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Abstract

Extracting relational triples from unstructured001
text is crucial for information extraction. Re-002
cent methods extract relational triple from a003
stereoscopic perspective which can better cap-004
ture the interaction between entity and rela-005
tion. However, the stereoscopic models intro-006
duce redundant triples, which makes it difficult007
to identify triples accurately. Since the rela-008
tion is one of the elements of triples to be ex-009
tracted, the introduction of its semantic infor-010
mation can make the triple information more011
complete, which is helpful to relational triple012
extraction. In this work, we propose a Relation013
Semantic Information Attentive Stereoscopic014
framework (RSIA) which can fully represent015
and use the semantic information of relations.016
Specifically, a fusion encoder from transform-017
ers on top of relation encoder and sentence en-018
coder is designed to enrich the semantic infor-019
mation of relation. Then, the semantic rep-020
resentation of the relation is integrated into021
the stereoscopic 3D space as its relation di-022
mension. Our model achieves state-of-the-art023
performance with F1 score up to 93.5% and024
94.3% on two public datasets and delivers con-025
sistent performance gain on complex scenarios026
of overlapping triples.027

1 Introduction028

Extracting relational facts from natural language029

text is a well-studied task in information extrac-030

tion (IE) and a crucial step towards building large031

structural knowledge bases (KB) (Auer et al., 2007;032

Bollacker et al., 2008; Dong et al., 2014). A rela-033

tional fact is represented as a triple that consists of034

two entities (an entity pair) connected by a seman-035

tic relation. These facts are in the form of (subject,036

relation, object), or (s, r, o).037

Traditional methods in relational triple extrac-038

tion take in a pipeline manner (Zelenko et al., 2003;039

Zhou et al., 2005; Chan and Roth, 2011). It first040

recognizes all entities in a sentence using a named041

American test pilot Alan Shepard died in California.

occupation

deathPlace

The semantic information of relation ‘occupation’ and  ‘deathPlace’:
‘occupation’:  Jobs performed by individuals that serve society and 
serve as the main source of subsistence.
‘deathPlace’ : where people died

what can we know from the semantic information?
1. The type of  subject and object
  where people died           ( people, deathPlace , location) 
2. Does the relation exist in the sentence
 where people died
 died in

High similarity, the 
deathPlace relation exists

Figure 1: The role of semantic information modeling
of relations.

entity recognizer and then performs relation classi- 042

fication for each entity pair. Such an approach eases 043

the task and makes each component more flexible, 044

but it tends to suffer from the error propagation 045

problem, since the results of entity recognition can 046

affect the performance of relation classification. To 047

tackle this problem, many joint learning models 048

that extract entities and relations in a single model 049

have been proposed. With the rapid development of 050

deep learning, many latest Neural Network-based 051

(NN-based) joint extraction methods (Zeng et al., 052

2018; Wei et al., 2020; Zheng et al., 2021; Wang 053

et al., 2020; Sui et al., 2021; Ren et al., 2021) have 054

shown their strong extraction abilities on diverse 055

benchmark datasets, especially the abilities on com- 056

plex sentences that contain overlapping or multiple 057

triples. Among them, some methods (Zeng et al., 058

2018; Fu et al., 2019) suffer from information loss, 059

some (Wei et al., 2020; Zheng et al., 2021)suffer 060

from error propagation, and others (Wang et al., 061

2020; Wei et al., 2020) ignore the interaction be- 062

tween entity and relation. To address these issues, 063
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methods from a stereoscopic perspective (Tian064

