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Abstract

One major obstacle that precludes the success of reinforcement learning in real-world
applications is the lack of robustness, either to model uncertainties or external disturbances,
of the trained policies. Robustness is critical when the policies are trained in simulations
instead of real world environment. In this work, we propose a risk-aware algorithm to
learn robust policies in order to bridge the gap between simulation training and real-world
implementation. Our algorithm is based on recently discovered distributional RL framework.
We incorporate CVaR risk measure in sample based distributional policy gradients (SDPG)
for learning risk-averse policies to achieve robustness against a range of system disturbances.
We validate the robustness of risk-aware SDPG on multiple environments.

Keywords: Risk sensitive control, reinforcement learning, distributional reinforcement
learning, robust reinforcement learning

1. Introduction

Reinforcement learning (RL) has been successful in achieving human level or even better
performance (Mnih et al., 2015a; Silver et al., 2017) in multiple games such as Atari and Go.
However, one of the major factors hindering the application of RL to real-world continuous
control tasks is the modeling gap between simulation and real-world which can lead to
unpredictable, and often unwanted, results (Pinto et al., 2017). More specifically, learning
policies requires a large amount of training data, which is expensive to collect if trained
directly in real-world environment. Thus, simulators are often used for learning policies
before deploying to real-world problems. However, such simulation models usually contain
uncertainties, i.e., a reality gap, which makes the policies trained in simulation less desirable
in real applications. In this paper, we propose an algorithm to improve the robustness of
RL against such model uncertainties.

There are two popular approaches to robust RL: by minimizing the expected loss in
the worst case via minimax formulations (Heger, 1994; Nilim and El Ghaoui, 2005; Tamar
et al., 2014; Pinto et al., 2017) and by considering risk-sensitive optimization criteria during
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training (Chow and Ghavamzadeh, 2014; Tamar et al., 2015). The relation between the two
has been studied in Jacobson (1973); Coraluppi and Marcus (1999); Glover and Doyle (1988);
Fleming and McEneaney (1992, 1995). Our proposed algorithm falls into the latter. In
particular, we incorperate risk-sensitive criteria within distributional reinforcement learning
(DRL) framework. Instead of modeling the value function as the expected sum of rewards,
the DRL (Bellemare et al., 2017) framework suggests to work with the full distribution of
random returns, known as value or return distribution, i.e., Qπ(x, a) = EZπ(x, a), where
Zπ(x, a) denotes the return distribution. The return distribution Z in DRL framework
provides tremendous flexibility to incorporate risk in the training process.

In DRL, the return distribution is usually represented by discrete categorical form (Belle-
mare et al., 2017; Barth-Maron et al., 2018; Qu et al., 2018), quantile function (Dabney
et al., 2018b; Zhang et al., 2019), or samples (Freirich et al., 2019; Singh et al., 2020).
D4PG (Barth-Maron et al., 2018) and SDPG (Singh et al., 2020) are actor-critic type policy
gradient algorithms based on DRL and have demonstrated much better performance (Barth-
Maron et al., 2018; Tassa et al., 2018) as compared to its non-distributional counterpart
(DDPG) (Silver et al., 2014) for continuous control tasks. In SDPG, the return distribution
is represented via samples as opposed to discrete categorical representation in D4PG, which
has shown advantages in terms of sample efficiency as well as maximum rewards. Even
though D4PG and SDPG learn the return distribution, they optimize the mean value of the
returns and therefore, are susceptible to model uncertainties. In this work, we incorporate
risk-sensitive criteria for optimizing the policy in SDPG algorithm to achieve robustness
against a range of disturbances in the system. Specifically, we focus on conditional value
at risk (CVaR) (Chow and Ghavamzadeh, 2014; Chow et al., 2015), a widely adopted risk
measure.

We perform multiple experiments to illustrate the robustness of the learned policy
incorporating the risk during training against the risk-neutral policy. We demonstrate the
robustness of our risk-averse SDPG algorithm against system disturbances on multiple
OpenAI Gym (Brockman et al., 2016) environments for continuous control tasks including
BipedalWalker, HalfCheetah, and Walker2d.

