
Salesman and Vehicle Routing Problems. Technical report, 2017.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. arXiv preprint arXiv:1911.09539, 2019.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, Thomas Laurent, and Xavier Bresson.
Learning tsp requires rethinking generalization. arXiv preprint arXiv:2006.07054, 2020.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic program-
ming for vehicle routing problems. arXiv preprint arXiv:2102.11756, 2021.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188-21198, 2020.

Eduardo Lalla-Ruiz and Stefan Voss. Popmusic as a matheuristic for the berth allocation problem.
Annals of Mathematics and Artificial Intelligence, 76(1):173-189, 2016.

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks and applications
in vision. In Proceedings of 2010 IEEE international symposium on circuits and systems, pp.
253-256. IEEE, 2010.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances
in Neural Information Processing Systems, 34, 2021.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International Conference on Learning Representations, 2019.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization by
graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936,
2019.

11

Published as a conference paper at ICLR 2023

Juan José Miranda-Bront, Brian Curcio, Isabel Méndez-Diaz, Agustin Montero, Federico Pousa, and
Paula Zabala. A cluster-first route-second approach for the swap body vehicle routing problem.
Annals of Operations Research, 253:935-956, 2017.

Denis Naddef and Giovanni Rinaldi. Branch-and-cut algorithms for the capacitated vrp. In The
vehicle routing problem, pp. 53-84. SIAM, 2002.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takdc. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Alex Nowak, David Folqué, and Joan Bruna. Divide and conquer networks. In International
Conference on Learning Representations, 2018.

Bo Peng, Jiahai Wang, and Zizhen Zhang. A Deep Reinforcement Learning Algorithm Using
Dynamic Attention Model for Vehicle Routing Problems. In Communications in Computer and
Information Science, volume 1205 CCIS, pp. 636—650, feb 2020. ISBN 9789811555763. doi:
10.1007/978-981-15-5577-0_51.

Laurent Perron and Vincent Furnon. Or-tools. URL https://developers.google.com/
optimization/.

David Pisinger and Stefan Ropke. Large neighborhood search. In Handbook of metaheuristics, pp.
399-419. Springer, 2010.

Mingyao Qi, Wei-Hua Lin, Nan Li, and Lixin Miao. A spatiotemporal partitioning approach for
large-scale vehicle routing problems with time windows. Transportation Research Part E: Logistics
and Transportation Review, 48(1):248-257, 2012.

Eduardo Queiroga, Ruslan Sadykov, and Eduardo Uchoa. A popmusic matheuristic for the capacitated
vehicle routing problem. Computers & Operations Research, 136:105475, 2021.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science, 40(4):455-472, 2006. ISSN
15265447. doi: 10.1287/trsc.1050.0135.

SN Sivanandam and SN Deepa. Genetic algorithms. In Introduction to genetic algorithms, pp. 15-37.
Springer, 2008.

Anand Subramanian, Eduardo Uchoa, and Luiz Satoru Ochi. A hybrid algorithm for a class of vehicle
routing problems. Computers & Operations Research, 40(10):2519-2531, 2013.

Eric D Taillard and Keld Helsgaun. Popmusic for the travelling salesman problem. European Journal
of Operational Research, 272(2):420-429, 2019.

Eric D Taillard, Luca M Gambardella, Michel Gendreau, and Jean-Yves Potvin. Adaptive memory
programming: A unified view of metaheuristics. European Journal of Operational Research, 135
(1):1-16, 2001.

Paolo Toth and Daniele Vigo. Branch-and-bound algorithms for the capacitated vrp. In The vehicle
routing problem, pp. 29-51. SIAM, 2002a.

Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002b.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845-858, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

12

https://developers.google.com/optimization/
https://developers.google.com/optimization/

Published as a conference paper at ICLR 2023

Mario Ventresca, Beatrice Ombuki-Berman, and Andrew Runka. Predicting genetic algorithm
performance on the vehicle routing problem using information theoretic landscape measures. In
European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 214-225.

Springer, 2013.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
hood. Computers & Operations Research, 140:105643, 2022.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research, 60
(3):611-624, 2012.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. Heuristics for multi-
attribute vehicle routing problems: A survey and synthesis. European Journal of Operational
Research, 231(1):1-21, 2013.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

Christos Voudouris, Edward PK Tsang, and Abdullah Alsheddy. Guided local search. In Handbook
of metaheuristics, pp. 321-361. Springer, 2010.

Yuan Wang, Linfei Lei, Dongxiang Zhang, and Loo Hay Lee. Towards delivery-as-a-service: Effective
neighborhood search strategies for integrated delivery optimization of e-commerce and static 020
parcels. Transportation Research Part B: Methodological, 139:38-63, 2020.

Jianhua Xiao, Tao Zhang, Jingguo Du, and Xingyi Zhang. An evolutionary multiobjective route
grouping-based heuristic algorithm for large-scale capacitated vehicle routing problems. /EEE
transactions on cybernetics, 51(8):4173-4186, 2019.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving
routing problems. IEEE Transactions on Industrial Informatics, 17(7):4861-4871, 2020.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in
Neural Information Processing Systems, 34, 2021.

Yuzhou Zhang, Yi Mei, Shihua Huang, Xin Zheng, and Cuijuan Zhang. A route clustering and
search heuristic for large-scale multidepot-capacitated arc routing problem. IEEE Transactions on
Cybernetics, 2021.

13

Published as a conference paper at ICLR 2023

A APPENDIX

IA.2.1 More details of experiment configuration|

|A.2.2 Comparison with learn-to-search method|
IA.2.3 Comparison with HGS on large-scale VRPs|
|A.2.4 Results on large-scale mstances of CVRPLIB|
IA.2.5 Ablationstudy| Lo

|A.3.1 Training with reinforcement learning|

IA.3.2 Searchstrategy|

|A.4 Theoretical analysis| o o oo
|A.4.1 Proof for global mask function| 0. ..

|A.4.2 Analysis for generalization performance|.

