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Abstract

In recent years, with the rapid development of
large models, prompt tuning has shown strong
performance in cross-domain text classification.
Nevertheless, it still faces the following two is-
sues: (i) prompt tuning based methods usually
do not align the same class of labels in different
domains; and (ii) they probably focus on some
simple samples in the source domain, which
may hinder the improvement of model’s adapt-
ability. To alleviate these issues, we propose a
new method, called Two-step Prompt Tuning
with supervised Contrastive learning and fea-
ture Disentanglement (TPTCD). Specifically,
to enable the model to align the same labels in
different domains , we innovatively combine
soft prompt tuning with supervised contrastive
learning, leveraging their merits. Furthermore,
to improve the domain adaptation ability, we
propose a novel adversarial enhanced Varia-
tional Auto Encoder (VAE) for feature disen-
tanglement, which enables the model to learn
more effective features in both source and tar-
get domains. Extensive experiments based on
benchmark datasets demonstrate the compet-
itiveness of our proposed method, compared
against state-of-the-art cross-domain text clas-
sification models.

1 Introduction

With the continuous development of natural lan-
guage processing (NLP) technology (Zhang et al.,
2022), artificial intelligence applied to text has be-
come more and more mature (Li et al.; Junfan et al.,
2024). In recent years, some efficient large pre-
trained language models have emerged, such as
GPT (Radford et al., 2018), XLNET (Yang et al.,
2019), BERT (Kenton and Toutanova, 2019), and
RoBerta (Liu and Stoyanov, 2019). Text classi-
fication, as an important subtask of web content
mining and NLP, plays an indispensable role in
various aspects of our real life, such as rumor de-
tection (Malhotra and Vishwakarma, 2020), online

recommendation (Liu et al., 2019), sentiment analy-
sis (Neogi et al., 2021), spam email detection (Man-
soor et al., 2021), and so on. Aforementioned mod-
els have achieved excellent performance on these
downstream tasks. Nevertheless, they usually rely
on manually annotated data, and the distribution
and availability of labeled data are inconsistent
and vary greatly among different domains (Wu and
Guo, 2020; Blitzer et al., 2007). To alleviate this
challenge, unsupervised domain adaptation (UDA)
was proposed (Ganin and Lempitsky, 2015). A lot
of models have been developed based on UDA, in-
cluding domain adversarial training methods (Du
et al., 2020; Zou et al., 2021), pivot-based meth-
ods (Ziser and Reichart, 2018; Ben-David et al.,
2020), semantic representation based methods (Li
et al., 2022), statistical measurement minimiza-
tion based methods (Guo et al., 2020), etc. To
extract domain-invariant features (a.k.a., common
features), these methods mainly minimize the dif-
ference between source domain and target domain
in the feature space.

With the rapid development of large models in
recent years, prompt tuning based pre-trained mod-
els (Brown et al., 2020) have achieved excellent
results in the field of NLP. For example, Wu (Wu
and Shi, 2022) propose AdSPT, which shows that
soft prompt tuning performs well. Nevertheless,
these prompt tuning based methods still face two
severe challenges/issues in cross-domain text clas-
sification. First, common methods often did not
consider the consistency between samples from the
same class in different domains. In other words,
they did not fully pull the samples with the same
class closer together and push samples with dif-
ferent classes further apart, recurring misclassified
samples, as shown in Figure 1a. Second, the mod-
els may perform simple and shortcut learning in
the source domain (i.e., relying on some simple fea-
tures in the source domain), while they ignore the
domain-specific features crucial for domain adapta-
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Figure 1: Common model and model with supervised contrastive learning (SCL); two colors denote two different

domains.

tion, which will hinder the improvement of model’s
adaptation ability.

