
TPTCD: A Prompt Tuning based Two-Step Framework for Cross-Domain
Text Classification

Anonymous ACL submission

Abstract001

In recent years, with the rapid development of002
large models, prompt tuning has shown strong003
performance in cross-domain text classification.004
Nevertheless, it still faces the following two is-005
sues: (i) prompt tuning based methods usually006
do not align the same class of labels in different007
domains; and (ii) they probably focus on some008
simple samples in the source domain, which009
may hinder the improvement of model’s adapt-010
ability. To alleviate these issues, we propose a011
new method, called Two-step Prompt Tuning012
with supervised Contrastive learning and fea-013
ture Disentanglement (TPTCD). Specifically,014
to enable the model to align the same labels in015
different domains , we innovatively combine016
soft prompt tuning with supervised contrastive017
learning, leveraging their merits. Furthermore,018
to improve the domain adaptation ability, we019
propose a novel adversarial enhanced Varia-020
tional Auto Encoder (VAE) for feature disen-021
tanglement, which enables the model to learn022
more effective features in both source and tar-023
get domains. Extensive experiments based on024
benchmark datasets demonstrate the compet-025
itiveness of our proposed method, compared026
against state-of-the-art cross-domain text clas-027
sification models.028

1 Introduction029

With the continuous development of natural lan-030

guage processing (NLP) technology (Zhang et al.,031

2022), artificial intelligence applied to text has be-032

come more and more mature (Li et al.; Junfan et al.,033

2024). In recent years, some efficient large pre-034

trained language models have emerged, such as035

GPT (Radford et al., 2018), XLNET (Yang et al.,036

2019), BERT (Kenton and Toutanova, 2019), and037

RoBerta (Liu and Stoyanov, 2019). Text classi-038

fication, as an important subtask of web content039

mining and NLP, plays an indispensable role in040

various aspects of our real life, such as rumor de-041

tection (Malhotra and Vishwakarma, 2020), online042

recommendation (Liu et al., 2019), sentiment analy- 043

sis (Neogi et al., 2021), spam email detection (Man- 044

soor et al., 2021), and so on. Aforementioned mod- 045

els have achieved excellent performance on these 046

downstream tasks. Nevertheless, they usually rely 047

on manually annotated data, and the distribution 048

and availability of labeled data are inconsistent 049

and vary greatly among different domains (Wu and 050

Guo, 2020; Blitzer et al., 2007). To alleviate this 051

challenge, unsupervised domain adaptation (UDA) 052

was proposed (Ganin and Lempitsky, 2015). A lot 053

of models have been developed based on UDA, in- 054

cluding domain adversarial training methods (Du 055

et al., 2020; Zou et al., 2021), pivot-based meth- 056

ods (Ziser and Reichart, 2018; Ben-David et al., 057

2020), semantic representation based methods (Li 058

et al., 2022), statistical measurement minimiza- 059

tion based methods (Guo et al., 2020), etc. To 060

extract domain-invariant features (a.k.a., common 061

features), these methods mainly minimize the dif- 062

ference between source domain and target domain 063

in the feature space. 064

With the rapid development of large models in 065

recent years, prompt tuning based pre-trained mod- 066

els (Brown et al., 2020) have achieved excellent 067

results in the field of NLP. For example, Wu (Wu 068

and Shi, 2022) propose AdSPT, which shows that 069

soft prompt tuning performs well. Nevertheless, 070

these prompt tuning based methods still face two 071

severe challenges/issues in cross-domain text clas- 072

sification. First, common methods often did not 073

consider the consistency between samples from the 074

same class in different domains. In other words, 075

they did not fully pull the samples with the same 076

class closer together and push samples with dif- 077

ferent classes further apart, recurring misclassified 078

samples, as shown in Figure 1a. Second, the mod- 079

els may perform simple and shortcut learning in 080

the source domain (i.e., relying on some simple fea- 081

tures in the source domain), while they ignore the 082

domain-specific features crucial for domain adapta- 083
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(a) common model (b) model with SCL