A.1 VRP FORMULATION

The CVRP (capacitated vehicle routing problem) with maximum vehicle number constraints /,,, can

be formulated as a mixed integer programming model:

min E CijZij

1€EQ,JEQiFE]
JEQI#]
1€EQ,i#£]

Uj7U12d]70(172”),v17]EQ\{O},Z#],dl+dJSC
OSUZSC—CZ“’LGQ

Z Zj():l

je\{o}
Z Zi0 = l
1€Q\{0}
[<ln
2, €{0,1},i e jeNi#j

&)

(10)

Y

12)
13)

(14)

15)

(16)
a7

where equation|§|is objective function, z;; is binary decision variable that has value 1 if the arc from
node 7 to node j is part of the solution and 0 otherwise, c;; is the Euclidean distance from node ¢

14

Published as a conference paper at ICLR 2023

AM (length=110.59, time=1.93s) TAM-AM (length=66.27 , time=2.20s)
v veh_num=34, length=66.27

AM (length=29.35, time=3.175) TAM-AM (length=21.28 , time=3.435)
veh num=32, ength=29.35 veh_ num=31, ength=21.28

Ortools (length=21.16, time=50s)
veh_num=31, length=21.16

1=20.29, time=8.155)
=31, length=20.29

e W 0 oo o o e e 10 s o o o o To 00

LKH3 (length=59.38, time=20.13s)

LKH3 (length=31.08, time=50s) TAM- LKH3(length=20.29, time=5.945)
ven_num=34, lengih=59.38 X veh. fen veh_num=30, length=31.08 veh_num=31, length=20.20

Figure 5: The example results of generalizing to the synthetic CVRP 2000 (a) and real-world CVRP
1040 (b) with our TAM and benchmark methods that are trained on CVRP 100 datasets. The examples
show that our TAM significantly outperforms the learn-to-construct method AM with similar solving
time while outperforming traditional heuristics (LKH3 and Ortools) on both route length and solving
time. The methods are as follows: Top left: Data-driven Attention Model (AM). Medium left:
Ortools. Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver
(TAM-AM). Medium right: Our TAM with Ortools as the second-stage solver (TAM-Ortools).
Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

15

Published as a conference paper at ICLR 2023

Table 3: Route length and solving time (second) of CVRP using TAM-LKH3 and Learn-to-Improve
(L2I) that are trained on CVRP100 dataset.

CVRP METRIC L2I TAM-LKH3
LENGTH 138.75 64.78
2000 g 25.38 5.63
1000 LENGTH 93.15 46.34
TIME 6.32 1.82
LENGTH 30.67 25.93
400 TIME 3.12 1.35
LENGTH 16.62 16.08
100 g 1.01 0.86

to node j; equation[I0|and[TT]ensure every customer is visited once; equation [IT]and [T2]define the
capacity and connectivity constraints, u; represents the demand in the vehicle after visiting customer
i; equation[I3] and [[5]ensure the maximum vehicle number constraints.

A.2 MORE RESULTS

A.2.1 MORE DETAILS OF EXPERIMENT CONFIGURATION

The capacity for synthetic instances of CVRP 100, 400, 1000, 2000, 5000, and 7000 is set to 50, 150,
200, 300, 300, and 300, respectively. At the testing stage, a random seed with a value of 1234 is
utilized to generate the instances. At the training stage, we use the Attention Model trained on TSP
20 dataset as default second stage solver. The default search strategy is beam search with beam size 2.

A.2.2 COMPARISON WITH LEARN-TO-SEARCH METHOD

As mentioned in related work, the learn-to-search methods could obtain competitive results compared
with traditional heuristics such as LKH3 when given enough searching time. In this section, we
compare the generalization ability and solving time of our method TAM-LKH3 and a well-known
learn-to-improve method (L2I, 2019) (Lu et al.,2019). The results are shown in Table We train
the L2I model on the dataset of CVRP100 with the same parameters as |[Lu et al.| (2019) and then
generalize the L2I model to solve CVRP 400, 1000, and 2000 in real-time and zero-shot settings. For
CVRP 100, we found that our TAM-LKH3 outperforms L2I in real-time. We observe that the solution
quality of L2I degrades from 15.57 (Lu et al., 2019) to 16.62 when searching in time. For larger
VRP instances, the gap of solution quality between our TAM-LKH3 and L21 enlarges significantly,
such as 138.75 (L2I) versus 64.78 (TAM-LKH3) for CVRP 2000. These results suggest that: 1) our
TAM-LKH3 outperforms L2I on both generalization ability and solving time; 2) the performance of
L2I will degrade a lot in real-time and zero-shot generalization settings.

In addition, the searching speed of learn-to-search methods and traditional heuristics heavily depends
on the quality of initial solution, while our method can generalize to generate large-scale VRP
solutions in real-time. Therefore, we could search better solutions for large-scale VRPs by taking
advantages of both our TAM and learn-to-search method.

A.2.3 COMPARISON WITH HGS ON LARGE-SCALE VRPs

We have tested our TAM and the open-sourced HGS on 100 instances of CVRP 5000 and 7000 in
real-time. Table[6]and [7]report the average route length and solving time of the instances. HGS-t60
means the HGS with 60s time-limit. We also implement the TAM-HGS, which uses HGS as the
second stage solver of TAM. For real-time application, we found the HGS cannot find a solution in 60
seconds while TAM-HGS could find a good solution in 30.23s and 52.36s for CVRP 5000 and CVRP
7000 respectively. It’s also interesting to see that TAM-HGS consumes more time than TAM-LKH3
while finding the nearly same quality solutions.

16

Published as a conference paper at ICLR 2023

Table 4: Route length and solving time (second) of CVRP using our TAM-Ortools without new
reward or without maximum vehicle number mask function that are trained on CVRP100 dataset.

CVRP METRIC TAM-ORTOOLS W/O NEW REWARD W/0 MASK FUNCTION
LENGTH 65.12 4 1.179 66.27 4+ 1.222 69.52 + 1.270

2000 TivE 11.10 £0.694 11.32 4+ 0.601 11.32 +0.572

l000 LENGTH 46.47+£0.843 47.23+0.881 48.24 + 0.897
TIME 6.03 + 0.005 6.15 + 0.006 6.13 + 0.006

400 LENGTH 25.96 & 0.465 26.10 & 0.465 26.03 + 0.457
TIME 4.83+0.003 4.73 =+ 0.009 476+ 0.002
LENGTH 16.08 & 0.330 16.09 + 0.341 16.06 + 0.340

100 TIME 3.38 + 0.002 3.35 4+ 0.002 3.34 4+ 0.003

Table 5: Route length and solving time (second) of CVRP using TAM (without a second stage solver)

and AM that are trained on CVRP100 dataset.

CVRP METRIC AM TAM
LENGTH 114.36 +2.148 87.14 + 1.489
2000 g 1.874£0.003 1.85+0.002
lopp LENGTH 61421757 5776+ 1.070
TIME 0.594+0.002 0.58 +0.001
400 LENGTH 29.33 £+ 0.589 30.77 & 0.580
TIME 0.20+0.002 0.19 + 0.001
100 LENGTH 16.42 £ 0.360 16.71 & 0.354
TIME 0.06+0.002 0.05 4 0.000

A.2.4 RESULTS ON LARGE-SCALE INSTANCES OF CVRPLIB

We also test our TAM on all large-scale instances with 500-20000 nodes on Uchoa et al. (2014) and
Arnold, Gendreau and Sorensen (2017) of CVRPLIB [Uchoa et al.|(2017). TableB] and@]report the
gap and solving time of the instances. The results show that our TAM-LKH3 could find significantly
better results than AM and could find a better solution much faster than LKH3. We also observed
that the gap between our TAM and the best solution is about 5-10% when generalizing to VRP
with about 1000 nodes, and about 15-25% when gneralizing to VRP with over 3000-10000 nodes.
This is acceptable for real-time application given that we limit the maximum solving time of our
TAM as 60 seconds for instances with less than 10000 nodes and the beam search size as 10 for
real-time application. There are two main reasons behind the gap difference: 1) larger-scale VRP is
much harder to solve; 2) the difference between large-scale VRP and VRP 100 (used for training
TAM) enlarges as the nodes number increases. If the optimal solutions are required for non-real-time
applications, we should significantly improve the sample size of our TAM to find better solution.

