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Abstract

Recent advancements in 2D/3D generative techniques have facilitated the gener-
ation of dynamic 3D objects from monocular videos. Previous methods mainly
rely on the implicit neural radiance fields (NeRF) or explicit Gaussian Splatting as
the underlying representation, and struggle to achieve satisfactory spatial-temporal
consistency and surface appearance. Drawing inspiration from modern 3D an-
imation pipelines, we introduce DreamMesh4D, a novel framework combining
mesh representation with geometric skinning technique to generate high-quality
4D object from a monocular video. Instead of utilizing classical texture map for
appearance, we bind Gaussian splats to triangle face of mesh for differentiable
optimization of both the texture and mesh vertices. In particular, DreamMesh4D
begins with a coarse mesh obtained through an image-to-3D generation procedure.
Sparse points are then uniformly sampled across the mesh surface, and are used
to build a deformation graph to drive the motion of the 3D object for the sake
of computational efficiency and providing additional constraint. For each step,
transformations of sparse control points are predicted using a deformation network,
and the mesh vertices as well as the surface Gaussians are deformed via a novel geo-
metric skinning algorithm. The skinning algorithm is a hybrid approach combining
LBS (linear blending skinning) and DQS (dual-quaternion skinning), mitigating
drawbacks associated with both approaches. The static surface Gaussians and mesh
vertices as well as the dynamic deformation network are learned via reference view
photometric loss, score distillation loss as well as other regularization losses in a
two-stage manner. Extensive experiments demonstrate superior performance of
our method in terms of both rendering quality and spatial-temporal consistency.
Furthermore, our method is compatible with modern graphic pipelines, showcasing
its potential in the 3D gaming and film industry. The source code is available at
our website: https://1izhiqi49.github.io/DreamMesh4D.

1 Introduction

The emergence and development of Generative Artificial Intelligence (GenAl) have significantly
revolutionized 3D generation techniques in recent years [20]. The technology has effectively allowed
the creation of static objects, including their shape, texture, and even an entire scene from a simple
text prompt or a single image. Recently, the wave of advancement has been propelled to the filed of
dynamic (4D) content generation [45], which offers immense potential in fields including, but not
limited to, AR/VR, filming, gaming and animation. However, it’s still quite challenging to efficiently
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Figure 1: Given monocular videos, our method is able to generate high-fidelity dynamic meshes.
We also produce a composited scene demo (top bar and left side of the figure) with the generated
dynamic meshes, showcasing our method’s compatibility with modern 3D engines.

generate high-quality 4D content due to its increased spatial-temporal complexity and higher demand
on algorithm design.

The promising strides in 3D generation are largely attributed to the pre-trained large 2D diffusion
models [39, 41, 31]. In particular, score distillation sampling (SDS) [33] enables the 3D generation
[30, 55, 18, 42, 9] from scratch by distilling 3D knowledge from a pre-trained 2D diffusion model
[39]. Following works on text-to-3D [24, 57, 44, 15] and image-to-3D [26, 35, 50, 48] have further
improved the performance of 3D generation tasks both in quality and stability. Inspired by the
successes of SDS-based 3D generation, recent works [69, 1, 38, 12, 65, 66] explore generating 4D
assets by distilling prior knowledge from pre-trained video diffusion models [54, 3] or novel-view
synthesis models [26, 43]. Both text-to-4D [45, 1, 25] and image-to-4D methods [69] mainly rely
on pre-trained video diffusion models, which are not yet capable of generating high-quality video,
thus usually struggle to generate high-quality 4D content. On the contrary, video-to-4D methods
[38, 12, 66, 65] directly generate 4D assets from off-the-shelf monocular videos, making the results
more appealing and with better spatial-temporal consistency. Existing video-to-4D methods either
rely on the implicit dynamic NeRFs [12] or explicit dynamic Gaussian splatting [38, 65, 66] as the
underlying representation. Nevertheless, both of them do not have tight constrains for surface, leading
to redundant optimization space and impeding the learning of deformation.