Figure 1: Common model and model with supervised contrastive learning (SCL); two colors denote two different
domains.

tion, which will hinder the improvement of model’s084

adaptation ability.085

To address the above issues, this paper presents086

a novel cross-domain text classification method,087

called Two-step Prompt Tuning with supervised088

Contrastive learning and feature Disentanglement089

(TPTCD). In the first step, we adopt supervised con-090

trastive learning (SCL) together with soft prompt091

tuning to improve the model’s class aware ability.092

That is, it can pull the samples with the same class093

closer together and push samples with different094

classes further apart, as shown in Figure 1b. Par-095

ticularly, we use a memory bank to improve the096

effectiveness of SCL, and use domain adversar-097

ial training to learn domain-invariant features. In098

the second step, we propose a novel adversarial099

training method to further promote feature disen-100

tanglement. This training method is based on an101

enhanced variational auto encoder (VAE), which102

can learn more effective features. This way, the103

combination of these two steps fully learns class-104

aware features and domain-invariant features, pro-105

ducing impressive performance. To summarize,106

our contributions are as follows:107

• We innovatively introduce supervised con-108

trastive learning to improve the existing soft109

prompt tuning model, which can enhance the110

model’s class-aware ability. To the best of our111

knowledge, this is the first cross-domain text112

classification work that combines the merits of113

supervised constrastive learning and prompt114

tuning.115

• We propose a novel adversarial training strat-116

egy based on VAE, which can better promote117

feature disentanglement, learning more valu-118

able features.119

• We conduct extensive experiments based on120

benchmark datasets, and the experimental re-121

sults demonstrate that our method achieves an 122

extremely impressive performance, compared 123

against state-of-the-art methods. 124

2 RELATED WORK 125

Prompt Tuning. As shown in (Brown et al., 2020), 126

prompt tuning achieves better results than fine- 127

tuning on many downstream tasks. Some of initial 128

studies explore hard templates for text classifica- 129

tion and natural language inference (Schick and 130

Schütze, 2021). However, for cross-domain text 131

classification, weak domain knowledge may hinder 132

the selection of suitable templates. Therefore, some 133

researchers study how to generate hard template 134

automatically based on different domains (Ben- 135

David et al., 2022). Later, researchers realize 136

that it is unnecessary to limit templates to human- 137

interpretable natural language, which may affect 138

the performance of the model (Qin and Eisner, 139

2021). With this in mind, researchers attempt to 140

address the limitations of hard templates. For exam- 141

ple, soft prompts (Vu et al., 2022; Gu et al., 2022), 142

P-tuning V2 (Liu et al., 2022) and prefix tuning (Li 143

and Liang, 2021) use several learnable vectors as 144

prompt words, instead of specific words. Our paper 145

is to enhance soft prompts tuning, so as to improve 146

the overall performance for cross-domain text clas- 147

sification. 148

Contrastive Learning. Contrastive learning (CL) 149

has achieved good results in the field of deep learn- 150

ing (Chen et al., 2020; Azuma et al., 2023; Junfan 151

et al., 2024). On the basis of contrastive learn- 152

ing, the supervised contrastive learning (SCL) uses 153

label information to optimize the representation 154

learning ability of the model (Khosla et al., 2020; 155

Luo et al., 2022). SCL considers samples with 156

the same label as positive pairs and samples with 157

different labels as negative pairs. In this paper, 158

we combine SCL and prompt tuning innovatively 159
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Figure 2: Framework of our model. Here E means the embedding layer; M0 and M1 mean feature extractors;
SCL means supervised contrastive learning; DAT means domain adversarial training; and VAT means variance
adversarial training.

