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Abstract

We present the first high-probability optimal regret bound for a policy
optimization technique applied to the problem of stochastic contextual multi-
armed bandit (CMAB) with general function approximation. Our algorithm

is both efficient and achieves an optimal regret bound of O(y/K|A|log |F|),
where K is the number of rounds, A is the set of arms, and F is the function
class used to approximate the losses. Our results bridge the gap between
theory and practice, demonstrating that the widely used policy optimization
methods for the contextual bandits problem can achieve a rigorously-proved
optimal regret bound. We support our theoretical results with an empirical
evaluation of our algorithm.

1 Introduction

Policy Optimization (PO) methods are among the most practical techniques in Reinforcement
Learning (RL), with impressive empirical success across a wide range of tasks [46]. The
applications of policy optimization span various domains, from recommendations [26] to
training robots [41], 42, B2, 25] and control tasks [37), 45 B4], to its notable successes in
Large Language Models (LLMs) fine-tuning [52}, 24, 40]. Motivated by the great success of
context-based policy optimization methods in aligning LLMs with human preferences [43],
we revisit the widely studied model of Contextual Multi-Armed Bandits (CMAB).

CMAB can model many real-life online tasks where external factors influence the outcome of
a selected strategy. This includes online advertisement and recommendation systems, where
user preferences affect whether they click on the proposed item or not; healthcare, where a
patient’s medical history impacts their reaction to a given treatment, and more.

The CMAB problem describes an online decision-making scenario, where external factors
affect the decision. We refer to these factors as the context. In each round k of K-rounds
game, the agent first observes a new context ¢ selected from a huge context space C. Given
the current context, the agent chooses an action a; from a finite set of actions A, and
suffers a loss £ associated with the context ¢, and the action ar. We emphasize that the
context determines the loss for each action, meaning that for different contexts, the optimal
action-selection strategy might be completely different.

The agent aims to minimize the cumulative loss collected throughout a K-round game. Since,
in CMAB, the action-selection strategy is context-dependent, we consider it as a contextual
policy. We measure the performance of the agent in terms of regret, which is the cumulative
loss of the agent when compared to the cumulative loss of the best contextual policy. Hence,
the agent’s goal is to minimize regret.
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Due to its high relevance, CMAB has been extensively studied, both theoretically and
empirically. On the theoretical side, CMAB has been studied under several assumptions and
different learning setups, which we will elaborate on later. On the empirical side, the work
of Bietti et al. [§] is the most notable.

In this paper, we consider stochastic CMAB, in which the context in each round is sampled
from an unknown distribution. In this setting, the context space is typically very large,
making it likely that the agent will never observe the same context more than once. Since
the optimal action depends on the context, achieving sublinear regret is impossible without
further assumptions. To address this, the stochastic CMAB literature has focused on the
offline function approzimation framework; a minimal and realistic setting in which the desired

regret rate of O(vVK) becomes achievable.

In this framework, the agent is provided with a realizable and finite loss function class F,
where each function maps context-action pairs to an expected loss value. Realizability means
that the true loss function is in the class F. Moreover, the agent does not have direct access
to the function class, but instead interacts with it through an offline regression oracle, which
returns a candidate function that best fits the dataset of observed losses at each round.

Under these assumptions, state-of-the-art algorithms [23| 511, [63] achieve an optimal regret

bound of O(+/K|A|log|F|) efficiently, assuming access to an efficient offline regression oracle.
Xu and Zeevi [53] construct confidence bounds and use a deterministic action selection
rule that plays the best optimistic arm in each round. In contrast, Simchi-Levi and Xu
[51], Foster et al. [23] introduce the inverse gap weighting (IGW) technique, which defines a
stochastic policy where the probability of selecting each action is proportional to its estimated
suboptimality under the current loss predictor. They prove, respectively, optimal worst-case
and instance-dependent regret bounds.

However, despite the success of PO methods in other domains, the existing stochastic
CMAB literature lacks an efficient algorithm that leverages PO within the offline function
approximation framework to minimize regret.

PO methods have proven highly effective in practice, as they offer closed-form and intuitive
policy update rules that do not require solving optimization problems. Moreover, they
naturally encourage exploration due to the stochastic nature of the policy. In addition, PO
updates are typically based on exponential weighting (i.e., softmaxing), which results in
smoother and more delicate adjustments with respect to the loss predictor updates, compared
to the IGW policies. This leads to more stable policy updates with respect to the oracle’s
outputs.

For all these reasons, we believe that developing PO-based regret minimization algorithms
for stochastic CMAB represents an important and currently unaddressed gap in literature,
which this paper aims to close.

Summary of our main contributions. Our main goal is to prove a concept: policy
optimization updates on top of function approximation based loss estimators obtain optimal
regret bound. Following that, our main result is a regret minimization algorithm for stochastic
CMAB with general offline function approximation, based on policy optimization updates.
Our algorithm is both computationally efficient (assuming efficient oracle implementation)

and achieves an optimal regret bound of 5(\ /K| A|log |F|), which holds with high probability.

On the technical side, we address the challenge of ensuring sufficient exploration when the
agent plays a PO stochastic policy that relies on function approximation-based loss estimators.
To address this limitation, we generalize the counterfactual confidence bounds of Xu and
Zeevi [53] to stochastic policies and derive compatible counterfactual exploration bonuses
that integrate into the policy-optimization update rule. To the best of our knowledge, this is
the first work to achieve such guarantees without making additional assumptions regarding
the function class (e.g., Eluder dimension [33]).

On the empirical side, we implemented our algorithm and evaluated its performance on the
Vowpal Wabbit CMAB benchmark suite [8], demonstrating competitive results compared to
state-of-the-art baselines.



Our results show that policy optimization can be adapted to the stochastic CMAB setting
with general function approximation, achieving both provable optimal regret bounds and
competitive empirical performance.

1.1 Related Literature Review

Contextual Multi-Armed Bandits. The study of Contextual Multi-Armed Bandits
(CMAB) has gained significant attention in the last decade, with various assumptions made
about the contexts (i.e., adversarially or stochastically chosen), the function classes (policy
or loss/rewards classes), and the oracles used, if any. Existing literature can be categorized
to two main streams.

The first stream focuses on learning a close-to-best policy within specific given finite policy
class II. Tt began with the well-known EXP4 algorithm for adversarial CMAB [6], followed
by Dudik et al. [I6] and Agarwal et al. [5], who explored computationally efficient methods

for stochastic CMAB. These two works proved an optimal regret bound of O(+/K|[.A[Tog[TI]).

The second stream, which is also the stream this work belongs to, pertains to the realizable
function approximation setting. In which, the agent has access to a realizable rewards or
losses function class (used to approximate the rewards/losses for each context and action),
which she accesses via an optimization oracle. Langford and Zhang [31] considered stochastic
contexts and obtained suboptimal regret. Later, Agarwal et al. [3] presented a regressor

elimination algorithm and obtained an optimal regret bound of O(\/K|.A|log|F|), where
F represents a finite set of realizable contextual reward functions used to approximate the
reward. The downside of this algorithm is that the runtime complexity of the algorithm
scales with |F|. Foster et al. [20] initiated the research of regression oracle based efficient
algorithms for stochastic CMAB. Finally, Simchi-Levi and Xu [5I] use inverse gap weighting
(IGW) techniques to derive optimal worst-case regret and Foster et al. [23] extends them to
obtain instance-dependent regret bound. Xu and Zeevi [53] use upper confidence bounds for
deterministic policies to also derive optimal worst-case regret. All of the previously mentioned
algorithms access the function class using a standard offline least-squares regression oracle,
and derive algorithms that obtain optimal regret and can be implemented efficiently, where
the efficiency is depending on the run-time complexity of the oracle in use. We, in contrast,
apply a policy optimization technique over an optimistic loss approximation, computed for
stochastic polices. Similarly, our algorithm is efficient, assuming an efficient offline regression
oracle, and obtains optimal regret bounds.

Research has also considered adversarially chosen contexts, notably through the works
of [18, 19, 22 B4], who introduced IGW-based policies using online regression oracles
for accessing the function class F. These efforts resulted in an optimal regret bound of

O(/K|ARk(0)), where R (O) denotes the regret of the oracle used.

An additional related model is linear CMAB, with Abe and Long [2] being the first to
consider this model, and the current state-of-the-art regret minimization algorithms were
introduced by Abbasi-Yadkori et al. [I] and Chu et al. [I3]. Our framework is more general
than linear function approximation.

PO Methods in Reinforcement Learning (RL). The theoretical analysis of PO tech-
niques has been extensively studied, mostly in the basic RL setup of tabular Markov Decision
Processes (MDPs), an RL environment with finite state and action spaces, dynamics, and
rewards or losses associated with each state-action pair. Even-Dar et al. [I7] initiated the
theoretical research of policy optimization methods in RL by proposing and analyzing the
weighted-majority algorithm for MDPs in the setup of known dynamics, adversarial losses,
and full feedback. Later, Neu et al. [38] extended their technique to handle bandit feedback.
Shani et al. [48] presented the optimistic policy optimization algorithm and analyzed it in
the case of unknown dynamics and bandit feedback while considering both stochastic and
adversarial losses. For stochastic losses, they obtained rate-optimal regret; however, in the
case of adversarial losses, their regret bound was sub-optimal. Luo et al. [36] improved their
result by applying policy optimization with more refined exploration bonuses and obtained
rate-optimal regret in the case of unknown dynamics, adversarial losses, and bandit feedback.



Policy optimization has been applied to more complex setups in tabular MDPs, such as
aggregated feedback [28], delayed feedback [29, B0], and many other setups with various
assumptions.

Beyond the tabular setting, policy optimization has been applied to linear MDPs. Cai et al.
[10] obtained optimal-rate regret in the unknown dynamics and adversarial losses model,
assuming full feedback. Luo et al. [36] also presented a O(K?/3) regret for the linear case,
assuming access to a simulator, where K is the number of episodes. Later, Dai et al. [14]

improved the regret to 5(\/ K) under the same assumptions. Sherman et al. [49] obtained a
O(K 6/ ") regret bound efficiently, without assuming access to a simulator, which was later
improved by Liu et al. [35] to O(K*/®). Recently, Sherman et al. [50] obtained a rate-optimal

regret of 6(\/ K) using a reward-free based warm-up. Later, Cassel and Rosenberg [11]
obtained rate-optimal regret using policy optimization without warm-up.

