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Abstract
3D point cloud data is increasingly used in safety-critical applications such as
autonomous driving. Thus, the robustness of 3D deep learning models against
adversarial attacks becomes a major consideration. In this paper, we systemati-
cally study the impact of various self-supervised learning proxy tasks on different
architectures and threat models for 3D point clouds with adversarial training.
Specifically, we study MLP-based (PointNet), convolution-based (DGCNN), and
transformer-based (PCT) 3D architectures. Through extensive experimentation,
we demonstrate that appropriate applications of self-supervision can significantly
enhance the robustness in 3D point cloud recognition, achieving considerable
improvements compared to the standard adversarial training baseline. Our analysis
reveals that local feature learning is desirable for adversarial robustness in point
clouds since it limits the adversarial propagation between the point-level input
perturbations and the model’s final output. This insight also explains the success of
DGCNN and the jigsaw proxy task in achieving stronger 3D adversarial robustness.

1 Introduction
Point cloud data is one of the most broadly used representations in 3D computer vision. It is a
versatile data format available from various sensors and computer-aided design (CAD) models. Given
such advantages, many deep learning-based 3D perception systems have been proposed [1–6] and
achieved great success in safety-critical applications (e.g., autonomous driving) [7–9]. Although deep
learning [5, 10] on point clouds has exhibited high performance, they are particularly vulnerable to
adversarial attacks [11–13]. Because of the wide applications in safety-critical fields, it is imperative
to study the adversarial robustness of point cloud recognition models.

However, there are at present two obstacles on the path reaching robust point cloud recognition:

Architectural Diversity. Deep 3D point cloud recognition is an emerging field. Many 3D architec-
tures with various feature aggregation methods have been proposed. We broadly categorize them into
three families based on how networks aggregate the geometric information: multi-layer-perceptron
(MLP)-based networks [5, 10], convolutional networks [3, 4, 6, 14–16], and transformer-based net-
works [17, 18]. These networks have been studied mostly using clean accuracy as their main metric,
but an in-depth study of their robustness is lacking.

Vulnerability to Adaptive Attacks. A few defenses against 3D attacks have been recently pro-
posed [19–21]. Some of the methods, however, merely obfuscate attackers by limiting the malicious
agents from accessing the defense systems and true gradients [22]. They have been shown vulnerable
to adaptive attackers who have the full knowledge of the defenses and can approximate the gradi-
ents [21]. Similar to the 2D domain [23], adversarial training (AT) [21] provides more longstanding
robustness in 3D even against adaptive attacks [22]. Nevertheless, further robustness improvements
on adversarial training are highly desired for practical usage and deployments.
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Figure 1: Overview of Our Analysis in 3D Point Cloud Classification.

Self-supervised learning (SSL) has been incorporated into adversarial training in 2D image perception
models lately. It has shown great potential to enhance adversarial robustness without requiring any
additional data or labels [24, 25]. Given such achievements, a natural question emerges: can we
mimic the application of SSL to improve adversarial robustness in 3D point cloud recognition? Such
a label-free strategy is preferred due to the cost and difficulty of 3D point cloud data annotation [26].

Summary of Our Contributions:

In this paper, we present a systematic analysis of the adversarial robustness in 3D point cloud
recognition using self-supervisions on three representative architectures: a multi-layer-perceptron
(MLP) network (PointNet) [5], a convolutional network (DGCNN) [15], and a transformer-based
network (PCT) [17]. Specifically, we use two strategies to integrate self-supervised learning and
adversarial training, including (1) adversarial pre-training for fine-tuning (APF), which uses the SSL
tasks only for pre-training, and (2) adversarial joint training (AJT), which jointly trains the SSL task
with the recognition task, as shown in Figure 1. To further study the importance of self-supervised
tasks for adversarial robustness, we select three representative SSL proxy tasks, including 3D rotation
prediction [27], 3D jigsaw [28], and autoencoding [29]. Our key observations are as follows:
• We show that pre-training on SSL tasks improves adversarial robustness of the fine-tuned models.

Unlike the 2D domain, where both APF and AJT have enhanced the robustness, our study finds
that only APF consistently achieves robustness improvements in 3D. AJT does not always help
since the distributional gap between data for SSL and recognition tasks will distract each other in
AJT. Evaluation results of various unforeseen attacks further confirm such improvements by APF.

• We find that the convolutional network, i.e., DGCNN, is more robust than the other architectures
in point cloud recognition tasks. Moreover, 3D jigsaw SSL task, which predicts the permutation
of 3D point cloud patches, helps achieve stronger robustness than the others. Both convolutional
architecture and jigsaw SSL task enforce the model to learn better local semantics. Intuitively, robust
local features help limit the propagation of adversarial effect from point-level input perturbations
to the model’s final output.

• We demonstrate that fine-tuned models from different pre-training tasks have different vulnerabili-
ties, and adversarial examples generated by attacking them do not transfer well among each other.
Thus, we further leverage two simple yet powerful ensemble methods to boost the adversarial
robustness by a substantial margin. Our best ensemble models, for instance, achieve robust accuracy
of 53.5% (+15.6%), 69.4% (+7.4%) and 57.9% (+8.8%) with PointNet, DGCNN, and PCT on
the representative dataset, ModelNet40 [30].