et al., 2021; Wang et al., 2021) are attracting re-065

search attention. They usually map the relational066

triples of a text to a three-dimensional (3-D) space,067

which is like a cube.068

However, previous works from a stereoscopic069

perspective still leave much to be desired. They070

usually consider more triple combinations to avoid071

error propagation, entity information loss, and ig-072

noring interactions. The more triples require the073

model to provide more detailed information not074

only about entities but also about relations to dis-075

tinguish the subtle differences between them. How-076

ever, methods from a stereoscopic perspective still077

ignore the semantic information represented by the078

relational label itself. For example, the relational079

label of ’capital’ itself has the meaning of the polit-080

ical center of a country and the seat of the central081

government. Such a loss of relational information082

will bring certain difficulties to the extraction of083

triples.084

In this paper, we propose a Relation Seman-085

tic Information Attentive Stereoscopic framework086

(RSIA) which fully considers the semantic infor-087

mation of the relation. Firstly, we design two dif-088

ferent encoders – a sentence encoder and a relation089

encoder to capture the two different types of in-090

formation. Then, we propose a fusion encoder091

from transformers (FET) that enhances the seman-092

tic representation capabilities of sentences and re-093

lations. In FET, we design a modified transformer094

to query the related semantic information between095

the sentences and relations and further fuse the096

representations accurately with the related informa-097

tion queried through a similarity gate. Finally, a098

relational triple 3D matrix is formed where each099

entry captures the interaction among a subject, a100

relation, and an object. The relation output of the101

FET that contains its semantic information is intro-102

duced to the 3D matrix. In this way, the semantic103

information of the relation can fully interact with104

the subject and object, giving the triple a more105

comprehensive representation. This work has the106

following main contributions:107

1. We introduce more comprehensive relation108

information, especially the semantic informa-109

tion of relation labels for the relational triple110

extraction task, and then propose a Relation111

Semantic Information Attentive Stereoscopic112

framework (RSIA).113

2. We design a 3D matrix module. Compared114

with other stereoscopic models, we have 115

strengthened the role of relations in the 3D 116

matrix. Relations are not only used as recogni- 117

tion patterns, but also to directly interact with 118

entities using their semantically informative 119

representations. 120

3. Extensive experiments on two public datasets 121

show that the proposed framework outper- 122

forms state-of-the-art methods, with F1 score 123

up to 93.5% and 94.3% on the two datasets 124

respectively. 125

2 Related Work 126

Early works (Mintz et al., 2009; Gormley et al., 127

2015) usually extract relational triples in two sep- 128

arate steps: NER and RC. By employing NER to 129

give sentences with annotated entities, RC can iden- 130

tify the relational facts between the annotated en- 131

tities. However, such a pipeline manner approach 132

suffers from error propagation problems and ne- 133

glects the relevance of entity extraction and relation 134

prediction. To tackle this problem, joint learning 135

frameworks which extract entities together with re- 136

lations have been built. Some of the frameworks 137

are feature-based models (Yu and Lam, 2010; Li 138

and Ji, 2014; Miwa and Sasaki, 2014; Ren et al., 139

2017), and, more recently, others are NN-based 140

models (Gupta et al., 2016; Katiyar and Cardie, 141

2017; Zheng et al., 2017; Zeng et al., 2018; Fu 142

et al., 2019). The formers rely heavily on compli- 143

cated feature engineering and other NLP toolkits. 144

The latters can learn presentations via NN-based 145

methods and have achieved considerable success. 146

However, early NN-based methods (Miwa and 147

Bansal, 2016) achieve joint learning of entities and 148

relations only through parameter sharing but not 149

joint decoding. They still have separate compo- 150

nents for NER and RC subtasks and the error prop- 151

agation problems still exists implicitly. Different 152

from them, Zheng et al. (2017) introduce a novel 153

tagging scheme to extract entities and their rela- 154

tions achieving joint decoding without identify- 155

ing entities and relations separately. They show 156

promising results but completely give up overlap- 157

ping triples. Such a tagging schema suffers from ig- 158

noring overlapping triples and interaction between 159

entity and relation issues. 160

Most existing models in handling overlapping 161

cases- EntityPairOverlap (EPO) and SingleEntiy- 162

Overlap (SEO) are multi-stage-based models that 163
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[SEP]
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. [SEP]
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[SEP]

[C
LS]

The

A
pollo

14 w
as 

operated

by N
A

SA

. [SEP]
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. [SEP]
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Figure 2: An overview of the proposed RSIA framework. BERT Encoder and Relation Encoder are used to learn
representations of the source sentence and relations. Then, a FET module containingN fusion layers is constructed
for more reasonable relation representation Hrel and sentence representation Hsub and Hobj . Finally, a 3D matrix
is formed by integrating the Hobj into the 2D table contains the information of Hsub and Hrel. The orange blocks
tagged 1 reflect that the relational triple (Apollo 14, operator, NASA) is extracted.