Inspired by modern graphic pipelines for 3D animation, we propose DreamMesh4D, which exploits
3D triangular mesh representation and sparse-controlled geometric skinning methods [47, 16] for
video-to-4D generation. To better supervise the generation with 2D signals, instead of using classic
mesh with UV texture maps, we choose a hybrid representation, SuGaR [9], which marries 3D
Gaussians to mesh surface for more elaborate appearance modeling. Flat Gaussians are bound to mesh
faces based on barycentric coordinates hence the rendering process of 2D images is differentiable with
respect to both the position of mesh vertices and the attributes of Gaussians. For high-quality object
modeling and efficient motion driving of the object, our method is designed in a static-to-dynamic
optimization manner. In particular, during the static stage, an initial coarse mesh is generated utilizing
existing image-to-3D generation methods [26, 68, 61]. Then we refine its both geometry and texture
by jointly optimizing the mesh vertices as well as the attributes of bound surface Gaussians under the
hybrid representation via both the reference image photometric loss and the SDS loss. For dynamic
learning, we uniformly sample sparse control nodes from the surface of the refined mesh, to build
a deformation graph. Then at each timestamp, transformation associated with each control node is
predicted by a deformation network. The deformation of all mesh vertices and surface Gaussians
are obtained from those predicted transformations via a novel geometric skinning algorithm, which
benefits from both the LBS (linear blending skinning) and DQS (dual-quaternion skinning) methods.
The deformation network is optimized under the supervision of photometric loss from reference video
frames, novel-view SDS loss and geometric regularization terms.



Extensive experiments are conducted and demonstrate that our method can generate high-fidelity
dynamic textured mesh from monocular video, and significantly outperforms previous works both
quantitatively and qualitatively, establishing new benchmark in the field of video-to-4D generation.
As shown in Fig. 1, our generated assets can be directly simulated in modern 3D engines, showcasing
its potential in the 3D gaming and film industries.

2 Related Work

3D Generation Since the introduction of score distillation sampling (SDS) by DreamFusion
[33], subsequent works [24, 5, 57, 35, 48, 49, 23] have significantly improved the performance
of optimization-based 3D generation algorithms. Many works adopt a multi-stage optimization
strategy [24, 5, 57, 48] to enhance generated appearance. Another line of research [26, 44, 27, 19]
focuses on training multi-view diffusion models to inject multi-view supervision into SDS loss for
addressing the Janus problem. DreamGaussian [49] and GaussianDreamer [64] pioneer the usage
of 3D Gaussian[18] as the underlying representation and achieve 3D content generation in minutes.
Although these methods demonstrate the potential of 3D Gaussian in 3D content generation, obtaining
an object with high-quality geometry is still quite challenging. In this work, we explore to employ
a Gaussian-mesh hybrid representation [9] in our 4D generation tasks for better modeling of both
object surface geometry and texture.

4D Representations Dynamic 3D representations form the foundation of 4D reconstruction and
generation tasks. Most current methods extend static NeRF [30] to dynamic scenarios. These
approaches, such as deformable [32, 34, 51, 59] and time-varying [4, 7, 8, 6] NeRF-based methods, are
prevalent. There are also some works trying to model dynamic with 4D neural implicit surface [56, 14].
However, these implicit representations suffer from long optimization time and low reconstruction
quality due to its computationally expensive volume rendering and implicit representation. Recent
interest in 4D tasks has focused on 3D Gaussian representations due to their fast rendering speed and
explicit nature. Some works [63, 58, 22] train networks to predict Gaussian kernel deformations, while
others model kernel motion via polynomial representation or per-frame optimization [28, 21]. Besides,
both SC-GS [11] and HiFi4G [13] employ sparse control points for Gaussian kernel deformation, with
SC-GS using LBS and HiFi4G using DQS to drive Gaussians motion, thus ensuring spatial-temporal
consistency. In this work, we propose to deform the object through a novel geometric skinning
method, handling the artifacts associated with both LBS and DQS.

4D Generation Although great progress has been achieved in 3D generation tasks, 4D generation is
still challenging due to its requirement on additional temporal supervision. Since current pre-trained
video diffusion models [3, 54] still struggle to generate high-quality video contents, it is challenging to
distill useful motion knowledge via SDS optimization. Hence, the performance of existing text-to-4D
[45, 1, 25] and image-to-4D methods [69] usually struggle with low appearance quality. Another line
of works focus on video-to-4D generation [12, 38, 65]. These methods leverage current multiview
diffusion models [26, 43, 27] to calculate the SDS loss [38, 12, 60] or generate per-frame multi-view
images [66, 62] as supervision signal. Among them, a concurrent work of our method, SC4D [60],
optimizes a set of sparse-controlled dynamic 3D Gaussians by per-frame SDS loss from Zero123
[26] with a coarse-to-fine strategy. However, the issue of unsatisfying surface quality caused by 3D
Gaussian-based representation still exists. In contrast, our method is grounding on a Gaussian-mesh
hybrid representation [9], enhancing the reconstruction quality both in texture and geometry.