A.2.5 ABLATION STUDY

To study how the proposed reward and global mask function affect the performance of our TAM,
Table @] reports our testing results using three methods, the original TAM-Ortools, the TAM-Ortools
trained with standard reward, and the TAM-Ortools trained without the global mask.

1) Our reward vs distance reward: We found that for CVRP 100, the performance gap between
TAM-Ortools with and without new reward are small because we both train and test on CVRP 100
dataset. As we generalize the learned model to CVRP 400, 1000, and 2000, the gaps are increasing to
0.5%, 1.6%, and 1.8%, respectively. The results mean our new reward could obviously improve the
generalization ability of our TAM to large-scale VRPs and has little impact on its performance on
small-scale VRPs.

2) With vs without global mask function: The possible minimal vehicle number for CVRP are
I — 1(in Equation . Therefore, the ,,, provides prior information for minimal vehicle number.

17

Published as a conference paper at ICLR 2023

Table 6: Route length of large-scale synthetic CVRPs using TAM and HGS.

LENGTH AM TAM-AM LKH3 TAM-LKH3 TAM-HGS HGS-160
CVRP-5000 257.06 172.22 175.66 144.64 142.83 -
CVRP-7000 354.28 233.44 24497 196.91 193.64 -

Table 7: Solving time of large-scale synthetic CVRPs using TAM and HGS.

TIME(S) AM TAM-AM LKH3 TAM-LKH3 TAM-HGS HGS-160
CVRP-5000 11.50 11.78 151.64 17.19 30.23 60.00
CVRP-7000 26.13 26.47 501.26 33.21 52.36 60.00

For the results in Table 4} we observe that adding our global mask function could improve results
of TAM-Ortools in CVRP 400, 1000, 2000 about 0.3%, 3.8%, 6.8%, respectively. The gaps are
increasing as the number of nodes increases. This is because the generalization-ability of the learned
heuristics without the global mask is decreasing as the number of nodes increases. Thus, the number
of vehicles has a larger impact on the total route length for larger VRPs. These results indicate our
global mask function could significantly improve the generalization ability of the learned model.

3) TAM vs AM: Table [5reports the results of TAM without a second stage solver and AM on CVRP
100, 400, 1000, and 2000. We found that for smaller-scale CVRP 100, and 400, the AM outperforms
TAM slightly. This is because the dividing model does not care about the order of nodes inside the
sub-route. However, for large-scale VRPs such as CVRP 1000 and 2000, our TAM still outperforms
AM significantly even without a second-stage solver (23.8% for CVRP 200). These results indicate
the superior generalization ability of our TAM.

A.2.6 MORE CVRP INSTANCES

We report more synthetic and real-world CVRP instances for comparison and understanding of our
method. Figure[7] [8] [O]show the results on synthetic CVRP 7000, 5000, 1000 respectively. Figure [T0}
show the results on some real-world and large-scale CVRP instances, respectively.
Table@] summrizes the performance of our TAM, AM, and LKH3 on seven real-world cases. The
datasets of location, demand, and vehicle capacity are all from real-world cases. For anonymity,
we normalized the location and demand using the same method as the synthetic dataset. We found
that our TAM-LKH3 could always find good solutions in real-time, while LKH3 fails to search for
good solutions without enough searching time in some real-world cases (Figure [I0} [TT} [T2] [T3)). If
given enough time for iterations (not real-time), traditional heuristics like LKH3 could find good
solutions (Figure [I4] [T3). We also found that good solutions for large-scale VRPs are always visually
attractive and decoupled for each sub-routes, while bad solutions usually have lots of crossovers
among sub-routes. These results indicate the robustness of our TAM on synthetic and real-world
cases.

A.2.7 TRAINING TIME COMPARISON BETWEEN TAM AND AM

Because our TAM uses simliar hyperparameters as AM, the only difference that matters for training
time is reward calculation. The AM reward is calculated using the distance function directly, while
our reward is calculated by a learned TSP solver in GPU. Thus, our training time is a bit larger than
AM. The training time of our TAM and AM for 100 epochs are shown in Table

18

Published as a conference paper at ICLR 2023

Table 8: Gap of CVRPLIB instances

LENGTH No. NODES AM TAM-AM LKH3 TAM-LKH3
X-N502-K39 502 13.97% 6.45% 1.02% 5.75%
X-N513-k21 513 18.13% 11.47% 3.50% 9.41%
X-N524-K153 524 27.57% 16.73% 3.91% 14.34%
X-N536-K96 536 27.67% 10.32% 19.05% 10.25%
X-N548-K50 548 28.09% 14.30% 5.38% 13.71%
X-N561-K42 561 17.85% 10.60% 8.33% 9.36%
X-N573-k30 573 25.79% 10.50% 4.77% 7.56%
X-N586-K159 586 19.40% 8.90% 12.73% 8.89%
X-N599-kK92 599 24.02% 9.56% 34.68% 9.37%
X-N613-K62 613 18.20% 11.64% 16.38% 9.69%
X-N627-K43 627 51.64% 10.31% 17.23% 9.61%
X-N641-K35 641 24.62% 8.56% 7.93% 7.39%
X-N655-k131 655 20.55% 7.31% 3.03% 6.66%
X-N670-k130 670 31.18% 19.29% 18.55% 19.01%
X-N685-K75 685 19.80% 11.03% 17.59% 10.40%
X-N701-K44 701 29.56% 7.73% 8.87% 6.81%
X-N716-K35 716 32.90% 12.00% 9.35% 10.05%
X-N733-K159 733 18.74% 8.60% 16.65% 8.51%
X-N749-K98 749 17.06% 10.22% 19.90% 10.03%
X-N766-K71 766 29.50% 9.84% 12.44% 8.82%
X-N783-K48 783 15.60% 12.95% 11.87% 10.23%
X-N801-k40 801 34.30% 11.91% 5.57% 10.34%
X-N819-k171 819 16.02% 9.70% 28.92% 9.60%
X-N837-K142 837 14.50% 7.58% 11.16% 7.51%
X-N856-K95 856 12.27% 8.99% 8.09% 8.68%
X-N876-K59 876 33.15% 9.37% 9.46% 8.10%
X-N957-k87 957 36.06% 16.94% 10.43% 16.53%
X-N895-k37 895 36.84% 14.32% 29.72% 9.39%
X-N916-k207 916 17.19% 8.91% 10.34% 8.87%
X-N936-k151 936 27.86% 13.92% 22.89% 13.47%
X-N979-K58 979 30.41% 8.23% 15.80% 6.70%
X-N1001-K43 1001 18.36% 12.99% 13.79% 10.64%
LEUVEN1-3001 3001 46.93% 20.24% 18.10% 19.30%
LEUVEN2-4001 4001 53.31% 38.57% 22.14% 15.88%
ANTWERP1-6001 6001 39.30% 24.90% 24.20% 24.01%
ANTWERP2-7001 7001 50.32% 33.20% 31.09% 22.55%
AVERAGE 1199 27.18% 13.00% 14.30% 11.04 %
GHENT1-10001 10001 46.89% 30.20% - 29.53%
GHENT2-11001 11001 52.20% 33.29% - 23.65%
BRUSSELS1-15001 15001 52.37% 43.42% - 27.15%
BRUSSELS2-16001 16001 52.44% 39.04% - 37.07%