Related Work: There have been a few methods which accounted for risk within
DRL framework including Morimura et al. (2010a,b); Dabney et al. (2018a); Tang et al.
(2019). The distributional-SARSA-with-CVaR proposed in Morimura et al. (2010a,b) deals
with discrete action space with only a small number of states. Although implicit quantile
network (IQN) proposed in Dabney et al. (2018a) improved upon traditional deep Q-networks
(DQNs) (Mnih et al., 2015b) and studied risk-sensitive policies in Atari games, it is a value
function based approach and thus not suitable for tasks with continuous action space. Worst
cases policy gradients (WCPG) proposed in Tang et al. (2019) models the return distribution
Z as Gaussian in order to calculate CVaR in closed form, but this restriction may undermine
the advantages of DRL. In terms of taxonomy presented by Garcıa and Fernández (2015),
our approach lies in the risk-sensitive criterion.

The contributions of this work are as follows: (a) We propose a novel RL algorithm to
learn robust policies for continuous control tasks. Our algorithm is based on the recently
discovered DRL framework. The fact that DRL learns the distribution instead of the mean
of the cost-to-go function makes it suitable for risk-sensitive learning. We further took
advantage our recent algorithm SDPG (Singh et al., 2020) to evaluate the risk criteria
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efficiently using samples. (b) We empirically evaluate the performance of our algorithm on
multiple OpenAI Gym environments.

Rest of the document is organized as follows. First we briefly discuss background on DRL,
SDPG, and risk measures in Section 2. Next, we present our risk-averse SDPG algorithm
in Section 3 followed by experimental results in Section 4. Finally, Section 5 concludes the
paper.

2. Background

We consider standard RL setting where the interaction of an agent with an environment
is modeled as (X ,A, R, P, γ). Here, X ,A denote the state and action spaces respectively,
P (· | x, a) is the transition kernel, γ ∈ [0, 1] is the discount factor, and R(x, a) is the reward
of taking action a at state x. Our focus in this paper is on continuous state and action
spaces and deterministic policies at = π(xt). Traditional RL aims to find a stationary policy
π that maximizes the Q-function which is the expected long-term discounted reward

Qπ(x, a) = E

[ ∞∑

t=0

γtR(xt, at)

]
, xt ∼ P (· | xt−1, at−1), at = π(xt), x0 = x, a0 = a. (1)

The Q-function is characterized by Bellman’s equation (Bellman, 1966)

Qπ(x, a) = ER(x, a) + γEQπ(x′, π(x′) | x, a). (2)

2.1. DRL

Distributional reinforcement learning (DRL) models intrinsic randomness of return in form
of full return distribution for each state-action pair

Zπ(x, a) =
∞∑

t=0

γtR(xt, at), xt ∼ P (· | xt−1, at−1), at = π(xt), x0 = x, a0 = a. (3)

Apparently, Q-function is the mean of return distribution, i.e., Qπ(x, a) = EZπ(x, a). The
return distribution satisfies distributional Bellman’s equation (Bellemare et al., 2017)

Zπ(x, a) = R(x, a) + γZπ(x′, π(x′) | x, a), (4)

where the equality is in the probability sense.
Different methods have been proposed to parameterize a return distribution in DRL.

C51 (Bellemare et al., 2017) and D4PG (Barth-Maron et al., 2018) use discrete categorical
distribution, QR-DQN (Dabney et al., 2018b) and IQN (Dabney et al., 2018a) utilize
quantiles, and VDGL (Freirich et al., 2019) and SDPG (Singh et al., 2020) use samples to
model a return distribution. These DRL algorithms have shown significant performance
improvements over non-distributional counterparts in multiple environments including Atari
games and DeepMind Control Suite (Tassa et al., 2018).
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2.2. SDPG

Sample based policy gradient (SDPG) (Singh et al., 2020) is an actor-critic type policy
gradient method within DRL framework where return distribution is represented by samples
through a reparametrization technique (Kingma and Welling, 2013). The actor network
in SDPG parameterizes the policy while the critic network is trained to mimic the return
distribution determined via distributional Bellman equation based on samples. A flow
diagram of the critic in SDPG is shown in Figure 1. The critic network Gφ in SDPG learns
the return distribution by utilizing quantile Huber loss (Huber, 1964; Dabney et al., 2018b)
as a surrogate of Wasserstein distance:

Lcritic(φ) = E


 1

n2

n∑

i=1

n∑

j=1

ρζτ̂i(z̃j − zi)