3 Method

In this section, we first introduce the relevant preliminaries in section 3.1. Then we illustrate the
details of DreamMesh4D which is divided into static stage and dynamic stage in section 3.2 and 3.3
respectively. The overview of our method is presented in Fig. 2.

3.1 Preliminaries

Geometric Skinning Algorithms Given a mesh with N, vertices, M = {V, F} where V =
{vilvi € R3},i € {1,2,...,N,} is the set of vertices and JF represents the triangle faces. In
geometric skinning algorithms, there are also some sparse control nodes (bones/skeletons) P =



{pi|lp: € R3},i € {1,2,...,N,}, where N, is the number of control nodes. For a mesh vertex
v € V, its deformation is calculated by blending a number of neighboring control nodes N (v)
through skinning algorithms. The local deformation for a control node p € A(v) can be decomposed
into a deformation matrix Fp, € R3*3 and a translation vector tp € R3, and the deformation matrix
can be further decomposed into a rotation matrix R, € R3*3 and a shear matrix S, € R3*3 using
polar decomposition. The strength of the influence of node p to vertex v can be represented as wp,
and Zp eN(v) Wp = 1. Linear blending skinning (LBS) [47] computes the deformation of vertex v

by linearly blending the influence of nodes in ' (v):

G — Z Wwp(Fpv + tp). 1)
peN(v)

LBS is widely used due to its simple formulation and natural animations. However, it suffers from
the well-known "volume loss" or "candy wrapper" artifacts under complex deformation. As an
enhancement, dual-quaternion skinning (DQS) [16] represents the transformation of node p with a
unit dual-quaternion {, = DQ(Rp, tp). Then the deformation of v can be calculated with DQS by:

ZpGN(v) Wp Cp

~dgs % .
v = (v({*,where ( = ,
12 penv) Wolpll

(@)

where (* represents the conjugate of . DQS can eliminate the artifacts associated with LBS, but
cannot handle non-rigid deformation since the strain effect is not considered. It also suffers from an
undesirable joint-bulging artifact while blending, which requires artistic manual work to fix [40].

3D Gaussians and SuGaR Gaussian Splatting [18] represents the scene as a collection of 3D
Gaussians, where each Gaussian g is characterized by its center p1, € R? and covariance 3, € R3*3,
The covariance ¥, is parameterized by a scaling factor s, € R? and a rotation matrix represented
via a unit quaternion q, € R*. Additionally, each Gaussian maintains opacity ag € R and color
features ¢, € R for rendering via splatting. Typically, color features are represented using spherical
harmonics to model view-dependent effects. During rendering, the 3D Gaussians are projected onto
the 2D image plane as 2D Gaussians, and color values are computed through alpha composition of
these 2D Gaussians in front-to-back depth order. While the vanilla Gaussian Splatting representation
may not perform well in geometry modeling, SuGaR [9] introduces several regularization terms to
enforce flatness and alignment of the 3D Gaussians with the object surface. This facilitates extraction
of a mesh from the Gaussians through Poisson reconstruction [17]. Furthermore, SuGaR offers a
hybrid representation by binding Gaussians to mesh faces. A SuGaR mesh can be represented as
S = {V,F,G} where G denotes all surface Gaussians. For a triangle face f € F, the Gaussians
G(f) bound on f are defined with barycentric coordinates. This hybrid representation allows joint
optimization of texture and geometry through backpropagation.

3.2 Static Stage

The purpose of the static stage is to generate a refined Gaussian splats bounded triangular mesh. This
procedure starts with a coarse mesh generated from a reference image I* that is sampled from all
video frames Z. Although there exists several fast mesh generation methods [68, 61], we refer to
Zero123-based SDS optimization for its stability. In particular, we conduct simple SDS training on a
set of randomly initialized 3D Gaussians for a fixed number of steps with regular densification and
pruning. After that, we stop densification and pruning, and include SuGaR’s regularization terms [9]
to make Gaussians aligned to object surface. Finally all Gaussians with opacity lower than a threshold
o = 0.5 are pruned, after which Poisson reconstruction [17] is performed to extract a coarse mesh.