can be categorized into two classes: decoder-164

based and decomposition-based. Decoder-based165

models use encoder-decoder architecture where166

the decoder extracts one word or one tuple at a167

time (Zeng et al., 2018; Nayak and Ng, 2020).168

Decomposition-based models have an extraction169

order of triple elements (Wei et al., 2020; Zheng170

et al., 2021), for example, Wei et al. (2020) first171

distinguish all the candidate subject entities that172

may be involved with target triples, then label cor-173

responding object entities and relations for each ex-174

tracted subject. Although these multi-stage-based175

methods have achieved reasonable performance,176

they all suffer from error propagation problem,177

since their prediction process with strict order.178

One-stage methods are proposed which completely179

solve the problem of error propagation, but some180

one-stage methods Wang et al. (2020) ignore the181

interaction between entity relations. A one stage182

modle in 3D space can handles the above problems.183

Recently, Tian et al. (2021) propose a novel Stere-184

oRel model for relational triple extraction, which185

can simultaneously reduce information loss, avoid186

error propagation and not ignore the interaction187

between entity and relation. Wang et al. (2021)188

that eliminates the different treatment on the two189

sub-tasks’ label spaces for joint for entity relation190

extraction also design in a 3D space. However,191

The semantic information corresponding to the re- 192

lation dimension in their 3D structures remains to 193

be mined. 194

3 Method 195

In this section, we describe the detail of RSIA 196

framework. An overview illustration of RSIA is 197

shown in Figure 2. The model is composed of the 198

following three modules: an encoder module, a 199

FET module, and a 3D matrix module. 200

3.1 Encoder Module 201

3.1.1 Sentence Encoder 202

BERT is a multi-layer bidirectional Transformer 203

structure model designed to learn deep represen- 204

tations, which has been proven to be effective on 205

several tasks. We employ a pre-trained BERT (De- 206

vlin et al., 2018) to encode the context information. 207

The output of sentence encoder is Hn ∈ Rn×h, 208

where n is the sentence length, and h is the size of 209

hidden state. 210

3.1.2 Relation Encoder 211

We design an independent relation encoder which 212

is defined as follows: 213

Hm = WrE([r1, r2, ..., rm]) + br (1) 214

where ri is the one-hot vectors of relation indices 215

in the predefined relations, and m is the number of 216
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predefined relations. E is the relation embedding217

matrix, and Wr and br are trainable parameters.218

Hm ∈ Rm×h is the output of relation encoder.219

3.2 FET Module220

The purpose of the FET module which stands for221

Fusion Encoder from Transformers is to further en-222

hance the expression ability, especially for seman-223

tic information by making the sentence representa-224

tion and relation representation contain semantic225

information related to themselves reasonably. The226

FET module is composed of multiple fusion layers.227

Each fusion layer updates the relation representa-228

tion first and the sentence representation second.229

When we update the relation representation, we230

treat each relation as a query and generate its re-231

lated semantic information from the sentence based232

on the FERT. We then design a similarity gate to233

fuse the relation-related information into relation234

representation. Similarly, we use a modified trans-235

former and similarity gate to update sentence rep-236

resentation by treating each word in the sentence237

as a query and relations as providers of key-value238

pairs.239

3.2.1 A Modified Transformer240

We generate the related semantic representation be-241

tween the sentence and relations based on FERT242

(Vaswani et al., 2017) which has three sub-layers.243

Take updating sentence representations as an ex-244

ample. The first is a multi-head self-attention245

mechanism to model the relationship between word246

queries, the second is a multi-head cross attention247

mechanism to map a word query and a set of key-248

value relation pairs to an output, and the third is249

a position-wise fully connected feed-forward net-250

work. We employ residual connections around each251

of the sub-layers, followed by layer normalization.252

There are two differences between FERT and253

transformer decoder. Firstly, since the proposed254

FERT directly outputs the final relation representa-255

tion or sentence representation in one shot instead256

of one by one, our decoder is non-autoregressive.257

The autoregressive decoder needs to use no casual258

mask to prevent positions from attending to sub-259

sequent positions. Without the constraint of an260

autoregressive factorization of the output distribu-261

tion, we use the unmasked self-attention instead,262

which is the same as Gu et al. (2018). Secondly,263

the relations are independent of each other, so there264

is no need to model the relationship between rela-265

tion queries. We delete the first sub-layer of the266

FERT when updating relation representations. 267

3.2.2 Similarity Gate 268

To integrate the query-related information into the 269

query more accurately, we design a similarity gate 270

that can maintain the non-linear capability and pre- 271

vent attending to irrelevant information. We cal- 272

culate the semantic similarity simi between each 273

query hqi and its related information hq−relatedi 274

by the concatenation, linear, and Sigmoid normal- 275

ization operation where i ∈ [1, Q], and Q is the 276

number of queries. If simi is less than the set 277

threshold α, we assign 0 to the attention score of 278

the corresponding query-related information, and 279

then the query-related information will be excluded 280

in subsequent fusion. If simi is greater than the set 281

threshold α, we assign the query-related informa- 282

tion with the attention score of simi to maintain 283

the non-linear capability. We define the above sim- 284

ilarity gate fusion mechanism as follows: 285

simi = Sigmoid(Wsim[hqi ;hq−relatedi ] + bsim) 286

gi =

{
simi, simi > α
0, simi ≤ α

(2) 287

h
′
qi = gi · (Wghq−relatedi + bg) + (1− gi) · hqi 288

where Wsim, bsim, Wg, and bg are trainable 289

weights, g is the similarity gate, · is element-wise 290

production, and h
′
qi is the final output. 291

3.2.3 Relation-sentence Representation 292

Iterative Fusion 293

In this section, we introduce the overall architec- 294

ture of the proposed FET module. To simplify, we 295

define the above formulas as follows: 296

h̃qi = Trans_G(hqi ,Hkv) (3) 297

where Hkv =
{
hkvj

}
j∈[1,K]

is the set of all vec- 298

tors that the query hqi needs to calculate similarity 299

with. h̃qi is the updated query hqi representation. 300

Trans_G denotes the process of updating query 301

hqi using transformer and similarity gate. 302

In each fusion layer, we obtain the new relation 303

representation first, and then we update the sen- 304

tence representation according to the new relation 305

representation. We add a residual connection to 306

avoid gradient vanishing during training after each 307

update process. The l-th fusion layer can be repre- 308
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sented as follows:309

h̃l+1
mi

= Trans_G(hlmi
,H l

n)

hl+1
mi

= h̃l+1
mi

+ hlmi

h̃l+1
nj

= Trans_G(hlnj
,H l+1

m )

hl+1
nj

= h̃l+1
nj

+ hlnj

(4)310

where H l
m=
{
hlmi

}
i∈[1,m]

and H l
n=
{
hlnj

}
j∈[1,n]

