

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BALROG: CONTEXTUAL BANDITS MEETS ACTIVE LEARNING FOR ONLINE GENERATIVE MODEL SELECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

The rapid proliferation of open-platform text-to-image generative models has made prompt-wise model selection essential for producing high-quality and semantically accurate images, yet it remains a challenging problem. Existing approaches, including contextual bandit algorithms, often converge slowly and fail to exploit the semantic relationships across prompts. We introduce BALROG, a non-parametric, neighbor-based bandit framework that directly addresses these issues by transferring information across similar prompts to speed up convergence and improve generalization. By leveraging similarities between prompts, BALROG achieves faster learning and comes with strong theoretical guarantees through a poly-logarithmic regret bound. In addition, we incorporate an active learning strategy that selectively queries ground-truth model rankings on ambiguous prompts, where ambiguity is quantified by the gap between the estimated rewards of the top two candidate models. This simple yet effective uncertainty measure substantially improves convergence and robustness. Extensive experiments on four datasets with six image generative models show that BALROG reduces regret by up to 60% compared to state-of-the-art baselines, enabling more accurate prompt-wise model selection in practice.

1 INTRODUCTION

In recent years, there has been a proliferation of prompt-guided image generation models, with improving fidelity and diversity performance (Ho et al., 2020; Rombach et al., 2022; Reed et al., 2016; Xu et al., 2018; Podell et al., 2024; Ding et al., 2021). As a result, practitioners now face a wide range of available models, each with their own strengths and weaknesses: some models prioritize photorealism, others focus on creativity or speed of inference (Jiang et al., 2025). The principle of one model outperforming all other competitors on any given task thus becomes impossible to achieve in practice. Therefore, the assignment of a given prompt to the best generative model available is a problem both critical and non-trivial.

A conventional approach to this challenge relies on aggregate performance scores, typically computed as averages over a large set of prompts using metrics such as CLIPScore (Hessel et al., 2021) or PickScore (Kirstain et al., 2023). However, these global averaged scores do not reflect potential variations in model performance across different types of prompts. As demonstrated in the illustrative example of Figure 1, the SDXL-Turbo (Podell et al., 2024) text-to-image model achieves the highest CLIPScore on the first prompt, while the model Sana (Xie et al., 2024) can offer a higher CLIPScore for the second prompt. These discrepancies in prompt-level model ranking are not exceptions, but rather a common occurrence in generative model behavior. This is the result of different data distributions being used for the training of each model (and often distinct architectures and objectives being employed (Frick et al., 2025)). This observation highlights a crucial shortcoming of global ranking methods and motivates the need for prompt-aware model selection strategies.

Model selection has hence recently emerged as a key challenge in generative AI, with offline methods proposing to rank prompts or datasets against candidate models (Luo et al., 2024; Lewandowski et al., 2025). Building on this line of work, PAK-UCB (Hu et al., 2025b) addresses prompt-aware selection by formulating it as a contextual bandit problem. In this scenario the learner observes a prompt, selects a model, and receives feedback only for that selection. Specifically, it models expected rewards as linear functions in a kernelized prompt space and uses optimism-based exploration

054 (a) Prompt: “celebrating their show : actor joins the cast and crew of science fiction tv program for the red carpet event”
055
056
057
058
059
060061 (b) Prompt: “girl cracking an egg into a bowl of flour”
062
063
064
065
066
067
068
069
070
071072 Figure 1: Visual comparison of generated images and corresponding averaged CLIP scores from 6
073 different text-to-image models. All reported scores have a tolerance bounded by ± 0.5 CLIPScore.
074
075

076 to guide model selection. Although theoretically grounded, this approach suffers from several
077 limitations in practice. First, it assumes a fixed kernel and a parametric reward structure. However, in
078 real-world settings, the relationship between prompts and model performance can be highly nonlin-
079 ear or irregular. Second, PAK-UCB disregards the structural or potential correlational relationships
080 between models, despite the fact that numerous generative models exhibit architectural similarities
081 or common training objectives. As a result, the algorithm struggles to leverage shared information
082 across models. Empirically, we observe that PAK-UCB tends to generalize poorly when the number
083 of models increases or when prompts become more diverse (see subsection 5.1), suggesting that
084 these assumptions limit its scalability and adaptability.

085 To overcome these limitations, we introduce BALROG, a novel approach designed for scalable and
086 reliable generative model selection. Our method performs nonparametric reward estimation for each
087 model using the CLIP embedding of the current prompt as well as historical reward observations
088 from similar prompts. Unlike prior approaches, we enhance this learner with a limited active learn-
089 ing budget: at selected prompts, the algorithm can query the reward of all models for a given prompt.
090 This additional signal is strategically used to resolve ambiguity, improve generalization across simi-
091 lar prompts, and uncover latent correlations between models. The challenge then becomes efficiently
092 using the query budget based on the chosen metric, e.g., regret minimization.

093 By combining passive learning from partial feedback with targeted active querying, our proposed
094 method successfully balances exploration and exploitation. Under mild assumptions on the smooth-
095 ness of reward functions and the learnability of model behaviors, we derive a novel regret bound
096 that formalizes the efficiency of our approach. These theoretical guarantees are corroborated by
097 extensive experiments, which demonstrate that our method consistently outperforms state-of-the-art
098 baselines. Importantly, we also show that even a small number of active queries can already yield
099 substantial gains in selection accuracy and learning efficiency (see subsection 5.2).

100 Our contributions are summarized as follows:

- 102 • We are the first to study active learning strategies for online model selection in generative AI,
103 explicitly leveraging both prompt- and model-level similarities.
- 104 • We extend our non-parametric neighbor-based bandit with an active learning mechanism that se-
105 lectively queries model performances on ambiguous prompts. Measurement of ambiguity is based
106 on the gap between the estimated rewards, ensuring that queries concentrate where uncertainty is
107 highest and, therefore, accelerating convergence.

108 • We derive a regret bound showing our active, non-parametric approach improves over passive
 109 algorithms. We further confirm these gains empirically across six real-world text-to-image models
 110 (four prompt datasets) and LLM question answering tasks. Our approach outperforms state-of-
 111 the-art baselines under varying budgets, hyperparameters, and model pools.

113 **2 RELATED WORKS**

115 **Offline approaches** learn the mapping from inputs to models using prompt-to-model ranking net-
 116 works (Luo et al., 2024), dataset-to-model forecasting for fine-tuning decisions (Lewandowski et al.,
 117 2025), or prompt-specific leaderboard generation (Frick et al., 2025). When deployment and train-
 118 ing distributions align, such predictors can work well, yet they do not re-calibrate in real time when
 119 prompts drift or when new models are introduced, which is what we consider in our setting. More
 120 adaptive strategies based on bandits initially focused on unconditional generators and therefore
 121 missed the prompt-specific nature of the problem (Hu et al., 2025a; Rezaei et al., 2025). PAK-
 122 UCB (Hu et al., 2025b) brings the contextual view we need by fitting, for each model, kernel ridge
 123 regression on CLIP embeddings and acting optimistically with UCB. In practice, however, fixing
 124 a kernel and estimating each model independently can underfit heterogeneous prompts and over-
 125 look correlations between models that share architectures or data. Our method answers these issues
 126 by remaining nonparametric, using neighborhoods instead of a global kernel, and by occasionally
 127 querying the full reward vector on the same prompt.

128 **Generated image evaluation** has evolved in parallel with this objective. Distribution level scores
 129 such as FID (Heusel et al., 2017) and Inception Score (Salimans et al., 2016) capture global realism
 130 and diversity, whereas other metrics focus on prompt alignment like CLIPScore (Hessel et al., 2021)
 131 or human preference datasets such as Pick-a-Pic (Kirstain et al., 2023) and HPSv2 (Wu et al., 2023).
 132 Recent surveys and leaderboards warn against single number verdicts and argue for multi dimen-
 133 sional protocols that cover relevance, realism, and diversity (Ku et al., 2024; Zhang et al., 2023). In
 134 this spirit, we report CLIPScore because it is widely adopted and correlates well with human pref-
 135 erences, while we frame our claims as relative improvements under any similar metric. This aligns
 136 precisely with the context in which an online selector is expected to deliver value.

137 **Active learning** (Settles, 2009; Hanneke, 2014) selects informative labels under a budget, for exam-
 138 ple with uncertainty sampling (Du et al., 2015) or query by committee and expected model change
 139 (Zhdanov, 2019). Recent works adapts this idea to sequential prediction by learning when to request
 140 extra feedback. For instance, Neuronal-s (Ban et al., 2024) uses two networks, a predictor for re-
 141 wards and an auxiliary component for uncertainty, and triggers full feedback in a streaming setting
 142 through an uncertainty threshold. In our case we keep the estimator simple and nonparametric and
 143 use closed form bonuses rather than learned uncertainties.

144 **3 PROBLEM DEFINITION**

146 We consider a *contextual multi-armed bandit* setting where contexts lie in a metric space. Let \mathcal{X}
 147 denote the context space, (i.e. prompt embeddings), equipped with a distance function $\rho : \mathcal{X} \times$
 148 $\mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$, and let μ be a distribution over \mathcal{X} . We assume a finite set of G models, denoted by \mathcal{G} ,
 149 corresponding to generative models.

150 At each round $t = 1, 2, \dots, T$, the learner observes a prompt $X_t \sim \mu$, and must choose a model
 151 $g_t \in \mathcal{G}$. For each model $g \in \mathcal{G}$, there exists an unknown reward function $f^g : \mathcal{X} \rightarrow [0, 1]$ such that
 152 the observed reward is

$$Y_t^g := f^g(X_t) + \eta_t^g, \quad (1)$$

153 where we assume that η_t^g is a zero-mean sub-Gaussian noise (Assumption A.4). Only the reward
 154 (e.g. CLIPScore) Y_t^g corresponding to the selected model is observed. In addition, we allow the
 155 learner to use a limited budget $B(T)$ of *queries*, where at selected rounds it can observe the rewards
 156 of all models on the current prompt to accelerate convergence.

157 Existing contextual bandit methods mainly differ in how they link the context to the expected reward.
 158 Parametric approaches such as LinUCB (Chu et al., 2011) or kernelized bandits (Valko et al., 2013;
 159 Hu et al., 2025b) assume a fixed functional form, for example linear or based on a kernel. They
 160 offer strong theoretical guarantees and learn quickly when the assumption is correct, but they tend

162 to generalize poorly when prompts are diverse or when the number of models is large (see subsection 5.1). Non parametric approaches such as the Zooming Bandit (Slivkins, 2011) and KNN-UCB
 163 (Reeve et al., 2018) make fewer assumptions and are more flexible in heterogeneous settings, but
 164 they converge more slowly and their guarantees are weaker. A further limitation for our application
 165 is that most existing algorithms treat each model independently, while in practice generative models
 166 often share training data or architecture.

168 Our objective in this setting is to sequentially select models in order to minimize the cumulative re-
 169 gret over a time horizon of T rounds. The cumulative regret $R(T)$ is defined as the sum of differences
 170 between the reward of the optimal model prompt-wise and the reward of the chosen model:

$$172 \quad R(T) := \sum_{t=1}^T (f^{g^*}(X_t) - f^{g_t}(X_t)), \quad (2)$$

175 where $g_t^* = \arg \max_{g \in \mathcal{G}} f^g(X_t)$ denotes the optimal model for prompt X_t and g_t the model chosen by the
 176 algorithm. At each round t , the learner must select a model g_t based solely on the history of past
 177 observations, without access to the reward vector except when a query is made.

180 4 THE BALROG ALGORITHM

182 We now present our proposed method **BALROG** in Algorithm 1, a contextual bandit algorithm tai-
 183 lored to prompt-based model selection. We draw on k Nearest Neighbors algorithm (Reeve et al.,
 184 2018) to combine non-parametric reward estimation with active learning under a limited query bud-
 185 get.

187 4.1 NEAREST-NEIGHBOR REWARD ESTIMATION

189 At round t , we assign each model $g \in \mathcal{G}$ a score called a *UCB index* that combines a k -NN reward
 190 estimate at X_t with an uncertainty bonus. The estimate is the average of the rewards of the k nearest
 191 past observations of g , motivated by the assumption that similar prompts yield similar rewards. The
 192 bonus consists of a statistical term that decreases with k and a geometric term that increases with the
 193 distance from X_t to its k -th neighbor. We choose k adaptively to balance these effects, and select the
 194 model with the largest index. For models without data, we assign an infinite index to ensure initial
 195 exploration.

196 **History and neighbors** Let $H_g(t) = \{(X_s, Y_s^g) : s < t \text{ and the reward of } g \text{ at } X_s \text{ was observed}\}$ be
 197 the history of model g at timestep t and $N_g(t) = |H_g(t)|$ its size. Given a candidate neighbor count
 198 $k \in \{1, \dots, N_g(t)\}$, we denote by $\text{NN}_g(X_t, k) \subseteq H_g(t)$ the set of the k nearest neighbors of X_t in $H_g(t)$
 199 under the metric ρ (in practice, we set ρ to the cosine distance in the CLIP embedding space), and
 200 let

$$201 \quad r_{g,k}(t) = \max_{(x,.) \in \text{NN}_g(X_t, k)} \rho(X_t, x)$$

203 be the distance to the k -th nearest neighbor.