On the generated coarse mesh, we attach z = 6 new flat Gaussians to every triangle face. For each
training step, we render RGB image /™ and mask M * under reference view to calculate RGB loss
Lrop=II"— I*||3 and mask loss £5 ., = ||M* — M*||3. The SDS loss £, 4 based on Zero123

[26] is also computed under randomly sampled views. The total loss for static SuGaR optimization is:
‘Cstatic = ASSDS‘C‘SSDS + /\ief‘cf‘ef + )‘fnaskﬁfnaskD (3)

where Agpg, Ar.p and A7, are the weights for different loss terms in static stage.
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Figure 2: Overview of DreamMesh4D. In static stage shown in top left part, a reference image is
picked from the input video from with we generate a Gaussian-mesh hybrid representation through a
image-to-3D pipeline. As for dynamic stage, we build a deformation graph between mesh vertices
and sparse control nodes, and then the mesh and surface Gaussians are deformed by fusing the
deformation of control nodes predicted by a MLP through a novel adaptive hybrid skinning algorithm.

3.3 Dynamic Stage

In this section, we are going to delve into the deformation procedure for the Gaussian-mesh hybrid
representation. First, we will discuss the construction of the deformation graph on the surface of the
refined mesh. Then, we will explain the deformation flow, which progresses from the sparse control
nodes to the mesh vertices, and ultimately to the surface Gaussians. We will break down each step to
give a clear picture of the entire process.

3.3.1 Deformation Graph Construction

We begin by uniformly sampling N,,,q. sparse points on the surface of the refined mesh to serve
as control nodes. To establish connections between the mesh vertices and the sparse control nodes,
instead of using simple Euclidean distance to locate the nearest nodes (KNN), we pick Nyeignbor
nodes with the shortest geodesic distance (as indicated by GeoDist in Fig. 2) based on the mesh’s
topology. This ensures that inappropriate connections between disparate mesh regions are avoided.
Then, for a vertex v, the influence wy, of each neighboring control node p € N (v) is calculated
following [47]:

N 2

W . l[v — pk||>

wy = —— P hered, — (1— , @)
P Y ien(v) Upe o ma

where dyx is the distance to the (Nycighbor + 1)-nearest node.

3.3.2 Deformation with Adaptive Hybrid Skinning

Given that the object’s texture was refined in the previous static stage, we fix the Gaussians’ appear-
ance properties (color and opacity) and focus the dynamic learning phase solely on spatial properties
(positions, rotations, scalings). Initially, the local deformations of the control nodes are predicted by a
deformation network W. The updated spatial properties post-deformation are subsequently computed
by integrating the local deformations of the control nodes through geometric skinning. In particular,
given a control node p € P and timestamp 7, the deformation network predict its local deformation
at 7 following the equation below. Note that we omit the subscript "7" is omitted here and in rest
paragraphs for simplicity.

(RpaSpvtpanp) = \I/(p)v (5)



where Ry, Sp € R3*3 and ¢, € R are the rotation, shear matrix and translation respectively.
Furthermore, to mitigate artifacts associated with LBS and DQS, we propose an adaptive fusion of
their effects to calculate the deformation of mesh vertices. Here, 1, € R denotes the local rigid
strength, indicating the extent to which the region around p is influenced by DQS at time 7.

Deformation of Control Nodes The predicted shear matrix S, for node p is intended only for
LBS, whose strength is weaken by the predicted factor 75, and the final shear matrix at this location
is computed as: -

Sp = (1 =1np)Sp + npl, (©)
where I € R3*3 represents an identity matrix indicating no strain effect. Afterwards, the new position
of node p at timestamp 7 is:

p=Fpp+tp = RpSpp + tp. @)

Deformation of Mesh Vertices For the deformation of a specific vertex v using hybrid skinning,
the new vertex position calculated with LBS, ¥**, and that with DQS, ¥%9%, can be obtained following
Eq.1 and Eq.2 respectively. The local rigid strength at v can be computed by linearly blending that of
neighboring nodes:
=Y WpNp, ®)
PEN (V)

then the fused position of v after deformation is the interpolation between v/* and v%9°:
V= (1 — )V 4 pyvdes, )

The local rotation and strain at v are the corresponding linear blending from neighboring control
nodes:

Ry = exp( Z Wp ~long>, (10)
PEN (V)