2 Analysis Methodology
In this section, we detail our adversarial robustness analysis methodology. We first introduce the
principal 3D point cloud recognition architectures and the threat models used in our study. We then
introduce two ways to generalize and improve AT using 3D point cloud SSL proxies.

2.1 3D Point Cloud Recognition Models and Threats
We introduce the adopted model designs and the formulations of threats to 3D point clouds below.

Model Variants. We use a shared multi-layer-perceptron-based network PointNet [5], a convolutional
network Dynamic Graph CNN (DGCNN) [15], and a transformer-based network Point Cloud
Transformer (PCT) [17] as our primary backbone architectures, denoted as Mθm . Specifically,
PointNet directly aggregates learned features from each point to form a global embedding for final
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recognition. By doing so, the point-level features are independent of each other before global pooling.
PointNet embraces high efficiency that has been widely utilized as a base operation in complex
tasks [8, 31]. DGCNN instead builds a graph based on k-nearest neighbors (kNN) and uses a variant
of continuous convolution (EdgeConv) on edges to enable local feature learning. The combination
of local and global representation learning helps DGCNN achieve a higher clean accuracy. PCT
extends the Transformer [32], the dominant framework in natural language processing, for point
cloud recognition. The core of PCT is the full attention mechanism, which establishes a much more
flexible scheme, where each point has the potential to affect every other point in the point cloud.
The classification head Hθh parameterized with θh for these backbones is an MLP and the part
segmentation head Hθh is a set of 1 × 1 convolutions. We use Fθf parameterized with θf (θf :=
[θm; θh]) to represent the overall model architecture, consisting of the stacked backboneM and
recognition headH, where F = H ◦M. Given the input point cloud x, the model F aims to predict
the corresponding label y, where y = F(x). More details of the architectures are in the supplements.

Threats. There are mainly three types of threats against point cloud perception models, which could
be abstracted as point shifting (PS), point dropping (PD), and point adding (PA) attacks (Figure 1(a)).
We formally define these threats within `p projected gradient descent (PGD) style attacks. First, we
assume a PS adversary is able to shift all existing points within a `p norm ball:

xs+1 = Πx+S(xs + α · sign(∇xsL(xs,y;F))); x0 = x+ U(−ε, ε) (1)

where xs is the adversarial example in the s-th iteration, Π is the projection function to project the
adversarial example to the pre-defined perturbation space S, α is the attack step size, and U(−ε, ε)
represents a uniform distribution from −ε to ε. Second, we allow a PD adversary to discard the top k
salient points [33] in each iteration until a total drop of N points:

xs+1 = xs / arg topkx∈xs saliency(xs,y;F); if k × s < N (2)

where we follow [33] to implement saliency() to calculate the importance scores of the input points
w.r.t. to the prediction accuracy and / denotes the dropping operation. We detail saliency() in the
supplements due to space limits. Third, a PA adversary is capable of adding new points bounded by
an `p norm ball to the original point cloud. PA randomly initializes N new points from the original
point coordinates and only perturbs the added points. We follow the same setting as PS to formulate
the perturbation:

xs+1 = Πx+S(xs + α · sign(∇xs
L([xori;xs],y;F))); x0 = sample(xori, N) + U(−ε, ε) (3)

where xori is the original point cloud and sample() initializes N new points denoted as x0. We
believe the chosen threats mostly cover the existing attack surfaces on point cloud data. It is also
beneficial to study how different threats would affect the adversarial robustness in point cloud
recognition under our adversarial training strategies which will be introduced next.

2.2 Adversarial Training with Self-Supervisions
We first introduce the chosen 3D self-supervised learning methods, followed by two strategies to
incorporate these pretext tasks in adversarial training.

3D Self-Supervised Learning. The primary goal of self-supervised learning (SSL) is to learn
effective feature representations with unlabeled data. Given a pretext task Pt , the pre-training process
is still conducted in a supervised manner with self-generated data xt and label yt from pristine data x,
where (xt,yt) = Pt(x). Therefore, a target loss function Lt(xt,yt;F tθt) will be minimized during
the optimization, where θt consists of the shared backbone parameters θm and customized branch
parameters θc (i.e., θt := [θm;θc]). We utilize the following 3D SSL tasks in our study (Figure 1(a)).

• 3D Rotation [27]: Similar to the rotation task in 2D vision [34], the data and label are generated by
rotating the original point clouds to pre-defined angles η in the 3D space. Therefore, the problem
is to correctly predict 3D rotation angles w.r.t. the input point cloud. The objective function can be
formulated as a cross-entropy (CE) loss: Lrotation = CE(xrotation,yrotation;Frotation).