to improve the overall classification ability of the160

model.161

Feature Disentanglement. Feature disentangle-162

ment refers to the process of representing different163

features separately in data representation. Feature164

disentanglement has been used in many fields. For165

example, some researchers used it to separate the166

color and orientation of images (Chen et al., 2016),167

to separate the content and style of text (John et al.,168

2019; Pergola et al., 2021). Also, some researchers169

used features disentanglement in text classification170

for higher accuracy (Huang et al., 2021; Song et al.,171

2024). Compared to these works, our paper pro-172

poses a novel adversarial training variational auto173

encoder to promote feature disentanglement, which174

efficiently separates invalid features and valid ones175

for accurate classification in training samples.176

3 PROBLEM FORMULATION177

Assuming we have labeled data from K source178

domains {Ds
i }Ki=1. For each source domain, the179

labeled data is represented as Si = {xij , yij}
Ni
j=1,180

where xij = [wi
1, w

i
2, ..., w

i
m] is an input sample181

with m words in the i-th domain, yij indicates the182

sentiment label of the sample, and N s
i is the num-183

ber of samples in this domain. On the other hand,184

we use Dt and T = {xtj}N
t

j=1 to represent the target185

domain and the unlabel dataset respectively, where 186

xtj = [wt
1, w

t
2, ..., w

t
n] represents an unlabeled sam- 187

ple with n words in the target domain, N t is the 188

number of samples in the target domain. Specifi- 189

cally, the input text xij (or xtj) is initially processed 190

by the feature extractor M0, which will produce 191

a representation h. Subsequently, based on the 192

feature representation h obtained before, the classi- 193

fication head f(·) is used for text classification. 194

4 METHOD 195

4.1 Overview of Our Solution 196

Figure 2 presents the framework of our proposed 197

method. It can be seen that the framework consists 198

of two parts. In the first step, we adopt PLM-based 199

soft prompt tuning for feature extraction, which 200

can generate feature representations for samples in 201

the source domain and unlabeled samples in the 202

target domain. Then, domain adversarial training is 203

performed on all sample representations to extract 204

domain-invariant features . Meanwhile, we per- 205

form supervised contrastive learning on source do- 206

main samples to enhance the model’s class-aware 207

ability. In addition, a memory bank is used to im- 208

prove the effectiveness of contrastive learning. 209

In the second step, to generate efficient feature 210

representations, we adopt the model M1 as the 211
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feature extractor, where M1 denotes the best per-212

formance model trained in the first step (see the213

arrow pointing to M1). Then, we use variational214

auto encoder for feature disentanglement, which215

separates valuable and valueless features (see the216

dashed box titled VAE). Meanwhile, we propose a217

novel adversarial training method on the valueless218

features for facilitating deeper feature disentangle-219

ment and further separating more valuable features220

(see the dashed box titled VAT). In what follows,221

we present the details (Sections 4.2 and 4.3).222

4.2 Soft Prompt Tuning with SCL223

Soft prompt tuning transforms the classification224

task into a fill-in-the-blank task by adding non-225

fixed prompt words to the samples (Brown et al.,226

2020). A recent study (Wu and Shi, 2022) demon-227

strated the effectiveness of soft prompt tuning228

in cross-domain text classification. Nevertheless,229

prompt tuning based methods still face challenges230

(recall Section 1). To alleviate the challenges, we231

attempt to combine soft prompt tuning with super-232

vised contrastive learning (SCL), which can allow233

us to enhance the model’s class-aware ability. The234

rationale behind our idea is to pull the samples with235

the same class closer together and push samples236

with different classes further apart.237

Formally, the input samples of both domains are238

denoted as x = [w1, w2, ..., wn], and the resulting239

classification label is y which belongs to a binary240

label space Y = {positive, negative}. For each241

x above, we need to add soft prompt words at the242

end, and the resulting prompt template function is243

below:244

xp = [E(w1), ..., E(wn), P1, ..., Pl, E([mask])]
(1)245

where E(·) is the embedding layer of the pre-246

trained language model M0, Pi (i ∈ [1, l]) is the247

soft prompt token embedding, l denotes the number248

of prompt tokens. The above template transforms249

the input x into an actual prompt input xp with250

prompt words and a [mask] token. Next, we input251

xp into M0 to get the hidden representation h ∈ Rd,252

where d is the hidden layer dimension of M0:253

h = M0(xp) (2)254

Later, the classification head f(·) will generate255

the probability distribution q of all words of the256

[mask] token based on h:257

q = f(h) (3)258

Given a selection function S(·), the function se- 259

lects the probability q′ corresponding to the two 260

label words from q: 261

q′(y) = S(q) (4) 262

where the label words can be set to V ∈ 263

{good, bad}, referred to (Wu and Shi, 2022). Last, 264

the final prediction probability p is obtained via 265

softmax normalization: 266

p =
exp(q′(y))∑
y∈Y exp(q′(y))