205 **The UCB index** We construct the UCB index $I_g(X_t)$ to approximate the reward of a given prompt
 206 X_t on for each model g . To do so, we first construct the k -NN reward estimate as the average over
 207 its k closest past observations:

$$208 \quad \hat{f}_g(X_t, k) = \frac{1}{k} \sum_{(x,y) \in \text{NN}_g(X_t, k)} y. \quad (3)$$

211 We additionally define a confidence bonus on these observations to account for the uncertainty of
 212 our approximation. This term is constructed as a sum of two parts: (i) a *statistical uncertainty* term
 213 that shrinks with k (proportionate to $k^{-1/2}$), and (ii) a *geometric uncertainty* term that grows with the
 214 neighbor radius $r_{g,k}(t)$:

$$215 \quad U_g(X_t, k) = \sqrt{\frac{\theta \log N_g(t)}{k}} + \phi(t) r_{g,k}(t), \quad (4)$$

216 where $\theta > 0$ is a constant controlling exploration (cf. subsection B.1) and $\phi(t) > 0$ (non-decreasing)
 217 weights geometric uncertainty (in practice we set $\phi(t) = \log(t)$). The neighbor count chosen for the
 218 approximation is the value that *balances* these two sources of uncertainty:
 219

$$220 \quad k_g(t) = \operatorname{argmin}_{1 \leq k \leq N_g(t)} U_g(X_t, k). \quad (5)$$

222 We finally construct the UCB-index¹ using this $k_g(t)$, combining the two estimations:
 223

$$224 \quad I_g(X_t) = \hat{f}_g(X_t, k_g(t)) + U_g(X_t, k_g(t)). \quad (6)$$

225 This approximation upper-bounds the true reward with high probability (see Appendix A).
 226

227 **Model selection and cold start** If $N_g(t) = 0$ (the model has never been used), we set $I_g(X_t) = +\infty$
 228 to ensure initial exploration. The algorithm then plays
 229

$$230 \quad g_t = \operatorname{argmax}_{g \in \mathcal{G}} I_g(X_t). \quad (7)$$

232 4.2 ACTIVE QUERYING

234 We augment BALROG with an *active learning* mechanism: at selected
 235 rounds, the algorithm may spend one
 236 query from its limited budget $B(T)$
 237 to observe the rewards of *all* models
 238 on the current prompt X_t , rather than
 239 only the chosen arm. This additional
 240 feedback helps reduce ambiguity, ac-
 241 celerates the convergence of neigh-
 242 borhood estimates, and uncovers cor-
 243 relations between models. The cen-
 244 tral design choice is hence *when* to
 245 query. We propose the *Delta* rule to
 246 comply with our theoretical analysis
 247 and detail its construction thereafter.
 248 We also consider several alternative
 249 criteria as ablation study, but they
 250 consistently fail to perform as well as
 251 the main one empirically (see subsec-
 252 tion 5.2). Related uncertainty-driven
 253 triggers have further been discussed
 254 in active learning surveys (Settles,
 255 2009; Tharwat & Schenck, 2023).
 256

256 Primary criterion: *Delta* (top-two

257 **gap**). Under this design, we trigger a query when the *gap between the top two UCB indices* at
 258 X_t is small (below a threshold δ). Intuitively, this captures rounds where the algorithm is “on the
 259 fence” between two candidates, suggesting a full-feedback query is maximally informative there.
 260 This gap can also be interpreted as a proxy for the difference between the future rewards of the two
 261 most promising models: when the gap is large, the choice of the best model is essentially clear,
 262 but when it is small, the learner faces genuine ambiguity about which model will perform best on
 263 the current prompt. By concentrating queries on these uncertain rounds, the algorithm gathers the
 264 most valuable information for refining neighborhood estimates and uncovering cross-model rela-
 265 tionships. This criterion underpins our theory: it directs budget to ambiguous regions, leading to the
 266 regret improvements formalized in Theorem 4.2.

Algorithm 1: BALROG

Require: Horizon T , models \mathcal{G} , UCB parameter θ , active
 query function \mathbf{Q} , budget $B(T)$

- 1: Initialize $H_g(t) \leftarrow \emptyset$, $N_g(t) \leftarrow 0$ for all $g \in \mathcal{G}$
- 2: **for** $t = 1$ to T **do**
- 3: Observe new prompt X_t
- 4: **for** each model $g \in \mathcal{G}$ **do**
- 5: **if** $N_g(t) > 0$ **then**
- 6: Compute $k_g(t)$ minimizing the UCB criterion
- 7: Estimate reward $\hat{f}_g(X_t)$ over $k_g(t)$ neighbors
- 8: Compute UCB index $I_g(X_t)$ & uncertainty
 $U_g(X_t)$
- 9: **else**
- 10: Set $I_g(X_t) \leftarrow +\infty$
- 11: Select $g_t = \arg \max_g I_g(X_t)$
- 12: **if** $\mathbf{Q}(X_t) = \text{True}$ and $B > 0$ **then**
- 13: Query all rewards $\{Y_t^g\}$ and update all $H_g(t)$, $N_g(t)$
- 14: Decrement budget $B \leftarrow B - 1$
- 15: **else**
- 16: Play g_t , observe $Y_t^{g_t}$, update $H_{g_t}(t)$, $N_{g_t}(t)$

¹The reward estimation $I_g(X_t)$ is sometimes referred to as the Upper Confidence Bound (UCB) in the literature, but it should not be mistaken for the Uncertainty Bonus $U_g(X_t, k)$. To avoid confusion we prefer the use of the term *UCB-index* and notation I_g for the former, and the term *Confidence Bonus* with the notation U_g for the latter.

270 **Alternatives.** We design three additional criteria to trigger the query of a full feedback on a given
 271 prompt:

272 *UCB-threshold*: query whenever the maximum uncertainty bonus $\max_{g \in \mathcal{G}} U_g(X_t)$ exceeds ε , which
 273 typically occurs in regions with few neighbors and higher variance.

274 *Warm-start*: query systematically during the first $B(T)$ rounds and then switch to passive KNN-
 275 UCB, effectively front-loading the budget.

276 *Variance-threshold*: for the selected arm g_t , query when the empirical variance of rewards among
 277 its $k_{g_t}(t)$ neighbors around X_t exceeds a threshold v , indicating local inconsistency and the need for
 278 additional information.

279 Further details on these variants are provided in subsection C.2, and threshold selection and imple-
 280 mentation details are explained in subsection B.2.

281 *Remark 4.1.* Unlike classical active learning, where queries usually request a single missing label,
 282 here one could also imagine partial queries that reveal the rewards of only a few models on each
 283 prompt. However, our experiments indicate that, for the same compute budget, full queries that
 284 reveal all model rewards consistently lead to better final performance (see Table 6 and Figure 15 in
 285 the appendix). We therefore focus on full queries in this work.

286 **4.3 THEORETICAL ANALYSIS**

288 **4.3.1 REGRET GUARANTEE**

290 We provide a theoretical upper bound on the cumulative regret of BALROG under the assumptions
 291 A.1–A.5, remaining consistent with previous works (cf. Reeve et al., 2018, Section 2.2). Full proof
 292 is provided in Appendix A. Intuitively, each active query uses one unit of the budget to observe all
 293 models’ rewards on a carefully chosen prompt, immediately reducing uncertainty and improving all
 294 subsequent k -NN estimates in that region. However, full-feedback evaluations are costly, so we must
 295 keep the total number of queries sublinear in T . By setting $B(T) = T / \log T$, we ensure that queries
 296 are sufficiently frequent to drive the confidence bonuses, and hence the regret, down to a purely
 297 polylogarithmic rate, while still maintaining an overall budget that grows slower than the horizon.

298 **Theorem 4.2** (Regret bound under budgeted active querying). *If the assumptions A.1–A.5 are ver-
 299 ified, then, for $\theta > 2$ and active query budget $B(T) = T / \log T$, the cumulative regret of BALROG
 300 after T rounds satisfies:*

$$301 \quad R(T) = \sum_{t=1}^T \left(f_{g_t^*}(X_t) - f_{g_t}(X_t) \right) \leq C \log(T)^{\frac{d+2}{\alpha} + \frac{d+2}{2}} \quad (8)$$

305 where d is the intrinsic dimension of X (see Assumption A.1), α is the Tsybakov exponent (see
 306 Assumption A.3) and C is a constant depending on G , θ , α , λ (Lipschitz coefficient in Assumption A.2)
 307 and d .

308 *Remark 4.3.* The use of active learning in BALROG leads to a substantial improvement over the
 309 passive KNN-UCB baseline whose regret grows as $O(T^{1 - \frac{\alpha+1}{d+2}})$, which is very close to linear because
 310 in our case $\alpha \ll d$ since the dimension of the prompt space is very high, as we see in Table 4 in the
 311 appendix. To the best of our knowledge, we are the first to obtain this regret bound in this setting.

313 **4.3.2 TIME AND SPACE COMPLEXITY OF BALROG**

315 **Time complexity** The overall time complexity of BALROG over a horizon T with G models and
 316 query budget $B(T)$ is

$$317 \quad O(G T^2 \log T + (T + G \cdot B(T))I)$$

319 where I is the max per-model inference cost. We prove this in subsection C.4.

321 **Space complexity.** At each iteration, we store the result for the selected arm g_t : a prompt embed-
 322 ding and its scalar reward. Additionally, at query steps, we store one such result for each arm $g \in \mathcal{G}$.
 323 As a result, the total number of stored entries is at most $T + BG$, where $B(T)$ is the budget of query
 steps. The overall memory complexity is therefore $O(T + BG)$.

324 **5 EVALUATION**
 325

326 We evaluate **BALROG** by measuring the CLIPScore it achieves on different prompt datasets, and
 327 compare this performance with standard bandit baselines to assess both the overall generation quality
 328 and the accuracy of model selection.

329 **Models.** Throughout the evaluations, we use six different text-to-image models: Sana 1.5 (Xie
 330 et al., 2024), LCM Dreamshaper v7(Luo et al., 2023), Unidiffuser v1(Bao et al., 2023), SDXL-
 331 Turbo(Podell et al., 2024), SSD-1B(Gupta et al., 2024), and Koala-Lightning-700M(Lee et al.,
 332 2024). All models are accessed through the `diffusers`² library and executed with appropriate
 333 settings for resolution and number of inference steps (see Table 2 in the appendix).

334 **Prompt datasets.** We evaluate our method on four different prompt datasets, all accessible via
 335 the Hugging Face datasets library³. The first two, MS-COCO (Lin et al., 2014) and Flickr30k
 336 (Plummer et al., 2015), are broad and diverse, making the model selection task more challenging
 337 due to the strong heterogeneity of the prompts. The remaining two are more focused: one is a
 338 auto-captioned flower image dataset⁴, and the other is a subset that we manually extracted from MS-
 339 COCO of pictures using the carrot & bowl tag (4640 prompts). These more constrained domains
 340 allow us to highlight the effectiveness of our algorithm in low-variance settings and confirm that
 341 model selection becomes increasingly difficult as prompt diversity increases.

342 **Metrics.** We evaluate the performance of the algorithms using two main metrics. The first is
 343 *Outscore-to-Best (OtB)*, defined as the average difference between the CLIPScore obtained by the
 344 algorithm and that of the single best model across the dataset. In the experiments, we report the
 345 sliding average OtB, which is computed by averaging the OtB values over a fixed-size window of
 346 recent iterations. This smooths the curves and highlights the overall performance trend, rather than
 347 the fluctuations at individual rounds. The second metric is the *Optimal Pick Ratio (OPR)*, which
 348 measures the proportion of times the algorithm selects the best model for a given prompt. Together,
 349 these metrics capture both the absolute quality of the selected generations and the algorithm’s ability
 350 to identify the prompt-specific optimal model.

351 **Baselines.** We compare the **Delta** variant of **BALROG** with budgets of 0, 5 and 20% of the horizon
 352 to several standard baselines from the contextual bandit literature, including **LinUCB** (Chu et al.,
 353 2011), **PAK-UCB** (Hu et al., 2025b), and an active bandit baseline: **neuronal-s** (Ban et al., 2024)
 354 (with a budget of 20% of T). In addition, we include three reference baselines in our evaluation
 355 plots: a random selection strategy (**random**), an oracle that always selects the best model for each
 356 prompt (**optimal**), and a static baseline that always selects the same model: the model that has the
 357 maximum average CLIPScore over the whole dataset (**always**).

358 *Remark 5.1.* To ensure a fair and meaningful comparison between active and passive algorithms,
 359 we always select the model g_t *before* issuing a query, based solely on past observations. Even when
 360 the algorithm decides to query the full reward vector, this additional information is only used to
 361 update the history and guide future choices, not to select the optimal model at the current round.
 362 This ensures that any performance differences truly reflect the benefit of improved information ac-
 363 quisition over time, rather than being driven by immediate access to ground-truth rewards during
 364 query rounds. Results when using the query to guide selection are represented in Figure 11 in the
 365 appendix.