19

Published as a conference paper at ICLR 2023

Table 9: Solving time of CVRPLIB instances.

TIME (S) No. NODES AM TAM-AM LKH3 TAM-LKH3
X-N502-K39 502 0.74 1.01 2.05 1.47
X-N513-k21 513 0.68 0.99 2.10 1.41
X-N524-K153 524 0.88 1.00 2.78 1.30
X-N536-K96 536 0.83 0.95 2.37 1.28
X-N548-K50 548 0.78 0.88 2.05 1.18
X-N561-kK42 561 0.80 0.93 2.08 1.31
X-N573-kK30 573 0.79 0.99 2.05 1.97
X-N586-K159 586 1.00 1.08 3.59 1.58
X-N599-kK92 599 1.00 1.13 2.33 1.52
X-N613-K62 613 0.92 1.02 2.34 1.39
X-N627-K43 627 0.98 1.01 2.15 1.71
X-N641-K35 641 1.03 1.53 2.10 2.03
X-N655-K131 655 1.07 1.13 3.63 1.63
X-N670-K130 670 1.09 1.24 4.97 1.64
X-N685-K75 685 1.01 1.16 2.62 1.72
X-N701-kK44 701 1.03 1.16 3.04 1.51
X-N716-K35 716 1.05 1.23 3.06 1.92
X-N733-K159 733 1.25 1.36 4.82 1.89
X-N749-K98 749 1.61 1.55 3.42 1.95
X-N766-K71 766 1.16 1.34 4.28 2.01
X-N783-K48 783 1.14 1.35 4.06 2.74
X-N801-kK40 801 1.46 1.63 4.12 2.47
X-N819-k171 819 1.50 1.81 4.65 2.44
X-N837-K142 837 1.37 1.49 5.34 2.06
X-N856-K95 856 1.30 1.40 5.27 2.10
X-N876-K59 876 1.29 1.43 5.20 2.66
X-N957-K87 957 3.42 2.91 4.21 5.01
X-N895-k37 895 2.64 2.58 4.23 3.91
X-N916-K207 916 3.16 3.09 8.93 6.84
X-N936-K151 936 3.94 3.41 9.22 6.05
X-N979-K58 979 3.03 2.95 4.22 5.06
X-N1001-K43 1001 2.95 2.93 4.18 4.68
LEUVEN1-3001 3001 9.73 9.82 68.99 15.59
LEUVEN2-4001 4001 13.45 13.68 73.96 23.73
ANTWERP1-6001 6001 12.81 12.98 596.21 2491
ANTWERP2-7001 7001 14.96 15.26 479.47 31.90
AVERAGE 1199 2.72 2.82 37.22 4.85
GHENTI1-10001 10001 21.41 21.66 - 37.26
GHENT2-11001 11001 38.55 37.56 - 55.73
BRUSSELS1-15001 15001 131.39 139.09 - 166.81
BRUSSELS2-16001 16001 165.94 158.71 - 187.48

A.3 DETAILS OF METHOD

A.3.1 TRAINING WITH REINFORCEMENT LEARNING

We have defined our stochastic policy py(7r|s) in Equation [4] using an attention-based model in
Figure 4(a)| from which we could determine a sub-routes sequence and the number of vehicle by

20

Published as a conference paper at ICLR 2023

Table 10: Training time comparison between TAM and AM on CVRP100 dataset.

METHOD TRAINING TIME (H) EPOCH NUMBER

AM 35.7 100
TAM 78.3 100

Algorithm 1 Training Algorithm for TAM

Input: number of epochs F, batch size B, steps T, trained TSP model AM
Initialize @ = 6y, 05 = 6.
for epoch = 1 to E do
for step =1to 7" do
Random generate instances s;,Vi € {1,..., B}
Sample split 7r; using policy pe, Vi € {1,..., B}
Greedily sample split w2~ using policy pgse, Vi € {1,..., B}
Padding all the sub-TSPs of 7r; and wZL to the same length, respectively, Vi € {1,..., B}
Calculate the loss L(r;), L(wPL) using AM according to Equation in parallel, respec-
tively, Vi € {1,..., B}
VL S8 (L (m;) — L(wPE)) Vo log pe (m;)
6 + Adam(0,VL)
end for
if pg is better than pgsr then
OBl 0
end if
end for

identifying the locations and number of depots of the sampled sequence 7. To train the model,
we define a new loss £(0|s) = E, (x|s)[L(7)]. According to Equationand @ the cost L(7r) is
calculated as:

l

L(m)=-R= Zm(gn dist(¢(r4)) (18)
i=1

Then, we could optimize the £ using REINFORCE algorithm to estimate policy gradient:
VL(O|s) = Epy(r|s) [(L(m) — b(s))V log pe(7|s)] (19)

where b(s) is greedy rollout baseline to estimate the value function (Kool et al.,[2019). If the reward
of current split 7r is larger than the baseline, we should push the parameters 8 of policy network to
the direction that is more likely to generate the current split 7r.

The final training algorithm for TAM is shown in Algorithm T}

A.3.2 SEARCH STRATEGY

The search strategy in the first stage also matters at the inference time. We use three strategies in our
TAM:

Greedy Search: In this strategy, we use the most likely split according to our model, and then
optimize all sub-routes in parallel. This strategy could generate acceptable solutions with minimum
solving time, which could be used in real-time.

Beam Search: In this strategy, we sample &, called beam size, most likely splits according to our
model, and optimize each sub-route for all k splits. Then we choose the final VRP route with
minimum length. With a larger beam size, this strategy could generate a better split, but also consume
more time. We found that increasing the beam size could improve our results obviously first, but will
saturate because beam search tends to sample similar splits. Besides, the order of nodes inside each
sub-route of current split is invariant for the final solution. Therefore, we use 10 as the beam size.