(5) 267

For cross-domain text classification, given a 268

source domain dataset Si = {xij , yij}
Ni
j=1, the bi- 269

nary cross entropy loss is used to optimize the fea- 270

ture extractor M0 and the classification head f(·): 271

Lcls(Si;M0, f) = −
Ni∑
j=1

|Y |∑
k=1

ykj log p
k
j (6) 272

We adopt domain adversarial training (Ganin 273

et al., 2016) to extract domain-invariant features, 274

which can transfer general knowledge from the 275

source domain to the target domain. Formally, 276

given K source domains, we use a binary classifier 277

to distinguish data from different domains, denoted 278

as fd. And the domain label set is represented as 279

D = {0, 1}. Intuitively, domain discriminator fd 280

should be optimized to maximumly discriminate 281

instances from different domains, while the shared 282

feature extractor M0 should be optimized to max- 283

imumly fool the discriminator. Specifically, the 284

adversarial learning loss is below: 285

Ld
adv(Si, T ;M0, fd) = −

Ni+Nt∑
j=1

|D|∑
k=1

yd log fd(h
k
j )

(7) 286

where Ni and N t is the number of samples in the 287

source domain Si and target domain T respectively, 288

yd is the domain label corresponding to the sample, 289

and hj is the hidden representation of the sample 290

obtained by the feature extractor. As shown above, 291

domain adversarial training is a minimax game, 292

which can be expressed as: 293

max
M0

min
fd

Ld
adv(Si, T ;M0, fd) (8) 294

To improve the model’s class-aware ability, 295

we introduce supervised contrastive learning 296

(SCL) (He et al., 2020) into our framework. SCL 297
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can help us pull representations of the same class298

together and exclude representations of different299

classes. This not only improves the class-awareness300

of the model, but also enables the model to learn301

a more uniform distribution of each class, thereby302

enhancing the discriminative power of the hidden303

representation. Typically, SCL uses samples with304

the same label in the same batch as positive exam-305

ples and samples with different labels as negative306

examples.307

In addition, since contrastive learning is ex-308

tremely sensitive to the number of contrast samples,309

the learning effect is not good when the number is310

small. To obtain better results, we use a memory311

bank Q to increase the number of contrastive sam-312

ples in each batch during training. The memory313

bank Q stores the sentence representations h and314

their corresponding labels y (for the computation in315

each batch). Particularly, the number of contrastive316

samples is the sum of samples in current batch and317

samples in the memory bank.318
Since SCL requires samples to be labeled, we319

only perform it on source domain samples. The320
contrast loss can be formulated as:321

Lscl = − 1

Nb

∑
hi∈B

∑
hp∈P (i)

log
exp(hi · hp/t)∑

hn∈N(i) exp(hi · hn/t)

