
Runtime Monitors for
Operational Design Domains of Black-Box ML Models

Hazem Torfah
University of California at Berkeley

torfah@berkeley.edu

Sanjit A. Seshia
University of California at Berkeley
sseshia@berkeley.edu

Abstract

Autonomous systems are increasingly relying on machine learning (ML) compo-
nents to perform a variety of complex tasks in perception, prediction, and control.
To guarantee the safety of ML-based autonomous systems, it is important to capture
their operational design domain (ODD), i.e., the conditions under which using
the ML components does not endanger the safety of the system. In this paper,
we present a framework for learning runtime monitors for ODDs of autonomous
systems with black-box ML components. A runtime monitor of an ODD predicts
based on a sequence of monitorable observations whether the system is about to
exit its ODD. We particularly investigate the learning of optimal monitors based
on counterexample-guided refinement and conformance testing. We evaluate our
approach on a case study from the domain of autonomous driving.

1 Introduction

In recent years, there has been an increase in using autonomous systems in various safety-critical
applications. Operating in complex environments, modern autonomous systems depend on machine
learning (ML) techniques to solve complex tasks in perception, prediction, and control [2, 4, 17].
ML components such as deep neural networks are, however, brittle; unanticipated changes in the
environment may cause a neural network to produce faulty outcomes endangering the safety of the
autonomous system [1, 7, 9]. A major driver for this brittleness, is the distribution gap between the
data used in training and the data received at runtime. Out-of-distribution learning is key to reducing
this gap and has been subject to extensive investigation in the ML community [10, 14, 15, 23, 24].
Out-of-distribution learning aims to detect shifts in the distributions of inputs and labels of ML
models, with the goal of learning models that generalize well on unseen inputs. It thus treats the
problem on the component level. However, in autonomous systems, ML components are part of
a larger system and their behavior is influenced by many external factors, some of which may not
have been (sufficiently) covered during training. Analyzing the module in isolation does not tell
us anything about its behavior under external factors. It is, therefore, crucial to also examine ML
components in the larger context of their systems and learn how they affect their safety. Specifically,
it is important to capture the system-level conditions under which these components are guaranteed
to maintain the safety of the overall system, also known by its operational design domain (ODD).

In this paper, we introduce a simulation-based approach for learning monitorable operational design
domains of black-box systems, in particular those with critical ML components. We emphasize the
role of monitorability in this context. To assure the safety of the system, the boundaries defined by
an ODD must be monitored during operation and the system should only operate (autonomously)
using the ML component when these boundaries are met. In contrast to general notions of ODDs
[3, 12, 13, 16, 19], we are, therefore, interested in learning ODDs defined over a monitorable feature
space and which can be implemented as runtime monitors. Not every ODD can be monitored at

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



runtime. Some aspects of the ODD may not be reliably observable or are too expensive to observe.
A monitor relying on these aspects is not (efficiently) implementable.

In many cases, the system or its ML components are black boxes with no access to their implementa-
tion or the data used in training. To learn a monitor that accurately represents the ODD, data used
for learning the monitor needs to provide good coverage of the feature space over which the ODD
is defined. We emphasize that a powerful ODD needs to be specified over runs of the system, as
the history of observable features allows us to approximate hidden states of the black box system.
To scale to this complex high-dimensional feature space, our framework builds on VERIFAI, an
open-source toolkit for the formal design and analysis of systems that include ML components [6].
VERIFAI operates on an abstract semantic feature space, representing different spatial and temporal
configurations of objects and agents, in which we want to analyze a system. This space is represented
using SCENIC, a powerful probabilistic programming language for modeling environments [8]. A
SCENIC program defines a distribution over configurations of physical objects and their behaviors
over time from which various simulations can be sampled. While running the system in a sampled
configuration, runs over valuations of the ODD’s feature space are collected and evaluated according
to a (temporal) system-level specification. These form the training set for learning the monitor.

In the following sections, we briefly introduce the learning framework and show how it can be
used to learn monitors for the ODD of an autonomous car with a black-box perception module for
lane keeping. We particularly show the importance of learning state-based monitors that base their
predictions on a history of observations [20] and discuss the challenges in learning such monitors. For
more information on the formal definition of monitorable ODDs, the learning problem, and technical
details on our framework, we refer the reader to [22].