• 3D Jigsaw [28]: Different from the jigsaw task in 2D vision [35] which is defined as a classification
problem, 3D jigsaw solicits a segmentation model. A point cloud is evenly divided to k3 small cubes
and shuffled to different positions. Points inside each small cube are assigned to a label signaling its
original position. The problem, thus, is to correctly predict the original cube position of each point.
Similarly, its objective is to minimize a CE loss: Ljigsaw = CE(xjigsaw,yjigsaw;F jigsaw).
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• Autoencoder [29, 36]: An autoencoder utilizes an encoder z = E(x) to learn a compact representa-
tion and a decoder D(E(x)) to reconstruct the point cloud. We utilize different backbones as the
encoder E(·) and FoldingNet [29] as the decoder D(·) due to its satisfactory performance. We use
three different positional encodings: plane, 3D sphere, and 3D gaussian in our experiments. we use
the Chamfer distance [37] as the reconstruction loss: Lae = Chamfer(D(E(xae)),xae;Fae).

The detailed description of the pretext tasks can be found in the supplements.

Adversarial Pre-training for Fine-tuning (APF). As introduced in §1, adversarial training (AT) [23,
38, 39] has been demonstrated to be one of the most longstanding and practical defenses. We thus
enable AT in both pre-training and fine-tuning stages:

arg min
θ

E(x,y)∼D

[
max
σ∈S
L(x+ σ,y,θ)

]
(4)

where L ∈ {Lt,Lf} for loss functions in pre-training (t) and fine-tuning (f ) stages, σ is the
adversarial perturbations, and S represents its manipulation space (i.e., `∞ in our study). AT
essentially solves a min-max problem. In the inner loop, the optimizer tries to find adversarial
examples that maximize the target loss, and the outer loop updates the network parameters to
correctly recognize the generated adversarial examples. In contrast, standard training (ST) is simply
to optimize arg minθ E(x,y)∼D [L(x,y,θ)].

In the pre-training stage of APF, we leverage both standard and adversarial training to get the pre-
trained backbones Mθm and Madv

θm
. Given a pre-trained backbone parameterized by θm, in the

second stage, we adversarially fine-tune all θf := [θm;θh] for the recognition task, as illustrated in
Figure 1(b). The network branches at the penultimate vector for the rotation task and the first global
feature [21] for the jigsaw and autoencoder tasks since they use the segmentation head.

Adversarial Joint Training (AJT). Besides pre-training for fine-tuning, joint training is another
way to apply SSL. The objective function is formulated as:

arg min
θm;θh;θc

E(x,y)∼D

[
max
σ∈S
Lf (x+ σ,y,θf )

]
+ λ · Lt(xt,yt,θt) (5)

where λ is a hyperparameter to balance the SSL and recognition tasks. Two tasks share the same
backbone θm with two different branches, parameterized by θh and θc, respectively. We also enable
dual batch normalization [40] in AJT for x and xt since they should belong to different underlying
distributions. We use two model-agnostic tasks, i.e., 3D rotation and jigsaw in AJT.

Similarly, in our AJT analysis, all Lt and Lf can be formulated as CE loss. We empirically set
λ = 1 and leverage the same branching point with APF. The whole network is trained to predict the
supervised task with the original head and the SSL task with the auxiliary head (Figure 1(b)).

3 Experiments and Results
In this section, we present our experimental setups and results. We first introduce the adopted datasets
and adversarial settings. We leverage PS as the primary threat in our study since we find it is the
most powerful adversary and the other two adversaries easier to detect. Next, we detail our extensive
evaluation of two fundamental point cloud recognition tasks: classification and part segmentation.

3.1 Evaluation Setups
Datasets. We leverage four datasets (D): ModelNet40 [30] (40 classes), ModelNet10 [30] (10
classes), ScanObjectNN [41] (15 classes), and ShapeNetPart [42] throughout our experiments.
Specifically, the first three datasets are utilized for the classification task and the last one is for the part
segmentation task. ModelNet and ShapeNetPart are captured from CAD models, and ScanObjectNN
is scanned and extracted from real-world indoor scenes. For each point cloud, we randomly sample
1024 points and normalize them to an edge-length-2 cube ([−1, 1]) for experimentation. We follow
the default split of training and test sets in [5] and [43]. For SSL, we randomly sample yt from the
pre-defined label sets and further generate xt based on yt in each iteration. Specifically, we choose
η = 6, 18 and k = 3, 4 for rotation and jigsaw tasks, followed by the suggestion of [27] and [28].

Adversary. As introduced in §2.1, for PS, we exploit 7-step and 200-step `∞ PGD attacks [23]
targeting the cross-entropy loss for adversarial training and testing, respectively. We follow Sun et
al. [21] to empirically set the perturbation boundary ε = 0.05 (||σ||∞ ≤ 0.05) since perturbed
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point clouds with ε = 0.05 are at the edge of correct human predictions of objects. Numerically,
ε = 0.05 out of the range [-1,1] is also similar to the commonly used ε = 8

255 in 2D adversarial
training [23]. Note that, different from discrete RGB values in 2D images, point cloud’s features
(coordinates) are continuous. We thus utilize PGD step size α = 0.01 and α = 0.005 in the training
and testing phases, respectively. We allow a stealthy perturbation of N = 100 points for PD and
PA since we believe a larger number of modification would be easy to detect [13, 33]. We drop the
most k = 14 and 5 salient points every iteration in training and testing phases for PD, respectively.

Figure 2: Adversarial Examples of Different Threats.