(9)322

where B refers to a batch of samples with size323

Nb, hi is the sample of the current batch, hp and324

hn are the positive samples and negative samples325

belonging to the positive example set P (i) and the326

negative example set N(i), respectively. Finlay,327

we get the joint loss function L1 of the first step,328

in which three losses mentioned before are used to329

optimize the model together:330

L1 = Lcls + Ld
adv + Lscl (10)331

4.3 Adversarial Enhanced VAE332

To avoid shortcut learning and learn more effective333

features, we adopt the best checkpoint of the model334

in the first step as the feature extractor, and employ335

the variational auto encoder (VAE) (Kingma and336

DP, 2014) for feature disentanglement, which can337

allow us to differentiate effective and ineffective338

features from the potential feature space. Further-339

more, a novel variance adversarial training (VAT)340

is used to enhance VAE-based feature disentangle-341

ment, so as to further improve the model’s perfor-342

mance.343

For the hidden feature representation h (obtained344

by the feature extractor) and a probabilistic latent345

variable z, two steps are performed in VAE: (1)346

encoding h using z, and (2) decoding h from z, 347

where z follows a Gaussian distribution N(0, 1). 348

For each z, there are two functions µ and σ, which 349

respectively determine the mean and variance of the 350

Gaussian distribution corresponding to z. Then the 351

accumulation of all Gaussian distributions in the 352

integral domain becomes the original distribution 353

P (h), namely using infinite Gaussian to approxi- 354

mate the true distribution: 355

P (h) =

∫
P (h|z)P (z) dz (11) 356

where P (z) is the prior distribution that follows 357

N(0, 1). It is difficult to compute P (h), but we 358

can apply variational inference to estimate this 359

value. Intuitively, we want to approximate the pos- 360

terior distribution P (z|h) with a simpler distribu- 361

tion Q(z|h). If we can determine the parameters of 362

Q(z|h) and ensure that it is very similar to P (z|h), 363

then we can sometimes use Q(z|h) for approxi- 364

mate reasoning. As we know, KL divergence is 365

a measure of the difference between two probabil- 366

ity distributions. Therefore, if we want to ensure 367

that Q(z|h) is similar to P (z|h), we can minimize 368

the KL divergence between the two distributions, 369

so the VAE loss according to the evidence lower 370

bound (ELBO) is formulated as follows: 371

Lvae = −EQ(z|h) logP (h|z)+KL(Q(z|h)||P (z))
(12) 372

where the first term represents the likelihood we 373

reconstruct, and the second term ensures the sim- 374

ilarity between the distribution Q (we learn) and 375

the true prior distribution P . Here, Q(z|h) can 376

be expressed as N(µ,diag(σ2)), where µ is the 377

mean and σ2 is the variance. According to (Fo- 378

topoulos, 2006; Song et al., 2024), µ and σ2 are 379

independent of each other and can be modeled by 380

two independent linear transformations, so we use 381

them to represent effective features and ineffective 382

features, respectively. As shown in Figure 2, in 383

order to make the encoder learn the knowledge in 384

the target domain, we apply VAE loss on each un- 385

labeled sample in the target domain. Formally, µ 386

and σ2 can be represented as zµ and zσ. Further, 387

they can be represented in more detail as zsµ and 388

zsσ in the source domain, ztµ and ztσ in the target 389

domain, respectively. Here zµ is the final feature 390

representation used for classification. 391

To further improve the performance of the model, 392

we propose a novel adversarial method to enhance 393

VAE, which allows us to extract more effective 394
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classification features. For clarity, we call it the395

variance adversarial training (VAT). We know that396

zσ (i.e., σ2) is ineffective feature (recall the previ-397

ous paragraph), usually its classification effect is398

poor. So there is an intuition that, the worse the399

classification effect of zσ, the better the classifica-400

tion effect of zµ (due to the existence of VAE loss).401

This case just means that the feature disentangle-402

ment is more thorough.403

In order to achieve the above purpose, we first404

pass zσ via the gradient reversal layer and then405

input it into a binary classifier fv, as shown in406

Figure 2. The loss is as follows:407

Lv
adv(Si;M1, V, fv) = −

Ni∑
1

|Y |∑
1

y log fv(z
s
σ)

(13)408

where the notations (e.g., Ni) denote the same409

meanings presented earlier (e.g., Ni is the number410

of samples in the source domain). The adversarial411

training can be expressed as:412

max
M1,V

min
fv

Lv
adv(Si;M1, V, fv) (14)413

where Si is the source domain dataset, M1 is the414

feature extractor, V is the VAE layer (encoder and415

decoder), fv is the binary classifier. Under VAT,416

if the classification effect of fv is better, then the417

actual classification effect of zsσ obtained by M1418

and V will be worse.419

For zsµ, we also use the classification head f(·)420

to predict it. The classification loss is the same as421

that in the first step. That is:422

Lcls(Si;M1, f, V ) = −
Ni∑ |Y |∑

y log f(zsµ)