To address the above issues, this paper presents
a novel cross-domain text classification method,
called Two-step Prompt Tuning with supervised
Contrastive learning and feature Disentanglement
(TPTCD). In the first step, we adopt supervised con-
trastive learning (SCL) together with soft prompt
tuning to improve the model’s class aware ability.
That is, it can pull the samples with the same class
closer together and push samples with different
classes further apart, as shown in Figure 1b. Par-
ticularly, we use a memory bank to improve the
effectiveness of SCL, and use domain adversar-
ial training to learn domain-invariant features. In
the second step, we propose a novel adversarial
training method to further promote feature disen-
tanglement. This training method is based on an
enhanced variational auto encoder (VAE), which
can learn more effective features. This way, the
combination of these two steps fully learns class-
aware features and domain-invariant features, pro-
ducing impressive performance. To summarize,
our contributions are as follows:

* We innovatively introduce supervised con-
trastive learning to improve the existing soft
prompt tuning model, which can enhance the
model’s class-aware ability. To the best of our
knowledge, this is the first cross-domain text
classification work that combines the merits of
supervised constrastive learning and prompt
tuning.

* We propose a novel adversarial training strat-
egy based on VAE, which can better promote
feature disentanglement, learning more valu-
able features.

* We conduct extensive experiments based on
benchmark datasets, and the experimental re-

sults demonstrate that our method achieves an
extremely impressive performance, compared
against state-of-the-art methods.

2 RELATED WORK

Prompt Tuning. As shown in (Brown et al., 2020),
prompt tuning achieves better results than fine-
tuning on many downstream tasks. Some of initial
studies explore hard templates for text classifica-
tion and natural language inference (Schick and
Schiitze, 2021). However, for cross-domain text
classification, weak domain knowledge may hinder
the selection of suitable templates. Therefore, some
researchers study how to generate hard template
automatically based on different domains (Ben-
David et al., 2022). Later, researchers realize
that it is unnecessary to limit templates to human-
interpretable natural language, which may affect
the performance of the model (Qin and FEisner,
2021). With this in mind, researchers attempt to
address the limitations of hard templates. For exam-
ple, soft prompts (Vu et al., 2022; Gu et al., 2022),
P-tuning V2 (Liu et al., 2022) and prefix tuning (Li
and Liang, 2021) use several learnable vectors as
prompt words, instead of specific words. Our paper
is to enhance soft prompts tuning, so as to improve
the overall performance for cross-domain text clas-
sification.

Contrastive Learning. Contrastive learning (CL)
has achieved good results in the field of deep learn-
ing (Chen et al., 2020; Azuma et al., 2023; Junfan
et al., 2024). On the basis of contrastive learn-
ing, the supervised contrastive learning (SCL) uses
label information to optimize the representation
learning ability of the model (Khosla et al., 2020;
Luo et al., 2022). SCL considers samples with
the same label as positive pairs and samples with
different labels as negative pairs. In this paper,
we combine SCL and prompt tuning innovatively
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adversarial training.

to improve the overall classification ability of the
model.

Feature Disentanglement. Feature disentangle-
ment refers to the process of representing different
features separately in data representation. Feature
disentanglement has been used in many fields. For
example, some researchers used it to separate the
color and orientation of images (Chen et al., 2016),
to separate the content and style of text (John et al.,
2019; Pergola et al., 2021). Also, some researchers
used features disentanglement in text classification
for higher accuracy (Huang et al., 2021; Song et al.,
2024). Compared to these works, our paper pro-
poses a novel adversarial training variational auto
encoder to promote feature disentanglement, which
efficiently separates invalid features and valid ones
for accurate classification in training samples.

3 PROBLEM FORMULATION

Assuming we have labeled data from K source
domains {D$}X . For each source domain, the
labeled data is represented as S; = {20,y }jv;l
where z =
with m words in the i-th domain, y; indicates the
sentiment label of the sample, and IV} is the num-
ber of samples in this domain. On the other hand,
weuse D' and T' = {z} j-V:tl to represent the target

is an input sample

[w?, wé, Wl ]

domain and the unlabel dataset respectively, where
% = [w], w5, ..., w}] represents an unlabeled sam-
ple with n words in the target domain, N' is the
number of samples in the target domain. Specifi-
cally, the input text x; (or xg-) is initially processed
by the feature extractor My, which will produce
a representation h. Subsequently, based on the
feature representation h obtained before, the classi-
fication head f(-) is used for text classification.