2 Framework

Our framework is shown in Figure 1 and is composed of three main components: simulation-based
analysis, data generation and learning, and conformance testing. For simulation-based analysis, we
use VERIFAI [6]. Given an executable model of the system with the black-box (ML) component, a
model of the environment in which the system is to be executed, given as a probabilistic program
written in SCENIC [8], we use VERIFAI to run simulations and evaluate them according to a provided
system-level specification i.e., one defining a property of the system (For example, an autonomous car
should never exit its lane). The evaluated simulations are then forwarded to another component for
data generation. The data generation component performs several operations on top of the simulation
traces, applying certain filters, transformations, and slicing (see, e.g., [21, 22]). Once the data has
been prepared for learning, a learner of our choice runs on top of the data. The outcome is an
(optimal) monitor implementing the ODD. A monitorable ODD in our framework is learned in terms
of a desired class of programs defined over the observable feature space. For the given system-level
specification, one that defines a general ODD over a possible non-observable abstract feature space,
our framework can be used to learn a monitorable ODD from the class of programs that predicts
whether the system will violate the specification, based on sequences of valuations of the observable
feature space. In our case study, we fix the class of decision trees as the class of monitors and learn
two types of decision tree monitors, stateless monitors defined over positional values of the feature
space (sequences of length 1), and state-based monitors defined over sequences of feature valuations
of length 20. Finally, a conformance tester checks the quality of the monitor. Here, the conformance
tester may use further simulation runs, using VERIFAI, to search for any counterexamples. If
conformance testing succeeds, the framework terminates and returns the so-far learned monitor.
Otherwise, counterexamples found during testing are forwarded to the data generating process to
compute a new set of data over which a new monitor is learned. Counterexamples can be particularly
of two types, false positives and false negative. Learning can be biased toward one of these types by
changing the value wfn.

3 Case Study: Image-based Lane Keeping

We used our framework in an experiment for learning a monitor for the ODD of an autonomous
vehicle with an image-based perception module used for lane keeping. The perception module uses a
convolutional neural network (CNN) that, for a given snapshot taken by a camera mounted at the front
of the vehicle, returns the estimated cross-track error to the centerline of the lane. We are interested
in learning a monitor which based on the values of the features of precipitation, cloudiness, the sun

2



VERIFAI

Simulator

Sampler Analyzer
Environment

model
(SCENIC)

Specification
φ

System
(model)

D
at

a
G

en
er

at
io

n

training set

Learner
examples

wfn

Conformance
tester

candidate

M
counterex.

test set

M

Figure 1: Extension of VERIFAI with the ODD learning framework

Figure 2: Scenic program and corresponding sampled scenes

angle, location on the map (junction or straight road), and radar data covering the front spectrum of
the vehicle, determines whether the vehicle will remain in the lane. In the following, we provide
some details on the experimental setup and results.

3.1 Setup

Our setup uses VERIFAI’s interface to the CARLA simulator [5]. The perception module is executed
as part of a closed-loop system whose computations were sent to a client running inside CARLA.
These are named values that represent the simulator state, such as the position of the car, its velocity,
heading, weather conditions, other objects on the road.

The environment is modelled by the SCENIC program depicted in Figure 2. The sampler chooses
simulations in different weather conditions, roads and initial positions on the road, and sun angles,
thus, sampling different times of the day and their corresponding shadowing effects. The behavior
of the ego car is implemented as a call to an external function implementing EgoBehavior, which
defines a Simplex-based architecture [18] that depending on the decision of a learned monitor switches
between the ML perception-based control and a safe controller.

The simulation runs were evaluated based on the temporal specification of "never invading another
lane", using a built-in CARLA specification for detecting lane invasions. Initially, we obtained the
training data from 115 simulations1. In each conformance testing round, we used another 115 i.i.d
simulations sampled from the SCENIC program. Lastly, we fixed decision trees as the class of our
monitors and used a decision-tree learning procedure provided by the sci-kit learning library2.

All experiments were conducted on a machine with a 3.5GHz 10-Core CPU, 64GB of RAM, and a
GPU with 6 GPCs and a total 3072 cores.

3.2 Experiments

We conducted two types of experiments. In the first experiment, we learned stateless monitors that
predict a violation of the system-level specification solely on the current valuation of the ODD’s

1The number of simulations was computed using Hoeffding’s inequality [11] for confidence value α = 0.01
and error-margin ϵ = 0.1.

2https://scikit-learn.org/

3

https://scikit-learn.org/


w/o Mon Mon1 Mon2 Mon3 Mon4 Mon5
0

20

40
FN

0

20

40
FP

(a) Stateless monitors learned over only current evaluations of features.

w/o Mon Mon1 Mon2 Mon3 Mon4 Mon5
0

20

40
FN

0

20

40
FP

(b) State-based monitors learned sequence evaluations of features of length 20
and a prediction horizon of offset 20.