(15)423

Finally, we get the joint loss function of the sec-424

ond step:425

L2 = Lcls + Lvae + Lv
adv (16)426

where these losses further optimize the model427

trained by the first step, and finally achieve an ef-428

fective cross-domain text classification model.429

5 EXPERIMENTS430

5.1 Experimental Settings431

Datasets. We adopt two public datasets to conduct432

experiments: the Amazon Reviews Dataset (Blitzer433

et al., 2007) and the FDU-MTL Dataset (Liu et al.,434

2017). The Amazon dataset is a classic public 435

dataset which contains four domains: Books (B), 436

DVDs (D), Electronics (E), and Kitchen (K). The 437

FDU-MTL dataset consists of 16 domains, the first 438

14 domains are Amazon reviews of different prod- 439

ucts, and the remaining two domains are movie 440

reviews from IMDB and MR datasets. 441

Implementation Details. In our experiments, the 442

feature extractor used in the first step is the offi- 443

cial pre-trained RoBERTa-base (Liu and Stoyanov, 444

2019) provided by Huggingface. The hidden layer 445

size of Roberta is 768, and the max sequence length 446

is 512. We set the batch size and memory bank size 447

to 8 and 128 respectively. Adam (Kingma and Ba, 448

2015) is used as the optimizer, the learning rate of 449

the optimization of the classification head f(·) is 450

1e-5; the learning rate of the optimization of the 451

domain classifier fd (or variance classifier fv) is 452

5e-5. We train the model for 10 epochs at each step. 453

Following previous work (Wu and Shi, 2022), the 454

accuracy will be adopted as the evaluation criterion 455

in this paper. All of our experiments are performed 456

with Pytorch and HuggingFace Transformers on an 457

NVIDIA GeForce RTX 4090 24 GB GPU. 458

5.2 Baselines 459

We compare our proposed model with state-of- 460

the-art cross-domain classification methods, which 461

are as follows: DACL, DAAT, SENTIX, EADA, 462

DASK, COBE, UDALM, AdSPT, RCA, TACIT, 463

PL-Mix. 464

5.3 Results on Amazon Dataset 465

In the single-source domain setting, the experimen- 466

tal results on the Amazon dataset are shown in Ta- 467

ble 1. Overall, our model achieves state-of-the-art 468

performance with an average accuracy of 94.18% 469

across 12 cross-domain tasks. Also, we can see that 470

our method achieves the best results on 8 (out of 12) 471

single-source domain tasks, compared with other 472

competitive methods. On the "E→K" and "K→B" 473

tasks, although our method do not reach the highest 474

accuracy, it is still very close to the highest value 475

(0.01% lower). The average accuracy value of our 476

model is 1.04% higher than the AdSPT (93.14%) 477

and 0.52% higher than PL-Mix (93.66%). These 478

results reveal that, in cross-domain text classifica- 479

tion, pulling representations of different domains 480

with the same labels together and using adversar- 481

ial enhanced VAE can help soft prompt tuning to 482

achieve a more excellent performance. In addition, 483

we can see that the accuracy of the "E→D" and 484
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Table 1: Accuracy of single-domain adaptation on Amazon Dataset.