Sy= Y wpSp. (11)
PEN (V)

Deformation of Surface Gaussians Now we have obtained deformations on the level of mesh
vertices, afterwards the deformation on each Gaussian kernel will be calculated. Given a Gaussian
kernel g € G(f) on a triangle face f = (v,, vy, v.) € F, its new center at timestamp 7 is computed
as:
ﬂg = TqVq + TV + T Ve, (12)
where (7, T, 7. ) is the Gaussian’s barycentric coordinate relative to the three triangle vertices. The
new rotation is calculated by applying the local rotation Ag, fused from related vertices to its original
rotation qg:
Agy = exp(m, - logRy, + m, - logRy, + 7. - logRy.,), (13)

‘jg = AQg *qg- (14)

We further apply the local shear matrix AS, fused from all three vertices to the original Gaussian
scaling s to obtain the new scaling:

ASy =Sy, + 1Sy, + TSy, (15)

59 =ASys,. (16)

Training Losses After obtaining the deformed hybrid mesh at timestamp 7, we render its RGB f;*
and alpha M* under reference view. We then compute the reconstruction loss L,..; = ||I* — I*||3
and mask 10ss Lpqsr = ||M* — M?*||2, where I* and M are the ground truth image and mask
of input video at timestamp 7. For supervision under other views, we calculate SDS loss Lsps
based on Zero123 [26] under randomly sampled views. Furthermore, our mesh-based representation
naturally facilitates the introduction of local rigid constraints by leveraging the topology of the mesh.
Specifically, the as-rigid-as-possible (ARAP) loss [46] is computed as:

Larar =Y. > waW)||(¥ =¥0) = Ru(v —va)|]5, (17)

veV v, eC(v)
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Figure 3: Qualitative comparison with baselines. We compare our method with 4 previous video-
to-4D methods. The first row provides two ground truth frames for each case. For each compared
method, we render each case under reference view and another novel view at the two timestamps.
The result demonstrates that our method is able to generate sharper 4D content with rich details,
especially for the novel views. Please zoom in for more details.

where C(v) represents the one-ring neighbors of vertex v, and w,, (v) is the cotangent weight [29]
between v and its n-th connected vertex v,,. Furthermore, we also introduce the normal consistency
loss £ n¢ provided by PyTorch3D [37] on the deformed mesh to globally constrain the mesh surface.
Hence, the overall objective for our dynamic stage is a weighted combination of the above loss terms:

£dynamic = >\SDS£SDS + )\ref[:ref + )\maskﬁmask + )\ARAP‘CARAP + )\NC[/NCa (18)

where Asps, Arefs Amasks Aarap and Anc are strengths of different loss terms in dynamic opti-
mization stage.



PSNR(ref) T SSIM(ref) T LPIPS | FVD| FID-VID| CLIP
Consistent4D 26.58 0.935 0.133  929.39 31.84 0.917
DreamGaussian4D 31.06 0.947 0.143  994.11 32.73 0.913
4DGen (16 frames) 27.02 0.937 0.137  913.10 63.32 0.909
STAG4D 27.99 0.941 0.136  1048.10 38.77 0.905
Ours 37.04 0.980 0.126  474.96 29.14 0.938

Table 1: Quantitative comparison with baselines. Our method achieves best score on all metrics.

4 Experiments

4.1 Experiment Setup

Dataset: Our quantitative results are evaluated on the test dataset provided by Consistent4D [12],
which contains seven multi-view videos. Each video has one input view for scene generation and four
testing views for evaluation. For qualitative evaluation, we curate a set of challenging videos from
previous works [12] and those generated by the video diffusion model SVD [3]. Evaluation metrics:
The per-frame LPIPS [67] score and the CLIP-score [36] are computed between the testing and
rendered videos, with the final scores averaged over the four testing views. These two scores serve as
image-level metric to assess the structural and semantic similarity between the rendered images and
the ground truth. Furthermore, we compute the FID-VID [2] and FVD [52] as video-level metrics
to evaluate the video temporal coherence. Note that we report PSNR and SSIM values only for the
reference view, as pixel- and patch-wise similarities are too sensitive to reconstruction differences,
making them unsuitable for evaluating novel views in our generation task. However, we find they
are suitable for evaluating the method’s ability of modeling sharp features in the reference view.
Baselines: We compare our method with previous video-to-4D generation methods: Consistent4D
[12], DreamGaussian4D [38], 4DGen [65] and STAG4D [66]. All the experiments of above baselines
are conducted using the code from their official GitHub repository.