366 **5.1 RESULTS OVERVIEW**
 367

368 Figure 2 shows the OtB performance of our algorithm compared to the baselines across the four
 369 prompt datasets, using a pool of six generative models. The corresponding budget consumption and
 370 OPR curves are reported in the appendix (see Figure 13 and Figure 14). Our method consistently
 371 outperforms all baselines (see Table 3 in the appendix for numerical values), including the passive
 372 version of **BALROG** without active queries. This highlights the benefit of incorporating an active
 373 learning strategy into the selection process. Even with a very limited query budget of only 5% of
 374 the horizon T , our algorithm achieves significant performance gains, showing that a small number
 375 of strategically placed full-feedback queries can substantially improve learning. **Interestingly, BAL-**

376 ²<https://huggingface.co/docs/diffusers/index>

377 ³<https://huggingface.co/datasets>

378 ⁴<https://huggingface.co/datasets/pranked03/flowers-blip-captions>

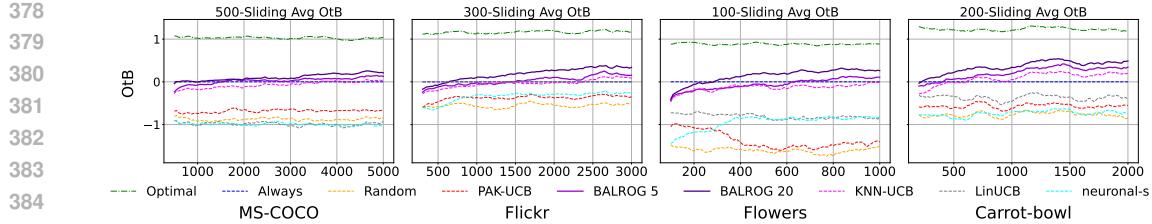


Figure 2: Sliding average OtB comparison between our algorithm and baselines across four prompt datasets with 6 models. Results are averaged over 10 runs. BALROG outperforms all baselines and achieves a positive OtB on all datasets.

ROG 5 improves over the **Always** baseline while requiring lower total GPU cost (see Table 7 in the appendix). This shows that BALROG successfully leverages smaller models when beneficial for specific prompts.

As further shown in Table 3 (reported in the appendix), BALROG substantially improves over existing methods: it reduces the average regret of PAK-UCB by roughly 40-60% across datasets, and introducing a 20% query budget lowers the regret by an additional 15-25% compared to the passive KNN-UCB baseline. These gains stem from two key aspects of our approach: first by averaging over neighboring prompts in the embedding space, BALROG can generalize feedback beyond individual samples, which is particularly effective in more homogeneous domains such as Flowers or Carrot-Bowl; and second by issuing active queries in ambiguous regions, the algorithm reduces wasted exploration on clearly suboptimal models. Together, these mechanisms enable BALROG to converge faster and to achieve a higher OPR, on average 10 percentage points better than all baselines as we see in Figure 14 in the appendix.

The improvements in total regret are most pronounced on the less diverse datasets, which is consistent with our theoretical analysis. These datasets exhibit lower values of the ratio $\frac{d+2}{\alpha}$ (see Table 4 in the appendix), which appears in the regret bound Theorem 4.2, indicating that nearest-neighbor estimations are more accurate. This corroborates our heuristic: the more homogeneous the prompts, the easier it is to distinguish between the performance of different models.

Moreover, our algorithm surpasses the performance of the single best model on each dataset, demonstrating its ability to leverage the complementarity among available models and dynamically adapt to different prompt types.

Finally, we explore another potential application of our method in the context of large language models (LLMs). We provide preliminary results on this setting in subsection C.7 in the appendix, indicating that our approach can also adapt effectively to model selection beyond text-to-image generation.

5.2 ACTIVE LEARNING METRICS

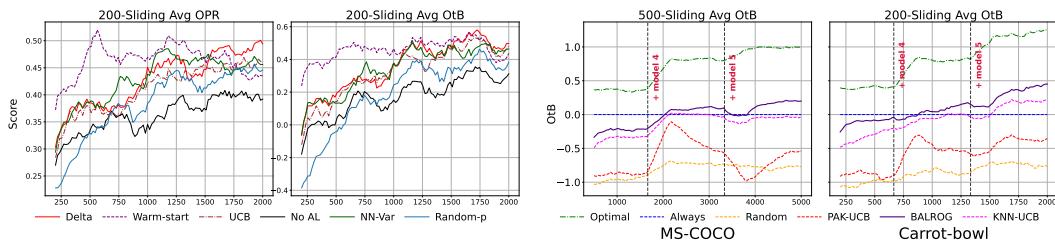


Figure 3: Performance of different uncertainty estimation methods on the carrot-bowl dataset. Results are averaged over 20 runs. OPR (on the left) and OtB (on the right) are reported. The **Delta** variant achieves the best final OtB and OPR values.

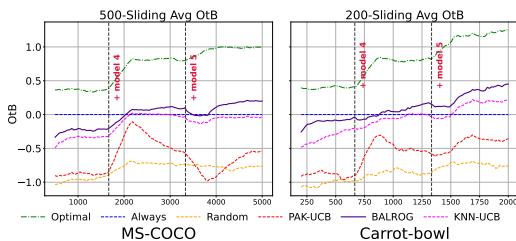


Figure 4: Performance of BALROG with a 20% budget and other baselines under the model addition setup. OtB is reported. Results are averaged over 10 runs. BALROG adapts to both strong and weak models by allocating its budget strategically.

432 Figure 3 compares four query triggers for active learning against a passive baseline (KNN-UCB
 433 without queries). The **Delta** strategy consistently attains the best final OtB and OPR because it
 434 concentrates queries where they are most informative: rounds in which the top two candidates are
 435 nearly tied. By injecting full feedback precisely at these decision boundaries, BALROG resolves
 436 model ambiguity early and reduces downstream model-switch errors. In contrast, **UCB-threshold**
 437 tends to fire in globally uncertain (sparsely sampled) regions regardless of competitiveness between
 438 models, which can diffuse the budget. **Variance-threshold** is more reactive to local noise and may
 439 over-query in heterogeneous neighborhoods. **Warm-start** front-loads the budget, yielding a fast
 440 initial lift but slower gains later once the query supply is exhausted. **Lastly, a Random Queries**
 441 **baseline triggers full-feedback uniformly at random with probability $B(T)/T$** , providing a sanity
 442 check that improvements stem not only from having more labels, but also from querying at the right
 443 rounds.

444 Finally, Figure 12 shows that small budgets (5%-10%) already deliver sizeable gains over the passive
 445 baseline, meaning that limited access to ground-truth feedback is enough to calibrate neighborhoods
 446 and sharpen model comparisons. Increasing the budget beyond 20% yields diminishing returns:
 447 once decision boundaries are well resolved and neighbor distances shrink, additional queries rarely
 448 change the selected model, so performance plateaus.

450 5.3 MODEL ADDITION

452 To evaluate the adaptability of our algorithm in non-stationary settings, we consider a dynamic setup
 453 where new models are added during the evaluation phase. Initially, the model pool contains only
 454 three generators (Unidiffuser (Bao et al., 2023), LCM (Luo et al., 2023) and SSD-1B (Gupta et al.,
 455 2024)). At time step $1/3T$, SDXL-Turbo (Podell et al., 2024) is introduced, followed by Sana (Xie
 456 et al., 2024) at time step $2/3T$. Results are reported in Figure 4.

457 This experimental design allows us to test the algorithm’s responsiveness to changes in the available
 458 action space. We observe that our method quickly adapts to the addition of new models, whether
 459 the newly added model is highly efficient or relatively weak. In both cases, the algorithm efficiently
 460 explores and integrates the new options into its decision-making process, adjusting its selection
 461 strategy accordingly. Specifically, on the Carrot-Bowl dataset, BALROG achieves a 21% lower final
 462 regret compared to KNN-UCB, and 48% lower than PAK-UCB in this dynamic setting (see Table 5
 463 in the appendix). This robustness to evolving model pools further highlights the practical value of
 464 our approach in real-world scenarios where new models may be introduced or deleted over time (see
 465 subsection C.8 for the model removal results).

466 467 5.4 ABLATION STUDIES

468 We conduct several additional ablations to further assess the robustness of BALROG across archi-
 469 tectural and algorithmic choices. Replacing CLIP with BERT (Devlin et al., 2019) textual embed-
 470 dings leads to comparable trends (see Figure 17), showing that BALROG does not rely on a specific
 471 text encoder. Using a fixed neighborhood size instead of an adaptive value consistently worsens
 472 performance (see Figure 16), which confirms the importance of adjusting the size of the local neigh-
 473 borhood to the density of past observations. When we use ImageReward (Xu et al., 2023) instead of
 474 CLIPScore for evaluation, all performance rankings remain unchanged (see Table 9), indicating that
 475 our conclusions are not dependent on a particular reward metric. Testing an alternative geometric
 476 uncertainty schedule with $\phi(t) = \sqrt{\log t}$ yields only small variations (see Figure 18), suggesting that
 477 the confidence design is stable across reasonable choices. Both the study of the Delta threshold (see
 478 Table 8) and the exploration parameter θ (see subsection B.1) show that BALROG remains strong
 479 across a wide range of values, which highlights its robustness to hyperparameter selection. In a last
 480 experiment, we report in Figure 19 in the appendix the average estimation error over all models,
 481 comparing BALROG 20 to KNN-UCB. More precisely, the plotted quantity is the error between the
 482 true reward of the models: Y_t^g , and the estimate of the reward by the algorithm: $f_g(X_t, k_g(t))$, aver-
 483 aged over all models, i.e.: $E(t) = \frac{1}{G} \sum_{g=1}^G |Y_t^g - \hat{f}_g(X_t, k_g(t))|$ These results show that early and well
 484 positioned queries already accelerate the convergence of the nearest neighbor estimates, explaining
 485 the efficiency of our active learning component.

486 6 CONCLUSION
487

488 We presented **BALROG**, a novel framework for prompt-wise model selection in text-to-image gen-
489 eration. Unlike existing contextual bandit approaches that converge slowly and overlook seman-
490 tic relationships between prompts, our method exploits similarities across prompts through a non-
491 parametric, neighbor-based bandit design, and integrates an active learning component that queries
492 ground-truth rankings only when they are most informative. This combination directly addresses the
493 key limitations of prior work, enabling faster convergence and better generalization. Theoretically,
494 we derived a sub-linear regret bound that highlights the tightness of our confidence design and for-
495 malizes the benefit of selective querying. Empirically, we carried out extensive evaluations on four
496 datasets with six generative models, showing that **BALROG** consistently outperforms both state-of-
497 the-art bandit baselines and individual models, with regret reductions of up to 60%. A promising
498 direction for future work is to design a cost-aware extension of **BALROG** that explicitly accounts for
499 the heterogeneous inference costs of different models, enabling the algorithm to balance predictive
500 performance with computational efficiency in practical deployments.

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REPRODUCIBILITY STATEMENT
541

542 We ensure the reproducibility of our results as follows. We provide in Appendix A the complete
543 proof of Theorem 4.2. In addition, we release the full implementation of our proposed method in
544 the supplementary material. This includes the code corresponding to Algorithm 1 and the different
545 baselines presented in section 5, as well as all scripts required to reproduce the experimental results
546 presented in Figures 1 to 3, 5, 7 and 14.

548 REFERENCES
549

550 Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong, and Jingrui He.
551 Neural active learning beyond bandits. In *Proceedings of the Twelfth International Conference on Learning
552 Representations (ICLR)*, 2024. URL <https://doi.org/10.48550/arXiv.2404.12522>. 40 pages.

553 Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, and
554 Jun Zhu. One transformer fits all distributions in multi-modal diffusion at scale. In *Proceedings of the
555 40th International Conference on Machine Learning*, 2023. doi: 10.48550/arXiv.2303.06555. URL <https://arxiv.org/abs/2303.06555>. Accepted at ICML 2023.

557 Pratip Bhattacharyya and Bikas K Chakrabarti. The mean distance to the n-th neighbour in a uniform distribution
558 of random points: An application of probability theory. *European Journal of Physics*, 29(3):639, apr
559 2008. doi: 10.1088/0143-0807/29/3/023. URL <https://dx.doi.org/10.1088/0143-0807/29/3/023>.

560 Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In
561 G. Gordon, D. Dunson, and M. Dudík (eds.), *Proceedings of the Fourteenth International Conference on
562 Artificial Intelligence and Statistics*, volume 15 of *Proceedings of Machine Learning Research*, pp. 208–
563 214, Fort Lauderdale, FL, USA, 2011. PMLR.

564 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
565 transformers for language understanding. In *Proceedings of the 2019 Conference of the North American
566 Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
567 and Short Papers)*, pp. 4171–4186, 2019. URL <https://aclanthology.org/N19-1423>.

568 Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xiang Zou, Zhi
569 Shao, Hongxia Yang, and Jie Tang. Cogview: Mastering text-to-image generation via transformers. In
570 Marc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy Liang, and Jennifer Wortman Vaughan
571 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 19822–19835. Curran Associates, Inc., 2021.

573 Bo Du, Zengmao Wang, Lefei Zhang, Liangpei Zhang, Wei Liu, Jialie Shen, and Dacheng Tao. Exploring
574 representativeness and informativeness for active learning. *IEEE Transactions on Cybernetics*, 47(1):14–26,
575 2015.

576 Evan Frick, Connor Chen, Joseph Tennyson, Tianle Li, Wei-Lin Chiang, Anastasios Nikolas Angelopoulos,
577 and Ion Stoica. Prompt-to-leaderboard: Prompt-adaptive LLM evaluations. In *Forty-second International
578 Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=7VPRrzFEN8>.