S → T DAAT EADA DASK SENTIX COBE UDALM AdSPT TACIT PL-Mix Ours

B → D 89.70 88.10 90.90 91.15 90.05 92.18 92.47 92.65 93.38 93.87
B → E 89.57 85.25 92.30 92.50 90.45 93.55 93.79 93.81 93.84 94.36
B → K 90.75 81.20 92.75 95.70 92.90 95.32 94.96 95.03 95.32 95.82
D → B 90.86 86.05 91.85 90.85 90.98 93.34 93.21 93.57 94.56 94.74
D → E 89.30 85.35 92.40 92.15 90.67 93.60 93.84 93.16 94.12 94.52
D → K 87.53 80.35 92.35 94.95 92.00 93.21 95.16 94.40 95.53 95.90
E → B 88.91 89.35 90.00 88.10 87.90 91.80 91.32 92.70 92.31 92.92
E → D 90.13 87.15 89.20 89.86 87.87 93.38 90.58 92.06 90.93 92.00
E → K 93.18 85.11 94.65 95.45 93.33 94.85 95.01 95.87 95.36 95.86
K → B 87.98 89.65 89.75 87.00 88.38 92.74 91.84 93.06 93.18 93.17
K → D 88.81 89.20 89.45 88.05 87.43 92.33 90.76 91.97 90.68 91.88
K → E 91.72 90.50 93.35 91.85 92.58 93.56 94.24 94.57 94.69 95.09

Avg. 89.87 86.44 91.58 91.47 90.38 93.32 93.10 93.57 93.66 94.18

"K→D" tasks are relatively low, which may be due485

to the small similarity between these domains (e.g.,486

"K" and "D").487

DEK->B BEK->D BDK->E BDE->K Avg.
92

94

96

Ac
cu

ra
cy

AdSPT COBE PL-Mix Ours

Figure 3: Accuracy of multi-source domain adaptation
on Amazon dataset.

We also compare our method to other ones in488

multi-source domain setting, treating one domain489

as the target domain and the other three domains490

as one large source domain. Experimental results491

of multi-source domain adaptation on Amazon492

datasets are shown in Figure 3. It can be seen493

that our method achieves the best results on three494

tasks, only slightly lower than the other two meth-495

ods on "BEK→D" task. Moreover, our method still496

achieves the best overall results with the average497

accuracy of 94.77% compared to the other three498

competitors, which further verifies the effective-499

ness of our proposed method. As for our results,500

we find the accuracy has increased by 0.59% com-501

pared to our single source domain experimental502

results. This is consistent with the common phe-503

nomenon. The underlying reason could be that,504

when the tasks are similar, adding the number of505

source domains will improve the performance of506

the target domain, due to the existence of common- 507

alities among these domains. 508

5.4 Results on FDU-MTL Dataset 509

We conduct "15→1" multi-source domain experi- 510

ment on FDU-MTL dataset, totaling 16 tasks. The 511

experimental results are shown in Table 2. We 512

can see that our method achieves state-of-the-art 513

performance with an accuracy of 93.81% on av- 514

erage, eclipsing the performance of these base- 515

lines. Impressively, our model achieves the best 516

results on 14 (out of 16) tasks, only slightly lower 517

than RCA on the domain of camera and magazines. 518

Our average accuracy is 4.71% higher than DACL, 519

3.78% higher than COBE, 1.61% higher of AdSPT, 520

and 3.61% higher than that of RCA. These results 521

again validate the competitiveness of our proposed 522

method. 523

In addition, we find that there is a significant gap 524

in the result of MR compared to other domains, 525

which is 6.41% lower than the average accuracy. 526

This could be due to the excessively long sentences 527

and the smaller feature similarity between MR and 528

other domains. Meanwhile, we find that the aver- 529

age accuracy on FUD-MTL dataset (i.e., 93.81%) 530

is 0.96% lower than that of multi-source domain 531

tasks on Amazon dataset (i.e., 94.77%). This could 532

be due to that the addition of MR and IMDB has 533

led to a decrease in overall similarity among these 534

domains. This phenomenon may imply that the 535

similarity among domains could be a more impor- 536

tant factor which can affect model performance, 537

compared to the number of source domains. 538
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Table 2: Accuracy of multi-source domain adaptation
on FDU-MTL.