311

are the relations and sentence representation of l-th312

fusion layer. hl+1
mi

, and hl+1
nj

are the output relation313

and word representation of l-th fusion layer.314

3.3 3D Matrix Module315

A 3D matrix triple extraction module is developed316

to integrate relation information and sentence in-317

formation to a novel 3D matrix structure and then318

extract relational triples from the 3D matrix.319

In the first stage, a 2D table is formed where each320

entry captures the interaction between a subject321

and a relation. Next, a 3D matrix is identified322

by calculating the interaction between the subject-323

relation 2D table and each object. Finally, we adopt324

a binary classifier to detect the triples by assigning325

each entry a binary tag (0/1) that indicates whether326

the current entry containing the information of a327

subject, an object, and a relation corresponds to a328

triple in the sentence. We define the input vector:329

Hsub = Hobj = Hn

Hrel = Hm
(5)330

where Hsub and Hobj are set to the output sentence331

representation of the FET module represented as332

Hn, and Hrel is set to the relation representation333

of the FET module represented as Hm. Before334

integrating information to 3D matrix, Hsub, Hobj ,335

and Hrel are transformed into H
′
sub, H

′
obj , and336

H
′
rel which are prepared for the later interaction.337

The detailed operations are as follows:338

H
′
sub = SplitHead(WsubHsub + bsub)

H
′
obj = SplitHead(WobjHobj + bobj)

H
′
rel = Expand(Hrel)

(6)339

where Wsub ∈ Rh×(h×m), Wobj ∈ Rh×(h×m),340

bsub, and bobj are trainable parameters. m rep-341

resents the number of predefined relation types342

in the dataset. We denote a reshape operation as343

SplitHead(·) in which the embedding vectors of344

length h ×m are split into embeddings for each345

relation. Since the length n of each sentence is 346

different, we use Expand to expand Hrel n times 347

instead of operating it like Hsub and Hobj . H
′
sub, 348

H
′
obj , and H

′
rel ∈ R(n×m×h) are uesd to calculate 349

the interaction as follows: 350

Hs,r = Ws,r[H
′
sub;H

′
rel] (7) 351

where Hs,r ∈ R(n×m×h) is a 2D table capturing 352

the interaction between subjects and relations by 353

the concatenation and linear operation. Ws,r ∈ 354

R(2h×h) is learnable parameters. To construct the 355

3D matrix, we compute the dot products between 356

Hs,r and all possible objects, and apply a Sigmoid 357

function to normalize probability matrix to range 358

(0, 1). We operate as follows: 359

Hs,r,o = Sigmoid(Hs,r ·H
′
obj) (8) 360

Hs,r,o ∈ R(n×m×n) is an asymmetric 3D matrix, 361

because (e1, r, e2) and (e2, r, e1) are not the same 362

triple. Each entry of Hs,r,o can be treated as the 363

probability score of the existence of a triple. If the 364

probability of a triple is bigger than the threshold 365

we set, the triple is extracted. 366

Notably, most previous works that just pay at- 367

tention to the start/end position of an entity lead to 368

poor generalization, and others that tag each token 369

with BIO (i.e., Begin, Inside, and Outside) lead to 370

more parameters. However, our approach identifies 371

the entities by collecting consecutive extracted to- 372

ken pairs to capture global representations of the 373

entities. At the same time, we use the Sigmoid 374

function as a binary tagger which does not increase 375

as many parameters as BIO. Further, compared 376

with previous works that need to answer which is 377

the relationship between the entity pairs, the binary 378

tagging scheme only needs to answer whether or 379

not the entity pairs have this relationship, which 380

overwhelmingly reduces the difficulty of the triple 381

extraction problem. 382

3.4 Bias Objective Function 383

The model has three dimensions, so the number of 384

invalid tags will increase significantly. The propor- 385

tion of gold labels reduces violently, so we add a 386

bias objective function, which enhances the rela- 387

tionship between related entity pairs and weakens 388

the influence of invalid entity labels. Also, we 389

consider the consequences of applying the bias ob- 390

jective function and tune thresholds λ together to 391

suit them The 3D matrix optimizes the following 392
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likelihood function to identify the triple (s, r, o)393