To the best of our knowledge, pure policy optimization has not been studied in RL literature
beyond tabular and linear MDPs. Our work is the first attempt to use policy optimization
as an exploration method on top of general function approximation for CMABs.

2 Preliminaries and Notations

We consider the problem of stochastic Contextual Multi-Armed Bandit (CMAB), in which
we have a finite discrete set of arms A, containing |.A| arms. In the online learning scenario,
in each round k of K rounds game, a fresh context ¢ € C is sampled from an unknown
distribution D over C. In general, the context space C can be infinite, but, for mathematical
convenience, we assume it is huge but ﬁniteﬂ For each context ¢ € C and action a € A there
is an associated stochastic loss with expectation £(c, a) = E[L(c, a)|c, a], where L(c, a) € [0, 1].
After observing the context, the agent selects an action to play and suffers the related
stochastic loss.

We refer to the agent’s action selection strategy as a (stochastic) contextual policy = : C —
A(A) that maps contexts to a distribution over actions. We refer to 7(c, a) as the probability
dictated by 7 to play action a given the context is c¢. The optimal policy m, satisfies for
each ¢ € C that my(c, ") € argmin e x4y (P, £(c, -)), Where (-, -) denotes inner product between
these two vectors. The interaction protocol with stochastic CMAB is as follows. In each
round k =1,2,..., K: (1) A fresh context ¢ is sampled from D; (2) The agent selects action
ay, ~ 7 (ck, ) to play; (3) The agent suffer loss €, = L(ck, ax).

Learning objective. We measure the performance of our algorithm in terms of
the (pseudo) regret in comparison to the optimal policy 7., which is formally de-

fined as Ry := Zle(ﬁk(ck, ) — me(ck, ), €(ck, -)). The expected regret is then ERx :=
Zszl E., [(mr(ck, ) — me(ck, ), €(ck, -)}], where the expectation is over the contexts sampled
throughout the game. Our goal is to develop an efficient, policy optimization-based regret
minimization algorithm for stochastic CMAB.

Additional notations. Throughout the paper, we denote by |z| the absoulote value
of any x € R. Also, for any two distributions p,q over (finite) support X we denote
by dkr(p|lg) the Kullback-Leibler (KL) divergence between p and ¢ that is defined as

drr(pllg) == > ,cx p(x)log %'

2.1 Offline Function Approximation

As previous literature for stochastic CMAB (e.g., [51} 53] 4, BT]) shows, an offline function
approximation is necessary to obtain non-trivial regret for stochastic CMAB. Hence, in

!This assumption is standard in CMAB literature, as the extension to infinite context space is
straightforward. The goal is to obtain a regret bound that is independent of the cardinality of C.



compatible with previous works, we assume access to a realizable and ﬁnitdﬂ losses function
class F C C x A — [0,1] via an offline least-squares regression oracle denoted OZ .

Assumption 2.1 (Realizability). There exist f, € F such that for all (¢,a) € C x A it holds
that fi(c,a) = £(c,a).

The function class is being accessed via an offline least-squares regression oracle, next defined.

Assumption 2.2 (Offline least-squares regression oracle). Given a dataset D, =
{(ciyai, ;) }, we assume access to an offline oracle OST;] that returns a candidate solu-

tion fn+1 to the following Empirical Risk Minimization (ERM) problem with respect to the
P . n 2
square loss: fr11 € argmin,cz > .0 (f(ci,a:) — 4;)°

Access to an offline least-square regression oracle is also a commonly used assumption in
stochastic CMAB literature (see, e.g., [51, 53 4]). The reason behind the choice of least-
squares regression for the loss approximation is that least-squares regression is both compatible
with approximating an expectation given stochastic examples and can be implemented
efficiently for many function classes, with the clear example of a linear functions, for which
the solution is given by a closed form.

Lemma 5 in [53] presents a uniform convergence guarantee with respect to any function
sequence. The lemma is given in Lemma [B.4] An immediate corollary of it implies a uniform
convergence guarantee of an offline least squares regression oracle. The corollary is below,

for proof see Corollary

Corollary 2.3 (uniform convergence of offline least-squares regression). Let f2, ... EF
denote the sequence of least squares minimizers and let 71, mo, ... denote the sequence of
contextual played policies. The following holds for any § € (0,1) and t > 2 with probability
at least 1 — 0/4.

t—1

Y E., [anm(q,-) {(ft(ci, a;) — f*(ci7ai))2” < 68 log(4|Ft3/5).

i=1
3 Algorithm and Main Result

Algorithm [I] presents an optimistic policy optimization algorithm for stochastic CMABs.

An integral ingredient of our algorithm is the generalization of the counterfactual exploration
bonuses [63] to stochastic policies. We define the exploration bonus for arm a at round &

and context c¢ as
2
bg(q a) = ming 1, £/1 , (1)
14> mi(c,a)

where § = O(\/E ) is a tunable parameter controlling the overall exploration level.

The intuition behind these bonuses is that they quantify how well explored each arm is
for the current context. To see this, consider a counterfactual scenario in which the same
context ¢ had appeared in all previous rounds. At each past round ¢ = 1,...,k — 1, the agent
would have sampled arms according to the past policies 71 (¢, -), m2(c, ), ..., T—1(c, ). Hence,
the imaginary expected number of times arm a would have been played for this context is
E[Ni_1(c,a) | ] =E {Zi:f mi(c,a) ’ c} . This counterfactual quantity serves as a realization
of the expected number of times arm a would have been chosen for ¢ in past rounds. When
this quantity is large, the algorithm has implicitly gathered substantial information about
arm a for the context ¢, and thus assigns it a small bonus. Conversely, when it is small,

the bonus remains large, encouraging further exploration. The behavior of this bonus is
analogous to the standard exploration bonus in stochastic MABs [6].

2The assumption is standard as the extension to infinite function classes is also straightforward,
see [47] for offline regression with infinite function classes. We consider finite function classes for the
sake of mathematical convenience and readability.



Based on this optimistic exploration principle, our algorithm performs policy optimization
by applying exponential policy improvements, as is standard in RL literature (see, e.g., [48]).
During initialization, the agent plays the uniform distribution over actions for any context
that may be sampled. Given the first observed context, the agent samples an action uniformly
at random, plays it, and updates the oracle with the resulting observation. Then, for rounds
t=2,3,..., K, the agent computes the policies as described next. She observes the current
context ¢; and counterfactually evaluates all past policies ma(ct, +), ..., Te—1(ct, +) in order to
compute the exploration bonus and subsequently derive m:(ct, ). For each k =1,2,... ¢t — 1,
to compute the next policy mr11(ct, ), the agent uses the approximated loss returned by the
oracle at round k (computed from the data collected in rounds {1,...,k — 1}) denoted by
fk. To this approximation, she adds the counterfactual exploration bonus from Equation ,
which depends on the probabilities of all past policies 71, ..., mx—1 for playing each specific
action a under the current context ¢;. The next policy is then defined by an exponential
improvement of the current policy with respect to its optimistic loss approximation.

Algorithm 1 Optimistic Policy Optimization for CMAB (OPO-CMAB)

1: Inputs: learning rate 1 , number of episodes K, tuning parameter 3.
2: Initialization:

e 7 is the uniform distribution over actions for all ¢ € C.
e f1 € F is chosen arbitrarily.
:for t=1,2,...,K do
Observe fresh context c;.
if ¢t > 2 then
fork=1,...,t—1do
Compute for all a € A:

@k(ct,a) = max{0, fk(ct,a) - bf(ct,a)} where bf(c, a) = min{l, 1+Zkﬁ_/12()}
i=1 "% &a

{Policy Evaluation}
8: Compute for all a € A:
7 (ce,a) exp (—nék(ct,a))
7 (ce,a’) exp (7771%(01,,(1/))

{Policy Improvement}

Trt1(ce,a) = 5=
9: end for
10:  end if
11:  Sample action a; ~ m(ct, -), play it and observe ¢;.
12:  Update the loss approximation using the optimization oracle (’)g;:

a’€eA

t
. . )
Jt+1 € arg min ;(f(ci, ai) — ;)

13: end for

Theorem 3.1 (Regret bound). For an appropriate choice of 8,1, we have with probability
at least 1 — § that

Ric < O(VKIATR(71/9))

Discussion. Our algorithm integrates a policy optimization update rule with offline function
approximation for loss prediction. We employ an optimistic approximation by incorporating
exploration bonuses tailored for both offline function approximation and stochastic policies.
Intuitively, the bonus assigned to each action reflects the counterfactual expected number
of samples that would have been collected for that action if the current context had been
observed throughout all previous rounds. The loss estimators are clipped to [0, 1] to ensure
that it is bounded. The algorithm is computationally efficient, assuming the availability of
an efficient oracle implementation.



4 Regret Analysis

In this section, we analyze the regret of Algorithm [I] proving Theorem We follow
the regret decomposition of Shani et al. [48] but adapt it to function approximation in the
model of stochastic CMAB. We start our analysis by noting that with probability at least
1-0/2, Rk < ERk +21/2K log(4/65). As the contexts are iid, and the policies {mj }1 | are
determined completely by the history, the above is a direct implication of Azuma-Hoeffding’s
inequality. (Full proof is given in Corollary .

Hence, we focus on bounding the expected regret, which will imply a high probability regret
bound, by the above. To obtain the desired bound, we decompose the expected regret as

BRx =3 B, [{me(ers ), ten, ) = Dilers )] (2)

k=1

+iEck [<7Tk(ck7') *W*(Cka')aék(ckv')>} (3)

k=1

k=1

where term stands for the expected approximation error of the loss with respect to the
played policies {wk}szl, term is the sub-optimality of the true optimal policy 7, on the
approximated loss function in each round, and term is the expected approximation error
of the loss with respect to the optimal policy. In what follows, we bound each of the terms
separately. We start our analysis by stating that the sum of bonuses is upper bounded, in
expectation over the context for the played policies. This lemma will be used to bound .

Lemma 4.1 (Bonuses bound). The following holds true.

K
ZE% [Z Wk(ck, a)bf(clﬁa)] < ﬂ‘,A| log(K + 1),
k=1

acA

We derived the above using an algebraic calculation of logarithmic sums (see Lemma [A.1)).
Using this lemma, we obtain the following upper bound of term , stated in the next
lemma. For full proof of the lemma, see Lemma [A22] in Appendix.