The behind rationale is that a severer attacker
is preferred in the testing phase to evaluate the
true robust accuracy. The attack setups in PA are
the same as those in PS since they utilize similar
`∞ PGD perturbation methods. We exploit PS
as the primary threat for the classification and
part segmentation tasks, and leverage the other
two threats to further demonstrate our robustness
improvements in the classification task.

3.2 Point Cloud Classification
In this section, we first introduce the setups of our point cloud classification analysis. Next, we
introduce the detailed study of APF and AJT. We further evaluate our robust models with unforeseen
attacks to demonstrate that our robustness improvements are non-trivial. We find that pre-trained
models from different SSL tasks preserve different vulnerabilities; hence we use simple yet powerful
ensemble methods to boost the robustness. Lastly, we evaluate our methods in different threats to
demonstrate their generality.

Training Details. We generally follow data augmentation methods (e.g., jitter and translation) in
DGCNN [15] in our study. All pre-trained and fine-tuned models in APF are trained using Adam [44].
We use batch sizes of 32 for PointNet and DGCNN, and 128 for PCT. The initial learning rate is set
to 0.001 for PointNet and DGCNN, and 5× 10−4 for PCT. Both pre-training and fine-tuning take
250 epochs, where a 10× decay happens at the 100-th, 150-th, and 200-th epoch. We leverage the
same training setups in AJT. All experiments are done on 1 to 4 NVIDIA V100 GPUs [45].

Model Adaptation to AT. First, PointNet [5] leverages exponential learning rate decay, and
DGCNN and PCT utilize cosine annealing learning rate decay. Through preliminary experiments,

Table 1: Summarized Results (%) on Mod-
elNet40 by Model Adaptation.

PointNet DGCNN PCT

CA RA CA RA CA RA

Default ST 88.0 0.0 91.3 2.9 91.9 0.0
Selected ST 88.7 0.3 91.5 3.2 92.1 2.3

Default AT 87.1 33.6 90.6 58.7 88.4 44.2
Selected AT 87.7 37.9 90.6 62.0 89.7 49.1

we find that a piecewise decay of the learning rate im-
proves the default baseline by a noticeable margin. Second,
two T-Nets in PointNet [5] will also make AT unstable
since they holistically modify the point cloud and features.
We thus remove them in our experiments. Third, PCT by
default leverage farthest point sampling (FPS) to sample
and group local points, which will cause AT unstable since
the perturbed point cloud samples different anchor points
in each iteration. We replace FPS with EdgeConv on each
point. It is worth noting that such a change will not modify
the application of self-attention in PCT. As presented in Table 12, the modifications will both improve
the standard and adversarial training baseline, and we introduce the details in the supplements.

3.2.1 Self-Supervised Pre-training Helps Adversarial Fine-tuning
We systematically evaluate all configurations in APF under PS attack. As introduced earlier, we use
standard and adversarial training to get the pre-trained models. From Table 2, we can make several
interesting observations. First, we find that our APF strategy generally enhances the adversarial
robustness. The best-fine-tuned models achieve 14.2%, 5.4%, and 2.2% robustness improvements
in PointNet, DGCNN, and PCT on ModelNet40, respectively. The enhancements on the real-world
dataset, ScanObjectNN, i.e., 1.8%, 10.4%, and 6.9% in PointNet, DGCNN, and PCT, are also
significant, which demonstrate the generality of APF. Second, we find that DGCNN outstands to be
the most robust architecture, consistently achieving ∼15% stronger robustness than the other two
models on both ModelNet40 and ScanObjectNN. Lastly, jigsaw-based APF offers more robustness
improvements than the other two methods while maintaining slightly higher clean accuracy (CA).

2The 1-st and 2-nd highest accuracy among fine-tuned models in each column are noted, and we use the
same mark throughout this paper. CA and RA denote clean and robust accuracy, respectively.
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Table 2: Evaluation Results (%) of Adversarial Pre-training for Fine-tuning and Task Ensembles.

ModelNet40 ScanObjectNN ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

AT Baseline N/A 87.7 37.9 90.6 62.0 89.7 49.1 69.9 23.7 74.4 30.9 72.4 20.5 96.6 79.7 98.1 86.3 97.4 80.0

3D Rotation η = 6 87.2 48.0 91.4 63.6 90.2 50.7 69.1 24.5 75.7 32.9 72.6 20.6 96.8 79.0 97.7 84.9 97.2 80.4
η = 18 87.2 48.3 91.1 64.1 90.2 49.5 69.5 25.0 73.8 32.2 72.5 20.1 97.1 79.3 98.5 85.3 97.8 80.3

Adversarial
3D Rotation

η = 6 87.6 42.1 90.8 61.8 90.4 50.8 69.6 25.3 75.0 36.8 71.6 28.7 97.0 79.9 97.7 87.5 98.0 82.2
η = 18 87.4 45.7 90.9 62.9 90.4 50.1 69.3 24.5 75.0 36.3 73.1 26.9 97.0 79.7 98.0 88.2 97.4 83.7

k = 3 87.6 50.1 90.0 67.4 90.4 51.1 70.8 25.5 79.0 33.8 73.4 23.2 96.8 80.0 98.0 89.6 97.8 81.53D Jigsaw
k = 4 87.6 50.9 90.1 65.3 90.3 50.2 70.2 25.4 76.2 35.3 73.8 24.6 96.7 80.2 98.0 89.0 97.7 81.9

k = 3 88.2 52.1 89.6 65.8 89.8 51.3 69.0 24.8 77.5 41.3 72.5 26.3 97.0 80.6 98.5 90.5 97.4 83.5Adversarial
3D Jigsaw k = 4 87.8 50.5 89.9 65.3 89.6 51.0 69.9 25.5 76.1 40.6 73.1 27.4 97.0 80.5 98.0 89.1 97.3 83.9