21

Published as a conference paper at ICLR 2023

Algorithm 2 Inference algorithm for TAM with traditional heuristics as second-stage solver

Input: Learned dividing policy pg, VRP instance s

Divide instance s into several small scale TSPs {s'*’|i = 1...1} using policy ps with default
search strategy

Use a traditional solver such as LKH-3 to solve the small-scale TSPs parallelly in CPU

Combine the output of the TSPs as the solution of VRP instance s

Algorithm 3 Inference algorithm for TAM with learned heuristics as second-stage solver
Input: Learned dividing policy pg, VRP instance s, learned TSP solver AMsy, AMsq, and AM7gg
on dataset of TSP 20, TSP 50, and TSP 100, respectively
Divide instance s into several small scale TSPs {s*’|i = 1...1} using policy ps with default
search strategy
Choose the second-stage solver AM;, j € {20, 30,50} for SESP by minimizing the absolute value
between the node number of s.°” and ;.
Use the chosen solver to solve the small-scale TSPs parallelly in CPU or GPU
Combine the output of the TSPs as the solution of VRP instance s

Sample Search: In this strategy, we sample k, called sample size, splits randomly according to
our model, and optimize each sub-route for all k splits. Then we choose the final VRP route with
minimum length. This strategy could sample totally different splits and could greatly improve the
results of our TAM with a large sample number. However, the computation time and memory are
also increasing with the sample number. For instance, Figure|16|shows that TAM-LKH3 with sample
size 1000 could find the best solution 6.84 among all methods for a real-world CVRP 388 instance,
while TAM-LKH3 with beam size 10 find a solution 6.99. However, the solving time also increases
from 3.73s to 17.52s.

We report the results of the greedy search of our TAM in Table [IT] Comparing Table[I]and Table[TT]
we found that beam search with beam size 10 outperforms greedy search about 2.6% for our TAM-
Ortools, about 3.3% for our TAM-AM on CVRP 2000. The gap between the beam search and greedy
search is larger as the number of nodes increases. Besides, the solving time of beam search is close to
that of greedy search. These results mean beam search could effectively improve the generalization
of our TAM on solving large-scale VRPs in real-time. It should be noted that the beam search could
also significantly improve the performance of AM. For CVRP 2000, the route length of AM reduces
from 178.31 to 114.36 after using beam search.

A.3.3 ATTENTION MODEL

To learn the policy in Equation[T} AM uses an attention-based Encoder-Decoder model to approximate
the policy. The Encoder is a transformer model without positional encoding which transforms each

Table 11: Route length and solving time (second) of CVRP using TAM (greedy search), AM (greedy
search), and Ortools.

CVRP METRIC AM TAM-AM TAM-ORTOOLS ORTOOLS
LENGTH 178.31 +27.601 76.87 +2.293 66.87 +2.096 68.47 + 0.984
2000 g 0.57 4+ 0.005 0.824+0.006 10.86+ 0.850 100.01+ 0.001
loop LENGTH 654445232 5038 1.003 4649 +0.842 48.8140.749
TIME 0.26 + 0.002 0.44+0.002 571+0.004 50.00 = 0.001
joo LENGTH 203830504 27.07£0517 259740473 27.01 40468
TIME 0.10 + 0.002 0.27+0.001 4.67+0.002 30.36+ 0.157
oo LENGTH 167120383 162420335 161240329 16.6840.358
TIME 0.03 4 0.002 0.154+0.002 3.174+0.002 20.03+0.014

22

Published as a conference paper at ICLR 2023

node input J; to hidden embedding h;. The h, is the global embedding of VRP, by averaging on the
hidden embeddings of all nodes. Then, the Decoder uses h, as context embedding to query hidden
states of unvisited nodes to choose the next node to serve (Kool et al.| 2019):

hc = [hg7 hlst; hpre] (20)

where h; ;; represents the hidden state of first visited node; h,,.. is the hidden state of last visited

node. The query, key, and value of it" node for the Decoder are as follows:

q=W®%h, k;=WF~Xh;, v,=W"h, 21
Then, we could compute the possibility to visit node ¢ by attention as following:
Pi = Do (7‘(‘t = Ii|8t) = SOftmaX(Ui) (22)

dimk
—00 otherwise.

w = {tanh (\?TL) if node ¢ is unvisited or depot 23)

where dimy is the dimension of hidden state.

More details about AM could be found in Kool et al.|(2019).

A.3.4 LOCAL MASK FUNCTIONS

For local constraints like capacity, we could use the same mask function in Kool et al.| (2019) and
Bello et al.|(2016). If the rest capacity of the current vehicle (C' — c) cannot serve the demand of
node i (d;), then the current vehicle cannot visit node i:

w tanh(\;‘;%ik) ife+d; <C 24)
' —00 otherwise.

where c is the used capacity of the current vehicle.

For time window constraints, it could be considered in TAM with the following mask function. If the
current vehicle cannot arrive the node i in the time window [T}, T}“], then the current vehicle cannot
visit node i:

vV dimk
—00 otherwise.

T
tanh(q"k;) T <T+T5+1t; <Tv
s = { P S = (25)
where T is arrival time of current nodes, T is service time of current nodes, ¢; is the travel time from
current nodes to the node 7.

A.4 THEORETICAL ANALYSIS
A.4.1 PROOF FOR GLOBAL MASK FUNCTION

Theorem 1 (Global mask function for maximum vehicle number constraint). Assume that 1) the total
capacity of vehicles is larger than the total demand of customers l,, x C > 3", d;; 2) the maximum
demand of a single customer is much less than the capacity of vehicle max;c (1, .. ny d; < C. Then,
the proposed global mask function enforces the satisfaction of the maximum vehicle number constraint
1 <.

Proof. Note that our global mask enforces the current vehicle cannot return to the depot (cannot
use new vehicles) if the capacity of unused vehicles cannot serve the rest demand. In the extreme
scenario, our mask function prevents the current vehicle to return to the depot unless it visits as many
customers as possible.

1) If the total demand), d; is less than the current vehicle’s capacity C, our global mask function
enforces using the current vehicle to serve all customers.

2) If the total demand), d; is larger than the current vehicle’s capacity C, there always exists
a subset of customers () that are chosen by our dividing model and a customer k& to satisfy the
following inequality:

D di<C<)y ditd (26)

1€Q, 1€Q

23

Published as a conference paper at ICLR 2023

Dividing C' from above inequality:

Y di/C <1< di/C+dy/C 27)

1€, 1€Q0,

According to Assumption 2, the following inequality holds:
di/C < max d;/C =0 (28)
ie{l,...,n}

Therefore, there exists a subset of customers), that can be exactly served by one vehicle, which
satisfies the following Equation:

C=>d (29)

1€

Minus above Equation [29]from Assumption 1, Thus,

(I =1)xC>> di= > di= Y d (30)

1€Q, 1€EQ,

Q. is the set of unvisited customers. The left side is the remaining capacity. The right side is the
remaining demand. Therefore, the rest capacity of vehicles could still serve the rest demand, which
satisfies our proposed global mask function. Therefore, the current vehicle could return to the depot
and use the next vehicle. Repeat the above process, we will always obtain a VRP solution while
satisfying the maximum vehicle number constraints.