Lemma 4.2 (Term bound). For any ¢ € (0,1), let B = ,/W. Then, with

probability at least 1 — §/4, it holds that
K
> B [(malers ), ller, ) = bulen, )| < O(VETATIog(IFI/5)).
k=1

The next upper bound of term (3) follows directly from Online Mirror Descent (OMD)
analysis, for proof see Lemma

Lemma 4.3 (Term bound). For the choice in n = \/log|A|/K, the following holds true.

K

>~ Ee [ (milen ) = malen ). fulen, )| < O(/KloglA).

k=1
Lastly, we bound term using a similar proof technique to that of term , see Lemma

Lemma 4.4 (Term bound). For any § € (0,1) let § = %W. Then, the
following holds with probability at least 1 — §/4.

Sk, [(malers ). Bulen,) = tler,)) | < O(VETATIog(F/9)).
k=1



Using all the above, we prove Theorem

Proof of Theorem[3.1} By taking a union bound over the events specified in Lemmas
and [£.4] and combine it with the result of Lemma [£.3] we obtain that with probability at

least 1 —§/2, ERy < 5( K| A log(\}'|/5))7 which implies that with probability at least
1 —§ it holds that Ry < 6( K| A 10g(|]:|/6)), as desired. O

5 Experiments

As is standard in the CMAB literature, we evaluate our algorithm using the Vowpal Wabbit
(VW)E| benchmark suite [8], which implements the practical CMAB algorithms. The state-of-
the-art empirical comparison on this benchmark is by Foster and Krishnamurthy [19], who
extensively evaluated the efficient, regression oracle based CMAB algorithms (SquareCB,
AdaCB, RegCB) and a supervised learning baseline Supervised against their proposed algo-
rithm FastCB, across various hyper-parameters and both square and logistic losses. They
found FastCB with logistic loss performed best, followed by SquareCB (logistic and squared
loss), while AdaCB and RegCB lagged behind. Following this setup, we compare our method
OPO-CMAB to FastCB, SquareCB, RegCB, AdaCB, and the supervised baseline Superviseﬂ

Implementation Details. Following prior work, all algorithms are implemented in VW
using an online regression oracle for both linear regression and logistic regression. We
integrated OPO-CMAB into VW and implemented it as in Algorithm [1} with small changes:
(i) the exploration bonus is set adaptively as 8r = v\/k/|A| with v being a tuned hyper-
parameter; (ii) 7 is now also a tuned hyper-parameter and (iii) support also logistic regression
for better accommodating to multi-class and multi-label tasks as in the tested datasets.
Further details about implementation are provided in Appendix [C:2}

Experimental setup and evaluation. Previous works [19, 8] evaluate all algorithms
on more than 500 multi-class and multi-label classification datasets from OpenML. Due
to computational limitations, we evaluated all algorithms on 18 relatively small datasets
arbitrarily selected among those 515 datasets. As these are multiclass classification datasets,
we simulate bandit feedback as the agent receives loss 0 for a correct prediction and 1
otherwise, similarly to the prior work.

Performance is measured by the Progressive Validation (PV) loss [9], which for algorithm

A and a dataset of K examples defined as Lpy (A, K) = + Zle ¢k (ag). By definition, the
PV-loss directly reflects regret differences between algorithms.

Following previous work, we tuned the hyper-parameters of each algorithm by choosing the
configuration that achieves the lowest final PV-loss for each dataset. The set of tested values
for each parameter can be found in Table [T} Appendix [C] The parameters values for the
known algorithms were chosen as described in previous work. For our 0PO-CMAB, we select
~v and 7 values from a small set of relevant values on a discretized 10-scale grid. The final
parameter values chosen for each algorithm and dataset can be found in Table[2] Appendix [C]
We then run the selected configuration on 10 random permutations of the related dataset.
In the presented plots, we compare the averaged PV-loss decay curve of each algorithm as
well as Standard deviation (Std) on three selected datasets, in which the supervised baseline
converged to non-trivial final PV-loss.

In Appendix [C] we support those plots by presenting an approximate Z-test, to evaluate the
statistical significance of the results (Figure [3) and a table summarizes the mean differences
in the final PV-loss of each algorithm from the supervised baseline (Figure [2)).

Discussion of results. In Figure all algorithms appear to reach a plateau after 100
examples, which is expected for a 3-armed CMAB instance. As anticipated, Supervised
achieves the lowest PV-losses throughout the run, closely followed by 0PO-CMAB, with RegCB

3https://vowpalwabbit.org/
“Our code is publicly available at https://github.com/orinl.,/OPO_CMAB_ Experiments_code
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slightly higher. In fourth place is FastCB. SquareCB ranks fifth, and AdaCB is last, both with
a notable gap from the other algorithms. (See Figure [2|in Appendix .
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Figure 1: Average performance comparison on datasets 1084, 1062, 1015.

In this case, approximate Z-tests on the averaged PV-losses across permutations reveal that
a significant fraction (9/15) of the wins, when comparing each pair of algorithms on this
dataset, are statistically significant. (See Figure |3|in Appendix .

In Figure [ID] it appears that all algorithms nearly reach a plateau, as expected for 2-armed
CMAB. Supervised achieves the lowest PV-losses throughout the run, followed by AdaCB
and OP0-CMAB, which have very similar PV loss values. In fourth place is FastCB, then RegCB
with higher PV-losses, and finally SquareCB.

The final mean PV-losses of AdaCB and OPO-CMAB are the closest to Supervised, with
relatively small differences (as shown in Figure Appendix. In addition, the approximate
Z-tests on the averaged PV losses across permutations show that none of the pairwise
differences on this dataset are statistically significant. (See Figure [3[in Appendix [C]).

In Figure all algorithms appear to reach a plateau after 50 examples, as expected for a
2-armed CMAB. AdaCB achieves the lowest PV-loss throughout the run, followed closely by
FastCB, Supervised, and RegCB, which have very similar PV-loss values; SquareCB performs
slightly worse. For this dataset, our OPO-CMAB shows slightly higher PV-loss values than the
other algorithms, but its performance remains competitive.

The final mean PV-loss differences between all algorithms to the supervised baseline are
relatively small, further indicating similar performance (as shown in Figure[2|in Appendix [C]).
Additionally, by the results of approximate Z-tests on the mean PV-loss across permutations,
for every pair of algorithms, none of the wins are statistically significant (see Figure |3|in
Appendix [C)).

Overall, the experiments demonstrate that all algorithms exhibit similar performance on
the tested datasets, with no significantly evidence that any one algorithm outperforms the
others. This supports our claim that our algorithm is competitive with previously known
CMAB algorithms. For more details regarding experiments, see Appendix [C}



6 Conclusions and Discussion

In this work we aim to establish a fundamental principle: policy optimization updates that
use function approximation-based loss estimators can achieve optimal regret bounds for
stochastic contextual multi-armed bandits (CMABs).

Our main contribution is a regret minimization algorithm for stochastic CMABs with general
offline function approximation, based on policy optimization updates. The algorithm is
computationally efficient (assuming access to an efficient oracle) and achieves an optimal

regret bound of O(+/K|A[log | F]) with high probability.

A natural direction for future work is to extend our theoretical results beyond CMABs to
more general settings such as contextual RL, RL with large state spaces, and other rich RL
problems. We hope our results will inspire further research in these areas.

Empirically, our method demonstrates competitive performance across a range of multiclass
datasets, with no statistically significant evidence that any algorithm consistently outperforms
the others. However, our implementation of 0PO-CMAB in VW is limited by its O(T?) runtime
and O(T) space complexity. Since our primary contribution is theoretical, we focused on
demonstrating applicability and competitiveness, rather than developing an efficient practical
implementation. Thus, we did not explore optimizations for 0PO-CMAB in this work.

Nevertheless, we believe our technique could inspire many efficient heuristics involving policy
optimization updates with function approximation-based loss predictors. Potential directions
include using noisy batching instead of exhaustive computation of exploration bonuses,
heuristic look-back rather than recovering all history, and more. Developing such practical
and scalable heuristics of our technique is a promising direction for future research and could
have a significant impact in many applications.

Acknowledgments

OL thanks Alon Peled-Cohen for fruitful discussions and Idan Schwartz for his assistance
with running the experiments. We also thank the reviewers for their thoughtful comments.

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No.
882396), by the Israel Science Foundation, the Yandex Initiative for Machine Learning at Tel
Aviv University and a grant from the Tel Aviv University Center for Al and Data Science
(TAD).

References

[1] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

[2] N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic
concepts. In ICML, pages 3—11. Citeseer, 1999.

[3] A. Agarwal, M. Dudik, S. Kale, J. Langford, and R. Schapire. Contextual bandit
learning with predictable rewards. In Artificial Intelligence and Statistics, pages 19-26.
PMLR, 2012.

[4] A. Agarwal, M. Dudik, S. Kale, J. Langford, and R. Schapire. Contextual bandit learning
with predictable rewards. In N. D. Lawrence and M. Girolami, editors, Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22
of Proceedings of Machine Learning Research, pages 19-26, La Palma, Canary Islands,
21-23 Apr 2012. PMLR.

[5] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. Taming the monster:
A fast and simple algorithm for contextual bandits. In E. P. Xing and T. Jebara, editors,
Proceedings of the 31st International Conference on Machine Learning, volume 32, pages
1638-1646, 2014.

10



[6]

[7]

[12]

[13]

[14]

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48-77, 2002.

P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In J. C.
Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information
Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December 3-6,
2007, pages 65—72. Curran Associates, Inc., 2007. URL https://proceedings.neurips,
cc/paper/2007/hash/afd4836712c5e77550897e25711e1d96-Abstract . html.

A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off. J. Mach. Learn.
Res., 22:133:1-133:49, 2021. URL https://jmlr.org/papers/v22/18-863.html.

A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and
progressive cross-validation. In S. Ben-David and P. M. Long, editors, Proceedings of
the Twelfth Annual Conference on Computational Learning Theory, COLT 1999, Santa
Cruz, CA, USA, July 7-9, 1999, pages 203-208. ACM, 1999. doi: 10.1145/307400.307439.
URL https://doi.org/10.1145/307400.307439.

Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy opti-
mization. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 1283-1294. PMLR, 2020. URL http://proceedings.mlr,
press/v119/cai20d.html.