Autoencoder
sphere 87.4 50.0 89.9 62.8 90.2 50.7 69.9 25.1 76.1 36.0 71.3 24.1 97.0 80.5 98.2 86.8 97.1 80.1
plane 87.1 48.8 90.1 62.2 90.2 50.2 69.4 25.5 76.2 35.6 71.1 22.6 96.8 80.8 97.8 87.6 97.0 80.1

gaussian 87.4 48.9 90.8 63.3 89.7 50.3 69.7 23.8 75.6 35.8 71.3 24.8 96.8 80.5 97.8 86.4 97.1 80.1

Adversarial
Autoencoder

sphere 87.1 49.7 90.0 62.2 90.3 50.0 70.4 25.2 75.2 36.2 72.6 22.2 96.7 80.4 97.5 87.3 97.5 82.1
plane 86.9 46.6 89.7 61.8 89.7 50.0 69.2 24.0 75.6 38.0 73.3 21.6 97.0 80.6 98.0 86.1 97.7 82.5

gaussian 87.1 48.5 90.7 62.7 90.2 50.5 68.8 25.0 74.7 36.3 72.6 23.4 97.0 80.2 97.8 88.4 97.4 83.2

Max Ensemble 88.5 53.5 91.4 69.4 90.5 55.4 70.8 27.3 79.1 42.6 74.0 28.9 97.2 82.5 98.5 91.0 98.1 85.2
Mean Ensemble 88.4 52.5 91.4 68.7 90.4 57.9 70.8 26.9 79.0 41.9 74.2 28.4 97.0 82.4 98.6 90.9 98.0 84.9

Specifically, jigsaw-based APF, on average, further boosts DGCNN’s robust accuracy (RA) by 2.8%,
2.2%, and 2.7% on three datasets, respectively.

Insights. Different from 2D images that possess both texture and shape information, 3D point
clouds naturally bias towards shape. In 2D image space, it is widely recognized that local and global
features correspond to the texture and shape information, respectively [46]. Recent studies have
demonstrated that appreciation of global/shape features can help improve model robustness on image
classification [47]. However, we find some distinctions in point cloud recognition. As mentioned
above, PointNet with only global feature learning will be easily affected by the perturbed points
(Table 2). Due to the sparsity of point clouds, the local feature actually represents the smoothness
of the object’s surface. Thus, learning robust local features is critical for correctly recognizing a
perturbed point cloud, as it limits the adversarial effect propagation to the model output. We also
include a preliminary study on contrastive pre-training [48] and find that it can be viewed as a global
feature learning scheme as well. Detailed results can be found in the supplements.

As summarized above, DGCNN achieves the strongest robustness under AT, attributed to the hier-
archical usage of EdgeConv [15]. EdgeConv dynamically aggregates local features by exploiting
kNN. Such an aggregation method has the ability to calibrate the adversarial effect in the local
feature learning stage. Although transformer-based architectures have gained tremendous visibility
recently [49], we find that PCT does not have a major robustness improvement compared to PointNet.
Self-attention increases the capacity of the model architecture, but it also enlarges the receptive field
of the model [50]. In PCT, each point can influence every other point’s feature, which will potentially
increase the model’s fragility [51].

Moreover, we also find that jigsaw-based APF is the most effective method to improve adversarial
robustness, aligning well with our above insights. Jigsaw SSL makes the model learn to reassemble
the randomly displaced local point clusters, where the model is enforced to learn the displaced local
features. Meanwhile, to correctly reconstruct the point cloud, jigsaw SSL also requires the model to
capture the global and holistic semantics. Nevertheless, rotation and autoencoder-based pre-training
methods focus more on global feature learning. Therefore, we believe jigsaw-based APF is a perfect
candidate to strengthen the association between local and global features in point cloud learning,
hence improving the adversarial robustness under APF.

3.2.2 Adversarial Joint Training Does not Always Improve Robustness
We further analyze the implication of SSL tasks in AJT. As presented in Table 3, AJT can still
enhance the robustness in PointNet and DGCNN. For instance, AJT improves their RA by 1.8% and
8.0% on ScanObjectNN, respectively. However, AJT overall cannot outperform APF in point cloud
recognition. Especially, we find AJT even degrades the RA of PCT compared to the standard AT.

Insights. We find this also to be related to the natural characteristic of point cloud data. Although
SSL can help models learn strong priors and context information, it is still a separate learning task.
Rotated and disassembled images still preserve similar local features to the original images since the
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Table 3: Evaluation Results (%) of Adversarial Joint Training.