Target DACL COBE AdSPT RCA Ours

books 87.50 90.67 94.23 89.20 96.97
dvd 90.67 87.50 90.58 90.40 91.64
elec. 90.30 92.33 93.08 87.60 95.14
kit. 91.50 90.75 94.28 92.50 95.81

appa. 89.50 91.16 92.31 88.60 94.66
baby 92.00 93.17 94.95 92.70 95.33

camera 91.50 91.67 92.07 95.80 93.70
health 90.50 94.33 95.14 90.70 96.92
IMDB 87.30 86.58 91.35 89.50 92.36
maga 93.80 90.50 91.78 95.40 93.99
MR 76.00 78.91 85.77 78.30 87.40

music 86.30 89.17 91.11 87.70 92.93
softw. 90.50 90.82 93.61 92.90 95.19
sports 89.30 92.15 93.03 89.70 93.65
toys 91.30 92.33 92.84 92.40 94.52

video 88.50 88.50 89.04 90.00 90.72

Avg. 89.10 90.03 92.20 90.20 93.81

5.5 Ablation Study539

To verify the contributions of each module to the540

overall performance of our method, we conduct541

corresponding ablation experiments on Amazon542

dataset. Experimental results of ablation study are543

shown in Table 3, where -SCL represents not using544

supervised contrastive learning in the first step, and545

-VAE represents removing the entire second step.546

From this table, it can be seen that the performance547

of our model has decreased in both cases, with548

average accuracy of 93.52% (-0.66%) and 93.96%549

(-0.22%) respectively. Meanwhile, in almost all550

tasks, the accuracy of our method decreases after551

removing a certain module. These indicate that552

each module has made a positive contribution to553

our model for cross-domain text classification.554

5.6 Visualization555

To analyze the impact of our method on data dis-556

tribution alignment, we adopt t-SNE to map the557

high-dimensional feature representations (trained558

by the model) to low dimensions for feature visu-559

alization, and results are shown in Figure 4. From560

the figure, we can see that before training, both neg-561

ative and positive features are mixed together and562

arranged in a scattered manner, with feature points563

spread throughout the entire space. The feature rep-564

resentation trained by our method is significantly565

more compact, with clear classification boundary,566

Table 3: Accuracy of ablation experiment on Amazon
dataset.

S→T -SCL -VAE AdSPT PLMix Ours

B→D 92.73 93.67 92.47 93.38 93.87
B→E 94.04 94.58 93.79 93.84 94.36
B→K 95.04 95.57 94.96 95.32 95.82
D→B 94.19 94.54 93.21 94.56 94.74
D→E 94.37 94.54 93.84 94.12 94.52
D→K 95.36 95.66 95.16 95.53 95.90
E→B 92.54 92.68 91.32 92.31 92.92
E→D 90.88 91.55 90.58 90.93 92.00
E→K 95.45 95.73 95.01 95.36 95.86
K→B 92.26 92.67 91.84 93.18 93.17
K→D 90.85 91.43 90.76 90.68 91.88
K→E 94.53 94.90 94.24 94.69 95.09

Avg. 93.52 93.96 93.10 93.66 94.18

indicating that our method has transferred source 567

domain knowledge to the target domain, and can 568

align features of the same class well. 569

Figure 4: Feature visualization conducted on the Ama-
zon dataset. The visualization is shown under "D→K"
task, with untrained features and trained features

6 CONCLUSION 570

In this paper, we proposed a two-step framework 571

for cross-domain text classification. In the first step, 572

we innovatively introduced supervised contrastive 573

learning to improve the existing soft prompt tuning 574

model, which can enhance the model’s class-aware 575

ability. In the second step, we proposed a novel 576

adversarial enhanced VAE to achieve deep feature 577

disentanglement, which enables the model to learn 578

more valuable features. We compared our method 579

with a set of state-of-the-art cross-domain text clas- 580

sification models, based on two public datasets (the 581

Amazon dataset and the FDU-MTL dataset). The 582

experimental results consistently revealed that our 583

method achieved a better performance compared 584

against the competitors in both single-domain set- 585

ting and multi-domain setting. 586
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Limitations587

At present, large models have become a popular588

research tool, but our method lacks application to589

large models. Using large models may bring better590

results. In addition, we have not yet considered the591

issue of class imbalance in the dataset, which may592

affect the performance of the model. These two593

points will also be the focus of our future research.594
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