A. Cassel and A. Rosenberg. Warm-up free policy optimization: Improved re-
gret in linear markov decision processes. In A. Globersons, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. M. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
05d42b7bd130ecbcb7fdf02cbdcd370e-Abstract-Conference.html.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006. ISBN 978-0-521-84108-5. doi: 10.1017/CB09780511546921. URL https:
//doi.org/10.1017/CB09780511546921,

W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 208-214. JMLR Workshop and Conference Proceedings,
2011.

Y. Dai, H. Luo, C. Wei, and J. Zimmert. Refined regret for adversarial mdps with
linear function approximation. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, editors, International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 6726-6759. PMLR, 2023. URL https://proceedings.mlr,
press/v202/dai23b.html.

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159, 2011. doi: 10.5555/
1953048.2021068. URL https://dl.acm.org/doi/10.5555/1953048.2021068.

M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin, and T. Zhang.
Efficient optimal learning for contextual bandits. arXiv preprint arXiv:1106.2369, 2011.

E. Even-Dar, S. M. Kakade, and Y. Mansour. Online markov decision processes.
Math. Oper. Res., 34(3):726-736, 2009. doi: 10.1287/MOOR.1090.0396. URL https:
//doi.org/10.1287/moor.1090.0396.

D. Foster and A. Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with
regression oracles. In International Conference on Machine Learning, pages 3199-3210.
PMLR, 2020.

11


https://proceedings.neurips.cc/paper/2007/hash/afd4836712c5e77550897e25711e1d96-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/afd4836712c5e77550897e25711e1d96-Abstract.html
https://jmlr.org/papers/v22/18-863.html
https://doi.org/10.1145/307400.307439
http://proceedings.mlr.press/v119/cai20d.html
http://proceedings.mlr.press/v119/cai20d.html
http://papers.nips.cc/paper_files/paper/2024/hash/05d42b7bd130ecbc57fdf02cbdcd370e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/05d42b7bd130ecbc57fdf02cbdcd370e-Abstract-Conference.html
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1017/CBO9780511546921
https://proceedings.mlr.press/v202/dai23b.html
https://proceedings.mlr.press/v202/dai23b.html
https://dl.acm.org/doi/10.5555/1953048.2021068
https://doi.org/10.1287/moor.1090.0396
https://doi.org/10.1287/moor.1090.0396

[19]

[20]

[24]

[25]

D. J. Foster and A. Krishnamurthy. Efficient first-order contextual bandits: Prediction,
allocation, and triangular discrimination. Advances in Neural Information Processing
Systems, 34:18907-18919, 2021.

D. J. Foster, A. Agarwal, M. Dudik, H. Luo, and R. E. Schapire. Practical contextual
bandits with regression oracles. In J. G. Dy and A. Krause, editors, Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmdssan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 1534-1543. PMLR, 2018. URL http://proceedings.mlr.press/v80/
fosterl8a.htmll

D. J. Foster, S. Kale, H. Luo, M. Mohri, and K. Sridharan. Logistic regression: The
importance of being improper. CoRR, abs/1803.09349, 2018. URL http://arxiv.org/
abs/1803.09349.

D. J. Foster, S. M. Kakade, J. Qian, and A. Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

D. J. Foster, A. Rakhlin, D. Simchi-Levi, and Y. Xu. Instance-dependent complexity
of contextual bandits and reinforcement learning: A disagreement-based perspective.
In M. Belkin and S. Kpotufe, editors, Conference on Learning Theory, COLT 2021,
15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of Machine
Learning Research, page 2059. PMLR, 2021. URL http://proceedings.mlr.press/
v134/foster2la.html.

A. Glaese, N. McAleese, M. Trebacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh,
L. Weidinger, M. J. Chadwick, P. Thacker, L. Campbell-Gillingham, J. Uesato, P. Huang,
R. Comanescu, F. Yang, A. See, S. Dathathri, R. Greig, C. Chen, D. Fritz, J. S. Elias,
R. Green, S. Mokra, N. Fernando, B. Wu, R. Foley, S. Young, I. Gabriel, W. Isaac,
J. Mellor, D. Hassabis, K. Kavukcuoglu, L. A. Hendricks, and G. Irving. Improving
alignment of dialogue agents via targeted human judgements. CoRR, abs/2209.14375,
2022. doi: 10.48550/ARXIV.2209.14375. URL https://doi.org/10.48550/arXiv,
2209.14375.

S. Gu, E. Holly, T. P. Lillicrap, and S. Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International
Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 -
June 3, 2017, pages 3389-3396. IEEE, 2017. doi: 10.1109/ICRA.2017.7989385. URL
https://doi.org/10.1109/ICRA.2017.7989385.

J. Jain, Y. Ramaswamy, L. Gudala, R. R. Hossein, and G. S. Satya. Personalized
movie recommendation system based on proximal policy optimization. In 2025 3rd
International Conference on Data Science and Information System (ICDSIS), pages
1-6. IEEE, 2025.

N. Karampatziakis and J. Langford. Online importance weight aware updates. In F. G.
Cozman and A. Pfeffer, editors, UAI 2011, Proceedings of the Twenty-Seventh Conference
on Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages 392—
399. AUAI Press, 2011. URL https://dslpitt.org/uai/displayArticleDetails)
jsp?mmnu=1&smnu=2&article_id=2234&proceeding_id=27.

T. Lancewicki and Y. Mansour. Near-optimal regret using policy optimization in
online mdps with aggregate bandit feedback. CoRR, abs/2502.04004, 2025. doi:
10.48550/ARXIV.2502.04004. URL https://doi.org/10.48550/arXiv.2502.04004.

T. Lancewicki, A. Rosenberg, and Y. Mansour. Learning adversarial markov deci-
sion processes with delayed feedback. In Thirty-Sizth AAAI Conference on Artifi-
cial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, TAAI 2022, The Twelveth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022, pages 7281-7289. AAAT Press, 2022. doi: 10.1609/AAAI.V3617.20690. URL
https://doi.org/10.1609/aaai.v361i7.20690.

12


http://proceedings.mlr.press/v80/foster18a.html
http://proceedings.mlr.press/v80/foster18a.html
http://arxiv.org/abs/1803.09349
http://arxiv.org/abs/1803.09349
http://proceedings.mlr.press/v134/foster21a.html
http://proceedings.mlr.press/v134/foster21a.html
https://doi.org/10.48550/arXiv.2209.14375
https://doi.org/10.48550/arXiv.2209.14375
https://doi.org/10.1109/ICRA.2017.7989385
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2234&proceeding_id=27
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2234&proceeding_id=27
https://doi.org/10.48550/arXiv.2502.04004
https://doi.org/10.1609/aaai.v36i7.20690

[30]

31

[35]

[36]

[39]

[40]

T. Lancewicki, A. Rosenberg, and D. Sotnikov. Delay-adapted policy optimization
and improved regret for adversarial MDP with delayed bandit feedback. In A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 25-29 July 2023, Honolulu, Hawaii, USA,
volume 202 of Proceedings of Machine Learning Research, pages 18482-18534. PMLR,
2023. URL https://proceedings.mlr.press/v202/lancewicki23a.html.

J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits
with side information. In J. Platt, D. Koller, Y. Singer, and S. Roweis, edi-
tors, Advances in Neural Information Processing Systems, volume 20. Curran As-
sociates, Inc., 2007. URL https://proceedings.neurips.cc/paper_files/paper/
2007/file/4b04a686b0ad13dce3bfa99fad4161c65-Paper. pdf.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res., 17:39:1-39:40, 2016. URL https://jmlr.org/papers/
v17/15-522.html.

O. Levy, A. B. Cassel, A. Cohen, and Y. Mansour. Eluder-based regret for stochastic
contextual mdps. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://
openreview.net/forum?id=47jMS97wJX.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. In Y. Bengio and
Y. LeCun, editors, 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1509.02971.

H. Liu, C. Wei, and J. Zimmert. Towards optimal regret in adversarial linear mdps with
bandit feedback. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=6yv8UHVJn4.

H. Luo, C. Wei, and C. Lee. Policy optimization in adversarial mdps: Improved explo-
ration via dilated bonuses. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and
J. W. Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 22931-22942, 2021. URL https://proceedings.neurips!
cc/paper/2021/hash/c1b8bf9e071c0dabb899e7a27f353762-Abstract . html,

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nat., 518(7540):529-533, 2015. doi:
10.1038/NATURE14236. URL https://doi.org/10.1038/nature14236.

G. Neu, A. Gyorgy, C. Szepesvari, and A. Antos. Online markov decision processes
under bandit feedback. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23:
24th Annual Conference on Neural Information Processing Systems 2010. Proceedings
of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada, pages
1804-1812. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/
paper/2010/hash/7bb060764a818184ebblcc0d43d382aa-Abstract.html.

F. Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe. Training language
models to follow instructions with human feedback. In S. Koyejo, S. Mohamed,

13


https://proceedings.mlr.press/v202/lancewicki23a.html
https://proceedings.neurips.cc/paper_files/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf
https://jmlr.org/papers/v17/15-522.html
https://jmlr.org/papers/v17/15-522.html
https://openreview.net/forum?id=47jMS97wJX
https://openreview.net/forum?id=47jMS97wJX
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=6yv8UHVJn4
https://openreview.net/forum?id=6yv8UHVJn4
https://proceedings.neurips.cc/paper/2021/hash/c1b8bf9e071c0dabb899e7a27f353762-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c1b8bf9e071c0dabb899e7a27f353762-Abstract.html
https://doi.org/10.1038/nature14236
https://proceedings.neurips.cc/paper/2010/hash/7bb060764a818184ebb1cc0d43d382aa-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/7bb060764a818184ebb1cc0d43d382aa-Abstract.html

[44]

[45]

A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
blefdeb53be364a73914£58805a001731-Abstract-Conference.htmll

J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2006, October 9-15,
2006, Beijing, China, pages 2219-2225. IEEE, 2006. doi: 10.1109/IR0OS.2006.282564.
URL https://doi.org/10.1109/IR0S.2006.282564.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients.
Neural Networks, 21(4):682-697, 2008. doi: 10.1016/J.NEUNET.2008.02.003. URL
https://doi.org/10.1016/3.neunet.2008.02.003,

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct
preference optimization: Your language model is secretly a reward model. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

S. Ross, P. Mineiro, and J. Langford. Normalized online learning. In A. E. Nicholson
and P. Smyth, editors, Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013. AUAI Press,
2013. URL https://dslpitt.org/uai/displayArticleDetails. jsp?mmnu=1&smnu=
24article_id=2415&proceeding_id=29.