Remark: In terms of Assumption 1, the total capacity of available vehicles is usually large than the
total demand of customers for the real-world VRPs with redundancy, because we want to fulfill all
the orders and keep the promise to the customers. That’s one of the reasons why we set the maximal
vehicle capacity as Equation[§] In terms of Assumption 2, the single demand is usually much less
than the capacity of vehicles in the real-world considering a large number of customers. It should be
noted that in some rare scenarios, the second Assumption 2 does not hold. To handle this situation,
we will let the current vehicle visit as many customers as possible before returning to the depot. In
the early training state, we will add a new vehicle when encountering the situation. In the testing
state, given the well-trained policy, search strategy, and the redundant vehicle capacity in Equation
all solutions of our testing cases are feasible.

A.4.2 ANALYSIS FOR GENERALIZATION PERFORMANCE

The idea behind the sequence-to-sequence model is learning a stochastic policy p(m|s;), that could
determine the next customer 7 to visit given current state s;. Then, the optimal route 7 could be

modeled as:
n+4l

p(wls) = [T o (melse) 3D

t=1
However, our TAM aims to find a stochastic policy determining the next route r; to visit and then use

the traditional and learned heuristics to optimize the route. The stochastic policy for optimal split 7 is
modeled as:

l
po(r|s) = [[o (el s0) (32)
t=1

To compare the two policies, we reformulated the Equation|31]as:

l I 1y
p(ml|s) = <Hp9 (Tt|5t)> (H Hpﬁ (7T17’t,7ft,0:1:—1)> (33)
t=1

t=14=1

This formulation means we first obtain optimal sub-route split and then determine the order of
customers in the sub-route. The [; is number of node in the route 7. The 3 denotes the parameters of

24

Published as a conference paper at ICLR 2023

veh_num=337, length=602.77

veh_num=34, length=70.02

—

(a) (b)

Figure 6: A generalization case for AM and TAM-LKH3 on the same CVRP 2000 instance with
model trained on CVRP 100 datasets. The vehicle number of AM is about 10 times larger than that
of TAM. (a) The generalization result using AM. (b) The generalization result using TAM-LKH3.

the policy that determines the customer’s order inside a sub-route. The 7 ¢.;—1 represents the chosen
partial sequence inside sub-route r;.

With the above formulation, we argue that all three proposed techniques matter for the generalization
of TAM.

1) Generating sub-route sequence and optimizing in parallel

Comparing Equation [33]and Equation 32] we found that the previous learn-to-construct model must
learn not only the sub-route distribution Hfi:l Do (r¢|s¢), but also the more complex and detailed

sequences distribution inside the sub-route Hi:l Hlit:l pg (m;|1e, T0:—1). In contrast, our TAM
focus on learning the sub-route distribution. The sequence distribution inside a sub-route is handled by
traditional or learned heuristics in our TAM. Therefore, 1) focusing on learning sub-route distribution
makes our TAM much easy to train and learn; 2) the traditional heuristics could perform well on
arbitrary small-scale TSPs and VRPs w.r.t any distributions, which could improve the generalization
of our TAM to large-scale VRPs or distribution-shifted VRPs.

2) The global mask function technique

According to Equations[33] when generalizing from small-scale VRPs to large-scale VRPs, route
number [is one of the key variables. However, previous policies without global constraints cannot
learn the possible range of optimal vehicle number in large-scale VRPs, which could generate a lot of
vehicles instead. This is also one of the reasons behind the generalization failure of AM. For example,
we found the AM method could generate 337 vehicles while our TAM with global mask function
just generates 34 vehicles, shown in Figure|6| This means our global mask function helps encode

maximum vehicle number when learning [],_, po (¢|s:)in our TAM. In addition, the pre-defined
maximum vehicle number can help estimate the minimum vehicle number beforehand, which could
improve the generalization of our TAM, about 5.8% for CVRP 2000.

3) The proposed reward and RL training method As above mentioned, both the proposed
generating sub-route technique and the global mask function could help TAM generalize to large-
scale VRPs in a zero-shot way. The third technique, the proposed reward and RL training method,
makes training the two-stage dividing model possible. Our RL training method could accelerate the
training process by using learned TSP model and parallel computing in GPU. Our reward makes the
sequence-to-sequence policy in Equation] insensitive to the order of nodes inside each sub-route.
Using this reward, we achieve generating sub-routes sequence rather than nodes sequence to improve
the generalization of our TAM, about 2% for CVRP 2000.

25

Published as a conference paper at ICLR 2023

A.5 RELATED WORK

VRPs are usually solved by exact methods, traditional heuristics, and data-driven methods. The
exact methods are time-consuming and incapable of solving large-scale VRPs in a reasonable time.
Therefore, we mainly focus on the traditional heuristics and data-driven methods.

Traditional methods design heuristics based on domain knowledge to obtain acceptable solutions
within a limited search time (Toth & Vigol [2002b). Local search (Aarts et al.,|2003} [Voudouris et al.,
2010), Genetic algorithms(Sivanandam & Deepa, |2008)), Ant colony methods (Dorigo et al., 2006),
Large neighborhood search(Pisinger & Ropkel |2010), and Tabu search (Taillard et al.| [2001) are
widely used. They usually adopt a construction, destruction, and improvement pattern (Golden et al.}
2008). They first generate an original feasible solution by a constructor, and then destroy the current
solution by a destructor, and then improve the current solution by an improvement operator (Ropke &
Pisinger, |2006). The process is taken iteratively until we obtain an acceptable solution. The pattern is
also used in solvers like Ortools (Perron & Furnon), LKH3 (Helsgaun, [2017), HGS (Vidal, [2022;
Vidal et al.| 2012)), FILO (Accorsi & Vigo, [2021)), SISRs (Christiaens & Vanden Berghel 2020)), and
HILS (Subramanian et al.| 2013). However, due to extremely large search space, the traditional
heuristics need massive iterations to obtain acceptable solutions.