ModelNet40 ScanObjectNN ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

AT Baseline N/A 87.7 37.9 90.6 62.0 89.7 49.1 69.9 23.7 74.4 30.9 72.4 20.5 96.6 79.7 98.1 86.3 97.4 80.0

3D Rotation η = 6 86.8 45.0 91.2 60.7 89.5 44.3 67.8 24.3 74.2 37.8 72.3 20.3 96.6 79.0 98.1 86.3 97.8 73.8
η = 18 86.5 46.4 91.3 62.0 88.9 42.9 68.7 25.1 76.2 37.2 72.1 19.8 97.0 79.9 97.9 85.7 98.1 75.6

k = 3 87.6 42.5 91.0 62.3 90.2 43.1 69.4 25.5 77.1 38.9 72.1 20.7 96.8 79.8 98.4 87.9 97.7 76.83D Jigsaw
k = 4 87.2 46.7 91.1 61.7 89.8 40.9 70.0 24.6 75.9 38.4 73.7 20.8 96.8 77.9 98.0 88.6 97.1 78.0

Autoencoder
sphere 87.5 44.4 90.9 62.1 89.6 49.2 68.9 24.2 75.5 36.5 72.5 20.5 96.7 79.8 98.2 86.3 97.5 80.3
plane 87.4 42.1 90.7 61.9 89.3 48.7 68.5 23.9 75.6 34.7 72.8 20.6 96.7 79.7 98.1 86.2 97.4 79.9

gaussian 86.9 43.9 90.9 61.9 88.9 49.2 68.7 24.4 76.3 35.1 72.1 20.5 96.6 79.7 98.3 86.9 97.5 80.0

RGB values do not change, so that the auxiliary optimization in AJT will not distract AT but help
models learn robust global features [24]. However, point cloud models take point coordinates xyz as
input. Rotated and disassembled point clouds have significant variations in their coordinates’ numeric
values. Although we apply dual batch normalization [52] to migrate the feature heterogeneous
problems, such discrimination will consequently distract model learning in AJT, and thus hurt the RA
performance. The usage of self-attention in PCT will further expand this impact since it introduces a
global receptive field [51]. We find that the results of AJT using autoencoders are more stable than the
other two tasks. We believe it is because the input for the autoencoder is the same as the recognition
task so that the distributional gap is small. However, it is still worse than the pre-training scheme.

3.2.3 Robustness against Unforeseen Attacks and Noises
We have so far shown that APF generally improves the robustness of point cloud classification. In this
section, we leverage unforeseen attacks to further demonstrate that the enhancements are non-trivial.
We select the fine-tuned models with the highest RA in Table 2, and all results here are averaged from
five runs using different random seeds.

We leverage unforeseen attacks: Auto Attack (AA) [53], Momentum Iterative Method (MIM) [54],
and PGD with both cross-entropy and margin loss (i.e., Lmargin = Z(x)y −maxi6=y Z(x)i, where
Z(x) is the logit output of the target classifier). We elaborate the details of AA (i.e., A-PGD) and
MIM in the supplements. All attacks use 200 steps to find the potential adversarial examples. As
shown in Figure 3(a) and 3(b), the best fine-tuned models consistently achieve higher RA than
models from standard AT with 2.6% - 15.3% and 1.0% - 10.1% improvements on ModelNet40 and
ScanObjectNN, respectively. We find that DGCNN still outperforms the other two models achieving
the highest RA even against the strongest Auto Attacks [53].

Moreover, we exploit the transfer attack to confirm the effectiveness of APF. We fine-tune five
models using the same (best) setting but different random seeds for transfer-based attacks and test the
transferability of generated adversarial examples among different models. As Figure 3(d) and 3(e)
show, adversarial examples cannot transfer well and there is a ∼10% gap in RA compared to attacks
on target models, which further validates the real robustness improvements.

We also find that Gaussian and uniform noises are ineffective in breaking model robustness, and
the RA is therefore close to the CA. As shown in Figure 3(d) and 3(e), the fine-tuned models still
outperform standard AT baseline by 0.1% - 2.2% and 1.0% - 5.7% on ModelNet40 and ScanObjectNN,
respectively, in RA. More evaluation results of our adversarial training strategy are elaborated in the
supplements.

3.2.4 Attack Transferability and Task Ensemble

(a) PointNet. (b) DGCNN. (c) PCT.

Figure 4: Robust Accuracy on Transfer Attacks among Fine-tuned
Models from Different SSL Tasks on ModelNet40.

Since we leverage three pre-
text tasks for self-supervised pre-
training, we also test the trans-
ferability of adversarial exam-
ples generated by models pre-
trained on different SSL tasks.
As shown in Figure 4, different
fine-tuned models preserve dif-
ferent vulnerabilities, and there
is at least ∼10% gain of RA
when transferring attacks on mod-
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(a) ModelNet40. (b) ScanObjectNN. (c) ModelNet10.

(d) ModelNet40. (e) ScanObjectNN. (f) ModelNet10.