J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. In Y. Bengio and Y. LeCun,
editors, 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http!
//arxiv.org/abs/1506.02438.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learn-
ing - From Theory to Algorithms. Cambridge University Press, 2014.
ISBN 978-1-10-705713-5. URL http://www.cambridge.org/de/academic/

subjects/computer-science/pattern-recognition-and-machine-learning/
understanding-machine-learning-theory-algorithms.

L. Shani, Y. Efroni, A. Rosenberg, and S. Mannor. Optimistic policy optimization with
bandit feedback. In International Conference on Machine Learning, pages 8604-8613.
PMLR, 2020.

U. Sherman, T. Koren, and Y. Mansour. Improved regret for efficient online rein-
forcement learning with linear function approximation. In A. Krause, E. Brunskill,
K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, International Conference on
Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages 31117-31150. PMLR, 2023. URL
https://proceedings.mlr.press/v202/sherman23a.htmll

U. Sherman, A. Cohen, T. Koren, and Y. Mansour. Rate-optimal policy optimization
for linear markov decision processes. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL

https://openreview.net/forum?id=VJwsDwuiuH.

14


http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1109/IROS.2006.282564
https://doi.org/10.1016/j.neunet.2008.02.003
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2415&proceeding_id=29
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2415&proceeding_id=29
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://proceedings.mlr.press/v202/sherman23a.html
https://openreview.net/forum?id=VJwsDwuiuH

[61] D. Simchi-Levi and Y. Xu. Bypassing the monster: A faster and simpler optimal
algorithm for contextual bandits under realizability. Mathematics of Operations Research,
47(3):1904-1931, 2022.

[52] N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford,
D. Amodei, and P. F. Christiano. Learning to summarize from human feedback.
CoRR, abs/2009.01325, 2020. URL https://arxiv.org/abs/2009.01325.

[63] Y. Xu and A. Zeevi. Upper counterfactual confidence bounds: a new optimism principle
for contextual bandits. arXiv preprint arXiv:2007.07876, 2020.

[54] Y. Zhu, D. J. Foster, J. Langford, and P. Mineiro. Contextual bandits with large
action spaces: Made practical. In International Conference on Machine Learning, pages
27428-27453. PMLR, 2022.

15


https://arxiv.org/abs/2009.01325

A Proofs: Regret Analysis

In this section, we provide the full analysis of the regret of Algorithm[I] proving Theorem [3:1]
We follow the regret analysis of [48] but adapt it to function approximation for stochastic
CMAB. We start our analysis by noting that with probability at least 1 — §/2,

Ry < ERx + 2v/2K log(4/0).

As the contexts are iid, and the policies {my } £ iy are determined by the history, the above is
a direct implication of Azuma-Hoeffding’s inequality. (Full proof is given in Corollary -

Hence, we focus on bounding the expected regret, which will imply a high probability regret
bound, by the above. To obtain the desired bound, we decompose the expected regret as
follows.

K
Z Ck 7Tk C}m *(Cka')vg(ckf»]

Pl‘ﬁw Il

E., {<7Tk(cka ), ek, ) — <7Tk(0k, ), i ek, )>}

>
Il

1

2

+ iEck [<7Tk-(cka ), b (e, ')> - <7T*(Ck7 ), b (e, )>}

k=1

3B [(maler) Bulen,)) = (malens ). blen, )]

(4D
We bound each term separately, but first, we upper-bound the sum of bonuses.
Lemma A.1 (Bonuses bound, restatement of Lemma . The following holds.

ZIECk lz i (Cr, a )bg(ck,a)] < B|A|log(K +1).
acA
Proof. We first note that

K
ZECk lz Tk Ck, )bf(ck,a)] = ZEC’C

acA

ac€A i=1 Wi(cka a)

K
S gZEck lz W]lzgclk,a) ‘|

acA 1+ Z'fl Wi(clﬁa')

o[y mie ]

acAk=1 1+Zz 1 m(c a)

ch(clma) min{l, 1+ZI£{2 }1

Next, we fix a context ¢ € C and bound
PP PECL
acA k=1 ]‘+Zz 1 7T74(C a)

Using Lemma C.1 from Levy et al. [33], given in Lemma we obtain that for any fixed
context it holds that

“C“ < 9| Al log(K +1).
T T e Sl
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By taking an expectation over the context on both sides, we obtain

[Z 3 mi (e, @) ] < 2| Al log(K + 1).

a€A k= 11+Z ( )

Lastly, we plug the latter into our first inequality and conclude the lemma. O

We then move to bound each one of the three terms.
Lemma A.2 (Term bound, restatment of Lemma . For any 0 € (0,1), let 8 =

,/%W. Then, with probability at least 1 — 6/4 it holds that

K

> Be, [(milen, ), Clexs ) = (milen, ) Euler, )| < O(VETATog(1F1/9) ).

k=1

Proof. The following holds with probability at least 1 — §/4.

]~

Eey [(mi(er, ), e, ) = (mulers ), (e, )]

E
Il
—

I
M=
=

. -Z 7k (ck, @) (E(ck,a) — maX{O, fk(ck, a) — bg(ck, a)})]

Lac A

>
Il
=

IA
]~
s

_Z T (cr, @) (E(ck,a) — (fk(ck,a) - bf(ck,a)))]

k=1 Lac A

K r K
:ZEC’C Zﬂ-k(ck;a)(f*(clma) Cka ) +ZE [Z Tk Cka )bi(ckva)]

k=1 LaeA k=1 acA

K r K
<Y Ee | Y mler, a)l fuler, a) = frlen, @)l | + D By | Y milen, )b (ck,a )]

k=1 Lac A k=1 acA

X _ - _ -
:ZE% Zwk(ck,a) min{17|f*(ck,a) ffk(ck,a)|} +Z]Eck Zwk(ck7a)b£(ck,a)

k=1 LaeA Lac A

(Since both function are bounded in [0 1], so is the absolute value)

Cl Z”Tk(ckaa)min{lalf*(ckaa)7fk(ckaa)|} +Z]Eck Z’frk(ckaa)bf(ckva) +1

Lac A J k=1 Lac A i

IA
M=
&=

o

[ V)

,_gm(czg,a)min 1, gii%_i Wzgz:: if*(ck,a)—fk(ck,a)l

n Z ﬂk(ck,a)bg(ck,a)

Lac A

I
M=
s

=
||
N

+
M=
&=

+1

el
Il
—

k—1 9
A, ZAWk(Ck,a)min{l 1<1+E fﬂ(% ; ;<1+§;m(ck,a>>(f*<ck,a>—fk<ck,a)) )H
Lac = 1 ) 1=

(By AM-GM inequality)

N
] >
=

Eod
I|
N

Ck Z "Tk(cka a)bg(ck» a)

Lac A

[ 2 K
Z Tk (Cka Cl) ming 1, ké{ + 52
LacA 1+ 35 milew, a) 2

(Since all terms in the min are positive for 8 > 0, holds by min{-, -} properties)

+1

_|_
] =
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=
I
-
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M=
i

=
||
N
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+1

> miler, )b (ck, a)

acA

1 K
+35 > E,

k=2

k—1 K
ZEUINTH(CICF) |:(f*(ck, ) fk Ck, a ) :| + Z]Eq
=1

B 1 K k-1

K 2

LacA k 2 i=1
(By the bonus definition in Alg‘orlth ' and hnearlty of expectation, as the contexts are iid.)
K
K 68log(4|F|K3/0)K
SQkZ:lEck ;ﬂ-k Cl, Q ck,a) +ﬁ+ 283 +1
(Holds with probability at least 1 — §/4, by Corollary

K log(4|F|K3/5)K
%—F 68 log L;; /%) + 1. (By Lemma [A.1]

Finally, by setting g = ,/w we obtain that term 1) is bounded as

ZE%[W ehs)s e ) = (mrlens ). Bulen. ) )| < O(VETATIog(1F79)).

<20|A|log(K 4+ 1) +

We continue to bound term .
Lemma A.3 (Term (3) bound, restatment of Lemma. For the choice inn = /log|A|/K,
the following holds true.

K

> Bey [(miler ) = mlers ), fulen, )| < O(/K Togl ).

k=1

Proof. Observe that the policy we compute in Algorithm [I] for each observed context ¢ € C is
the solution of the same optimization problem as in Online Mirror Descent (OMD) algorithm
(see Appendixfor more information), using the KL-divergence for the Bregman divergence
term.

Formally, our policy satisfies the following for every context ¢ € C and round k € [K].
7Tk+1(C7 ) € arg min??<2k(07 ')7 ™= 71'}<;(C, )> +dkr (71'”7'%(0, )) (5)
TeA(A)

Hence, term is the linear approximation term of the policy computed by the OMD
algorithm, in expectation over the contexts.

As our loss estimators are bounded in [0, 1] and 7 (c, -) is uniform over the actions for every
context ¢ € C, we can apply the fundamental inequality of online mirror descent for the KL
divergence (Theorem 10.4 in [39], V1), to obtain the following for each fixed context ¢ € C
separately.

K

K
5 log|.A log|A K
Z<Ek(c,-),7rk(c,-) —ﬂ*(c,~)> g' Ly gz (e.a) Bu(c,a)? < BHAL L 1K
H,_/ n 2
k=1 k=1 <1
For n = y/2log|A|/K we obtain for each context ¢ € C that
K

> (fk(e, ) mile ) = male ) ) < O(V/K log A,

k=1
Since inner product of real vectors is symmetric,
K

S {(mule) = maler ) frle) ) < O(/K Togl Al).

k=1
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By taking an expectation over the contexts on both sides of the inequality, using linearity of
expectation we obtain

S E, [(mlen ) = mlews ), Eulen, )| < O(/KTogl A,
k=1
as desired. O

Lastly, we bound term .
Lemma A.4 (Term bound, restatment of Lemma 4.4). For any 6 € (0,1) let 8 =

,/%W. Then, the following holds with probability at least 1 — §/4.

»a [ (melens ) ulens ) = tler, )| < O(VETATIog(F/9))-

k=1

Proof. The following holds with probability at least 1 — §/4.