4 METHOD

4.1 Overview of Our Solution

Figure 2 presents the framework of our proposed
method. It can be seen that the framework consists
of two parts. In the first step, we adopt PLM-based
soft prompt tuning for feature extraction, which
can generate feature representations for samples in
the source domain and unlabeled samples in the
target domain. Then, domain adversarial training is
performed on all sample representations to extract
domain-invariant features . Meanwhile, we per-
form supervised contrastive learning on source do-
main samples to enhance the model’s class-aware
ability. In addition, a memory bank is used to im-
prove the effectiveness of contrastive learning.

In the second step, to generate efficient feature
representations, we adopt the model M; as the



feature extractor, where M denotes the best per-
formance model trained in the first step (see the
arrow pointing to M;). Then, we use variational
auto encoder for feature disentanglement, which
separates valuable and valueless features (see the
dashed box titled VAE). Meanwhile, we propose a
novel adversarial training method on the valueless
features for facilitating deeper feature disentangle-
ment and further separating more valuable features
(see the dashed box titled VAT). In what follows,
we present the details (Sections 4.2 and 4.3).

4.2 Soft Prompt Tuning with SCL

Soft prompt tuning transforms the classification
task into a fill-in-the-blank task by adding non-
fixed prompt words to the samples (Brown et al.,
2020). A recent study (Wu and Shi, 2022) demon-
strated the effectiveness of soft prompt tuning
in cross-domain text classification. Nevertheless,
prompt tuning based methods still face challenges
(recall Section 1). To alleviate the challenges, we
attempt to combine soft prompt tuning with super-
vised contrastive learning (SCL), which can allow
us to enhance the model’s class-aware ability. The
rationale behind our idea is to pull the samples with
the same class closer together and push samples
with different classes further apart.

Formally, the input samples of both domains are
denoted as x = [wy, wa, ..., wy,], and the resulting
classification label is y which belongs to a binary
label space Y = {positive, negative}. For each
x above, we need to add soft prompt words at the
end, and the resulting prompt template function is
below:

zp = [E(w1), ..., E(wy), P1, ..., P, E(lmask])]
ey
where E(-) is the embedding layer of the pre-
trained language model My, P; (i € [1,1]) is the
soft prompt token embedding, [ denotes the number
of prompt tokens. The above template transforms
the input x into an actual prompt input x, with
prompt words and a [mask] token. Next, we input
xp, into My to get the hidden representation i € R4,

where d is the hidden layer dimension of Mj:
h = Moy(zp) 2)

Later, the classification head f(-) will generate
the probability distribution ¢ of all words of the
[mask| token based on h:

q= f(h) 3)

Given a selection function S(+), the function se-
lects the probability ¢’ corresponding to the two
label words from ¢:

¢ (y) = S(q) 4)

where the label words can be set to V €
{good, bad}, referred to (Wu and Shi, 2022). Last,
the final prediction probability p is obtained via
softmax normalization:

~exp(d(y))
P= S exn(d () ©)

For cross-domain text classification, given a
source domain dataset S; = {xj, Y; Vi i1, the bi-
nary cross entropy loss is used to optimize the fea-
ture extractor M and the classification head f(-):

N Y]

== ylgr (©

=1 k=1

cls(Su M07

We adopt domain adversarial training (Ganin
et al., 2016) to extract domain-invariant features,
which can transfer general knowledge from the
source domain to the target domain. Formally,
given K source domains, we use a binary classifier
to distinguish data from different domains, denoted
as fy. And the domain label set is represented as
D = {0, 1}. Intuitively, domain discriminator f;
should be optimized to maximumly discriminate
instances from different domains, while the shared
feature extractor My should be optimized to max-
imumly fool the discriminator. Specifically, the
adversarial learning loss is below:

N;+N? |D]
- > Zydlogfd (R%)
j=1 k=1

(N
where N; and N is the number of samples in the
source domain S; and target domain 7" respectively,
14 1s the domain label corresponding to the sample,
and h; is the hidden representation of the sample
obtained by the feature extractor. As shown above,
domain adversarial training is a minimax game,
which can be expressed as:

adv(Sl7 T M07 fd

mazx min L%y (Si, T; My, fq) 3)
Mo fa

To improve the model’s class-aware ability,
we introduce supervised contrastive learning
(SCL) (He et al., 2020) into our framework. SCL



can help us pull representations of the same class
together and exclude representations of different
classes. This not only improves the class-awareness
of the model, but also enables the model to learn
a more uniform distribution of each class, thereby
enhancing the discriminative power of the hidden
representation. Typically, SCL uses samples with
the same label in the same batch as positive exam-
ples and samples with different labels as negative
examples.