given a sentence representation x:394

pθ((s, r, o)|x) (9)395

=
n∏

s,o=1

m∏
r=1

(psro))
I{ysro=1}(1− psro)I{ysro=0}396

where n is the length of the sentence, and m is the397

number of predefined relation types. I {z} =β if z398

is true and 0 otherwise. ysro is the true binary tag of399

triple (s, r, o). psro is the normalized probabilities400

of tags defined in Formula 8. β is the bias weight.401

Formally, given annotated sentence xj from the402

training set D and a set of potentially overlapping403

triples Tj = {(s, r, o)} in xj , we aim to maximize404

the data likelihood:405

L = max

|D|∑
j=1

∑
(s,r,o)∈Tj

logpθ((s, r, o)|xj) (10)406

4 Experiments407

4.1 Datasets and Evaluation Metrics408

To evaluate the performance of our methods, we409

use the public dataset NYT (Riedel et al., 2010)410

and WebNLG (Gardent et al., 2017), both of411

which have two versions, respectively. We de-412

note the different versions as NYT*, NYT and413

WebNLG*, WebNLG. NYT* and WebNLG* anno-414

tate the last word of the entities, while NYT and415

WebNLG annotate the whole entity span. NYT*416

and NYT datasets are produced by a distant su-417

pervision method. They contain 1.18M sentences418

sampled from 294k 1987-2007 New York Times419

news articles and have 24 predefined relation types.420

WebNLG* and WebNLG datasets are adopted from421

Natural Language Generation (NLG) task for re-422

lational triple extraction. WebNLG* dataset con-423

tains 171 predefined relation types, while WebNLG424

contains 216. All datasets contain sentences with425

multiple relational triples, so they are suitable to426

be the testbed for evaluating models on extracting427

overlapping relational triples.428

Following previous work (Fu et al., 2019; Wang429

et al., 2020; Zheng et al., 2021), we adopt the stan-430

dard Precision (Prec.), Recall (Rec.), and F1-score431

to evaluate the results. In our experiments, to keep432

in line with previous works, we use Partial Match433

for NYT* and WebNLG*, which means the pre-434

dicted triplets are seen as correct if and only if the435

relation and the heads of the two corresponding436

entities are all correct. For NYT and WebNLG, we 437

use Exact Match, which means that the whole spans 438

of subject and object are needed to be matched. The 439

implementation details are shown in Appendix A. 440

4.2 Experimental Result 441

We compare our RSIA model with several strong 442

baseline models, including NovelTagging (Zheng 443

et al., 2017), CopyR (Zeng et al., 2018), GraphRel 444

(Fu et al., 2019), WDec (Nayak and Ng, 2020), 445

RSAN (Yuan et al., 2020), CasRel (Wei et al., 446

2020), TPLinker (Wang et al., 2020), SPN (Sui 447

et al., 2021), PRGC (Zheng et al., 2021), StereoRel 448

(Tian et al., 2021) and GRTE (Ren et al., 2021). 449

The reported results for the above baselines are di- 450

rectly copied from the original published literature. 451

Our re-implementation results are obtained by the 452

official implementation with default configuration. 453

454

4.2.1 Main Results 455

Table 1 shows the results of our model against 456

other baseline methods on all datasets. Our model 457

overwhelmingly outperforms all the baselines in 458

terms of almost all three evaluation metrics and 459

achieves the state-of-the-art performance in the 460

public datasets. There is a performance gap be- 461

tween the dataset only annotating the last word 462

and the one that annotates the whole span, because 463

identifying the last word of an entity is easier than 464

identifying the whole span. 465

It is important to note that we design a discard 466

mechanism that discards the triples with incom- 467

plete subjects or objects to increase the precision 468

of our model. Before inputting the sentence into 469

BERT, we tokenize the words in the sentence with 470

a designed tokenizer which adds an ’Unused’ token 471

after the word tokens. When extracting the subject 472

or object by collecting consecutive extracted token 473

pairs, if the start token is not the next token of the 474

’Unused’ token or the end token is not the previous 475

token of the ’Unused’ token, the subject or object 476