Figure 3: Statistics of stateless and state-based monitors learned over five iterations. The false
negatives are represented in lined red and the false positives in solid green.

feature values. In the second experiment, we learned state-based monitors over sequences of feature
valuations of length 20 steps. The labels of the training set were computed based on the recorded
value of the system-level specification 20 steps into the future.

Figure 3 shows a statistical evaluation of all the monitors learned in the two experiments over five
learning iterations. In each iteration, we computed the rate of false negatives (shown in lined red)
and false positives (shown in solid green). The false negatives and false positives were computed by
running the system in a non-Simplex fashion, i.e., without interference by the monitor, yet recording
the predicted values of the monitor. If the monitor predicted a violation, yet no violation happened
in 20 steps in the future, then this was marked as a false positive. If the monitor did not predict a
violation, yet one occurred in 20 steps, then this was marked as a false negative. The result for the
"w/o monitor" case, was computed by the rate of specification violations over all simulations.

All monitors learned using our framework were able to significantly increase the safety of the
autonomous vehicle (decreasing the rate of false negatives) by switching to a safe controller when
the CNN is not trusted to keep the system safe. A significant decrease in the false negatives rate
is noticeable for state-based monitors in comparison to stateless monitors (compare false negative
rates in Figure 3(a) and Figure 3(b)). With larger histories, the complexity of the monitors however
increases. When learning a monitor, it is therefore important to balance the length of input sequences
to the monitor and the delay caused by evaluating the monitor on this sequence length. For example,
the positional monitors learned in Figure 3(a) caused an average delay of 201 µs in each computation
step. Using state-based monitors resulted in an increase in the average delay to 315 µs.

In general, after a certain number of iterations, we will exhaust the feature space of the ODD. When
the rates of false positives and false negatives fluctuate within a certain bounded range, then this is
an indication, that we reached optimal monitors (in a statistical sense) with respect to the ODD’s
feature space. This was already clear after the third iteration when learning stateless monitors. For
state-based monitors, the boundaries started to stabilize after iteration 4.

Lastly, integrating the learned monitors into the system resulted in the stabilization of the operation
of the vehicle along the road (the results are based on a safe controller that is close to perfect and
always guides the vehicle to the center of the lane). Monitors with smaller false negatives rates have
a lower cross-track error (CTE) range than those with larger ones, especially, the system that uses no
monitor. A lane invasion was recorded every time the vehicle exited the range [-.6, 0.6]. While the
system solely using the CNN had an average CTE range of [-1.17,1.16], with state-based monitors we
were able to reduce this to the range of [-0.89,0.68] (based on the statistics of Mon4). The stateless
monitors on the other hand did not achieve this range.

As with any learning problem, a good outcome requires choosing the right learning parameters. In
the case of learning monitors for ODDs, this highly depends on finding the right length of sequences,
the prediction horizon, and most importantly the features used in learning the ODD. In the future, we
plan on exploring these aspects more, building on experiences in counterexample-guided learning
methods to obtain good counterexamples in each iteration of the learning process.

4 Conclusion
We presented a framework for learning monitorable operational design domains for autonomous
systems that include ML components. The framework is based on a counterexample-guided learning
approach that builds on simulation-based analysis methods to retrieve its counterexamples. We
evaluated our approach on a lane keeping case study from the domain of autonomous driving
and showed the importance of state-based monitors in comparison to monitors that compute their
prediction based on positional data.

4



Acknowledgments and Disclosure of Funding

The authors are grateful to Daniel Fremont for his contributions to the VERIFAI and SCENIC projects,
and assistance with these tools for this paper. The authors want to thank Sebastian Junges and Marcell
Vazquez-Chanlatte for the insightful discussions and their feedback on this project. The authors also
want to thank Johnathan Chiu, Tommaso Dreossi, Shromona Ghosh, Francis Indaheng, Edward Kim,
Hadi Ravanbakhsh, Ameesh Shah, Kesav Viswanadha and Carol Xie for their valuable contributions
to the VERIFAI project.

This work is partially supported by NSF grants 1545126 (VeHICaL), 1646208 and 1837132, by the
DARPA contracts FA8750-18-C-0101 (AA) and FA8750-20-C-0156 (SDCPS), by Berkeley Deep
Drive, by C3DTI, by the Toyota Research Institute, and by Toyota under the iCyPhy center.