In addition, since contrastive learning is ex-
tremely sensitive to the number of contrast samples,
the learning effect is not good when the number is
small. To obtain better results, we use a memory
bank () to increase the number of contrastive sam-
ples in each batch during training. The memory
bank () stores the sentence representations i and
their corresponding labels y (for the computation in
each batch). Particularly, the number of contrastive
samples is the sum of samples in current batch and

samples in the memory bank.

Since SCL requires samples to be labeled, we
only perform it on source domain samples. The
contrast loss can be formulated as:

1 exp(h; - hp/t)
Lset = —— lo
Ny Z Z &) ZhneN(z’) exp(h; - hn/t)

h;€B hyeP(i)
)

where B refers to a batch of samples with size
Ny, h; is the sample of the current batch, h, and
h,, are the positive samples and negative samples
belonging to the positive example set P(7) and the
negative example set N (i), respectively. Finlay,
we get the joint loss function L; of the first step,
in which three losses mentioned before are used to
optimize the model together:

Ly = Lgs + L%y, + Leq (10)

4.3 Adversarial Enhanced VAE

To avoid shortcut learning and learn more effective
features, we adopt the best checkpoint of the model
in the first step as the feature extractor, and employ
the variational auto encoder (VAE) (Kingma and
DP, 2014) for feature disentanglement, which can
allow us to differentiate effective and ineffective
features from the potential feature space. Further-
more, a novel variance adversarial training (VAT)
is used to enhance VAE-based feature disentangle-
ment, so as to further improve the model’s perfor-
mance.

For the hidden feature representation h (obtained
by the feature extractor) and a probabilistic latent
variable z, two steps are performed in VAE: (1)

encoding h using z, and (2) decoding h from z,
where z follows a Gaussian distribution N (0, 1).
For each z, there are two functions i and o, which
respectively determine the mean and variance of the
Gaussian distribution corresponding to z. Then the
accumulation of all Gaussian distributions in the
integral domain becomes the original distribution
P(h), namely using infinite Gaussian to approxi-
mate the true distribution:

P(h) = /P(h|z)P(z) = an
where P(z) is the prior distribution that follows
N(0,1). It is difficult to compute P(h), but we
can apply variational inference to estimate this
value. Intuitively, we want to approximate the pos-
terior distribution P(z|h) with a simpler distribu-
tion Q(z|h). If we can determine the parameters of
Q(z|h) and ensure that it is very similar to P(z|h),
then we can sometimes use @Q(z|h) for approxi-
mate reasoning. As we know, K L divergence is
a measure of the difference between two probabil-
ity distributions. Therefore, if we want to ensure
that Q(z|h) is similar to P(z|h), we can minimize
the K L divergence between the two distributions,
so the VAE loss according to the evidence lower
bound (ELBO) is formulated as follows:

Lyge = _EQ(z|h) IOgP(h‘Z)—FKL(Q(Z‘h”‘P(Z))
(12)
where the first term represents the likelihood we
reconstruct, and the second term ensures the sim-
ilarity between the distribution ) (we learn) and
the true prior distribution P. Here, Q(z|h) can
be expressed as N (u,diag(c?)), where p is the
mean and o2 is the variance. According to (Fo-
topoulos, 2006; Song et al., 2024), u and o? are
independent of each other and can be modeled by
two independent linear transformations, so we use
them to represent effective features and ineffective
features, respectively. As shown in Figure 2, in
order to make the encoder learn the knowledge in
the target domain, we apply VAE loss on each un-
labeled sample in the target domain. Formally, u
and o2 can be represented as 2z, and z,. Further,
they can be represented in more detail as z;; and
z5 in the source domain, z/, and z} in the target
domain, respectively. Here 2, is the final feature
representation used for classification.
To further improve the performance of the model,
we propose a novel adversarial method to enhance
VAE, which allows us to extract more effective



classification features. For clarity, we call it the
variance adversarial training (VAT). We know that
2, (i.e., 02) is ineffective feature (recall the previ-
ous paragraph), usually its classification effect is
poor. So there is an intuition that, the worse the
classification effect of z,, the better the classifica-
tion effect of z,, (due to the existence of VAE loss).
This case just means that the feature disentangle-
ment is more thorough.