580 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
581 Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini
582 research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

583 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
584 Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 Herd of Models. *arXiv
585 preprint arXiv:2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

586 Yatharth Gupta, Vishnu V. Jaddipal, Harish Prabhala, Sayak Paul, and Patrick Von Platen. Progressive knowl-
587 edge distillation of stable diffusion xl using layer level loss. *arXiv preprint arXiv:2401.02677*, 2024. doi:
588 10.48550/arXiv.2401.02677. URL <https://arxiv.org/abs/2401.02677>.

589 Steve Hanneke. Theory of active learning. Technical report, Available at <http://www.stevehanneke.com>,
590 September 2014. An abbreviated version appears in Foundations and Trends in Machine Learning.

592 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free
593 evaluation metric for image captioning. *Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing*, pp. 7514–7528, 2021.

594 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
 595 by a two time-scale update rule converge to a local nash equilibrium. In *Advances in Neural Information
 596 Processing Systems*, volume 30, pp. 6626–6637, 2017.

597 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ran-
 598 zato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*,
 599 volume 33, pp. 6840–6851. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

600 X. Hu, H. fung Leung, and F. Farnia. A multi-armed bandit approach to online selection and evaluation of
 601 generative models, 2025a. URL <https://arxiv.org/abs/2406.07451>. arXiv:2406.07451.

602 Xiaoyan Hu, Ho fung Leung, and Farzan Farnia. An online learning approach to prompt-based selection of
 603 generative models and LLMs. In *Forty-second International Conference on Machine Learning*, 2025b. URL
<https://openreview.net/forum?id=mcDgNdiTai>.

604 Zheng Jiang, Zhiwei Xu, Jiemin Fang, Yunbo Wang, Jiahui Yu, Xiyang Chen, Yujun Zhang, Dongdong Wang,
 605 and Ziwei Liu. Text to image generation and editing: A survey. *arXiv preprint arXiv:2505.02527*, 2025.

606 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic:
 607 an open dataset of user preferences for text-to-image generation. In *Proceedings of the 37th International
 608 Conference on Neural Information Processing Systems*, NIPS '23, 2023.

609 Max Ku, Tianle Li, Kai Zhang, Yujie Lu, Xingyu Fu, Wenwen Zhuang, and Wenhui Chen. Imagenhub: Stan-
 610 dardizing the evaluation of conditional image generation models. In *The Twelfth International Conference
 611 on Learning Representations*, 2024. URL <https://openreview.net/forum?id=0uV9ZrkQlc>.

612 Youngwan Lee, Kwanyong Park, Yoorhim Cho, Yong-Ju Lee, and Sung Ju Hwang. Koala: Empirical
 613 lessons toward memory-efficient and fast diffusion models for text-to-image synthesis. In *Advances in
 614 Neural Information Processing Systems (NeurIPS)*, 2024. doi: 10.48550/arXiv.2312.04005. URL <https://arxiv.org/abs/2312.04005>.

615 Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. In L. Saul,
 616 Y. Weiss, and L. Bottou (eds.), *Advances in Neural Information Processing Systems*, volume 17.
 617 MIT Press, 2004. URL https://proceedings.neurips.cc/paper_files/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf.

618 Basile Lewandowski, Robert Birke, and Lydia Y. Chen. Match & choose: Model selection framework for
 619 fine-tuning text-to-image diffusion models, 2025. URL <https://arxiv.org/abs/2508.10993>.

620 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona,
 621 Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context. *arXiv
 622 preprint arXiv:1405.0312*, 2014. doi: 10.48550/arXiv.1405.0312. URL <https://arxiv.org/abs/1405.0312>.

623 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
 624 Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint
 625 arXiv:1907.11692*, 2019. URL <https://arxiv.org/abs/1907.11692>.

626 M. Luo, J. Wong, B. Trabucco, Y. Huang, J. E. Gonzalez, Z. Chen, R. Salakhutdinov, and I. Stoica. Stylus:
 627 Automatic adapter selection for diffusion models, 2024. URL <https://arxiv.org/abs/2404.18928>.
 628 arXiv:2404.18928.

629 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthesizing
 630 high-resolution images with few-step inference, 2023.

631 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and Svetlana Lazeb-
 632 nik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models.
 633 *arXiv preprint arXiv:1505.04870*, 2015. doi: 10.48550/arXiv.1505.04870. URL <https://arxiv.org/abs/1505.04870>.

634 David Podell, Zach English, Kyle Lacey, Andreas Blattmann, Thomas Dockhorn, Julian Müller, Javier Penna,
 635 and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image synthesis. In *The
 636 Twelfth International Conference on Learning Representations (ICLR)*, 2024.

637 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
 638 Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
 639 visual models from natural language supervision. *arXiv:2103.00020*, 2021. URL <https://arxiv.org/abs/2103.00020>. arXiv preprint.

648 Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee. Generative
 649 adversarial text to image synthesis. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of
 650 The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning
 651 Research*, pp. 1060–1069, New York, New York, USA, 2016. PMLR.

652 Henry W. J. Reeve, Joe Mellor, and Gavin Brown. The k-nearest neighbour ucb algorithm for multi-armed
 653 bandits with covariates. In *Algorithmic Learning Theory 2018*, 2018. URL [https://doi.org/10.48550/
 654 arXiv.1803.00316](https://doi.org/10.48550/arXiv.1803.00316). To be presented at ALT 2018.

655 Parham Rezaei, Farzan Farnia, and Cheuk Ting Li. Be more diverse than the most diverse: Optimal mixtures
 656 of generative models via mixture-ucb bandit algorithms. In *The Thirteenth International Conference on
 657 Learning Representations*, 2025. URL <https://openreview.net/forum?id=2Chkk5Ye2s>.

658 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 659 image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer
 660 vision and pattern recognition*, pp. 10684–10695, 2022.

661 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and Xi Chen.
 662 Improved techniques for training gans. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
 663 (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.

664 Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison, Computer
 665 Sciences Technical Report, 2009.

666 Aleksandrs Slivkins. Contextual bandits with similarity information. In *Proceedings of the 24th annual Con-
 667 ference On Learning Theory*, pp. 679–702. JMLR Workshop and Conference Proceedings, 2011.

668 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question answer-
 669 ing challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference of the North Amer-
 670 ican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
 671 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Compu-
 672 tational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421>.

673 Alaa Tharwat and Wolfram Schenck. A survey on active learning: State-of-the-art, practical challenges and
 674 research directions. *Mathematics*, 11(4):820, 2023. doi: 10.3390/math11040820. URL [https://www.mdpi.com/2227-7390/11/4/820](https://www.

 675 mdpi.com/2227-7390/11/4/820).

676 Michal Valko, Nathaniel Korda, Rémi Munos, Ioannis Flaounas, and Nello Cristianini. Finite-time analysis of
 677 kernelised contextual bandits. In *Proceedings of the 30th International Conference on Machine Learning*,
 678 2013.

679 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. *Compressed Sensing*, pp.
 680 210–268, 2012.

681 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human
 682 preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. *arXiv
 683 preprint arXiv:2306.09341*, 2023.

684 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
 685 Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution image synthesis with linear dif-
 686 fusion transformers. *arXiv preprint arXiv:2410.10629*, 2024. doi: 10.48550/arXiv.2410.10629. URL
 687 <https://arxiv.org/abs/2410.10629>.

688 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 689 Imagereward: Learning and evaluating human preferences for text-to-image generation. *arXiv preprint
 690 arXiv:2304.05977*, 2023. URL <https://doi.org/10.48550/arXiv.2304.05977>.

691 Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He. At-
 692 ttnGAN: Fine-grained text to image generation with attentional generative adversarial networks. In *Proceed-
 693 ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1316–1324, 2018.

694 Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, In So Kweon, and Junmo Kim. Text-to-image diffu-
 695 sion models in generative ai: A survey. *arXiv preprint arXiv:2303.07909*, 2023.

696 Fedor Zhdanov. Diverse mini-batch active learning. *arXiv preprint arXiv:1901.05954*, 2019. URL [https://arxiv.org/abs/1901.05954](https://

 697 arxiv.org/abs/1901.05954).

698 701

702

703

704

705

706

707

708

Appendix

Table of Contents

A The regret bound	15
A.1 Assumptions	15
A.2 Notations	15
A.3 Proof of Theorem 4.2	16
A.4 Concentration inequality	20
B Hyperparameter tuning	21
B.1 Optimal value of θ	21
B.2 Thresholds calibration	21
C Additional experimental details and results	22
C.1 Inference Parameters for T2I Models	22
C.2 Active variant details	23
C.3 CLIPScore	24
C.4 Time complexity of BALROG	24
C.5 Effect of Sampling on CLIPScore Estimation	24
C.6 Analysis of distance/CLIPScore correlation	25
C.7 Results with LLMs	26
C.8 Model removal	26
C.9 Additional tables and figures	27

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THE REGRET BOUND
757758 A.1 ASSUMPTIONS
759760 We make the following assumptions throughout our analysis (these are the same as in Reeve et al.
761 (2018)):763 **Assumption A.1.** (*Intrinsic dimension*) *There exist constants $C_d > 0$, $d > 0$, and $R_X > 0$ such that
764 for all $x \in \text{supp}(\mu)$ and all $r \in (0, R_X)$, we have:*
765

766
$$\mu(B(x, r)) \geq C_d \cdot r^d, \quad (9)$$

767
768

769 where $B(x, r)$ denotes the open ball of radius r centered at x under the distance ρ .
770771 This assumption ensures that the distribution of prompts μ is sufficiently regular and that \mathcal{X} locally
772 behaves like a d -dimensional manifold.
773774 **Assumption A.2.** (*Lipschitz continuity*) *There exists a constant $\lambda > 0$ such that for all models
775 $g \in \mathcal{G}$ and all $x, x' \in \mathcal{X}$,*
776

777
$$|f_g(x) - f_g(x')| \leq \lambda \cdot \rho(x, x'). \quad (10)$$

778
779

780 This assumption states that similar prompts should yield similar expected rewards for a given model
781 (i.e., smoothness of the reward functions f_g).
782783 **Assumption A.3.** (*Tsybakov Margin*) *Let $\Delta_g(x) = f^*(x) - f_g(x)$ where $f^*(x) = \max_{a \in \mathcal{G}} f_a(x)$, and
784 define $\Delta(x) = \min\{\Delta_g(x) : \Delta_g(x) > 0\}$ if the minimum exists, and 0 otherwise. We assume there exist
785 constants $C_\alpha > 0$, $\delta_\alpha > 0$, and $\alpha > 0$ such that for all $\delta \in (0, \delta_\alpha)$,*
786

787
$$\mu(\{x \in \mathcal{X} : 0 < \Delta(x) < \delta\}) \leq C_\alpha \cdot \delta^\alpha. \quad (11)$$

788
789

790 This margin condition quantifies the difficulty of the model selection problem: it controls the measure
791 of prompts for which several models are nearly optimal.
792793 **Assumption A.4.** (*Sub-Gaussian noise*) *For each model $g \in \mathcal{G}$ and time t , the reward noise is
794 conditionally sub-Gaussian: for all $x \in \mathcal{X}$ and $\eta \in \mathbb{R}$,*
795

796
$$\mathbb{E}[\exp(\eta \cdot (Y_t^g - f_g(x))) \mid X_t = x] \leq \exp\left(\frac{\eta^2}{2}\right). \quad (12)$$

797
798

801 **Assumption A.5.** (*Bounded rewards*) *For all t and $g \in \mathcal{G}$, we have:*
802

803
$$Y_t^g \in [0, 1]. \quad (13)$$

804
805

806 A.2 NOTATIONS
807808 We recap all the notations used throughout the paper in this table.
809

Table 1: Notations

Notation	Description
\mathcal{G}	Set of generative models (arms)
G	Number of models
T	Horizon (number of rounds)
X_t	Prompt observed at round t
g_t	Model selected at round t
g_t^*	Optimal model for X_t (argmax over $g \in \mathcal{G}$)
Y_t^g	Observed reward of model g at round t
$H_g(t)$	History of observed pairs for model g up to round t
$N_g(t)$	Size of $H_g(t)$ (number of feedback points up to t)
$\rho(x, x')$	Distance (metric) between prompts x and x'
$\text{NN}_g(X_t, k)$	k nearest neighbors of X_t in $H_g(t)$
$r_{g,k}(t)$	Neighbor radius (distance to the k -th nearest neighbor)
$k_g(t)$	Chosen number of neighbors at round t
$\hat{f}_g(X_t, k)$	k -NN reward estimate for model g at X_t
$U_g(X_t, k)$	Confidence bonus (statistical + geometric)
$I_g(X_t)$	UCB index of model g at X_t
$\theta, \phi(t)$	Exploration parameter; geometric-uncertainty weight (non-decreasing)
$B(T)$	Active-learning query budget as a function of T
$Q(X_t)$	Query trigger predicate at prompt X_t
δ, ε, v	Thresholds for Delta, UCB-threshold, Variance-threshold
$\hat{f}_{(1)}(X_t), \hat{f}_{(2)}(X_t)$	Largest / second-largest estimated rewards across models
$\Delta(X_t)$	Top-two gap (largest minus second-largest estimate)
$R(T)$	Cumulative regret up to time T
d, λ, α, C	Intrinsic dimension; Lipschitz constant; Tsybakov exponent; theorem constant
I	Per-model inference cost (time-complexity analysis)

A.3 PROOF OF THEOREM 4.2

In this section we prove the regret bound for the Delta-variant of BALROG, since it is the one we use in all the experiments, and the best one empirically.