 , (5)

where z1 ≥ z2 ≥ . . . zn are samples after sorting. Moreover, ρζτ̂i(v) = |τ̂i − δ{v<0}|Lζ(v),

Lζ(v) =

{
0.5 v2 if |v| < ζ

ζ(|v| − 0.5 ζ) otherwise,

and τ̂i = 1
2(τi + τi−1), i = 1, 2, . . . , n with τi = i

n .
Using the distributional policy gradient theorem (Barth-Maron et al., 2018), the gradient

of the loss function of the actor network πθ is computed as

∇θLactor(θ)=E


∇θπθ(x)

1

n

n∑

j=1

[∇azj ] |a=πθ(x)


 . (6)
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Network
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Figure 1: Flow diagram of SDPG.

2.3. Risk Measures

The notion of risk in RL is related to the fact that even an optimal policy may perform
poorly in some cases due to the stochastic nature of the problem. Risk-aware methods in
RL have considered different forms of risk (L.A. and Fu, 2018) including the variance of the
return, worst outcomes, exponential utility function, value at risk (VaR), and conditional
value at risk (CVaR) (Chow and Ghavamzadeh, 2014). In this work, we focus on CVaR.
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CVaR of a random variable Z at level α ∈ [0, 1] is defined as1

CVaRα(Z) := E [Z | Z ≤ VaRα(Z)] (7)

Let {zi}ni=1 be the i.i.d. samples from the distribution of Z and let {z[i]}ni=1 be its order
statistics with z[1] ≤ z[2] ≤ . . . ≤ z[n]. Then CVaR at level α can be estimated as (Kolla
et al., 2019)

ĉn,α =
1

n(1− α)

n∑

i=1

zi I{zi ≤ v̂n,α}, (8)

where I{.} is the indicator function, and v̂n,α is estimated VaR from samples v̂n,α = z[bn(1−α)c]
with b.c being floor function. When α = 0, CVaR becomes expectation of the random
variable which reduces to risk-neutral setting.

3. Risk averse SDPG

In order to take risk into account in policy learning, we utilize the return distribution to
incorporate risk. We use CVaR as the risk-measure to learn the policy. Similar to SDPG,
the risk-sensitive SDPG consists of two neural networks: a critic and an actor. The critic
network Gφ, parameterized by φ, generates samples representing the return distribution by
reparameterizing noise for each state-action pair. These samples are compared against the
target samples determined via distributional Bellman equation given by (4). The quantile
Huber loss is used for updating the critic network as given by Equation (5).

The actor network πθ, parameterized by θ, outputs the action πθ(x) given a state x.
The actor network incorporates risk as feedback from the critic network Gφ in terms of
the gradients of the empirical CVaR (given by Equation 8) of the return distribution with
respect to the actions determined by the policy. This feedback is used to update the actor
network by applying distributional form of the policy gradient theorem. Therefore, the
gradient of the actor network loss function is

∇θLactor(θ)=E


∇θπθ(x) ∇a


 1

n(1− α)

n∑

j=1

zj I{zj ≤ v̂n,α}



a=πθ(x)


 , (9)

where v̂n,α = zbn(1−α)c.
All the steps of risk-averse SDPG algorithm are described in Algorithm 1. The network

parameters of actor and critic networks are updated alternatively in stochastic gradient
ascent/descent fashion.

4. Experiments

We evaluate the robustness of our risk-averse SDPG algorithm against system disturbances
on multiple OpenAI Gym (Brockman et al., 2016) continuous control tasks. For both

1. In this case we are incorporating CVaR while maximizing reward, which is opposite to incorporating
CVaR while minimizing cost. Moreover, CVaR given by (7) is lower-tail CVaR (Morimura et al., 2010a)
resulting in risk-averse policy.
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Algorithm 1 Risk-averse SDPG

Require: Learning rates β1 and β2, CVaR level α, batch size M , sample size n, exploration
constant δ,
Initialize the the actor network (π) parameters θ, critic network (G) parameters φ randomly

Initialize target networks (θ̃, φ̃)← (θ, φ)
for the number of environment steps do