Figure 3: Evaluation Results of Unforeseen Attacks. Plots in the first row present the evaluation results of
unforeseen adversarial attacks, where “-M” denotes the attacks on margin loss. Plots in the second row present
the evaluation results of noise and transfer attacks.

els fine-tuned from different tasks on ModelNet40. We thus combine the models and fur-
ther test the ensemble model’s robustness. We use two ensemble methods, which are tak-
ing the max and mean value of the stacked logits from individual models i.e., Liensemble =
max/mean([Lirotation,L

i
jigsaw,L

i
autoencoder]) where Li denotes the i-th value in the logit L. By

doing so, we form a “wider” model where the gradients can still propagate smoothly back to the
input. Therefore, we also exploit the 200-step PGD attack to test their robustness. As presented
in the last two rows of Table 2, both ensemble models can further boost the RA by a significant
margin while maintaining similar clean accuracy. For example, our best ensemble models achieve
robust accuracy of 53.5% (+15.6%), 69.4% (+7.4%) and 57.9% (+8.8%) with PointNet, DGCNN,
and PCT on ModelNet40 respectively. It is worth noting that our fine-tuning strategy does not enforce
a diversity regulation, unlike [25], which further demonstrates that pre-training on different pretext
tasks indeed brings distinct context information into pre-trained models.

3.2.5 Robustness against Other Point Cloud Threats
As mentioned before, we also consider two other threats that specifically target point cloud recognition.
As we have demonstrated that jigsaw-based APF reaches the best robustness enhancement under
point shifting (PS), we replace PS attack in AT with salient point dropping (PD) and point adding
(PA) to test the effectiveness of jigsaw-based APF strategy.

Table 4: Evaluation (%) of PD on ScanObjectNN.

PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA

ST Baseline N/A 69.8 48.5 79.3 60.9 74.2 56.1

AT Baseline N/A 70.9 64.2 76.2 77.1 73.3 73.7

k = 3 71.3 65.2 81.4 80.0 76.8 76.93D Jigsaw
k = 4 72.5 66.3 81.2 80.7 77.8 80.1

k = 3 71.1 64.7 78.7 79.5 75.4 76.2Adversarial
3D Jigsaw k = 4 70.9 65.7 79.3 80.4 75.9 78.3

Table 5: Evaluation (%) of PA on ScanObjectNN.

PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA

ST Baseline N/A 69.8 57.6 79.3 38.0 74.2 39.6

AT Baseline N/A 69.0 59.4 77.4 63.5 72.1 56.8

k = 3 70.2 59.9 82.3 66.3 75.7 60.43D Jigsaw
k = 4 70.4 60.6 83.1 66.6 76.4 58.7

k = 3 70.4 62.5 77.5 67.8 75.2 64.4Adversarial
3D Jigsaw k = 4 70.7 59.4 79.5 68.2 74.4 65.5

We find that jigsaw-based APF can still strengthen the robustness under these two threats on three
datasets. Especially, as shown in Table 4 and 5, DGCNN still achieves the highest RA, which on
average outperforms PointNet and PCT by 14.8% and 2.3% in PD-AT, and 6.6% and 4.9% in PA-AT,
respectively, which is consistent with our previous findings. Moreover, as PD and PA tend to be much
weaker adversaries than the PS attack, the enhancements mainly appear in the challenging real-world
dataset, ScanObjectNN, where jigsaw-based APF boosts the RA of DGCNN by 3.6% and 4.7% under
PD and PA. The key insights still hold in ModelNet datasets under these two threats, and we present
the detailed results in the supplements due to space constraints.
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3.3 Point Cloud Part Segmentation
In addition to object classification, we conduct the first study on analyzing the robustness of the point
cloud part segmentation on ShapeNetPart [42] with 17 classes of 3D objects. Apart from semantic
segmentation that all samples from a dataset share the same set of labels, part segmentation task
assigns a unique label set for each class of objects. For instance, the class of chair has the label
set: {seat, back, arm, leg} and the airplane has {wing, body, tail, engine}, as illustrated in Figure 5.
We use the same backbone with a segmentation head for this task and mean intersection-over-union
(mIoU) [43] as the evaluation metric. Especially since each class possesses its own label set, the
models also take the category (one-hot vector) as input. As we find APF is an effective and efficient
strategy, we use the PS attack with the same AT and APF setups as the classification task to train the
models (§ 3.1).

Table 6: Evaluation Results (%) of the Part Segmentation Task.
PointNet DGCNN PCT

Pretext Task Parameters C-mIoU R-mIoU C-mIoU R-mIoU C-mIoU R-mIoU

ST Baseline N/A 83.2 32.5 84.2 42.0 84.2 34.6

AT Baseline N/A 79.2 62.7 82.9 69.5 82.6 67.8

3D Rotation η = 6 79.1 63.0 82.8 69.3 82.8 67.7
η = 18 79.3 63.0 82.9 69.5 82.9 67.5

Adversarial
3D Rotation

η = 6 79.3 62.9 82.9 69.2 82.2 67.2
η = 18 79.1 62.6 82.9 69.0 81.0 65.7

k = 3 79.4 63.0 82.7 70.1 82.8 68.13D Jigsaw k = 4 79.4 63.1 82.9 70.3 82.4 68.4

k = 3 79.7 62.5 82.8 69.7 81.1 65.8Adversarial
3D Jigsaw k = 4 79.9 62.7 82.7 70.3 82.0 66.7

back

arm

seat

leg

l∞ PGD attack cannot modify the strong 
positional pattern of part segmentation. 