Data-driven methods could construct good VRP solutions directly without iterations (learn-to-
construct method). Vinyals et al. first proposed using a learned heuristic with pointer network (PN)
architecture to solve TSPs in real-time (Vinyals et al.,|2015). The PN is trained using supervised
learning and then generates the TSP solution as a sequence. From there, several improvements
are witnessed. Bello et al. replace the supervised learning with policy-based RL to train PN-
based heuristic (Bello et al., [2016). Nazari et al. extended RL-based PN to VRPs (Nazar1 et al.}
2018). They use attention layer to replace LSTM in the encoder of PN. Kool et al. proposed using
a Transformer as encoder in PN. Their attention model (AM) is successfully applied in several
combinatorial optimization problems, such as TSP, VRP, Orienteering Problem(Kool et al.,2019).
Their work obtains close to optimal results for VRP 100. Recently, Kool et al. proposed using
dynamic programming to predict the heat-map of edges and then generate VRP solutions from it
(Kool et al.,[2021). Based on Kool’s attention model, Kwon et al. observed the symmetry of VRP
solutions and proposed POMO to improve the performance of AM. The learn-to-construct ideas are
also applied in other variant VRPs and get promising results (Delarue et al., 2020; |Peng et al.l 2020
Falkner & Schmidt-Thiemel [2020; | Xin et al.| 2020). However, due to the difficulty of training the
model on large-scale VRPs, generating solutions for VRPs with over 400 nodes are still challenging
(Fu et al.l 2021} Joshi et al., |2020; Ma et al., 2019). Some researchers attempted to generalize the
learned model on small-scale VRPs to solve large-scale VRPs. For instance, Joshi et al. observed the
difficulty to generalize the learned heuristics to larger instances (Joshi et al.|[2020). They investigate
how to generalize the learned TSP models to TSP 200 by choosing appropriate architecture and
training methods. Their results show commonly used autoregressive decoding and RL could improve
the generalization of the learned model, which are also used in our method. Different from previous
works, we propose a novel method by taking the advantages of traditional heuristics, data-driven
heuristics, and global information to generalize the learned heuristics to solve VRPs with over 1000
nodes in real-time.

Besides constructing VRPs solutions directly, other works have considered learn-to-search in exact
methods (Gasse et al.,[2019) and traditional heuristics (Lu et al.,[2019; [Khalil et al., 2017} |Chen &
Tian, [2019; Hottung & Tierney} [2019; Xin et al., 2021} |Chen et al.| [2020)), such as learning better
large neighborhood search heuristics (Hottung & Tierney, 2019; [Chen et al.,|2020), designing better
constructors, destructors, and improvement operators (Lu et al., 2019; |[Khalil et al.,|2017) to accelerate
the search process. The results from previous works show the learn-to-search method could find
better solutions for VRPs than traditional heuristics (Lu et al.l[2019). However, the iterative search is
still necessary.

Decomposition technique has been widely used in traditional heuristics (Queiroga et al.l 2021}
Zhang et al.| 2021} [Bosman & Poutré, 2006; [Ventresca et al., 2013). The technique usually divides
original VPRs by clustering method and then solves sub-problems in each cluster to obtain the
final solutions (Cordeau et al., 2002} |Vidal et al., 2013} |[Fisher & Jaikumar, |1981} Miranda-Bront
et al.,[2017). The cluster-based method is applied to solve CVRP (Xiao et al.| 2019), PDP (Wang
et al.,|2020), VRPTW (Qi et al.} 2012)), and multi-depot VRP (Fan et al., 2021} |Zhang et al., [2021};
Dondo & Cerddl, 2007). However, the cluster-based method has two disadvantages: it is hard to

26

Published as a conference paper at ICLR 2023

consider some common constraints and requires effortful human-designed heuristics. It is also hard
to determine the optimal clustering number. Therefore, the clustering results could be infeasible or far
from optimal solutions. Different from previous works, we propose using the RL-based attention
model to split a large-scale VRP into several TSPs while satisfying the complex constraints. Recently,
the decomposition ideas are also introduced to data-driven heuristics (especially learn-to-search
heuristics) for solving larger instances (Fu et al.,2021), such as divide and conquer networks for TSP
(Nowak et al.,|2018)) and learn-to-delegate method for VRP(Li et al., 2021). The divide and conquer
network adopts a dynamic programming strategy to recursively split and merge the partial solutions
to improve TSP solution. The learn-to-delegate method utilizes traditional solver like LKH3 as
sub-problem solver to merge or improve the sub-routes recursively, which is inspired by POPMUSIC
framework(Alvim & Taillard, 2013} |Lalla-Ruiz & Voss| 2016} Taillard & Helsgaun| 2019). They
both belong to learn-to-search methods. Different from previous works, our TAM contributes to
generalize learn-to-construct heuristics in zero-shot way, which decomposes VRP as independent
sub-routes and just call sub-problem solver once in parallel. Besides, our work could easily encode
other VRP constraints by changing mask functions, which is more difficult for learn-to-search method.
In following sections, we will focus on learn-to-construct method.

A.6 MORE DISCUSSION

Analyzing our results, we found that all three proposed techniques matter for the generalization of
TAM. 1) Generating sub-route sequence and optimizing in parallel help us take advantages of
both data-driven and traditional heuristics. Comparing TAM-AM in Table[I]and TAM in Table 5]
we found that our two-stage technique could improve TAM’s generalization ability significantly,
about 15% for CVRP 2000. By dividing the large-scale VRP into several independent small-scale
sub-problems, we make solving the large-scale VRP in parallel and real-time possible. It should be
noted that the small-scale sub-routes could be part of the routes, rather than complete routes like
TSP. In this way, we could extend our TAM to other variants of VRP. 2) The proposed reward
and training method help the learned first-stage model invariant to the order of nodes inside each
sub-route. Using this reward, we improve the generalization of our TAM, about 2% for CVRP 2000
(Table[). This reward also makes our TAM focus on finding good sub-routes split, rather than finding
a good sequence for each sub-problem. 3) The global mask function technique helps our TAM
estimate the minimum vehicle number beforehand. Therefore, TAM could learn to reserve enough
capacity for the demands at the end of the sequence for large-scale VRPs, which could improve the
generalization of our TAM, about 5.8% for CVRP 2000 (Table E[)

Limitations: although our TAM is promising for solving large-scale VRPs in real-time with its
generalization ability, it still has some limitations: 1) If we want to generalize to even larger VRPs
such as CVRP 100000, we may need to train our model on larger VRPs directly, such as CVRP 400
and 1000. Due to the Transformer architecture in the Encoder, our TAM consumes a lot of memory
and computation resources when training on large-scale VRPs directly. 2) Our TAM outperforms
learn-to-construct methods and is competitive with some traditional heuristics on large-scale VPRs in
real-time and zero-shot generalization settings. However, when it comes to solving large-scale VRP
with long searching time (such as days and hours), outperforming the SOTA traditional heuristics
such as HGS-CVRP is still very challenging.

In the future work, we will focus on the following questions: 1) could we generalize our TAM to
other constraints without retraining our model? 2) could we combine the advantages of both our TAM
and learn-to-search methods to outperform SOTA heuristics on larger VRPs with a long searching
time? 3) could we train our TAM on large-scale VRPs like CVRP 400 and 1000 to generalize on even
larger VRPs, such as CVRP 100000? 4) could we embed more abstract forms of local and global
constraints in our TAM? 5) could we generalize our method to other combinatorial problems?