In order to achieve the above purpose, we first
pass z, via the gradient reversal layer and then
input it into a binary classifier f,, as shown in
Figure 2. The loss is as follows:

N Y]
L34o(Si; M1,V fo) = =Y ) ylog ful(25)
11

(13)
where the notations (e.g., N;) denote the same
meanings presented earlier (e.g., IV; is the number
of samples in the source domain). The adversarial
training can be expressed as:

max min L., (Si; M1,V fy)

adv

(14)
1, v

where S; is the source domain dataset, M; is the
feature extractor, V' is the VAE layer (encoder and
decoder), f, is the binary classifier. Under VAT,
if the classification effect of f, is better, then the
actual classification effect of 2> obtained by M,
and V' will be worse.

For z;,, we also use the classification head f(:)
to predict it. The classification loss is the same as
that in the first step. That is:

N; Y]
Lcls(Si§ My, f, V) = - Z Z ylog f(ZfL)
15)
Finally, we get the joint loss function of the sec-
ond step:
Ly = Lys + Lyae + L,

adv

(16)

where these losses further optimize the model
trained by the first step, and finally achieve an ef-
fective cross-domain text classification model.

5 EXPERIMENTS

5.1 Experimental Settings

Datasets. We adopt two public datasets to conduct
experiments: the Amazon Reviews Dataset (Blitzer
et al., 2007) and the FDU-MTL Dataset (Liu et al.,

2017). The Amazon dataset is a classic public
dataset which contains four domains: Books (B),
DVDs (D), Electronics (E), and Kitchen (K). The
FDU-MTL dataset consists of 16 domains, the first
14 domains are Amazon reviews of different prod-
ucts, and the remaining two domains are movie
reviews from IMDB and MR datasets.
Implementation Details. In our experiments, the
feature extractor used in the first step is the offi-
cial pre-trained RoBERTa-base (Liu and Stoyanov,
2019) provided by Huggingface. The hidden layer
size of Roberta is 768, and the max sequence length
is 512. We set the batch size and memory bank size
to 8 and 128 respectively. Adam (Kingma and Ba,
2015) is used as the optimizer, the learning rate of
the optimization of the classification head f(-) is
le-5; the learning rate of the optimization of the
domain classifier f; (or variance classifier f,) is
Se-5. We train the model for 10 epochs at each step.
Following previous work (Wu and Shi, 2022), the
accuracy will be adopted as the evaluation criterion
in this paper. All of our experiments are performed
with Pytorch and HuggingFace Transformers on an
NVIDIA GeForce RTX 4090 24 GB GPU.

5.2 Baselines

We compare our proposed model with state-of-
the-art cross-domain classification methods, which
are as follows: DACL, DAAT, SENTIX, EADA,
DASK, COBE, UDALM, AdSPT, RCA, TACIT,
PL-Mix.

5.3 Results on Amazon Dataset

In the single-source domain setting, the experimen-
tal results on the Amazon dataset are shown in Ta-
ble 1. Overall, our model achieves state-of-the-art
performance with an average accuracy of 94.18%
across 12 cross-domain tasks. Also, we can see that
our method achieves the best results on 8 (out of 12)
single-source domain tasks, compared with other
competitive methods. On the "E—K" and "K—B"
tasks, although our method do not reach the highest
accuracy, it is still very close to the highest value
(0.01% lower). The average accuracy value of our
model is 1.04% higher than the AdSPT (93.14%)
and 0.52% higher than PL-Mix (93.66%). These
results reveal that, in cross-domain text classifica-
tion, pulling representations of different domains
with the same labels together and using adversar-
ial enhanced VAE can help soft prompt tuning to
achieve a more excellent performance. In addition,
we can see that the accuracy of the "E—D" and



Table 1: Accuracy of single-domain adaptation on Amazon Dataset.