ε=0.05 

Figure 5: Illustration of the Point Cloud
Part Segmentation Using “Chair”.

Table 63 summarizes the quantitative results. To our surprise, we find that part segmentation is a more
robust task than classification. The robust mIoU is relatively high even in the ST baseline. Moreover,
DGCNN still achieves the highest clean and robust mIoU in part segmentation, further confirming its
supremacy in point cloud learning. Furthermore, jigsaw-based APF can also promote the robustness
of part segmentation by 0.4%, 0.8%, and 0.6% in PointNet, DGCNN, and PCT, respectively.

Insights. We attribute the natural robustness of part segmentation to the intrinsic feature of point
clouds. Since all point clouds in ShapeNetPart are sampled from CAD models, they are posed to
face the same direction. Thus, models may memorize the 3D space corresponding to the specific
label during learning. Taking the class of chair as an example, the points whose z ∈ [−1, 0] most
likely belong to the “leg” label. However, `∞-based adversary with ε = 0.05 might not be able to
perturb this strong pattern (Figure 5). We also envision that the robustness of part segmentation may
help and transfer to other complex learning tasks if appropriately used. Moreover, DGCNN with
jigsaw-based APF still delivers the best performance, which further generalizes our previous findings
on the importance of balancing local and global features in point cloud learning.

4 Related Work
In this section, we review a few topics related to the adversarial robustness of 3D perception: 3D
deep learning, self-supervised learning, and adversarial attacks and defenses.

4.1 Deep Learning on 3D Point Clouds
In image-based perception, there has been stellar progress on architectures and learning algorithms
for convolutional neural networks. However, in 3D perception, there has been no consensus on the
type of models for 3D data partially because there is no standard data format for 3D perception.
Yet, point clouds are the most commonly used data format because raw data from both 3D scanners
and triangular meshes can easily be converted into a point cloud. Some of the earlier 3D networks
use dense voxel grids for perception [1, 2, 55, 56], which discretize a point cloud to voxel grids for
classification, segmentation, and object detection. Later, to overcome cubic memory complexity,
various types of data structures have been proposed: octrees [3, 4], surfaces [57], graphs [15, 58],
point sets [5, 14, 17], and sparse tensors [6, 16]. In this work, we focus on 3D point cloud perception
with PointNet [5], DGCNN [15], and PCT [17] as our evaluation backbones since they are widely
used and achieve state-of-the-art results for point cloud recognition [59].

3C-mIoU and R-mIoU denote clean and robust mean intersection-over-union, respectively.
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4.2 Self-Supervised Learning Approaches
Self-supervised or unsupervised learning (SSL) techniques have shown effective in learning powerful
representation without manual efforts, where the labels are generated from the data itself [60–62].
The embeddings pre-trained through self-supervision could be utilized for fine-tuning multiple
downstream supervised tasks with better generalization and calibration [63, 64]. Because of the
impressive success of SSL in 2D computer vision [34], recent studies have also proposed several
self-supervisions for 3D point clouds including autoencoders [29], generative adversarial networks
(GANs) [36], 3D rotation [27], and 3D jigsaw [28]. Those primitives hold promises to improve the
clean accuracy of point cloud learning. This work systematically explores whether and how SSL
could be leveraged to improve the adversarial robustness in point cloud recognition.

4.3 Adversarial Attacks and Defenses
Despite the accomplishments that DNNs have achieved, adversarial attacks [65] are becoming the
major obstacle in real-world deep learning deployments, especially in safety-critical areas [11,12,66–
69]. Numerous attacks have been widely studied for various tasks in the 2D [70–76] and 3D [13, 77–
79] domains. To address this problem, many defense methods have been proposed to enhance the
robustness against adversarial attacks in the 2D [80–88] and 3D domains [19–21]. However, most of
them including adding randomization [20, 89, 90], model distillation [83], adversarial detection [84],
and input transformation [19, 80–82, 91] have been compromised by adaptive attacks [21, 22, 92].
Certified methods are recently applied to 3D, but they focus on threat models with modified number
of points [93] and isometric transformations [94], which are inapplicable to `∞ norm. Adversarial
training (AT) [23, 38, 39, 95], on the other hand, provides one of the most longstanding and practical
defenses. Various methods have been proposed to improve AT in the 2D domain [52, 96, 97]. Jeddi et
al. establish a fast adversarial fine-tuning scheme [98]. Hendrycks et al. [24] have shown to jointly
train the adversarial loss and SSL loss to improve the robustness. Chen et al. [25] have applied
adversarial pre-training and fine-tuning strategy to improve the robustness. In this work, we explore
to apply and improve AT in 3D point cloud recognition.

5 Conclusion
In this work, we systematically explore the impact of self-supervised learning (SSL) on the adversarial
robustness in 3D point cloud recognition. We find tangible robustness improvements by the adversarial
pre-training for fine-tuning strategy. We also experimentally show that robust local features are critical
to achieving robustness in 3D, explaining the success of DGCNN and the jigsaw proxy task. Our
results shed light for future research on designing more robust models and SSL schemes for 3D point
clouds. By providing empirical evaluations on the robustness, our study also motivates future studies
in developing theoretical guarantees on the robustness in the 3D domain.
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