27

Published as a conference paper at ICLR 2023

AM (length=343.91, time=26.09s) TAM-AM (length=201.96, time=26.44s)
veh_num=117, length=201.96

,—‘,WWW// /f//';';}y- .
S /4’(."./,?/ w
‘; i‘ J oo

veh_num=118, length=343.91

£ \-‘\(\\Av’\’l 3
08 ﬁ\\ l\(\ \

‘\\N\ 3 1
§§\\\\\\ \ 3) *

7
7 7

g

o
£l % ‘./, P
- M% z?!f%@):\

0.2 0.4 0.6 0.8 1.0

4.
Y
/i

TAM- LKH3(length=172.01, time=33.49s)
veh_num=117, Iength172.01

‘f!Vj’
i ;g‘oi

.

A
1)
i

L

7

A X i
' %4/’/ IRAY
RTINS

0.6 0.8 1.0

R Oy
: A
B

0.2 0.4

Figure 7: Example results on real-world VRP 7000. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

28

Published as a conference paper at ICLR 2023

AM (length=250.29, time=11.48s) TAM-AM (length=154.23, time=11.78s)

veh_num=85, length=250.29
Qg

T
S 2 7 .

77

e
\\ -

BN
=SSN

\‘.\‘ﬂ\\\
\

0.8 0.8

0.6 P 0.6

0.4 0.4

0.2 0.2

; P

N
AR

/ N
4
N\
.4 .6 0.8 1.0

LKH3 (length=159.17, time=147.25s) TAM- LKH3(length=127.64, time=17.64s)

AN RN
XA SN
TR

G e NS

Figure 8: Example results on real-world VRP 5000. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

29

Published as a conference paper at ICLR 2023

AM (length =57. 68, time=0.58s) TAM-AM (length =44.77 , time=0.76s)

~

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ortools (length=45.59, time=50s) TAM-Ortools (length=41.85, time=5.58s)

Figure 9: Example results on VRP 1000. Top left: Data-driven Attention Model (AM). Medium left:
Ortools. Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver
(TAM-AM). Medium right: Our TAM with Ortools as the second-stage solver (TAM-Ortools).
Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

30

Published as a conference paper at ICLR 2023

AM (length=40.56, time=3.64s)

TAM-AM (length=28.85 , time=3.72s)

TAM- LKH3(length=22.06, time=10.87s)

Figure 10: Example results on real-world VRP 1299. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

31

Published as a conference paper at ICLR 2023

AM (length=44.34, time=2.96s) TAM-AM (length=12.68, time=3.31s)

02 04 0.6 08

LKH3 (length=13.04, time=50s) TAM- LKH3(length=12.05, time=6.74s)

Figure 11: Example results on real-world VRP 963. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

32

Published as a conference paper at ICLR 2023

AM (length=42.22, time=2.66s) TAM-AM (length=24.77 , time=3.05s)

TAM- LKH3(length=23.33, time=5.61s)

AN
'('/s‘-‘ h

0.6

0.4+

0.2

0.0

0.0

Figure 12: Example results on real-world VRP 864. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

33

Published as a conference paper at ICLR 2023

AM (length=58.05, time=2.09s) TAM-AM (length=42.32 , time=2.38s)

Figure 13: Example results on real-world VRP 680. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

34

Published as a conference paper at ICLR 2023

AM (Iength=34.29, time=2.56s) TAM-AM (length=19.26 , time=2.81s)
1.0
0.8 4 .
M .
0.6
0.4
2
%
0.24
0.0 T T T T
0.0 0.2 0.2 0.4 0.6 0.8 1.0
LKH3 (length=18.46, time=100.35s) TAM- LKH3(length=18.62, time=5.34s)
1.0 — 1.0 —
08+ 0.81 .
MA
0.6 0.6
0.4 4 0.4 et —
g
%
0.2+ W\ } 021
[X[
) 02 04 06 0.8) 02 0.4 06 08 10

Figure 14: Example results on real-world VRP 821. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

35

Published as a conference paper at ICLR 2023

AM (length=26.70, time=2.49s)

TAM-AM (length=15.87 , time=2.74s)

LKH3 (Iength=14.99, time=100.22s)

“0.0

0.2 0.4 0.6 0.8

TAM- LKH3(length=15.56, time=4.69s)

1.0

Figure 15: Example results on real-world VRP 817. Top left: Data-driven Attention Model (AM).
Bottom left: LKH3. Top right: Our TAM with Attention Model as the second-stage solver (TAM-
AM). Bottom right: Our TAM with LKH3 as the second-stage solver (TAM-LKH3).

36

Published as a conference paper at ICLR 2023

AM (length=9.22, time=1.64s) TAM-AM (length=8.29 , time=2.36s)

1.0 1.0
0.8 0.8
0.6 - 0.6
041 041
0.2 0.2
0.0 0.0

0.0 02 0.4 0.6 08 1.0 0.0 02 0.4 0.6 08 1.0

Ortools (length=7.64 time=30s) TAM-Ortools (length=7.39, time=6.40s)

1.0 1.0
08+ 08
061 0.6
044 0.4
024 02
0.0 T T T T 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

TAM-LKH3-bs10 (length=6.99, time=3.73s) TAM- LKH3-sample 1000(Iength=6.84, time=17.52s)

1.0 1.0
0.8 0.8
061 061
041 041
024 024
0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 16: Example results on real-world VRP 388. Top left: Data-driven Attention Model (AM).
Medium left: Ortools. Bottom left: TAM (beam size =10) with LKH3 as the second-stage solver
(TAM-LKH3). Top right: Our TAM with Attention Model as the second-stage solver (TAM-AM).
Medium right: Our TAM with Ortools as the second-stage solver (TAM-Ortools). Bottom right:
TAM (sample size =1000) with LKH3 as the second-stage solver (TAM-LKH3-sample 1000).

37

	Introduction
	Related work
	Preliminary work
	Method
	General formulation of TAM
	Generating sub-route sequence with sequence-to-sequence model
	New reward
	Global mask function
	Two-step Training algorithm
	Inference

	Experiments
	Data-generation
	Configuration
	Results on CVRP
	Results on real-world CVRPs

	Conclusion
	Appendix
	VRP formulation
	 More results
	More details of experiment configuration
	Comparison with learn-to-search method
	Comparison with HGS on large-scale VRPs
	Results on large-scale instances of CVRPLIB
	Ablation study
	More CVRP instances
	Training time comparison between TAM and AM

	Details of method
	Training with reinforcement learning
	Search strategy
	Attention Model
	Local mask functions

	Theoretical analysis
	Proof for global mask function
	Analysis for generalization performance

	Related work
	More discussion