S—T | DAAT EADA DASK SENTIX COBE UDALM AdSPT TACIT PL-Mix | Ours
B—D| 8.70 88.10 9090 91.15 90.05 92.18 9247 9265 93.38 | 93.87
B—E | 8.57 8525 9230 9250 9045 93.55 93.79 93.81 93.84 | 94.36
B—K| 9075 8120 92.75 95.70  92.90 95.32 9496 95.03 9532 | 95.82
D—B| 90.86 86.05 91.85 90.85 90.98 93.34 9321 9357 9456 | 94.74
D—E| 8930 8535 9240 92.15 90.67 93.60 93.84 93.16 94.12 | 94.52
D—K | 8.53 80.35 9235 94.95 92.00 93.21 95.16 9440 9553 |95.90
E—B | 891 8935 90.00 8810 87.90 91.80 91.32 92770 9231 | 92.92
E—D| 90.13 87.15 89.20 89.86 87.87 93.38 90.58 92.06 90.93 | 92.00
E—K | 93.18 8511 94.65 95.45 93.33 94.85 95.01 95.87 9536 | 95.86
K—B| 8798 89.65 89.75 87.00  88.38 92.74 91.84 93.06 93.18 |93.17
K—D| 8881 89.20 8945 88.05 87.43 92.33 90.76 9197 90.68 | 91.88
K—E| 91.72 9050 93.35 91.85 92.58 93.56 9424 9457 94.69 | 95.09

Avg. | 89.87 8644 91.58 91.47  90.38 93.32 93.10 93.57 93.66 | 94.18

"K—D" tasks are relatively low, which may be due
to the small similarity between these domains (e.g.,
HKH and llD'l)'

EAAJSPT EHCOBE EZIPL-Mix EOurs
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Figure 3: Accuracy of multi-source domain adaptation
on Amazon dataset.

We also compare our method to other ones in
multi-source domain setting, treating one domain
as the target domain and the other three domains
as one large source domain. Experimental results
of multi-source domain adaptation on Amazon
datasets are shown in Figure 3. It can be seen
that our method achieves the best results on three
tasks, only slightly lower than the other two meth-
ods on "BEK—D" task. Moreover, our method still
achieves the best overall results with the average
accuracy of 94.77% compared to the other three
competitors, which further verifies the effective-
ness of our proposed method. As for our results,
we find the accuracy has increased by 0.59% com-
pared to our single source domain experimental
results. This is consistent with the common phe-
nomenon. The underlying reason could be that,
when the tasks are similar, adding the number of
source domains will improve the performance of

the target domain, due to the existence of common-
alities among these domains.

5.4 Results on FDU-MTL Dataset

We conduct "15—1" multi-source domain experi-
ment on FDU-MTL dataset, totaling 16 tasks. The
experimental results are shown in Table 2. We
can see that our method achieves state-of-the-art
performance with an accuracy of 93.81% on av-
erage, eclipsing the performance of these base-
lines. Impressively, our model achieves the best
results on 14 (out of 16) tasks, only slightly lower
than RCA on the domain of camera and magazines.
Our average accuracy is 4.71% higher than DACL,
3.78% higher than COBE, 1.61% higher of AdSPT,
and 3.61% higher than that of RCA. These results
again validate the competitiveness of our proposed
method.

In addition, we find that there is a significant gap
in the result of MR compared to other domains,
which is 6.41% lower than the average accuracy.
This could be due to the excessively long sentences
and the smaller feature similarity between MR and
other domains. Meanwhile, we find that the aver-
age accuracy on FUD-MTL dataset (i.e., 93.81%)
is 0.96% lower than that of multi-source domain
tasks on Amazon dataset (i.e., 94.77%). This could
be due to that the addition of MR and IMDB has
led to a decrease in overall similarity among these
domains. This phenomenon may imply that the
similarity among domains could be a more impor-
tant factor which can affect model performance,
compared to the number of source domains.



Table 2: Accuracy of multi-source domain adaptation
on FDU-MTL.

Table 3: Accuracy of ablation experiment on Amazon
dataset.