For a subset $S \subset X$ and a model $g \in \mathcal{G}$, we define the **minimum gap of model g in region S** as:

$$\Delta_g(S) := \inf_{x \in S} \Delta_g(x). \quad (14)$$

and $\Delta(S) = \min_{g \in \mathcal{G}} \Delta_g(S)$. Note that $\Delta(x)$ refers to the true gap function, and should not be confused with its empirical estimate $\hat{\Delta}(x)$ computed from finite samples.

We split the cumulative regret according to the “good event” $V(t)$ on which all UCB indices are valid:

$$V_g(t) = \{\hat{f}_g(X_t, k_g(t)) - U_g(X_t, k_g(t)) \leq f_g(X_t) \leq \hat{f}_g(X_t, k_g(t)) + U_g(X_t, k_g(t))\} \quad (15)$$

$$V(t) = \bigcap_{g \in \mathcal{G}} V_g(t) \quad (16)$$

Let $r(t) = f_{g_t^*}(X_t) - f_{g_t}(X_t)$ so that $R(T) = \sum_{t=1}^T r(t)$, we can then split the regret in two terms :

$$r(t) = r(t) \mathbb{1}_{V(t)} + r(t) \mathbb{1}_{V(t)^C}. \quad (17)$$

The following lemma bounds the number of times we pull a suboptimal model in a given region S .

Lemma A.6. *Let $S \subset X$, and consider a model $g \in \mathcal{G}$. On the event $V(T)$, if $\Delta_g(S) > 2\phi(T) \cdot \text{diam}(S)$, then the number of times model g is selected in region S while being suboptimal satisfies*

$$N_T^g(S) \leq \frac{4\theta \log T}{(\Delta_g(S) - 2\phi(T) \cdot \text{diam}(S))^2} + 1. \quad (18)$$

864 *Proof.* Assume without loss of generality that $N_T^g(S) > 1$. Let t be the last round where model g is
 865 selected and the context X_t lies in S , and where the event $V(t)$ holds:
 866

$$867 \quad t := \max \{s \leq T \mid X_s \in S, g_s = g, V(s) \text{ holds}\}. \quad (19)$$

868 Let $k(S)$ be the number of neighbors used to estimate $\widehat{f}_g(X_t, k_g(t))$ that are also in S :
 869

$$870 \quad k(S) := |\{(X, r) \in \text{NN}_g(X_t, k_g(t)) \mid X \in S\}|. \quad (20)$$

871 Then, all neighbors used to compute $\widehat{f}_g(X_t, k_g(t))$ lie within S , and their distances to X_t are at most
 872 $\text{diam}(S)$. Since each new selection of g in S adds a new point to its history within S , we have:
 873

$$874 \quad N_T^g(S) \leq k(S) + 1. \quad (21)$$

875 Now, let g_t^* denote the optimal model at X_t , so $f_{g_t^*}(X_t) = \max_{g'} f_{g'}(X_t)$. Since g is selected at round
 876 t :

$$877 \quad I_{g_t^*}(X_t) \leq I_g(X_t), \quad (22)$$

878 where $I_g(X_t) = \widehat{f}_g(X_t, k_g(t)) + U_g(X_t, k_g(t))$. Using the good event $V(t)$, we also know:
 879

$$880 \quad f_{g_t^*}(X_t) \leq I_{g_t^*}(X_t), \quad (23)$$

$$881 \quad f_g(X_t) \geq I_g(X_t) - 2U_g(X_t, k_g(t)). \quad (24)$$

883 Subtracting:

$$884 \quad f_{g_t^*}(X_t) - f_g(X_t) \leq 2U_g(X_t, k_g(t)). \quad (25)$$

885 But $f_{g_t^*}(X_t) - f_g(X_t) = \Delta_g(X_t) \geq \Delta_g(S)$, so:

$$886 \quad \Delta_g(S) \leq 2U_g(X_t, k_g(t)). \quad (26)$$

888 Now use the definition of U_g :

$$889 \quad U_g(X_t, k_g(t)) = \sqrt{\frac{\theta \log T}{k(S)}} + \phi(T) \cdot \text{diam}(S). \quad (27)$$

890 Hence:

$$891 \quad \Delta_g(S) \leq 2 \left(\sqrt{\frac{\theta \log T}{k(S)}} + \phi(T) \cdot \text{diam}(S) \right). \quad (28)$$

892 Solving for $k(S)$ yields:

$$893 \quad k(S) \leq \frac{4\theta \log T}{(\Delta_g(S) - 2\phi(T) \cdot \text{diam}(S))^2}. \quad (29)$$

900 Thus:

$$901 \quad N_T^g(S) \leq k(S) + 1 \leq \frac{4\theta \log T}{(\Delta_g(S) - 2\phi(T) \cdot \text{diam}(S))^2} + 1, \quad (30)$$

902 which concludes the proof. \square

905 Since the rewards are between 0 and 1, the total regret is bounded by the number of times the
 906 algorithm pulls suboptimal models. Then, we deduce from this the total regret over a region $S \subset X$
 907 with $\Delta_g(S) > 2\phi(T) \cdot \text{diam}(S)$:

$$908 \quad R_V(S, T) := \sum_{t=1}^T r(t) \mathbf{1}_{V(t)} \mathbf{1}_{X_t \in S} \leq G \left(\frac{4\theta \log T}{(\Delta_g(S) - 2\phi(T) \cdot \text{diam}(S))^2} + 1 \right). \quad (31)$$

913 The following lemma shows that for t large enough, our estimate of Δ is close to its true value.

914 **Lemma A.7.** *Let $t \leq T$, and $N(t) = \min_{g \in \mathcal{G}} N_g(t)$*

$$915 \quad \left| \Delta(X_t) - \widehat{\Delta}(X_t) \right| \leq 2 \frac{\sqrt{\theta \log T} + \phi(t)}{N(t)^{\frac{1}{d+2}}} \quad (32)$$

918 *Proof.* Let $t \leq T$. We have:

$$919 \quad 920 \quad 921 \quad 922 \quad \frac{|\Delta(X_t) - \widehat{\Delta}(X_t)|}{2} \leq \max_{g \in \mathcal{G}} U_g(X_t, k_g(t))$$

923 With:

$$924 \quad 925 \quad U_g(X_t, k) = \sqrt{\frac{\theta \log N_g(t)}{k}} + \phi(t) \cdot \max_{(x, \cdot) \in \text{NN}_g(X_t, k)} \rho(X_t, x)$$

926 Let $g \in \mathcal{G}$ and let us choose $k'_g = N_g(t)^{\frac{2}{d+2}}$. Since $k_g(t)$ minimizes the confidence bonus of model g ,
927 we know that:

$$928 \quad 929 \quad 930 \quad U_g(X_t, k_g(t)) \leq \sqrt{\frac{\theta \log N_g(t)}{k'_g}} + \phi(t) \cdot \max_{(x, \cdot) \in \text{NN}_g(X_t, k'_g)} \rho(X_t, x) \leq \frac{\sqrt{\theta \log(T)}}{N_g(t)^{\frac{1}{d+2}}} + \frac{\phi(T)}{N_g(t)^{\frac{1}{d+2}}}$$

931 Where the inequality about the distance to the k'_g -th nearest neighbor in a space of dimension d with
932 $N_g(t)$ points:

$$933 \quad 934 \quad 935 \quad \max_{(x, \cdot) \in \text{NN}_g(X_t, k'_g)} \rho(X_t, x) \sim \left(\frac{k'_g}{N_g(t)} \right)^{\frac{1}{d}}$$

936 is proven in Bhattacharyya & Chakrabarti (2008, Section II). Taking the maximum over all models
937 $g \in \mathcal{G}$ proves the lemma.

938 \square

940 Let $N_0 := \left(\frac{4}{\varepsilon} \left(\sqrt{\theta \log(T)} + \phi(T) \right) \right)^{d+2}$, and let us assume that every model g has a total number of
941 play $N_g(T) \geq N_0$. If that's not the case for some models g , then these models contribute at most
942 N_0 to the regret. Let T_0 be such that $\forall t \geq T_0$ we have $N(t) \geq N_0$. Thus, by Lemma A.7 and the
943 definition of T_0 , we have $|\Delta(X_t) - \widehat{\Delta}(X_t)| \leq \frac{1}{2}\varepsilon$ and therefore :

$$944 \quad \widehat{\Delta}(X_t) \geq \varepsilon \implies \Delta(X_t) \geq \frac{\varepsilon}{2} \quad (33)$$

945 We can now decompose the total regret:

$$946 \quad 947 \quad R(T) = \sum_{t=1}^T \mathbb{1}_{t \leq T_0} \mathbb{1}_{V(t)} r(t) + \sum_{t=1}^T \mathbb{1}_{t \geq T_0} \mathbb{1}_{V(t)} r(t) + \sum_{t=1}^T \mathbb{1}_{V(t) \setminus V(t)} r(t) \quad (34)$$

948 with the first sum :

$$949 \quad 950 \quad 951 \quad \sum_{t=1}^T \mathbb{1}_{t \leq T_0} \mathbb{1}_{V(t)} r(t) \leq G T_0$$

952 In order to bound the second sum, we now have to partition the space X into regions that each
953 satisfy the condition $\varepsilon > 4\phi(T) \cdot \text{diam}(S)$ and to use Lemma A.6 on these regions, because we know
954 that for every prompt X_t in this sum, $\Delta(X_t) \geq \frac{\varepsilon}{2}$, or else the algorithm would have chosen to query
955 (according to Equation 33). This can be done in a straightforward manner, and the number of such
956 regions is therefore upper bounded by $O\left(\left(\frac{1}{\varepsilon}\phi(T)\right)^d\right)$, where d is the intrinsic dimension of the space
957 (see Vershynin, 2012, Lemma 5.2). On all of these regions, the regret is bounded by Lemma A.6 by:

$$958 \quad 959 \quad 960 \quad 961 \quad R(S, T) \leq G \left(\frac{4\theta \log T}{\left(\frac{\varepsilon}{2}\right)^2} + 1 \right). \quad (35)$$

962 The second sum is then bounded by this regret multiplied by the number of regions :

$$963 \quad 964 \quad 965 \quad \sum_{t=1}^T \mathbb{1}_{t \geq T_0} \mathbb{1}_{V(t)} r(t) \leq 4\theta G \left(\frac{\log T}{\varepsilon^2} \left(\frac{\phi(T)}{\varepsilon} \right)^d \right). \quad (36)$$

966 By the Tsybakov assumption, the budget needed for our active algorithm is:

$$967 \quad 968 \quad 969 \quad T\mu(0 \leq \Delta(X) \leq \varepsilon) = T C_\alpha \varepsilon^\alpha \quad (37)$$

972 Then, $\varepsilon = \left(\frac{B}{C_\alpha T}\right)^{\frac{1}{\alpha}}$, so we can bound the regret by a function of the budget :

$$975 \quad 976 \quad 977 \quad R(T) \leq 4\theta G \cdot \log T \cdot \phi(T)^d \left(\frac{C_\alpha T}{B}\right)^{\frac{2+d}{\alpha}} + G \left(4 \left(\frac{C_\alpha T}{B}\right)^{\frac{1}{\alpha}} (\sqrt{\theta \log(T)} + \phi(T))\right)^{d+2} \quad (38)$$

978 We now set the query budget as a function of the time horizon:

$$979 \quad 980 \quad 981 \quad B(T) = \frac{T}{\log T}.$$

982 Plugging this into the regret bound gives the following expression:

$$983 \quad 984 \quad 985 \quad R(T) \leq 4\theta G \cdot \log T \cdot \phi(T)^d \cdot (C_\alpha \log T)^{\frac{2+d}{\alpha}} + G \cdot \left(4 (C_\alpha \log T)^{\frac{1}{\alpha}} (\sqrt{\theta \log T} + \phi(T))\right)^{d+2}. \quad (39)$$

986 We now extract the leading term in $\log T$ to express the regret asymptotically. Ignoring constant
987 factors and lower-order terms (which can be taken into account by the constant C), and taking
988 $\phi(t) = \lambda$ we obtain:

$$989 \quad R(T) \leq C \cdot \log(T)^{\frac{d+2}{\alpha} + \frac{d+2}{2}},$$

990 where C is a constant that depends on $G, \theta, \alpha, C_\alpha, \lambda$ and d .