Eey | (ma(cr ) Bulen, ) — ex,)) |

IN

Ec

el

:<7r*(ck’ ')7gk(ck, ) — Lk, )>} +1

, Z e (Ck, @) (maX{O7 Fr(cr,a) — bg(ck, a)} — L(cg, a))
LacA

Ee, | Y me(cx, a) max{0 — (ck, a), fi(cr, a) — £k, a) — b (cx, a)}

Lac A

+1

+1

I

M= M= D= [0 T
=
o

E., Z To(Cr, a) max{ —fo(c, a), fr(cr,a) — fulcr, a) — bf(ck,a) +1=(%).
—_———

2 a€A

>
U

i =i0k,q =iPk,a
We now note that for all k > 2,a € A it holds that ax, <0, as f, € [0,1]. We next upper
bound py 4 and then use the following fact to obtain the final upper bound.

Fact A.5. For any x,y, z € R such that z > y it holds that max{z,y} < max{x, z}.
Hence, we continue by upper bounding py o, for any fixed k > 2 and a € A.
Pk.a :<fk(6k,a) - f*(Ck,a)) — by (cx, a)

<|filer, a) = fulew, @)l = b (ex, @)

—min{1, | fi(cx,0) = fu(e, )|} b (ex,a)

(Since the functions are bounded in [0,1] so is the absolute value)

51+Z 17Tz(cka)
Bl_'—zz 17rl(cka )

|fk(ckaa)_f*(ck7a>‘ _bg(ckva)

=min

<m {1, 5/2 1(1-1-]62:171'2'(6]@,&)) (fk(ck,a)—f*(ck,a))Q}—bg(ck,a)
a 1+ Z -1 L mi(en,a) 20 =1
(By AM-GM inequality)
k-1
<m {1, )}+21ﬂ <1+;7Ti(ck,a)) (fk(ck,a)—f*(ck,a))Q—bf(ck,a)

1 + Zz 1 //TZ(Ckﬂ

=b! (cy,a)
(Since all terms in the min are positive for 8 > 0, holds by min{-, -} properties)
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2

k-1
_% <1 + Zz_;m(ck,a)> (fk(ck,a) - f*(ck,a)) .

. 2
Hence, we choose & o := 35 (1 + Z 1 mi(Ck, a) (f ckya) — folck,a )) , and note that for
B > 0 we have & , > 0. We then apply Fact to upper bound (%). We obtain

*

I
M=
g

Zﬂ-*(ckaa)max 7f*(ck7a)afk(ck’aa)7f*(ckaa)7bg(ck;a) +1
——

a€cA

ES
||
N

Ak,a Pk,a

IA
M=
I

k-1
Z Tx(Cy @) maxq — fulc, a), % (1 + Zm(ck, a)) (fk(ck, a) — fo(ck, a))2

a€A <0

x>~
||
N

516,@20

(Since fk:,a Z pk,a)

K B k—1
:ZEC" T*(Ckv Q)% (1 + Zﬂ-i(ckv a)) (fk(ckva) - f*(ckva))2 +1
k=2 Lac A =1
K 1 _ 2
S% + % kZZQECk ;47(* Zz, Zﬂ'z Ck, Q (fk Ck,Q ) f*(Ck,CL)> +1
K
S%‘F%ZE% sz (ck,a (fk Cky Q) — f*(ck7a))2 +1
k=2 Li=1 acA
K 1 K k-1 ) 9
=55+ %gé > Ee [ani(ci,.) (fe(eina) = fuleia)) } +1

(By linearity of expectation, as the contexts are iid)

3
<£ . 68log(4|F|K3/0)K

=93 % + 1.

(Holds with probability at least 1 — §/4 by Corollary

Finally, by setting g = W we obtain that term l) is bounded as

O(VETATIo&(F1/3)). =

B Auxiliary Lemmas

B.1 Online Mirror Descent

In the Online Mirror Descent (OMD) algorithm [39], in each round of the game, the agent
solves the following optimization problem to compute the next policy.

Tpt1 € argminn(gy, x — k) + By (x, xk), (6)
zeA(d)

where 1) is used for the Bregman’s divergence term, which in our case, is the KL divergence.
The following lemma states the fundamental inequality of OMD over the simplex with the

KL divergence (or, the variants of it, e.g., Hedge and EXP3), which will be used for our
analysis.

Theorem B.1 (Lemma 16 in [48], originally Theorem 10.4 in V1 of [39], Fundamental
inequality of Online Mirror Descent). Assume for gr; >0 fork=1,...,K andi=1,...,d.
Let C = Ay and n > 0. Using OMD with the KL-divergence, learning rate n, and with
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uniform initialization x1 = (1/d,...,1/d), the following holds for any u € Ay,

s log d
> Agrae —u) < & nzzxmgm
k=1

k=11i=1

B.2 Concentration Inequalities

Theorem B.2 (Azuma-Hoeffding’s inequality). Let (Xi)f\;l be a martingale difference
sequence with respect to the filtration (]:i)ﬁvzo such that | X;| < B almost surely for alli € [N].

Then with probability at least 1 — 9,
/ 2
i| < By/2N log 5
i=1

Corollary B.3 (High probability regret). With probability at least 1 — 6/2, it holds that
R <ERgk +2+v/2K log(4/4).

Proof. The proof follows directly from Theorem as the contexts are stochastic and
sampled iid in each round, and the policies {wk}kK:2 are determined completely by the history,
where 7 is set to be the random policy. Thus, we have that.

X o= (mk(Cr o) = mulcr, ), ek ) = Bey [(milcr, -) — ma(er, ), €ck, )]

N

defines a martingale difference sequence (Xk) _, with respect to the filtration Hj =

{(ci,yai, £;)}_, which is the history up to (including) time k, for all k € [1, K] and Hy = () is
the empty history. This holds true since X}, is determined by Hj, for all k, and

E[Xy[Hy—1] =E[(mx(cr, ) = mu(ens ), Ucrs ) = Bey [{mrlcr, ) = melcr, o), ek, )] Hi—1]
=Ee, [(mh (s -) = malens)s (s D) Hi 1] = By [(m(ck, ) = malc, o), £(ck, ) [ Hi—1]
=0.

In addition, | Xj| < 2 for all k. Hence, we can apply Theorem and obtain for any fixed
K € N, when summing over k = 1,2,..., K, that the following holds with probability at
least 1 —§/2,

K
S

k=1

< 24/2K log(4/5).

In addition,

> x| -
k=1

K
Z 7Tk Cka - 7*(6167 ')7 e(cka )> - ]Eck [<7Tk(ck, ) - 7T*(Ck’ ‘)7 é(ckv )>])’
k=1

= Z<7T/€<Ck’ ) - W*(ckv ')7£(C/€v )> - Z E, Kﬂ-k(ckv ) - ﬂ-*(ckv ')76(0197 ))]‘
k=1 k=1
—|Rx — ERk|.

Hence, with probability at least 1 — §/2,

"R —ERk| < 2v/2K log(4/6),

which implies the corollary. O

B.3 Oracle Convergence

Lemma 5 in [53] presents a uniform convergence guarantee for offline lease-square regression.
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Lemma B.4 (uniform convergence over all sequences of estimators, Lemma 5 in [63]). For
an arbitrary contextual bandit algorithm, for all § € (0, 1), with probability at least 1 — 6/2,

t—1
ZEcmi [(ft(ciaai) — fulciyai))? | Hi—1}
i=1

t—1

< 68log(2|F|t*/5) + QZ(ft(Ciaai) —6)? — (fuleiya) — ),

i=1
uniformly over all t > 2 and all fized sequence fa, f3,... € F.

In this lemma, the filtration defined by H; := {(ck, ax,lx)}i_;, which is the history of
observations up to time <.

The following is a direct corollary of Lemma[B.4] which applies to the sequence of least-squares
minimizers.

Corollary B.5 (uniform convergence of offline least-squares regression, restatement of
Corollary [2.3). Let fo, fs,... € F denote the sequence of least squares minimizers and let

w1, o, ... denote the sequence of played contextual policies. The following holds for any
0 €(0,1) and t > 2 with probability at least 1 — §/4.
t—1

> B [Earorser | (il ai) = Fulersai))’] | < 681og(41FE/0).
i=1

Proof. For the sequence of least squares minimizers, for all ¢ > 2, it holds that

t—1

> (feleirai) =€) = (fulei ai) = £:)* < 0.

i=1
In addition, in each round k, given the history Hy_1 = {(¢;, a;, 4;) f;l, we have that
is determined completely. Hence, the corollary follows from Lemma for the choice in
60 =4/2. O

B.4 Additional Algebraic Lemmas

Lemma B.6 (Lemma C.1 in [33]). Let Sy = A+ 22—211 x and x; € [0, A] for allt. Then

T
Y2 < 2log(T + 1),
t=1 St
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C Experiments

As is standard in the CMAB literature, we evaluate the performance of our algorithm using
the Vowpal Wabbitﬂ benchmark suite [8], which implements all known feasibly-implementable
CMARB algorithms or their practical variants.

Due to the diversity of algorithm implementations in the library, some methods require
a cost-sensitive classification oracle (e.g., OnlineCover-the heuristics of ILTCB [5]), while
others rely on an online regression oracle (SquareCB [I8], AdaCB [23], RegCB [20] and FastCB
[19]). We emphasize that even algorithms originally designed for offline regression oracles can
be effectively executed using an online regression oracle, which is a stronger oracle capable of
handling adversarial examples [12}[I8]. In the Vowpal Wabbit implementation, all algorithms
that are using a regression oracle are implemented using its online variant, which is the base
learner of this library. Following this convention, we implement OPO-CMAB using the base
online regression oracle provided by the library.

The state-of-the-art empirical evaluation of CMAB algorithms on the Vowpal Wabbit bench-
mark is presented in Foster and Krishnamurthy [19]. They conduct extensive experiments
comparing all known efficient CMAB algorithms based on regression oracles (e.g., SquareCB,
AdaCB, RegCB) as well as a supervised learning algorithm as a mild baseline, against their
proposed algorithm, FastCB. The evaluation spans a wide range of hyperparameter settings
and considers both square loss and logistic loss for the regression oracle. Their findings
indicate that FastCB with logistic loss achieves the best performance, followed by SquareCB
with logistic and squared loss in second and third place, respectively. AdaCB and RegCB
perform significantly worse. Based on these results, we adopt the similar experimental setup
and focus our comparison on the regression-bases candidates: FastCB, SquareCB, RegCB and
AdaCB as well as Supervised which is the supervised learning benchmark. More details
about the used implementations and hyperparameter are given in the sequel.

C.1 Function classes and Oracles

For the function class and oracle, we follow the same setup as in [I9] that is also described
in detail in [8]. We give the details below for completeness.