4.2 Comparison

Qualitative Comparison Fig. 3 shows qualitative results of our method compared to other baseline
works. The results reveal that our method generates 4D objects with higher fidelity and more details
under reference view. And our method also outperforms other works with better spatial-temporal
consistency, demonstrating the effectiveness of our method. Please zoom in for more details.

Quantitative Comparison Table 1 demonstrates superior performance of our method against other
baseline works quantitatively. Specifically, our approach notably exceeds the existing state-of-the-art
in all measured metrics. Our method excels in both PSNR and SSIM, indicating a high level of
reconstruction accuracy. Furthermore, the FVD score is particularly impressive, being only half that of
competing methods. We also achieve the lowest FID-VID score, suggesting a significant enhancement
in video quality produced by our 4D generation technique. Finally, our method achieves the lowest
LPIPS and highest CLIP scores, ensuring both high image realism and semantic consistency. Overall,
the numerical data clearly demonstrate the superior capabilities of our method in translating video to
4D content.

4.3 Ablation Study

In this section, we conduct ablation study to analyse the impact of various components on the
performance of our method. The components under consideration include: (a) the choice between
Euclidean and geodesic distance (EucDist and GeoDist) when constructing deformation graph; (b)
our proposed adaptive hybrid skinning algorithm; (c) the ARAP and normal consistency terms
(geometric regularization terms); (d) the choice between vanilla 3D Gaussians [18] and Gaussian-
mesh representation for our base 3D representation.

EucDist vs. GeoDist Fig. 4(a) provides a comprehensive qualitative analysis of the choice between
EucDist and GeoDist. When using EucDist, the vertices on the elephant are incorrectly connected
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Figure 4: Qualitative evaluation of ablation studies on: (a) choice between GeoDist and EucDist
for deformation graph (DG) construction; (b) our proposed adaptive hybrid skinning (AHS) against
LBS and DQS; (c) effects of ARAP and normal consistency (NC) loss.

PSNR(ref) + SSIM(ref)+ LPIPS| FVD] FID-VID| CLIP
Skinning=DQS 36.28 0.978 0.126 479.83 29.78 0.940
Skinning=LBS 36.68 0.980 0.155 540.86 32.19 0.928
w/o arap 37.04 0.979 0.142 751.56 42.08 0.907
w/o normal consistency 36.86 0.980 0.147 519.49 30.90 0.932
Full method 37.04 0.980 0.126 474.96 29.14 0.938

Table 2: Quantitative evaluation of ablation study on different components. During experiments,
we keep all other setup unchanged compared to the full method except the tested components. The
quantitative scores show that our full method achieves best performance on almost all metrics.

to its body, resulting in significant deformation artifacts. Conversely, GeoDist correctly links the
vertices to neighboring nodes, enabling smooth object motion.

Adaptive Hybrid Skinning The upper two rows of Table 2 presents quantitative results when
replacing our adaptive hybrid skinning with DQS and LBS respectively. Almost all metrics have a
decrease compared to using our adaptive hybrid skinning, showcasing its robustness. We also provide
a qualitative comparison on a dancing robot case in Fig. 4(b). When LBS or DQS is used, there
are artifacts on the robot’s deformed elbow along with uneven surface. In contrast, the artifacts are
eliminated and the surface becomes smooth when our adaptive hybrid skinning is used.

Geometric Regularization Terms The third and fourth rows of Table 2 present the scores of
metrics when either the ARAP or normal consistency term, respectively, is omitted from Equation 18.
Decreases are observed across all metrics compared to full loss terms and it drops significantly when
disabling ARAP loss. This circumstance matches the qualitative analysis shown in Fig. 4(c). Without
ARAP term, it appears serious distortions on the object geometry. When the normal consistency term
is disabled, the object surface becomes less smooth, and consequently, the texture is impaired.

3D Gaussians vs. Gaussian-mesh Hybrid In Fig. 5, we provide the qualitative comparison
between 3D Gaussians and the Gaussian-mesh hybrid representation for our base 3D representation.
It shows that when utilizing 3D Gaussians, the texture of generated objects is blurry on those parts
unseen in reference image. As a contrary, Gaussian-mesh hybrid representation presents clean and
high-quality texture under every view, which benefits from the sharp surface provided by mesh.