991 **Lemma A.8.** *The contribution to the regret from the iterations t for which $V(t)$ is not true (i.e. the
992 third sum in Equation 34) is a constant:*

$$993 \quad 994 \quad 995 \quad 996 \quad \sum_{t=1}^T \mathbb{E}[\mathbb{1}_{V(t)^c}] = O(1). \quad (40)$$

997 *Proof.* Recall that the event $V(t)$ holds if, for all models $g \in \mathcal{G}$, the following inequality is satisfied:

$$999 \quad \left| \widehat{f}_g(X_t, k_g(t)) - f_g(X_t) \right| \leq U_g(X_t, k_g(t)), \quad (41)$$

1000 where the uncertainty bonus is defined as:

$$1002 \quad 1003 \quad 1004 \quad U_g(X_t, k_g(t)) = \sqrt{\frac{\theta \log t}{k_g(t)}} + \phi(t) \cdot \max_{(x, \cdot) \in \text{NN}_g(X_t, k_g(t))} \rho(X_t, x). \quad (42)$$

1005 Suppose $V(t)^c$ holds. Then there exists some $g \in \mathcal{G}$ such that:

$$1008 \quad \left| \widehat{f}_g(X_t, k_g(t)) - f_g(X_t) \right| > \sqrt{\frac{\theta \log t}{k_g(t)}} + \phi(t) \cdot \max_{(x, \cdot) \in \text{NN}_g(X_t, k_g(t))} \rho(X_t, x). \quad (43)$$

1010 For each $s \in [1, t-1]$, define:

$$1012 \quad \varepsilon_s = \mathbb{1}\{(X_s, Y_s^g) \in \text{NN}_g(X_t, k_g(t))\}, \quad (44)$$

$$1013 \quad Z_s = \varepsilon_s \cdot (Y_s^g - f_g(X_s)). \quad (45)$$

1015 Then the k -NN estimate can be decomposed as:

$$1016 \quad 1017 \quad 1018 \quad \widehat{f}_g(X_t, k_g(t)) = \frac{1}{k_g(t)} \sum_{s=1}^{t-1} \varepsilon_s Y_s^g = \frac{1}{k_g(t)} \sum_{s=1}^{t-1} \varepsilon_s f_g(X_s) + \frac{1}{k_g(t)} \sum_{s=1}^{t-1} Z_s. \quad (46)$$

1019 By the Lipschitz assumption (Assumption A.2), for all $s \in \text{NN}_g(X_t, k_g(t))$:

$$1021 \quad |f_g(X_s) - f_g(X_t)| \leq \lambda \cdot \rho(X_s, X_t) \leq \lambda \cdot r_{g, k_g(t)}(t), \quad (47)$$

1022 where $r_{g, k_g(t)}(t)$ denotes the distance from X_t to its $k_g(t)$ -th nearest neighbor in $H_g(t)$. This implies:

$$1024 \quad 1025 \quad \left| \frac{1}{k_g(t)} \sum_{s=1}^{t-1} \varepsilon_s f_g(X_s) - f_g(X_t) \right| \leq \lambda \cdot r_{g, k_g(t)}(t). \quad (48)$$

1026 Therefore:

$$1027 \quad \left| \widehat{f}_g(X_t, k_g(t)) - f_g(X_t) \right| \leq \left| \frac{1}{k_g(t)} \sum_{s=1}^{t-1} Z_s \right| + \lambda \cdot r_{g, k_g(t)}(t). \quad (49)$$

1030 If $V(t)^\complement$ holds, then:

$$1031 \quad \left| \sum_{s=1}^{t-1} Z_s \right| > \sqrt{\theta \log t \cdot k_g(t)}. \quad (50)$$

1034 Since Z_s are conditionally sub-Gaussian and zero-mean (Assumption A.4), we apply the inequality
1035 proved in Lemma A.9:

$$1036 \quad \mathbb{P} \left(\left| \sum_{s=1}^{t-1} Z_s \right| > \sqrt{\theta \log t \cdot k_g(t)} \right) \leq C \cdot t^{-\theta/2}, \quad (51)$$

1039 for some constant C depending on θ . Taking a union bound over all $g \in \mathcal{G}$ and all $t \in [1, T]$ gives:

$$1041 \quad \sum_{t=1}^T \mathbb{P}(V(t)^\complement) \leq G \sum_{t=1}^T C \cdot t^{-\theta/2} < \infty, \quad (52)$$

1043 which implies:

$$1045 \quad \sum_{t=1}^T \mathbb{E}[\mathbb{1}_{V(t)^\complement}] = O(1). \quad (53)$$

1048 \square

1049 A.4 CONCENTRATION INEQUALITY

1051 We next state and prove the Bernstein-type concentration inequality used in Lemma A.8.

1053 **Lemma A.9.** *Fix a model g and a round $t > G$. Recall that*

$$1054 \quad \varepsilon_s = \mathbb{1}\{g_s = g\} \mathbb{1}\{(X_s, Y_s^g) \in \text{NN}_g(X_t, k_g(t))\}, \quad Z_s = Y_s^g - f_g(X_s),$$

1056 and $k = k_g(t) = \sum_{s=1}^{t-1} \varepsilon_s$. Under Assumption A.4 (sub-Gaussian noise), for any $\theta > 0$,

$$1058 \quad \mathbb{P} \left(\left| \sum_{s=1}^{t-1} \varepsilon_s Z_s \right| > \sqrt{\theta \log t k} \right) \leq 2 t^{-\theta/2}.$$

1061 *Proof.* Let $\{\mathcal{F}_s\}$ be the natural filtration generated by $(X_1, Y_1), \dots, (X_s, Y_s)$. By construction ε_s is
1062 \mathcal{F}_{s-1} -measurable and Z_s is independent of \mathcal{F}_{s-1} . Moreover under Assumption A.4,

$$1064 \quad \mathbb{E}[e^{\rho Z_s} \mid \mathcal{F}_{s-1}] \leq \exp\left(\frac{\rho^2}{2}\right) \quad \forall \rho \in \mathbb{R}. \quad (54)$$

1066 For any $\rho > 0$ define the process

$$1068 \quad W_s(\rho) = \exp\left(\rho \sum_{u=1}^s \varepsilon_u Z_u - \frac{\rho^2}{2} \sum_{u=1}^s \varepsilon_u\right), \quad W_0(\rho) = 1. \quad (55)$$

1071 Then

$$1072 \quad \mathbb{E}[W_s(\rho) \mid \mathcal{F}_{s-1}] = W_{s-1}(\rho) \mathbb{E}\left[e^{\rho \varepsilon_s Z_s - \frac{\rho^2}{2} \varepsilon_s} \mid \mathcal{F}_{s-1}\right].$$

1074 Since $\varepsilon_s \in \{0, 1\}$ is \mathcal{F}_{s-1} -measurable,

$$1076 \quad \mathbb{E}[e^{\rho \varepsilon_s Z_s} \mid \mathcal{F}_{s-1}] = (1 - \varepsilon_s) + \varepsilon_s \mathbb{E}[e^{\rho Z_s} \mid \mathcal{F}_{s-1}] \leq (1 - \varepsilon_s) + \varepsilon_s e^{\rho^2/2} = e^{\frac{\rho^2}{2} \varepsilon_s}.$$

1078 Hence $\mathbb{E}[W_s(\rho) \mid \mathcal{F}_{s-1}] \leq W_{s-1}(\rho)$, so $\{W_s(\rho)\}$ is a supermartingale. By Markov's inequality, for any
1079 $\eta > 0$,

$$1079 \quad \mathbb{P}(W_{t-1}(\rho) > e^\eta) \leq e^{-\eta} \mathbb{E}[W_{t-1}(\rho)] \leq e^{-\eta}. \quad (56)$$

1080 Now on the event
 1081
 1082
 1083

$$\sum_{s=1}^{t-1} \varepsilon_s Z_s > \sqrt{\theta \log t k}, \quad (57)$$

1084 choose $\rho = \sqrt{\theta \log t / k}$ and set
 1085
 1086

$$\eta = \rho \sqrt{\theta \log t k} - \frac{\rho^2}{2} k = \frac{\theta}{2} \log t.$$

1087 Then
 1088
 1089

$$W_{t-1}(\rho) = \exp\left(\rho \sum_{s=1}^{t-1} \varepsilon_s Z_s - \frac{\rho^2}{2} k\right) > \exp\left(\rho \sqrt{\theta \log t k} - \frac{\rho^2}{2} k\right) = e^{\frac{\theta}{2} \log t} = t^{\theta/2}. \quad (58)$$

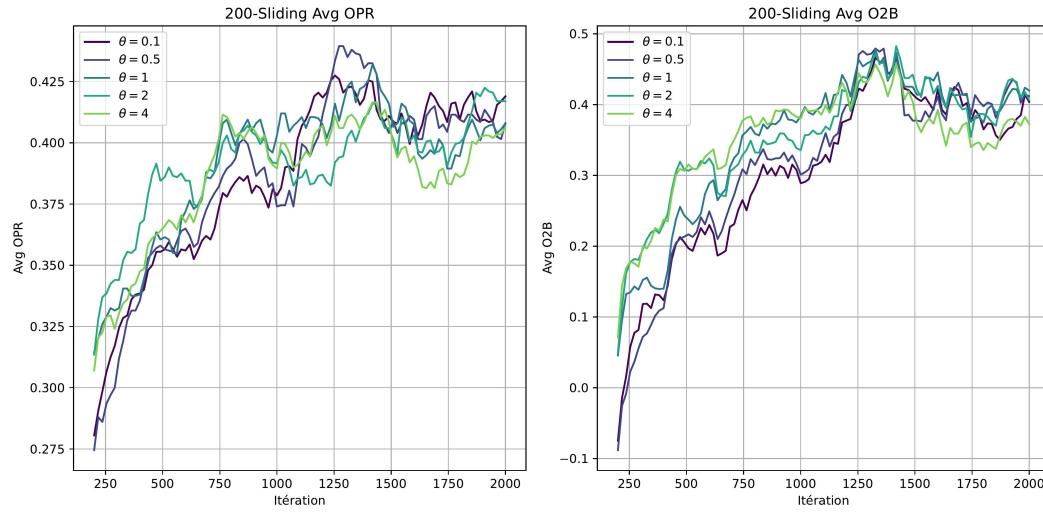
1090 Therefore
 1091
 1092

$$\mathbb{P}\left(\sum_{s=1}^{t-1} \varepsilon_s Z_s > \sqrt{\theta \log t k}\right) \leq \mathbb{P}(W_{t-1}(\rho) > t^{\theta/2}) \leq t^{-\theta/2}. \quad (59)$$

1093 The same argument applies to the negative tail $\sum_{s=1}^{t-1} \varepsilon_s Z_s < -\sqrt{\theta \log t k}$. A union bound yields the
 1094 stated result. \square
 1095
 1096

1097 B HYPERPARAMETER TUNING

1100 B.1 OPTIMAL VALUE OF θ



1117
 1118
 1119 Figure 5: Performance of different θ values on the carrot-bowl dataset with 6 models. OPR (on the
 1120 left), and OtB (on the right) are reported. Results are averaged over 10 runs.
 1121
 1122

1123 Figure 5 reports the performance of our algorithm for different values of the UCB parameter θ .
 1124 Overall, the results show that the algorithm is relatively robust to the choice of this hyperparameter:
 1125 performance varies only slightly across a wide range of values. In particular, θ values between
 1126 0.5 and 1 consistently yield strong performance. Based on this observation, we set $\theta = 1$ for all
 1127 experiments.
 1128

1129 B.2 THRESHOLDS CALIBRATION

1130 This section details the calibration procedures used to set the threshold values for each variant de-
 1131 scribed in subsection C.2 (except for the Warm-start variant which has no threshold).
 1132

1133 In order to control the full-feedback budget in our active variants, we must set threshold parameters
 1134 that determine when to trigger a query. Each variant relies on a different scoring mechanism—such

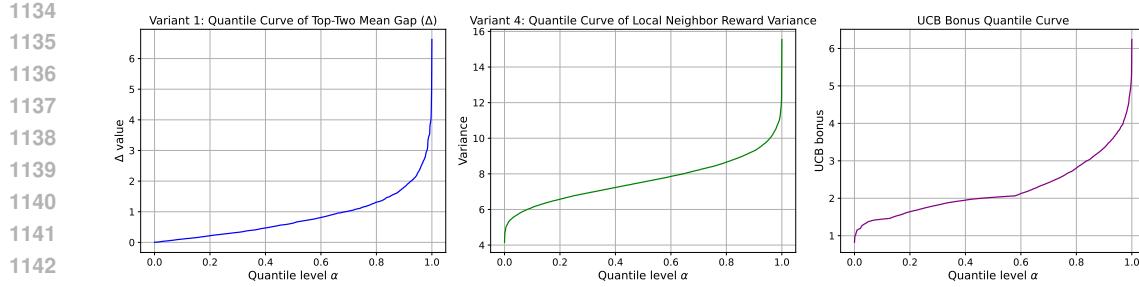


Figure 6: Quantile curves for each variant, plotting the threshold value as a function of the quantile level α . These curves guide the choice of thresholds corresponding to a desired budget ratio.

as the top-two model gap (**Variant 1**), the local reward variance in the neighborhood (**Variant 4**), or the maximum UCB bonus (**Variant 2**)—and queries are triggered when this quantity falls below or exceeds a threshold.

To calibrate these thresholds meaningfully across datasets and budgets, we adopt a quantile-based strategy. Specifically, for each variant, we empirically compute the distribution of the associated quantity over a large set of prompts (e.g., 2,000 prompts from the Flickr dataset). Then, we determine the threshold as the α -quantile of this distribution, where α reflects the target budget usage. For instance, setting $\alpha = 0.25$ will result in queries being triggered on roughly 25% of the prompts.

Quantile curves. Figure 6 displays the quantile curves for all three variants, showing the value of the threshold as a function of $\alpha \in [0, 1]$. These curves are computed using the full validation set and reflect the empirical behavior of the scoring quantities.

Practical usage. Given a desired budget ratio $\rho \in (0, 1)$ (e.g., $\rho = 0.2$ for 20% full feedback), we set the threshold for each variant to the ρ -quantile of the corresponding score distribution. This ensures that, on average, full-feedback queries are issued in only $\rho \cdot T$ rounds, where T is the total number of iterations. The quantile curves provide a principled and interpretable method for aligning the budget with the scoring criteria used by each variant.