Oracle. All evaluated algorithms, including our OPO-CMAB, are implemented in Vowpal
Wabbit (VW), using its base online learning procedure, regardless of whether they are designed
for online or offline regression oracles. This procedure implements Importance Weighted
Regression (IWR) for both square loss and logistic loss, as described in [§]. Specifically,
the oracle performs Online Gradient Descent (OGD) [7] updates with an adaptive step size
(controlled via the learning-rate hyperparameter) following [I5], normalization as in [44], and
importance weighting as in [27]. In addition, VW applies a Cost-Sensitive One-Against-All
(CSOAA) reduction for multiclass classification, which ultimately yields label predictions for
each action. All tested algorithms are constrained to use this IWR-based oracle exclusively,
which in the code reflected by the ‘mtr’ cb-type parameter.

Losses and Function Class. Regarding the losses and function class used, we again
adopt the same setup tested by [19] 8]. Hence, we test all the algorithms when applying
the online logistic regression oracle using the log loss. We also test all of the algorithms,
excluding FastCB, using the square loss. The two mathematically defined bellow, for a true
label y and predicted label 3.

lsq(9:y) = (5 — v)*.
bog (9, y) = ylog(1/9) + (1 —y)log(1/1 — 7).
We note that the log-loss (or cross-entropy) in this notation is defined for binary classification,

ie., y,9 € {0,1}, and we next extend it to multiclass classification using the sigmoid link-
function, which formally defined as

1

= T )

https://vowpalwabbit.org/
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Then,

Elogistic(gv y) = élog(a(g)v y)

See [21] for more information regarding this equivalence. When applying logistic regression,
we define the function class F as the class of generalized linear models, formally given by

F = {(e.0) = o((w, é(c, a)))|w € R},

where o(-) is the logistic link function defined above, and ¢ : C x A — R? is a dataset-related
feature map.

When using the squared loss, we instead choose F to be the class of linear functions

F={(e;0) = (w, d(c.a))w € RY}.

All of these implementation choices are already supported by the Vowpal Wabbit library,
and also performed by [I9[%]

C.2 Implementation Details

Bellow we elaborate on the implementation and hyper-parameters tested for each algorithm.

Implementation of known algorithms. For the implementations and experimental
setup of SquareCB, FastCB, Supervised we use the source code provided by [19]1 We
use the hyperparameter values tested in this work, among them p € {0.25,0.5},v €
{1000, 700, 400, 100, 50, 10}. Due to limited computational resources, we use as learning rates
a subset of the learning rates tested by Foster and Krishnamurthy [I9] and mentioned in
Table 1l

For RegCB we use the standard implementation of it in Vowpal Wabbit, with the hyper-
parameters choice of ¢y € 10117273} suggested by Bietti et al. [8].

For AdaCB, we use the SquareCB implementation of Vowpal Wabbit, which includes elimina-
tion option that uses confidence bounds computed as for RegCB to eliminate sub-optimal
actions, and then apply Inverse Gap Weightening (IGW)-based policy for the action selection
itself. We test the algorithm on the set of hyperparameter suggested by Foster et al. [23]:
co € 108172731 5 € {0.25,0.5}, 40 € {1000, 700, 400, 100, 50,10}. For a summary of all
hyper-parameter values used for tuning, see Table [f}

As for the implementation of O0PO-CMAB, we integrate it into the same source code ourself,
and the implementation details are given next.

OPO-CMAB implementation. We integrate 0P0-CMAB into the Vowpal Wabbit library,
implementing the exact pseudo-code provided in Algorithm |1} with the following practical
modifications:

We define the bonus factor at each round k as S, =~ ﬁ, where 7y is a tuned hyperparameter.

This differs from the constant g =
change is motivated by the following:

%W used in our theoretical analysis. This

1. Adaptivity to unknown horizon. The new form of S allows the algorithm to operate
without prior knowledge of the total number of rounds K.

2. Practical tuning and computational efficiency. The constant term in the original

3 expression, \/341log(4|F|K3/6), may be difficult to compute when F is infinite
or extremely large. We replace it with a tunable parameter v to allow for more
practical and flexible implementation of the confidence bounds width factor.

Similarly, we treat the parameter n as a tuned hyperparameter rather than constant that
depends on |A[, | F]|, for the same reasons as above. We note that our algorithm, similarly to

SFor additional details, see Appendix D.2 in [19].
"The code is publicly available at https://openreview.net/forum?id=3q¥gdGjosSvt

24


https://openreview.net/forum?id=3qYgdGj9Svt

the others, have an additional learning rate parameter, that uses the base-learner oracle as
an initial step size. We, similarly to the other algorithm, refer the oracle’s learning rate as a
tuned hyper-parameter.

An important difference between our algorithm and the others is that 0PO-CMAB requires
evaluating each new context using all past predictors, in order to compute exploration bonuses
based on past counterfactual policies. To enable this functionality without interfering with
the internal implementation of the base learner, we cache the learned weights at each round
and use them to generate past predictions for the current context. This memory and run time-
consuming implementation is due to the constraints implied by the oracle implementation of
Vowpal Wabbit library.

Lastly, we remark that although 0PO-CMAB was originally designed for the squared loss, the
dataset used in this experimental setup involves multi-class and multi-label classification. In
such settings, the logistic loss is often more appropriate, as it better reflects the probabilistic
nature of the labels and can yield more accurate loss estimates in practice compared to the
squared loss. Hence, we apply our algorithm using the logistic-loss as well, to provide it with
more accurate predictors.

Apart from these changes, the rest of the implementation adheres closely to the description in
Algorithm [T} The hyper-parameter values used for tuning 0PO-CMAB also appear in Table [I]

Remark C.1. We note that the adaptive f = 0(7 ﬁ) choice can be proven to yield
optimal regret bound for stochastic CMAB (see [53] for more information), however, for

clean representation of the algorithm and main theoretical result, we chose in a static g
parameter.

C.3 Experiments Description and Evaluation

In the following, we describe our experimental setup. Due to computational limitations, we
restrict our evaluation to the following experimental setup.

Tested Datasets. We evaluated all the considered algorithms on 18 relatively-small size
and arbitrarily selected out of the large set of 515 multiclass classification datasets defined
in the Vowpal Wabbit suitEl The tested datasets are specified in Table |2} In each dataset,
every context is associated with a true label. Following prior works, we simulate bandit
feedback by defining the agent’s loss to be 0 if it predicts the correct label, and 1 otherwise.

Performance Evaluation. We again follow [I9] [8] and evaluate the performance of each
algorithm on a given dataset using the final Progressive Validation (PV) loss [9], which, for
an algorithm A and a given dataset containing K examples, formally defined as

K
1
Lpv(AK) = e > (k).
k=1

In our experiments, we measure the decrease in the PV-loss as a function of the number of
examples.

Remark C.2. For any two algorithms A, B, let R4 and R denote their regret computed
using the binary loss defined above on a given dataset. Then, it holds true that

1
E(Rl}( — R]}() = Lpy(A,K)— Lpy (B, K).

Hence, in this setting, the PV-loss is a representative quantity for the regret differences
between any pair of algorithms.

In addition, we also consider the difference of the final PV-loss of each algorithm compare to
that of the supervised learning mild baseline.

Lastly, similarly to prior works, we also perform approzimate Z-test to examine the statistical
significance of the results, which is formally defined as follows.

8All datasets are publicly available to download from OpenML collection https://www.openml |
org
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Definition C.3 (p-Statistically significant win). For two algorithms a, b let p,, p, denote

Pa—Pv
\/Pa(ln—Pa) +Pb<1n—1’b)

their PV-losses. We say that a p-significantly wins b if 1 — & < p,

where n is the examples number and ¢ is Gauss error function.

For each dataset and pair of algorithms, we compute the significance of the win. As common
practice, results that are p-statistically significant for p < 0.05 considered as meaningful.

Hyper-parameters Tuning. We tuned all algorithms by running all the combinations
of the the parameters specified in Table [I} For each algorithm, we run each combination
once on each dataset, and choose the combination that provides the lowest final PV-loss.
Then, we use only this best combination to run our experiments. The chosen parameter
configurations are specified in Table [I]