4.4 Limitations

Despite the superior results achieved, our work still exist several limitations. In particular, our method
relies on a pre-trained multi-view diffusion model (Zero123) for novel view supervision through SDS,
leading to long optimization time and limited performance on which case Zero123 cannot handle well.
Moreover, our method is currently only designed to generate 4D contents at object level from input
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Figure 5: Qualitative comparison on 3D representation between 3D Gaussians and Gaussian-
mesh hybrid representation. When utilizing 3D Gaussians as our base 3D representation, the
texture is blurry on the parts unseen in reference image. As a comparison, the texture is clean and of
high quality under every view when employing the Gaussian-mesh hybrid representation.

videos captured under fixed viewpoint. The extension of our framework to scene-level generation or
to videos captured with a moving camera remains an area for future exploration. Finally, due to the
scarcity of test data, the performance of our method on more complex task is not evaluated. These
identified limitations will be addressed in our future research endeavors.

5 Conclusion

In this work, we introduce DreamMesh4D, an innovative video-to-4D framework that generates
dynamic meshes through a static-to-dynamic optimization process. By employing a Gaussian-mesh
hybrid representation, we simultaneously refine both the geometry and texture of the object. This
approach allows the static object to serve as an excellent starting point for dynamic learning. During
the dynamic stage, we construct a deformation graph on the object’s surface using geodesic distance.
Thereafter, the motion of the entire mesh, as well as the surface Gaussians, are driven by sparse control
nodes via a novel geometric skinning algorithm named adaptive hybrid skinning. It benefits from the
strengths of both Linear Blending Skinning (LBS) and Dual-Quaternion Skinning (DQS), enabling
more robust deformation. Extensive experiments have demonstrated the superior performance of our
method in generating high-fidelity 4D objects. It significantly surpasses previous methods in both
rendering quality and spatial-temporal consistency, establishing a new benchmark for video-to-4D
tasks. While our method benefits a lot from the mesh-based representation, it reveals a promising
direction in the field of video-to-4D generation. Furthermore, our method’s compatibility with modern
geometric pipelines showcases its potential applicability in the 3D gaming and film industries.
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A Appendix / supplemental material

A.1 Additional Qualitative Results

Here we provide more qualitative comparisons of our method against baseline works in Fig. 6. Please
see our project page for more temporal qualitative results with video format.
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Figure 6: Additional qualitative comparison with baselines.
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A.2 Implementation Details

Static Stage In the process of both coarse mesh generation and SuGaR refinement, the loss
in Equation 3 is utilized for supervision, with the strength of different terms as A\ypg = 0.1,
Aver = 1000 and A7, . = 500. For the generation of coarse mesh, a set of randomly initialized 3D
Gaussians are optimized for 3000 steps in total. In the former 1500 steps, we do densification and
pruning every 100 steps. After the 1500 steps, densification and pruning are stopped, and we introduce
additional opacity binary and density regularization terms as described in [9] into optimization until
step 3000. Finally, we prune all Gaussians with opacity less than 0.5 and extract coarse mesh through
Poisson reconstruction. Afterwards, we bind x = 6 new flat Gaussians to each triangle face of the
coarse mesh, and do optimization for 2000 steps.

Dynamic Stage In dynamic stage, we defaultly sample N,,,q. = 1024 control nodes and assign
Nheighvor = 4 neighboring nodes for each vertex when constructing deformation graph. For each
training step, 8 frames are randomly sampled from the input video for supervision. And for each
sampled timestamp, we randomly sample 2 views for the calculation of SDS loss. All images are
rendered at resolution 512 x 512 with white background. The camera distance to world center is
fixed as 3.8 and the degree of field-of-view (FoV) is fixed as 20°. As for the strenghts of different
loss terms, we defautly set Aspg = 0.1, Arey = 5000, Appqsk = 500 and Ay = 10. The value
of Aarap is chosen case-specifically in [1, 10] according to the motion amplitude of object. The
deformation network is zero-ly initialized and totally optimized for 2000 steps with learning rate as
0.00032. All of our experiments are conducted on a single NVIDIA RTX 4090 GPU.

Licenses Here we provide the URL, citations, and licenses of open-sourced assets used in this work
in Table 3.