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 INFERENCE PARAMETERS FOR T2I MODELS

Model	Resolution	Inference steps
Sana 1.5	1024×1024	18
LCM Dreamshaper v7	768×768	50
Unidiffuser v1	512x512	20
SDXL-Turbo	512x512	4
SSD-1B	1024×1024	50
Koala-Lightning-700M	1024×1024	25

Table 2: Recommended inference settings (resolution and number of steps) from each model’s Hugging Face card and Diffusers defaults.

All models were run on a Nvidia RTX 3090 using Python 3.11 with Pytorch 2.7 for CUDA 12.8 on Ubuntu 22.04. All the model parameters used, including floating point precision, were the default ones from the huggingface library. CLIP Score was computed using the CLIP-ViT-L/14 model from the original paper (Radford et al., 2021).

1188
1189 C.2 ACTIVE VARIANT DETAILS1190 Formally, we implement each variant via a Boolean function $Q : X \in \mathcal{X} \rightarrow \{\text{True}, \text{False}\}$, chosen
1191 from one of four variants. In practice, we evaluate all four and select the best-performing strategy
1192 on a held-out prompt set (see subsection 5.2). Our regret analysis (Theorem 4.2) applies to the *Delta*
1193 variant.1194 **Variant 1: Delta (top-two gap).** This strategy triggers a full-query when the gap between the top
1195 two UCB indices is below a threshold δ . Specifically, if $\hat{f}_{(1)}(X_t)$ and $\hat{f}_{(2)}(X_t)$ denote respectively the
1196 largest and second-largest estimates:
1197

1198
$$Q(X_t) = \text{True} \iff \hat{\Delta}(X_t) := \hat{f}_{(1)}(X_t) - \hat{f}_{(2)}(X_t) < \delta. \quad (60)$$

1199 This criterion ensures that queries are concentrated in regions where the algorithm is “on the fence,”
1200 i.e. where passive learning would struggle to confidently discriminate between competing models.
1201 It plays a critical role in improving the convergence rate by providing decisive information at the
1202 points of highest ambiguity.
12031204 Crucially, this variant also allows us to improve the regret bound compared to passive algorithms.
1205 The Delta strategy ensures that the algorithm avoids spending too much time selecting suboptimal
1206 models in regions where the best model is clearly better. More precisely, we prove in Lemma A.6
1207 any region of the prompt space where the gap Δ between the best model and the others is sufficiently
1208 large, the number of times a suboptimal model is chosen remains tightly controlled, scaling loga-
1209 rithmically in the time horizon T . Even though we do not have access to the true value of Δ , we can
1210 compute its empirical estimate $\hat{\Delta}$. We show in Lemma A.7 that, in the long run, this estimate closely
1211 approximates the true gap, supporting its use.
12121212 **Variant 2: UCB-threshold.** Here, we query whenever the maximum *uncertainty bonus* across all
1213 models (the term $U_g(X_t)$ in the UCB index) exceeds a threshold ε . This captures situations of overall
1214 high variance in reward estimates:
1215

1216
$$Q(X_t) = \text{True} \iff \max_{g \in \mathcal{G}} U_g(X_t) > \varepsilon. \quad (61)$$

1217 UCB-threshold tends to allocate queries to regions of the prompt space that are sparsely sampled,
1218 enforcing exploration of under-represented contexts.
12191220 **Variant 3: Warm-start.** A simple baseline: devote the first $B(T)$ rounds to full-feedback queries,
1221 then revert to passive KNN-UCB. This “bootstrap” strategy can be effective, as it allows the algo-
1222 rithm to leverage the information gained from early queries throughout the entire run:
1223

1224
$$Q(X_t) = \text{True} \iff t \leq B(T). \quad (62)$$

1224 Warm-start front-loads the budget to rapidly seed each model’s neighbourhood with diverse obser-
1225 vations.
12261226 **Variant 4: Variance-threshold.** Finally, we query when the empirical variance of the $k_{g_t}(t)$ neigh-
1227 bours’ rewards for the selected arm exceeds a threshold v . High local variance indicates that similar
1228 prompts have produced inconsistent rewards, suggesting that further full-feedback would clarify the
1229 true reward surface:
1230

1231
$$Q(X_t) = \text{True} \iff \text{Var}(\{y \mid (x, y) \in \text{NN}_{g_t}(X_t, k_{g_t}(t))\}) > v. \quad (63)$$

1232 The procedures for selecting the thresholds δ , ε , and v are provided in subsection B.2.
12331234 OBSERVATION AND UPDATES
12351236

- 1237 • If $Q(X_t) = \text{True}$ and $B > 0$, we observe the full reward vector $\{Y_t^g\}_{g \in \mathcal{G}}$, update each $H_g(t) \leftarrow$
1238 $H_g(t) \cup \{(X_t, Y_t^g)\}$, increment $N_g(t)$, and decrement $B \leftarrow B - 1$ (lines 12–14).
- 1239 • Otherwise, we observe only $Y_t^{g_t}$ (lines 15–16) and update $H_{g_t}(t) \leftarrow H_{g_t}(t) \cup \{(X_t, Y_t^{g_t})\}$ and
1240 $N_{g_t}(t)$ accordingly.

1241 By comparing these four strategies empirically, we identify which uncertainty signal best balances
1242 exploration and budget usage in diverse prompt distributions (subsection 5.2).

1242 C.3 CLIPS^{core}
1243

1244 In all our experiments, we use a single metric to evaluate the quality of generated images: the CLIP-
1245 Score (Hessel et al., 2021). This metric is based on the CLIP embedding framework (Radford et al.,
1246 2021), which maps both the input prompt and the generated image into a shared embedding space.
1247 This enables a direct measurement of alignment between the textual and visual representations.

1248 Formally, the CLIPS^{core} between a prompt and a generated image is defined as:
1249

$$1250 \quad \text{CLIPS}^{\text{core}}(X, Y) = \max(0, 100 \cdot \cos(X, Y)), \quad (64)$$

1251 where X and Y are the CLIP embeddings of the prompt and the generated image, respectively.
1252

1253 The CLIPS^{core} thus reflects how well the semantic content of the generated image matches the input
1254 prompt, with higher values indicating stronger alignment.
1255

1256 *Remark C.1.* As we will observe in the experiments, CLIPS^{core} is far from being a perfect eval-
1257 uation metric. While it performs reasonably well at distinguishing poor-quality generations from
1258 clearly relevant ones, it often fails to discriminate between high-quality images produced by different
1259 state-of-the-art models. In practice, state-of-the-art models tend to achieve very similar CLIPScores,
1260 making them particularly hard to distinguish based on this metric alone. In particular, images that
1261 are judged by humans as less aligned with the prompt may sometimes receive a higher CLIPScore
1262 than better-aligned alternatives. However, this limitation is not critical for our study, as our algorithm
1263 is agnostic to the choice of evaluation metric and can operate with any scalar reward function.
1264

C.4 TIME COMPLEXITY OF BALROG

1265 **Proof of BALROG Time complexity.** We assume that each model $g \in \mathcal{G}$ has been played at least
1266 once by round t , which holds whenever $t > G$. Under this assumption, we have $N_g(t) > 0$ for all g ,
1267 and at each round $t > G$, the algorithm performs three main operations:
1268

- 1269 1. Compute the distance between the current prompt X_t and each entry in the history $H_g(t)$, an
1270 $O(N_g(t))$ operation.
1271 2. Sort these $N_g(t)$ distances to identify the nearest neighbors, which costs
1272 $O(N_g(t) \log(N_g(t)))$.
1273 3. Find the optimal number of neighbors $k_g(t)$ by minimizing the UCB term, which costs
1274 $O(N_g(t))$.
1275

1276 The per-arm cost over the horizon is therefore:
1277

$$1278 \quad O\left(\sum_{t=1}^T N_g(t) \log(N_g(t))\right) = O\left(\sum_{t=1}^T t \log t\right) = O(T^2 \log T).$$

1281 In addition to this selection cost, we must account for the inference time of the models. Even though
1282 inference is a constant-time operation for a given model (with maximum cost I), it adds a total cost
1283 of $O((T + BG)I)$.
1284

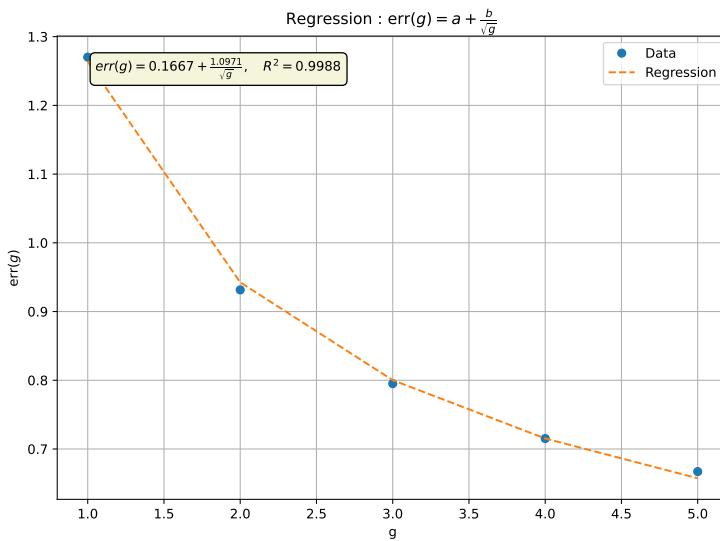
Summing both contributions, the overall time complexity becomes:
1285

$$1286 \quad O(G T^2 \log T + (T + BG)I).$$

1287 \square
1288

C.5 EFFECT OF SAMPLING ON CLIPS^{core} ESTIMATION

1289 In this section, we study the convergence behavior of our algorithm with respect to the hyperparam-
1290 eter g , which denotes the number of samples used to compute the CLIPS^{core}. In our experimental
1291 setup, the reward for each prompt-model pair is defined as the average CLIPS^{core} over $g = 5$ in-
1292 dependently generated images. Averaging over multiple generations reduces the variance of the
1293 reward signal and improves stability during training. However, it also implies that even an oracle
1294 algorithm, which always selects the model with the highest expected CLIPS^{core} per prompt, cannot
1295

Figure 7: Regression plot of the error with respect to g

deterministically achieve the true optimum. This is because the observed reward is a finite-sample estimate of the model’s mean performance, and thus inherently noisy.

We can therefore decompose the expected error of our algorithm, defined as the difference between its achieved CLIPScore and the true per-prompt optimum, as a function of g :

$$\text{err}(g) = a + \frac{b}{\sqrt{g}}, \quad (65)$$

for some constants $a, b \geq 0$. The $g^{-1/2}$ decay reflects the standard Monte Carlo convergence rate for the estimation of a mean from g i.i.d. samples. Here, a captures the irreducible approximation error of the algorithm in the zero-variance limit (i.e., as $g \rightarrow \infty$), while b quantifies the effect of noise due to finite sampling.

A regression analysis presented in Figure 7, for $g \in \{1, 2, 3, 4, 5\}$, illustrates this trade-off and allows us to estimate the values of a and b . The points in the plot correspond to the final OtB values achieved by our algorithm on the MS-COCO dataset after $T = 5000$ iterations, for each value of g . Fitting the model $\text{err}(g) = a + \frac{b}{\sqrt{g}}$ to the data yields an estimate of $a = 0.17$, indicating that our algorithm remains on average only 0.17 CLIPScore points below the oracle. This gap reflects the intrinsic approximation limit of our algorithm, independent of sampling noise. We expect this constant to decrease as the number of iterations T increases, since more training steps allow the algorithm to better explore and exploit the prompt space.

C.6 ANALYSIS OF DISTANCE/CLIPSCORE CORRELATION

To better understand the relationship between the semantic similarity of prompts and the variability in their associated CLIP scores, we compute the cosine distance between all pairs of prompts (using CLIP text embeddings) and measure the absolute difference in their mean CLIP scores. We then discretize the distance range $[0, 1]$ into small bins (of width 0.01) and calculate the average CLIP score difference for each bin.

Figure 8 shows the resulting curve for the SDXL-Turbo model. As expected, prompt pairs that are semantically close (low cosine distance) tend to exhibit lower differences in CLIP scores, whereas more distant prompts show increasingly larger score variations. However, the correlation is not strictly linear: beyond a certain distance (around 0.4–0.6), the average CLIP score difference plateaus, indicating that highly dissimilar prompts do not necessarily lead to arbitrarily high score discrepancies. This suggests that semantic similarity is a useful but imperfect predictor of CLIP

1350 score differences, with additional factors (e.g., prompt structure or model-specific biases) contributing
 1351 to variability.
 1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372 Figure 8: Average absolute difference in CLIP scores as a function of cosine distance between
 1373 prompts, computed over 200k sampled prompt pairs for the SDXL-Turbo model on the Flowers
 1374 dataset.

1375

1376

1377 This analysis supports the intuition that closer prompts are more likely to have similar quality scores,
 1378 justifying the use of nearest-neighbor methods for estimating expected reward in our bandit algo-
 1379 rithms. Nonetheless, the observed noise and plateau region highlight the limitations of relying solely
 1380 on prompt distance for score prediction.