References
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh,

Paul W. Fieguth, Xiaochun Cao, Abbas Khosravi, U. Rajendra Acharya, Vladimir Makarenkov, and
Saeid Nahavandi. A review of uncertainty quantification in deep learning: Techniques, applications and
challenges. Inf. Fusion, 76:243–297, 2021.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané. Concrete
problems in AI safety. CoRR, abs/1606.06565, 2016.

[3] Marjory S. Blumenthal, Laura Fraade-Blanar, Ryan Best, and J. Luke Irwin. Safe Enough: Approaches to
Assessing Acceptable Safety for Automated Vehicles. RAND Corporation, Santa Monica, CA, 2020.

[4] Thomas G. Dietterich and Eric Horvitz. Rise of concerns about AI: reflections and directions. Commun.
ACM, 58(10):38–40, 2015.

[5] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An
open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages
1–16, 2017.

[6] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell
Vazquez-Chanlatte, and Sanjit A. Seshia. Verifai: A toolkit for the formal design and analysis of artificial
intelligence-based systems. In CAV (1), volume 11561 of LNCS, pages 432–442. Springer, 2019.

[7] Tommaso Dreossi, Somesh Jha, and Sanjit A. Seshia. Semantic adversarial deep learning. In CAV, volume
10981 of LNCS, pages 3–26. Springer, 2018.

[8] Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic: A language for scenario specification and data
generation, 2020.

[9] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna M. Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, Muhammad Shahzad,
Wen Yang, Richard Bamler, and Xiao Xiang Zhu. A survey of uncertainty in deep neural networks. CoRR,
abs/2107.03342, 2021.

[10] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples
in neural networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[11] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[12] Patrick Irvine, Xizhe Zhang, Siddartha Khastgir, Edward Schwalb, and Paul Jennings. A two-level
abstraction ODDdefinition language: Part i*. In 2021 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), page 2614–2621. IEEE Press, 2021.

[13] Siddartha Khastgir, Stewart A. Birrell, Gunwant Dhadyalla, and Paul A. Jennings. Calibrating trust
through knowledge: Introducing the concept of informed safety for automation in vehicles. Transportation
Research Part C: Emerging Technologies, 2018.

[14] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. CoRR, abs/1807.03888, 2018.

5



[15] Lawrence Neal, Matthew L. Olson, Xiaoli Z. Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
with counterfactual images. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss,
editors, Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part VI, volume 11210 of Lecture Notes in Computer Science, pages 620–635. Springer,
2018.

[16] SAE on Road Automated Driving Committee et al. SAE J3016. taxonomy and definitions for terms related
to driving automation systems for on-road motor vehicles. Technical report, Technical Report.

[17] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Toward verified artificial intelligence. Communica-
tions of the ACM, 65(7):46–55, 2022.

[18] Lui Sha. Using simplicity to control complexity. IEEE Softw., 18(4):20–28, 2001.

[19] Eric Thorn, Shawn C. Kimmel, and Michelle Chaka. A framework for automated driving system testable
cases and scenarios. 2018.

[20] Hazem Torfah. Stream-based monitors for real-time properties. In RV, volume 11757 of LNCS, pages
91–110. Springer, 2019.

[21] Hazem Torfah, Sebastian Junges, Daniel J. Fremont, and Sanjit A. Seshia. Formal analysis of AI-based
autonomy: From modeling to runtime assurance. In Lu Feng and Dana Fisman, editors, Runtime Verification
- 21st International Conference, RV 2021, Virtual Event, October 11-14, 2021, Proceedings, volume 12974
of LNCS, pages 311–330. Springer, 2021.

[22] Hazem Torfah, Carol Xie, Sebastian Junges, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. Learning
monitorable operational design domains for assured autonomy. In Ahmed Bouajjani, Lukás Holík, and
Zhilin Wu, editors, Automated Technology for Verification and Analysis - 20th International Symposium,
ATVA 2022, Virtual Event, October 25-28, 2022, Proceedings, volume 13505 of Lecture Notes in Computer
Science, pages 3–22. Springer, 2022.

[23] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A
survey. CoRR, abs/2110.11334, 2021.

[24] Ying Zhang, Baohang Zhou, Xiaoke Ding, Jiawei Ouyang, Xiangrui Cai, Jinyang Gao, and Xiaojie Yuan.
Adversarially learned one-class novelty detection with confidence estimation. Inf. Sci., 552:48–64, 2021.

6


	Introduction
	Framework
	Case Study: Image-based Lane Keeping
	Setup
	Experiments

	Conclusion