Algorithm  ~/v P co n Loss LRs
Supervised - - - - Diogistic 10{1:0-1,-2,-3}
SquareCB 1000, 700, 400, 100, 50, 10 0.5, 0.25 loq, bogistic 10110 71=2=3}
FastCB 1000, 700, 400, 100, 50, 10 0.5, 0.25 - - Oogistic 1011071273}
AdaCB 1000, 700, 400, 100, 50, 10 0.5, 0.25  10{~H=2-3} loq, bogistic 101107 1=2=3}
RegCB - - 1001230 loqs logistic 10110 ~1=2=3}
OPO-CMAB  10{~1=% - 100, 10, 1, 0.2, 0.1, 0.01  fug, fiogistic 1010717275}
Table 1: All tebted hyperparameter values per algorithm.
Dataset Supervised SquareCB FastCB AdaCB RegCB OPOCMAB
1006 Liogistic, r: 10 p: 0.5, 4 10, p: 0.25, 7o 50, p: 0.5, 7o 100, cp: 0.001, lgq, Ir: 1 7: 100, v 1, Logistics
Logistic, Ir: 10 Liogistic, Ir: 10 co: 0.001, Aogistic, lr: Ir: 0.1
0.01
1012 Llogistic, Ir: 1 pr 0.5, v 50, pr 0.5, y0: 1000, p: 0.5, y0: 50, co: coi 0.1, liogistic, Ir: 7 1, 42 0.01, £yq, Ir
Logistic, I 0. Oogistic, Ir: 0.001 0.01, Llogistic; Ir: 0.1 0.1 0.1
1015 Llogistic, Ir: 0.1 P R 1000, p: 0.25, v 100, p: 0.5, yo: 100, co: co: 0.001, lyq, Ir: 1 7: 100, y: 0.1, lyq, Ir:
Lsq, 12 10 Liogistic, Ir: 0.1 0.1, liogistic, Ir: 0.1 0.1
1062 Liogistic, 112 1 pr 025, y: 10, pr 0.25, yp: 400, p: 0.5, y9: 100, co:  co: 0.001, liogistic, Ir: 7z 100, 72 0.01, £yq,
Liogistic, Ir: 1 Liogistic, Ir: 0.1 0.01, bogistic, Ir: 0.1 0.01 Ir: 1
1073 Oogistie It: 0.0 pr 025, ~o: 10, p: 0.5, 79: 10, p: 0.25, 7o: 1000, co:  co: 0.001, leg, Ir: 10 1z 1,41 0.01, Lrogistics
Llogistic, It 1 Llogistic; 112 10 0.1, Qogistic, 1r: 0.001 Ir: 1
1084 Liogistic, Ir: 0.001 p: 0.5, y0: 100, Lyq, p: 0.5, 79 10, p: 0.5, 70: 50, co: co: 0.1, logistic, Ir: 7z 10, 4 0.01,
Ir: 0.1 Liogistic, 1r: 0.001 0.1, liogistic, Ir: 0.1 0.001 liogistic, Ir: 0.001
339 logistic, Ir: 1 p: 0.5, y0: 700, Lyq, p: 0.5, 40: 700, p: 0.5, y9: 100, co:  co: 0.1, logistic, Ir: 7z 100, : 0.01, £y,
Ir: 0.001 Dogistic, Iz 10 0.1, fogistic, Ir: 0.01 10 Ir: 10
346 Llogistic, 12 1 p: 0.5, 40: 1000, p: 0.5, y: 1000, p: 0.5, y0: 50, co: co: 0.01, logistic, Ir: 72 10, 72 1, Logistic,
Oogistics Ir: 0.001 ogistics Ir: 0.001 0.1, fiogistic, Ir: 0.001  0.001 Ir: 10
457 Liogistic, Ir: 1 pr 0.5, 70: 100, p: 0.25, y: 700, p: 0.5, v0: 1000, co: 0.1, lyq, Ir: 10 n: 100, ~: 0.1,
Liogistice, 1 0.01 Oogistic, Ir: 0.001 co: 0.01, bogistie, Ir: iogistics Ir: 10
0.001
476 Llogistic, Ir: 0.1 p: 0.5, y: 700, by, p: 0.25, 70 100, p: 0.25, y9: 10, co:  co: 0.001, Leq, lr: 0.1 5z 100, v: 0.01, lyq,
2 0.1 flomm, Ir: 0.1 0.001, liogistic, Ir: 1 Ir: 10
729 Liogistic, Ir: 0.001 1000, 0.5, v: 1000, p:  0.25, 750: 10, co: 0.1, lyq, Ir: 0.001  7: 0.1, 4: 0.1, lyq, Ir
élu",,m, Ir: 0.01 co: 0.01, Cogistie, Ir: 1
0.001
785 Llogistic, Ir: 0.1 p: 0.5, 90: 10, bog, Ir: p: 0.5, 749 10, p: 0.5, q0: 700, co: 0.01, byq, Ir: 0.1 72 1, 2 1, Logistic, I
0.1 Liogistic, Ir: 0.1 co: 0.001, logistic, Ir: 10
0.001
835 [ p: 0.5, yo: 400, L, p: 0.5, 7o: 1000, p: 0.5, v: 1000, co:  co: 0.01, Liogistic, Ir: 7z 100, vz 1, beg, Ir:
Ir: 0.001 Dogistic, It 0.01 0.001, fogistic, Ir: 1 1 1
848 Liogistic, Ir: 0.001 p: 0.5, A0 700, p: 0.5, q0: 700, p: 0.5, y9: 700, co:  co: 0.1, Logistic, Ir: T 72 100, 2 0.01, £yq,
Liogistic, Ir: 0.1 Liogistic, Ir: 0.1 0.1, liogistic, Ir: 0.01 Ir: 0.01
874 Llogistic, Ir: 1 pr 0.5, 70: 400, p: 0.5, 40: 1000, p: 0.5, y0: 10, co: co: 0.1, byg, Ir: 1 n: 1, 40 0.1, Lyg, Ir:
tie, I 0.01 Oogistic, Ir: 0.001 0.01, Llogistic, Ir: 10 1
905 Oogistic, Ir: 10 : R Y: 700, p: 0.5, q0: 700, p: 0.25, yp: 700, cp: 0.01, byg, Ir: 10 7: 100, v: 1, lyg, lr:
flomuc, Ir: 0.1 logistic, Ir: 0.1 co: 0.001, logistic, I 1
0.001
928 Llogistic, 11 1 pr 025, ~: 50, pr 0.25, v 700, p: 0.25, yo: 10, co: 0.1, logistic, = n: 0.1, 4 0.1,
Logistic, It 0.01 Oogistic, Ir: 0.001 co: 0.01, biogistic, Ir: 0.001 iogistie; Ir: 1
0.001
964 Liogistic, Ir: 0.001 p: 0.25, v0: 100, Lyq, p: 0.5, 70: 700, 0.5, 7o: 50,

Ir: 0.01

Liogistic, Ir: 0.01

co: 0.01, liogistic, I
0.001

co: 0.001, logistic, Ir
0.01

7: 0.1, 9: 0.1, £yg, Ir
10

Table 2: Best hyperparameter configurations per algorithm and dataset.

C.4 Experiments and Results

Experimental setup and results.

For each algorithm and dataset, we run the best

hyperparameter configuration (as found in our tuning) on 10 random permutations of the
dataset. The results are summarized in the following tables and plots.
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First, we average the PV-loss at each time step across permutations to measure the average
performance of each algorithm as a function of the number of observed examples. In Figures|Ta
to[Ld we show the averaged PV-loss curves as well as the Std on three representative datasets,
chosen because in them the supervised baseline converges to a significantly better-than-
random-policy final PV-loss.

Figure [2] presents a table summarizing, for each dataset, the difference in final average across
permutations PV-loss between each algorithm and the supervised baseline. The algorithm
with the best mean difference relative to the supervised baseline is highlighted. Negative
numbers indicate the algorithm outperforms supervised; positive numbers show how close it
comes to the supervised baseline.

Figure 3| reports the p-values for each dataset and pair of algorithms, computed using the
mean final PV-loss over the 10 permutations of each dataset. Following [I9], we use the
symmetric error function for the p-values calculation, so the result for algorithms (a, b) is
the same as for (b, a). Statistical significance is indicated for p < 0.05.

Discussion. Figure [2| shows that across all datasets, FastCB is closest to (and sometimes
outperforms) the supervised baseline in 6 out of 18 datasets, followed by AdaCB (5/18), and
our OPO-CMAB (4/18). RegCB and SquareCB lag behind, with 2 and 1 datasets out of the 18,
respectively. As in most datasets the difference between the different algorithms are small,
there is no clear evidence that one algorithm significantly outperform others.

Figure [3| shows a similar trend; except for dataset 1084, statistically significant wins are rare
or nonexistent.

Overall, Figures [2] and [3] support the hypothesis that all algorithms perform comparably
considering those datasets, with no statistically significant evidence that any one algorithm
consistently outperforms the others.

Mean Differences from Supervised

Dataset AdacB FastCB OPOCMAB RegCB SquareCB

1006_2 0.179730 0.107432 0.143243 0.106081 0.114865

1012 2 0.020103 0.026804 0.037114 0.039175 0.029381

10152 -0.011111 -0.001389 0.033333 0.002778 0.016667

1062_2.0 0.002778 0.022222 0.011111 0.047222 0.061111

1073_2.0 0.002555 -0.086496 -0.048540 -0.081752 -0.063504

10843 0.248637 0.035909 0.010000 0.011364 0.137728

3393 0.158333 0.091666 0.125000 0.094444 0.127778

3462 0.020000 0.066000 0.044000 0.028000 0.054000

4574 0.162963 0.085185 0.051852 0.125926 0.100000

4762 0.050000 0.062000 0.082000 0.084000 0.064000

729 2 0.138636 0.004546 0.022727 0.086364 0.011364

7852 0.008889 0.026667 0.006667 0.033333 0.031111

8352 0.272917 0.260417 0.237500 0.233333 0.214583

8482 0.084210 0.081579 0.152632 0.028947 0.081579

8742 0.188000 0.106000 0.150000 0.130000 0.110000

905_2 0.100000 0.038462 0.076923 0.071795 0.038462

9282 0.152174 0.171739 0.136956 0.169565 0.182609

9642 0.094444 0.027778 0.100000 0.066667 0.127778

[ Winner (Best Performance)

Figure 2: Mean Difference from Supervised baseline.

C.5 Resources and Computation

Assets. We used the following assets to conduct our experiments.

The code for the Vowpal Wabbit library, which is publicly available at fhttps://
vowpalwabbit.org/| includes implementations of all tested CMAB algorithms, with the
exception of FastCB.

The implementation of FastCB, as well as the full experimental setup and evaluation code,
were obtained from the source code accompanying [19], which is publically available at
https://openreview.net/forum?id=3qYgdGjoSvt.

Building on this foundation, we extended the codebase by adding our own implementations
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Statistical Significance: Comprehensive P-Values Matrix

02046 05902 04110 02685 05332 07339 09548 01254 07773 05712 00303 07770 00605 01119
%0 0.4157 07636 0727 04157 01779 0.6083 06564 1.0000 05957 0462 0.6083 02963 06564 03287 05957
07506 08361 08134 06795 00330 056365 09765 08828 00162 06578 05351 00547 08596 00175 00105
04178 09467 07374 0.6887 02477 03802 06354 02249 07313 06875 07386 02212 0.4613 04131 01184

BN p <0001 @M p<00l [CJp<005 [CIJp<0l [CTJpz01

Figure 3: p-values for each dataset and algorithms pair.
The p-values were computed using the mean PV-loss over the 10 permutations tested for
each dataset.

and modifications. As noted by the authors of [I9], their code builds upon the CMAB
evaluation framework developed in [§], which is also publicly available at
https://github.com/vowpalwabbit/vowpal_wabbit/.

Following previous works, we use in our experiments 18 datasets from the 515 multiclass and
multi-label classification datasets used for CMAB evaluation from the OpenML collection.
The datasets are publicly available for download at https://www.openml.org,.

We also referring to each specific dataset’s page on OpenML for additional information, in-
cluding copyright. See dataset 1015: https://www.openml.org/search?type=data&sort=
runs&id=1015&status=active, dataset 1062: https://www.openml.org/search?type=
data&sort=runs&id=1062&status=activel and dataset 1084: https://www.openml.org/
search?type=data&sort=runs&id=1084&status=active.

Computation resources. Experiments were conducted on a Linux CPU server with
approximately 250 cores, from which we used 40-100 cores only. The total compute time
required to run all the presented experiments was approximately 48 hours. The memory
required to run the tests was about 1.5 TB.
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