will be regarded as incomplete. In this way, our 477

model significantly outperforms the strongest base- 478

line by 1.6 and 1.3 absolute gain in precision on 479

public datasets NYT*, WebNLG* respectively. 480

4.2.2 Detailed Results on Sentences with 481

Different Overlapping Pattern 482

To verify the capability of our models in handling 483

the overlapping problem, we conduct further ex- 484

periments on NYT* dataset and WebNLG* dataset. 485
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Method NYT* WebNLG* NYT WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NovelTagging - - - - - - 32.8 30.6 31.7 52.5 19.3 28.3
CopyRE 61.0 56.6 58.7 37.7 36.4 37.1 - - - - - -
GraphRel 63.9 60.0 61.9 44.7 41.1 42.9 - – - - - -
WDec 94.5 76.2 84.4
RSAN - - - - - - 85.7 83.6 84.6 80.5 83.8 82.1
CASREL 89.7 89.5 89.6 93.4 90.1 91.8 - - - - - -
TPLinker 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7
SPN 93.3 91.7 92.5 93.1 93.6 93.4 92.5 92.2 92.3 - - -
SPN† 92.6 91.6 92.1 92.4 93.2 92.8 92.9 91.7 92.3 84.5 82.3 83.4
PRGC 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5
PRGC† 92.0 89.7 90.8 92.8 92.4 92.6 92.5 89.6 91.0 90.4 87.2 88.8
StereoRel 92.0 92.3 92.2 91.6 92.6 92.1 92.0 92.3 92.2 - - -
GRTE 92.9 93.1 93.0 93.7 94.2 93.9 93.4 93.5 93.4 92.3 87.9 90.0
RSIA 94.5 92.5 93.5 95.0 93.6 94.3 93.9 92.1 93.0 90.8 89.6 90.2

Table 1: Comparison of the proposed RSIA method with the prior works. Bold marks the highest score. Our
re-implementation is marked by †.

Method NYT* WebNLG*
Normal SEO EPO Normal SEO EPO

CopyR 66 48.6 55 59.2 33 36.6
GraphRel 69.6 51.2 58.2 65.8 38.3 40.6
CASREL 87.3 91.4 92.0 89.4 92.2 94.7
TPLinker 90.1 93.4 94.0 90.1 93.4 94.0
SPN† 89.8 93.9 94.5 89.1 93.5 94.9
PRGC† 88.4 92.7 93.4 88.4 93.4 95.4
GRTE 91.1 94.4 95 90.6 94.5 96
RSIA 92.4 94.7 94.7 92.4 94.6 95.3

Table 2: F1-score of extracting relational triples from
sentences with different overlapping pattern.

The detailed results on three different overlapping486

patterns are presented in Table 2.487

4.2.3 Detailed Results on Sentences with488

Different Number of Triples489

We compare our model’s capability in extracting490

relations from sentences that contain a different491

number of triplets. We split the sentences into five492

classes and the detailed results are presented in493

Table 3. Our model attains consistently strong494

performance over almost all five classes again.495

Our model suffers the least from the increasing496

complexity of the input sentence. Especially for the497

most difficult class (N≥5), our model outperforms498

the strongest baseline by 0.7 and 0.7 improvements499

on NYT* and WebNLG* datasets. RSIA also500

presents a significant improvement on the easiest501

sentences, ones with only one triple, outperforming502

the strongest baseline by 1.5 and 1.2 absolute gain503

in F1-score on two public datasets. Experimen-504

tal results demonstrate the powerful ability of our505

model in extracting multiple relational triples from506

both complicated sentences and simple sentences.507

Method N=1 N=2 N=3 N=4 N >5

N
Y

T
*

CopyR 67.1 58.6 52.0 53.6 30.0
GraphRel 71.0 61.5 57.4 55.1 41.1
CASREL 88.2 90.3 91.9 94.2 83.7
TPLinker 90.0 92.8 93.1 96.1 90.0
SPN† 89.8 93.5 94.3 95.6 90.2
PRGC† 89.0 91.9 92.5 95.6 86.2
GRTE 90.8 93.7 94.4 96.2 93.4
RSIA 92.3 93.8 93.5 96.0 94.1

W
eb

N
L

G
* CopyR 59.2 42.5 31.7 24.2 30.0

GraphRel 66.0 48.3 37.0 32.1 32.1
CASREL 89.3 90.8 94.2 92.4 90.9
TPLinker 88.0 90.1 94.6 93.3 91.6
SPN† 88.6 90.6 96.3 94.2 93.3
PRGC† 88.4 91.9 94.0 94.8 92.9
GRTE 90.6 92.5 96.5 95.5 94.4
RSIA 91.8 93.2 95.6 95.1 95.1

Table 3: F1-score of extracting relational triples from
sentences with different number of triples.

5 Analysis and Discussion 508

5.1 Ablation Study 509

Model Prec. Rec. F1

W
eb

N
L

G
* RSIA 95.0 93.6 94.3

- sentence update 93.8 93.2 93.5
- relation update 94.4 92.9 93.6
-similarity gate mechanism 94.7 92.9 93.7
-bias objective function 94.2 93.4 93.8

N
Y

T
* RSIA 94.5 92.5 93.5

- sentence update 93.9 92.1 93.0
- relation update 94.1 92.5 93.3
-similarity gate mechanism 94.3 92.4 93.3
-bias objective function 93.9 92.8 93.3

Table 4: Ablation study of RSIA (%). ‘-’ means we
remove or change the module from the original RSIA.