Sample M number of transitions {(xit, ait, rit, xit+1)}Mi=1 from the replay pool
Sample noise {qij}nj=1 ∼ N (0, 1) and {q̃j i}nj=1 ∼ N (0, 1), for i = 1, . . . ,M
Apply Bellman update to create samples (of return distribution)

z̃ij = rit + γGφ̃(q̃j
i|(xit+1, πθ̃(x

i
t+1))) for j = 1, 2, . . . , n

Generate samples zij = Gφ(qij |(xit, ait)) for j = 1, 2, . . . , n

Sort the samples zi in ascending order
Update Gφ by stochastic gradient descent with learning rate β1:

1

M

M∑

i=1

1

n2

n∑

j=1

n∑

k=1

ρζτ̂j (z̃
i
k − zij)

Update πθ by stochastic gradient ascent with learning rate β2:

1

M

M∑

i=1

πθ(x
i
t) ∇a


 1

n(1− α)

n∑

j=1

zij I{zij ≤ zibn(1−α)c}



a=πθ(x

i
t)

Update target networks (θ̃, φ̃)← (θ, φ)
end for
Actor

repeat
Observe (xt, at, xt+1) and draw reward rt
Sample action at+1 = πθ(xt+1) + δN (0, 1)
Store (xt, at, rt, xt+1, at+1) in replay pool

until learner finishes

actor and critic networks, we use a two layer feedforward neural network with hidden layer
sizes of 400 and 300, respectively, and rectified linear units (ReLU) between each hidden
layer. We also used batch normalization on all the layers of both networks. Moreover,
the output of the actor network is passed through a hyperbolic tangent (Tanh) activation
unit. In all experiments we use learning rates of β1 = β2 = 1× 10−4, batch size M = 256,
exploration constant δ = 0.3, and ζ = 1. Across all the tasks, we use n = 51 number of
samples to represent return distributions. Moreover, we run each task for a maximum of
1000 steps per episode. We consider four different levels of disturbances on action forces to
evaluate the robustness of learned policies at different α levels of CVaR. We parameterize the
disturbances in terms of Gaussian noise added to action forces during evaluation. We consider
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 2: BipedalWalker-v2. Top row depicts evaluation curves and the bottom row depicts
the CDFs at different noise levels. The evaluations are done every 5000 environment
steps in each trial over 1000 episodes. The shaded region represents standard
deviation of the average returns over 5 random seeds. The first column is noise-free,
NoiseLevel = 0. The second column is corresponding to NoiseLevel = 0.5. The
third one is NoiseLevel = 1.0. The final column is NoiseLevel = 1.5.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 3: HalfCheetah-v2

the disturbances at multiple noise scales to illustrate the robustness. For each environment,
we consider different NoiseLevel of the disturbances depending on the highest action value
corresponding to the domain. Specifically, NoiseLevel = 0.3 × amax is the variance of
the added zero mean Gaussian noise with amax being the highest possible action value
corresponding to the environment. Due to the lack of a perfect actuator, the experiments
model scenarios when we deploy the policy to the real-world.

We consider the following environments in our experiments: BipedalWalker-v2, HalfCheetah-
v2, and Walker2d-v2. The task of an agent in all the three domains is to walk (run) as fast
as possible without falling down and the reward is given for moving forward. We choose
these environments because the reward has a large penalty when the robot falls down. These
environments are not safe as compared to the other environments; the risky environment
will have a value distribution with higher variance, which means there will be a higher
probability that worst case scenario happens regardless of the expected reward. The state in
BipedalWalker-v2 domain is 24-dimensional representing hull angle speed, angular velocity,
horizontal speed, vertical speed, position of joints and joints angular speed, legs contact
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 4: Walker2d-v2

with ground, and 10 lidar rangefinder measurements. The action space consists of actuator
motor torques at 4 different joints. For both HalfCheetah-v2 and Walker2d-v2 domains, the
state space is 18 dimensional consisting of positions, angles, and velocities of different joints
while the dimension of action space is 6 consisting of actuator torques.

In each environment, we learn policies at different CVaR values α and evaluate the learned
policies over 1000 trajectories for multiple levels of action disturbances. We also present
the estimates of cumulative distribution functions (CDFs) from a total of 5000 rewards of
trajectories. For all experiments in various environments, our risk-averse algorithms show
similar performance during training compared to risk-neutral one.