Target | DACL COBE AdSPT RCA Ours S—T | -SCL -VAE |AdSPT PLMix Ours
books | 87.50 90.67 94.23 89.20 96.97 B—D | 92.73 93.67 | 92.47 93.38 93.87
dvd 90.67 87.50 90.58 90.40 91.64 B—E | 94.04 94.58 | 93.79 93.84 94.36
elec. | 90.30 92.33 93.08 87.60 95.14 B—K | 95.04 95.57 | 9496 95.32 95.82
kit. 91.50 90.75 94.28 92.50 95.81 D—B | 94.19 94.54 | 93.21 94.56 94.74
appa. | 89.50 91.16 92.31 88.60 94.66 D—E | 9437 94.54 | 93.84 94.12 94.52
baby | 92.00 93.17 9495 92.70 95.33 D—K | 9536 95.66 | 95.16 95.53 95.90
camera | 91.50 91.67 92.07 95.80 93.70 E—B | 9254 92.68 | 91.32 9231 92.92
health | 90.50 94.33 95.14 90.70 96.92 E—D | 90.88 91.55 | 90.58 90.93 92.00
IMDB | 87.30 86.58 91.35 89.50 92.36 E—K | 9545 9573 | 95.01 95.36 95.86
maga | 93.80 90.50 91.78 95.40 93.99 K—B | 9226 92.67 | 91.84 93.18 93.17
MR 76.00 78.91 85.77 78.30 87.40 K—D | 90.85 91.43 | 90.76 90.68 91.88
music | 86.30 89.17 91.11 87.70 92.93 K—E | 9453 9490 | 94.24 94.69 95.09
softw. | 90.50 90.82 93.61 92.90 95.19 Ave. | 9352 93.96 | 93.10 93.66 94.18
sports | 89.30 92.15 93.03 89.70 93.65
toys 91.30 92.33 92.84 9240 94.52
video | 88.50 88.50 89.04 90.00 90.72 indicating that our method has transferred source
Avg. 80.10 90.03 9220 9020 93.81 domain knowledge to the target domain, and can

5.5 Ablation Study

To verify the contributions of each module to the
overall performance of our method, we conduct
corresponding ablation experiments on Amazon
dataset. Experimental results of ablation study are
shown in Table 3, where -SCL represents not using
supervised contrastive learning in the first step, and
-VAE represents removing the entire second step.
From this table, it can be seen that the performance
of our model has decreased in both cases, with
average accuracy of 93.52% (-0.66%) and 93.96%
(-0.22%) respectively. Meanwhile, in almost all
tasks, the accuracy of our method decreases after
removing a certain module. These indicate that
each module has made a positive contribution to
our model for cross-domain text classification.

5.6 Visualization

To analyze the impact of our method on data dis-
tribution alignment, we adopt t-SNE to map the
high-dimensional feature representations (trained
by the model) to low dimensions for feature visu-
alization, and results are shown in Figure 4. From
the figure, we can see that before training, both neg-
ative and positive features are mixed together and
arranged in a scattered manner, with feature points
spread throughout the entire space. The feature rep-
resentation trained by our method is significantly
more compact, with clear classification boundary,

align features of the same class well.

® neg. pos.

Figure 4: Feature visualization conducted on the Ama-
zon dataset. The visualization is shown under "D—K"
task, with untrained features and trained features

6 CONCLUSION

In this paper, we proposed a two-step framework
for cross-domain text classification. In the first step,
we innovatively introduced supervised contrastive
learning to improve the existing soft prompt tuning
model, which can enhance the model’s class-aware
ability. In the second step, we proposed a novel
adversarial enhanced VAE to achieve deep feature
disentanglement, which enables the model to learn
more valuable features. We compared our method
with a set of state-of-the-art cross-domain text clas-
sification models, based on two public datasets (the
Amazon dataset and the FDU-MTL dataset). The
experimental results consistently revealed that our
method achieved a better performance compared
against the competitors in both single-domain set-
ting and multi-domain setting.



Limitations

At present, large models have become a popular
research tool, but our method lacks application to
large models. Using large models may bring better
results. In addition, we have not yet considered the
issue of class imbalance in the dataset, which may
affect the performance of the model. These two
points will also be the focus of our future research.
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