In this section, we conduct ablation experiments 510

to demonstrate the effectiveness of each module 511

component in RSIA with results reported in Table 512
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4. We study the impact of sentence representation513

update, relation representation update and similar-514

ity gate. Ours without bias objective function is515

the special case where parameter β is set to 1 and516

threshold λ is set to 0.5.517

5.2 The Number of Fusion Layers518

To confirm the number of the FET module layers,519

we study the results of using different numbers of520

fusion layers on NYT* and WebNLG*. Table 5521

presents the results. We can observe that RSIA has522

the best result for l = 2.

Number NYT* WebNLG*
Prec. Rec. F1 Prec. Rec. F1

l=0 94.1 92.2 93.1 94.9 93.2 94.0
l=1 94.3 92.7 93.5 94.6 93.6 94.1
l=2 94.5 92.5 93.5 95.0 93.6 94.3
l=3 93.9 92.6 93.2 94.7 92.7 93.7

Table 5: F1-score of different number of fusion layers.

523

5.3 Error Analysis524

Element NYT* WebNLG*
CasRel PRGC† RSIA CasRel PRGC† RSIA

E1 93.5 94.0 95.4 95.7 97.3 97.5
E2 93.5 94.2 95.4 95.3 96.1 97.0
R 94.9 95.1 96.0 94.0 94.8 95.9
(E1, R) 92.2 92.9 94.6 92.5 93.5 95.0
(R, E2) 92.2 92.7 94.5 93.2 93.8 95.1
(E1, E2) 89.7 91.2 93.7 93.5 94.7 95.8
(E1, E2, R) 89.6 90.8 93.5 91.8 92.6 94.3
gap 4.4 3.6 2.1 3.2 3.5 2.5
efficiency 95.3% 96.2% 97.8% 96.6% 96.4% 97.4%

Table 6: F1-score of different relational triple elements.

In order to verify whether our model has the abil-525

ity to narrow the performance gap between (E1,526

R, E2) and E1/R/E2, we analyze the performance527

on predicting different elements of the triple (E1,528

R, E2) where E1 represents the subject entity, E2529

represents the object entity and R represents the530

relation between them. An element like (E1, R)531

is regarded as correct only if the subject and the532

relation in the predicted triple (E1, R, E2) are both533

correct, regardless of the correctness of the pre-534

dicted object. Similarly, we say an instance of E1535

is correct as long as the subject in the extracted536

triple is correct, so sre E2 and R. The gap in table537

6 is the difference between (E1, R, E2) and the538

average of E1, E2, and R. The efficiency is the per-539

centage value of (E1, R, E2) divided by the average540

of E1, E2, and R.541

Table 6 shows the results on different relational 542

triple elements. For both datasets, the performance 543

gap between RSIA and other models on E1, E2, 544

and R shows our advantages in entity recognition 545

and relation prediction. Compared with CasRel 546

and PRGC*, our model narrows the gap between 547

(E1, R, E2) and E1/R/E2 and achieves encouraging 548

1.5% and 0.8% declines on NYT* and WebNLG*. 549

As for conversion efficiency. we gain considerable 550

1.6% and 0.8% improvements on the two datasets 551

respectively. The results indicate that our model 552

has more advantages in identifying the relationship 553

between triple elements than other works. 554

5.4 Model Efficiency 555

Epoch TPLinker CasRel PRGC RSIA
12 0.0 77.1 86.9 92.7
24 - - 91.3 94.4

Table 7: F1-score at epoch 12 and 24 on the WebNLG*
validation set of different methods.

As shown in Table 7, we have a convergence 556

rate superiority. For WebNLG* dataset, we achieve 557

a 92.7% performance at epoch 12 and 94.4% at 558

epoch 24. The result outperforms the PRGC which 559

advantages in convergence rate by 5.8% and 3.1% 560

absolute gain in F1-score at epoch 12 and epoch 561

24. Results of CasRel, TPLinker, and PRGC are 562

directly taken from Zheng et al. (2021) unless spec- 563

ified. The computation complexity of our model 564

is O(kn2) for NYT* and O(n3) for WebNLG* 565

which is similar to TPlinker (Wang et al., 2020). 566

Our method can not only achieve good results but 567

also has obvious advantages in convergence rate, 568

which makes the high complexity acceptable. 569

6 Conclusion 570

In this paper, we pay attention to the semantic in- 571

formation of relation labels and propose a Rela- 572

tion Semantic Information Attentive Stereoscopic 573

framework (RSIA) for relational triple extraction. 574

Experimental results show that our model over- 575

whelmingly outperforms state-of-the-art baselines 576

over different scenarios, especially on narrowing 577

the gap between (E1, R, E2) and E1/R/E2 and 578

speeding up convergence rate. As for the semantic 579

information exploration of relation labels. In future 580

work, we will consider using a pre-trained model 581

to directly encode the text of relational labels, in 582

order to further mine the semantic information of 583

the relations. 584
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A Implementation Details790