Figure 2 shows the performance of our algorithm on BipedalWalker-v2 domain. The top
row shows the evaluation curves at different noise levels and the bottom row depicts the
corresponding CDFs. It can be observed from the figure that as noise level increases, the
performance of all algorithms go down as expected. Moreover, our learned policies with
non-zero CVaR α values outperform the risk-neutral one at all the noise levels. Figure 3
shows the performance in HalfCheetah-v2 environment. The policy with CVaR value 0.1
show the best performance at all the noise levels. Figure 4 shows the evaluation of our
algorithm in Walker2d-v2 environment. The risk-neutral one is the most sensitive to the
presence of noise. Risk-averse policy with CVaR value 0.5 show the most robustness in
either noise free or noise environments.

5. Conclusion

In this paper, we proposed a robust RL algorithm for real-world applications with continuous
state action spaces. Our algorithm is based on distributional reinforcement learning which
is an idea framework for integrating risk. We utilized sample based policy gradients in
this framework and incorporated CVaR to learn risk-averse policies. We demonstrated the
robustness of the resulting policies against a range of disturbances in multiple environments.
Even though we focused on a special type of risk measure, CVaR, in this work, our framework
is compatible with any utility function based risk measure. We will explore these options
thoroughly via experiments in the future.
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ment learning with quantile regression. In AAAI Conference on Artificial Intelligence,
2018b.

Wendell H Fleming and William M McEneaney. Risk sensitive optimal control and differential
games. In Stochastic theory and adaptive control, pages 185–197. Springer, 1992.

Wendell H Fleming and William M McEneaney. Risk-sensitive control on an infinite time
horizon. SIAM Journal on Control and Optimization, 33(6):1881–1915, 1995.

Dror Freirich, Tzahi Shimkin, Ron Meir, and Aviv Tamar. Distributional multivariate
policy evaluation and exploration with the Bellman GAN. In Proceedings of the 36th
International Conference on Machine Learning, volume 97, pages 1983–1992, 2019.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Keith Glover and John C Doyle. State-space formulae for all stabilizing controllers that
satisfy an H∞-norm bound and relations to relations to risk sensitivity. Systems & Control
Letters, 11(3):167–172, 1988.

9



Risk Averse DRL

Matthias Heger. Consideration of risk in reinforcement learning. In Machine Learning
Proceedings 1994, pages 105–111. Elsevier, 1994.

Peter J Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, pages 73–101, 1964.

David Jacobson. Optimal stochastic linear systems with exponential performance criteria
and their relation to deterministic differential games. IEEE Transactions on Automatic
control, 18(2):124–131, 1973.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ravi Kumar Kolla, LA Prashanth, Sanjay P Bhat, and Krishna Jagannathan. Concentration
bounds for empirical conditional value-at-risk: The unbounded case. Operations Research
Letters, 47(1):16–20, 2019.

Prashanth L.A. and Michael Fu. Risk-sensitive reinforcement learning: A constrained
optimization viewpoint. arXiv preprint arXiv:1810.09126, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015a.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015b.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki
Tanaka. Nonparametric return distribution approximation for reinforcement learning. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
799–806, 2010a.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki
Tanaka. Parametric return density estimation for reinforcement learning. In Proceedings
of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pages 368–375.
AUAI Press, 2010b.

Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with
uncertain transition matrices. Operations Research, 53(5):780–798, 2005.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2817–2826, 2017.

Chao Qu, Shie Mannor, and Huan Xu. Nonlinear distributional gradient temporal-difference
learning. arXiv preprint arXiv:1805.07732, 2018.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

10



Risk Averse DRL

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the
game of go without human knowledge. nature, 550(7676):354–359, 2017.

Rahul Singh, Keuntaek Lee, and Yongxin Chen. Sample-based distributional policy gradient.
arXiv preprint arXiv:2001.02652, 2020.

Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approxi-
mation. In International Conference on Machine Learning, pages 181–189, 2014.

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the CVaR via sampling. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst cases policy gradients.
In Conference on Robot Learning (CoRL), 2019.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

Shangtong Zhang, Borislav Mavrin, Hengshuai Yao, Linglong Kong, and Bo Liu. QUOTA:
The quantile option architecture for reinforcement learning. In AAAI Conference on
Artificial Intelligence, 2019.

11


	Introduction
	Background
	DRL
	SDPG
	Risk Measures

	Risk averse SDPG
	Experiments
	Conclusion