URL Citation License
https://github.com/threestudio-project/threestudio [10] Apache-2.0 license
https://github.com/huggingface/diffusers [53] Apache-2.0 license
https://github.com/facebookresearch/pytorch3d [37] BSD License
https://github.com/cvlab-columbia/zero123 [26] MIT License
https://github.com/Anttwo/SuGaR [9] Gaussian-Splatting License

Table 3: URL, citations and licenses of the open-sourced assets used in this work.

A.3 Additional Experiments

Consistent4D  DreamGaussiandD 4DGen STAG4D  Ours

Training Time 2.0h 0.6h 3.0h 1.6h 0.8h
Memory 28GB 20GB 15GB 7GB 8GB

Table 4: Comparison of computation cost of different methods.

Computation Cost In Table 4, we report the computation cost of our method and other compared
baseline methods, demonstrating the computation efficiency of our method.

#Gaussians per face | PSNR(ref)t  SSIM(ref)t LPIPS| FVD| FID-VID] CLIPt
1 36.17 0.977 0.134 523.39 27.18 0.939
3 36.55 0.979 0.129 496.46 27.60 0.943
4 36.60 0.979 0.128 519.35 26.81 0.940
6 36.63 0.979 0.127 477.63 25.96 0.940

Table 5: Quantitative evaluation of ablation study on the number of Gaussians per triangle face.

Ablation on Number of Face Gaussians We also conduct comparisons on different number of
Gaussians per face. The qualitative and quantitative comparison results are presented in Fig. 7 and
Table A.3. The results demonstrate that the more Gaussains utilized per triangle face, the more
detailed appearance can be obtained (e.g., the eyes and nose of the dog). Empirically we find that
6-Gaussians-per-face can already deliver satisfying performance by considering the rendering quality
and training time. Hence we keep this setup for all experiment cases.
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Figure 7: Qualitative comparison on the number of Gaussians per face. The appearance quality of
details (e.g. the eyes and nose) is getting better when binding more number of Gaussians on triangle
face.

Ablation on Number of Control Nodes Here we conduct an additional ablation study on the
choice of the number of control nodes, NV,,,4¢, and the number of connected nodes for each vertex,
Nneighvor- We try [256, 512, 1024] for Ny,oq4e and [4, 8, 16] for Nyeignbor» and the quantitative results
are presented in Table 6. There are no significant distinct on scores of different metrics under different
combination of Nyoge and Nyeignbor, except for PSNR(ref), on which {Nhnode = 1024, Nneighbor =
4} achieves the highest score. While PSNR(ref) is a key metric revealing reconstruction quality, we
pick { Npoge = 1024, Npeighbor = 4} as the default setup for our method.

PSNR(ref) SSIM(ref) LPIPS FVD  FID-VID CLIP

Nrode = 1024, Ny cighbor = 16 36.39 0.979 0.128  559.43 32.08 0.932
Nnode = 1024, Nyeighbor = 8 36.70 0.980 0.128  521.15 30.94 0.936
Nnode = 1024, Nypeighvor = 4 37.82 0.980 0.128  516.46 31.20 0.937
Nnode = 512, Npeighbor = 16 36.14 0.979 0.127  542.32 30.19 0.937
Nnode = 512, Npeighbor = 8 36.28 0.979 0.127  505.86 30.34 0.935

Nnode = 512, Npeighvor = 4 36.42 0.979 0.127  511.78 30.59 0.936

Nnode = 256, Nneighbor = 8 3592 0.978 0.129  512.25 32.21 0.935

Nnode = 256, Npeighvor = 4 35.97 0.979 0.127  522.46 30.55 0.935

Table 6: Quantitative results of setup on number of control nodes and mesh vertex connectivity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe our proposed algorithm in section 3 in detail, and the extensive
experiment results demonstrate the claimed superior performance compared to previous
methods.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to section 4.4 in our main paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our method is described in details, and we also specify all implementation
details in our appendix. All assets used by this work are open accessed online and they are
referenced soundly in paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have provided the link to our project page and code at the end of abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Descibed in section A.1 of appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The quantitative results are not accompanied by error bars, confidence intervals,
nor statistical significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Descibed in section A.1 of appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No justification.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As described in abstract and introduction part, our method is compatible with
modern geometric pipelines, showcasing its potential in the 3D gaming and film industry.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The URL, citations and licenses of open-sourced assets used in this work are
provided in Table 3 of appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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