In our experiments, for all datasets, the batch size791

is 4 and the learning rate is set to 1e-5. The size792

of hidden state h is 768. The max epoch is set793

to 150. The pre-trained model we used is [BERT-794

Base-Cased]. Following previous works (Fu et al.,795

2019; Wei et al., 2020; Zheng et al., 2021), the max796

length of input sentences to our model is set to 100797

words. For our bias objective function, parameter798

β and threshold λ are two hyperparameters that are799

tuned together. For the NYT*, the threshold λ is800

set to 0.8, and β is set to 2. For WebNLG*, the801

threshold λ is set to 0.92, and β is set to 5. For802

our similarity gate, the threshold α we set is 0.5803

for NYT* and 0.7 for WebNLG*. The number of804

layers of the FET module is 2.805

B Analysis of Hyperparameter Setting806

For bias objective function, we suggest parameter807

β and threshold λ together without any argument or808

evaluation supporting before, so an ablation study809

is done on WebNLG* with results reported in Table810

8. It’s not surprising to find that the performance of811

our model increases first and then decreases with812

the increasing value of β. F1 will peak when β813

is between 2 and 6 on WebNLG* dataset. Note814

that the best result we get at β=5 on WebNLG* is815

heuristic, and a better F1 value might be obtained816

from another β value between 2 and 6. Threshold λ817

changes with β. Train with a fixed β, and test with818

different thresholds. The threshold λ with the best819

results is almost the threshold λ that best matches820

the β. The determination process of parameters821

parameter β and threshold λ of other datasets is822

similar to the above process on WebNLG*.

β λ Prec. Rec. F1

1 0.5 94.2 93.4 93.8
2 0.74 94.5 93.4 94.0
5 0.92 95.0 93.6 94.3
6 0.93 94.8 93.7 94.2
10 0.98 94.5 93.9 94.2

Table 8: Some combinations of β and λ on WebNLG*.

823

C Supplemental Experiments824

We conduct a set of supplemental experiments to825

show the generalization capability in more general826

cases on two widely used datasets, namely, NYT10- 827

HRL and NYT11-HRL. The results are reported in 828

Table 9. 829

NYT corpus has two versions: (1) the original 830

version of which both the training set and test set 831

are produced via distant supervision by Riedel et al. 832

(2010) and (2) a smaller version with fewer relation 833

types, where the training set is produced by distant 834

supervision while the test set is manually annotated 835

by Hoffmann et al. (2011). We denote the original 836

one and the smaller one as NYT10 and NYT11. 837

These two versions have been selectively adopted 838

and preprocessed in many different ways among 839

various previous works, which may be confusing 840

sometimes and lead to incomparable results if not 841

specifying the version. To fairly compare these 842

models, HRL (Takanobu et al., 2019) adopted a 843

unified preprocessing for both NYT10 and NYT11, 844

and provided a comprehensive comparison with 845

previous works using the same datasets. Here we 846

denote the preprocessed two versions as NYT10- 847

HRL and NYT11-HRL. 848

Model Prec. Rec. F1

N
Y

T
10

-H
R

L NovelTagging(PM) 59.3 38.1 46.4
CopyR (PM) 56.9 45.2 50.4
CASREL(PM) 77.7 68.8 73.0
StereoRel(PM) 80.0 67.4 73.2
Ours(PM) 81.1 72.1 76.3
Ours(EM) 80.4 71.6 75.7

N
Y

T
11

-H
R

L NovelTagging(PM) 96.9 48.9 47.9
CopyR(PM) 34.7 53.4 42.1
CASREL(PM) 50.1 58.4 53.9
StereoRel(PM) 53.8 55.4 54.6
Ours(PM) 55.5 61.4 58.3
Ours(EM) 55.0 60.8 57.8

Table 9: Relational triple extraction results on NYT10-
HRL and NYT11-HRL.

For a fair comparison, we use the preprocessed 849

datasets released by (Takanobu et al., 2019), where 850

NYT10-HRL contains 70,339 sentences for train- 851

ing and 4,006 sentences for test and NYT11-HRL 852

contains 62,648 sentences for training and 369 sen- 853

tences for test. We also create a validation set by 854

randomly sampling 0.5% data from the training set 855

for each dataset as in (Takanobu et al., 2019; Wei 856

et al., 2020). All the experimental results of the 857

baseline models which use Partial Match (PM) are 858

directly taken from Wei et al. (2020) unless speci- 859

fied. To keep in line with previous works, we use 860

11



Partial Match for NYT10-HRL and NYT11-HRL.861

Since multiword entities are common in real-world862

scenarios, we also use Exact Match (EM) for the863

datasets.864

When using Partial Match, there is a significant865

gap (from 73.2 to 76.3 in terms of F1-score on866

NYT10-HRL and from 54.6 to 58.3 in terms of F1-867

score on NYT11-HRL) between the performance868

of ours and CasRel. There is even a significant gap869

between ours using Exact Match and others using870

Partial Match.871
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