1381

1382

C.7 RESULTS WITH LLMs

1383 In this section, we present experiments where the text-to-image (T2I) task is replaced by a language
 1384 modeling task. Input prompts are sampled from the CommonsenseQA Talmor et al. (2019) dataset,
 1385 and we consider two LLMs: Gemma Gemma Team et al. (2024) and LLaMA Grattafiori et al.
 1386 (2024). In this setting, the reward is binary, with a value of 1 if the selected model provides a correct
 1387 answer, and 0 otherwise. The input of all baselines is the RoBERTa embeddings of the prompts Liu
 1388 et al. (2019). Performance is evaluated using OtB and OPR metrics, as shown in Figure 9. BALROG
 1389 is able to very well adapt to this different task, by achieving a positive OtB and the best OPR among
 1390 all baselines, even with a budget of only 5% of T .
 1391

1392

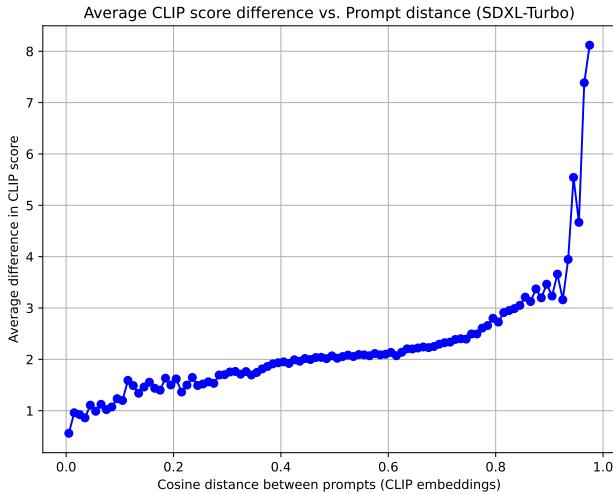
1393

1394

1395

1396

1397 To further assess adaptability, we also investigate a complementary model removal scenario where
 1398 the pool of available generators is progressively reduced during evaluation. Starting with all six
 1399 models, Unidiffuser is removed at time step $1/3T$, followed by SSD-1B at $2/3T$. Results, reported
 1400 in Figure 10, show that BALROG remains robust to such contractions of the action space. The
 1401 algorithm efficiently reallocates its budget toward the remaining candidates, maintaining competitive
 1402 performance despite the reduced diversity. On MS-COCO and Carrot-Bowl, BALROG consistently
 1403 outperforms baseline strategies, sustaining lower regret even after strong model removals, which
 1404 highlights its resilience to real-world settings where underperforming or costly models may be dis-
 1405 carded.



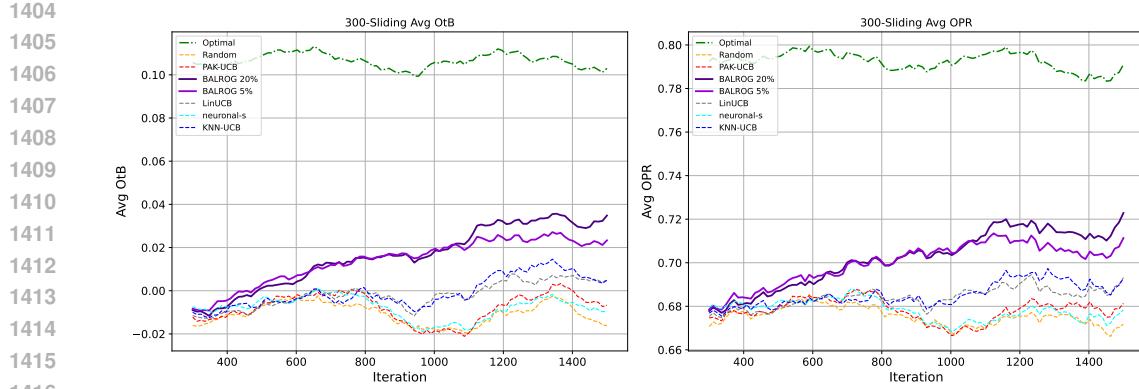


Figure 9: Performance evolution of BALROG and baseline methods on the CommonsenseQA dataset, using two language models. Metrics shown are OtB and OPR over time. Results are averaged over 10 runs.

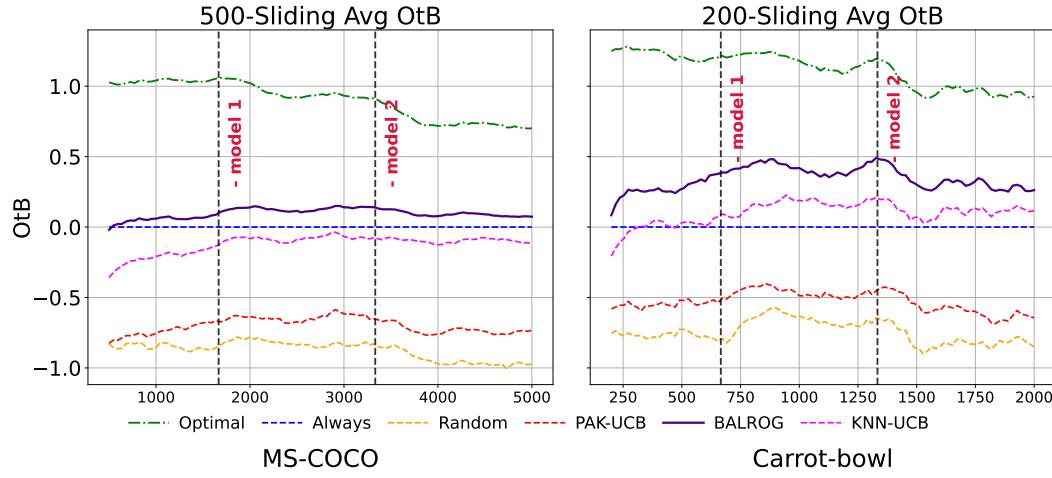


Figure 10: Performance of BALROG with a 20% budget and other baselines under the model removal setup on 2 datasets (MS-COCO on the left and Carrot-bowl on the right). OtB is reported. Results are averaged over 10 runs. BALROG adapts to both strong and weak model removal by allocating its budget strategically.

C.9 ADDITIONAL TABLES AND FIGURES

Table 3: Average regret per dataset and algorithm.

Algorithm	MS-COCO	Flickr	Flowers	Carrot-bowl
Optimal	0	0	0	0
Always	1.032	1.161	0.884	1.232
Random	1.905	1.713	2.476	2.003
Neuronal-s	2.023	1.511	1.845	1.976
PAK-UCB	1.714	1.546	2.243	1.800
KNN-UCB	1.112	1.206	1.031	1.158
LinUCB	2.013	1.161	1.690	1.603
BALROG (5%)	1.016	1.141	0.953	1.032
BALROG (20%)	0.930	0.989	0.767	0.894

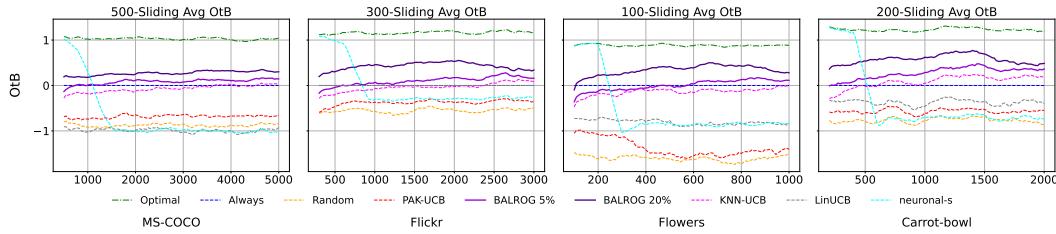


Figure 11: Sliding average OtB comparison between our algorithm and baselines across four prompt datasets with 6 models when using the query results to select. Results are averaged over 10 runs.

Table 4: Estimated values of α , d , and $(d + 2)/\alpha$. d is estimated with the method presented in Levina & Bickel (2004), and α via a logarithmic regression.

Dataset	α	d	$(d + 2)/\alpha$
MS-COCO	1.03	49	49.51
Flickr	1.06	50	49.06
Carrot-Bowl	1.00	32	34.00
Flowers	0.84	14	19.05

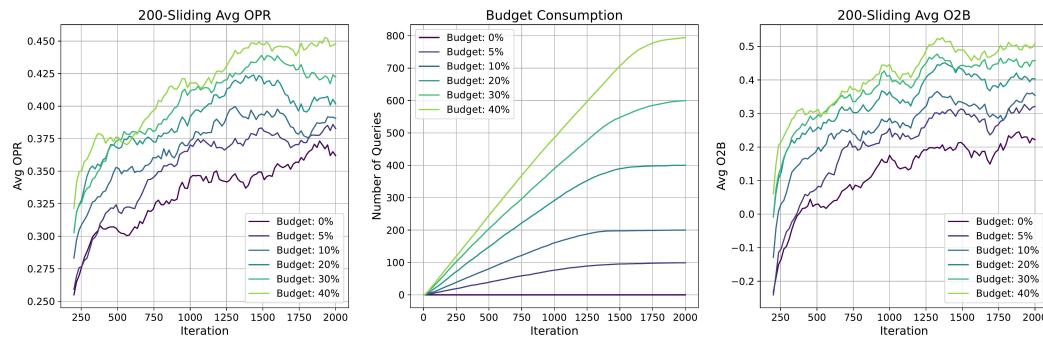


Figure 12: Performance of BALROG with different budget on the carrot-bowl dataset with 6 models. OPR (on the left), budget consumption (in the middle) and OtB (on the right) are reported. Results are averaged over 20 runs.

Table 5: Average total regret in the model addition setup.

Algorithm	MS-COCO	Carrot-Bowl
Random	1.542	1.668
PAK-UCB	1.378	1.387
KNN-UCB	0.868	0.880
BALROG	0.734	0.709

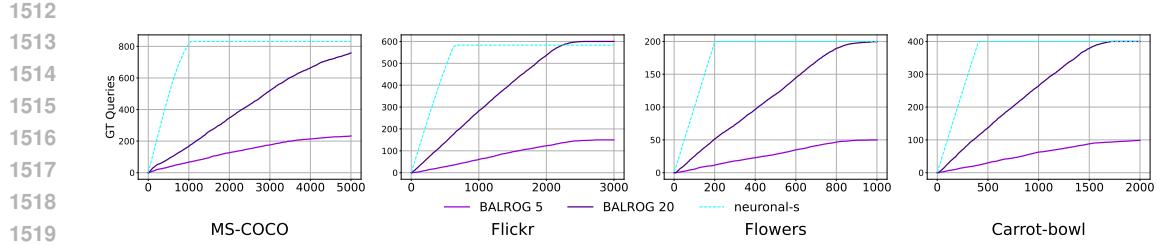


Figure 13: Budget consumption of the active algorithms shown in Figure 2 across the four datasets. BALROG effectively distributes its budget over the entire horizon to maximize learning efficiency.

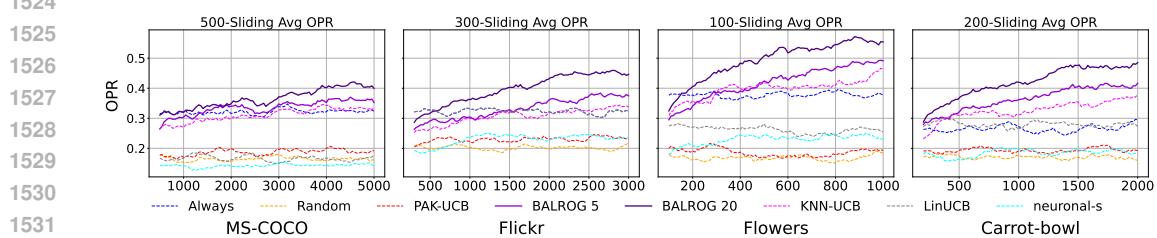


Figure 14: OPR plots corresponding to Figure 2.

Number of models (K) considered in the queries	Avg regret
BALROG ($K=2$, budget=25.00%)	1.0505
BALROG ($K=3$, budget=12.50%)	1.0527
BALROG ($K=4$, budget=8.33%)	1.0362
BALROG ($K=5$, budget=6.25%)	1.0545
BALROG ($K=6$, budget=5.00%)	1.0085

Table 6: Average total regret of BALROG for different values of K on MS-COCO. The budget is defined as a function of K so that each version of BALROG has the same additional compute compared to the passive variant.

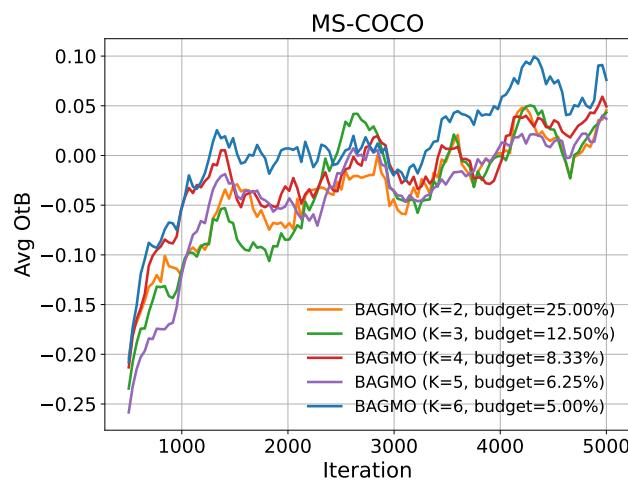


Figure 15: Sliding average OtB of BALROG for different values of K on MS-COCO.

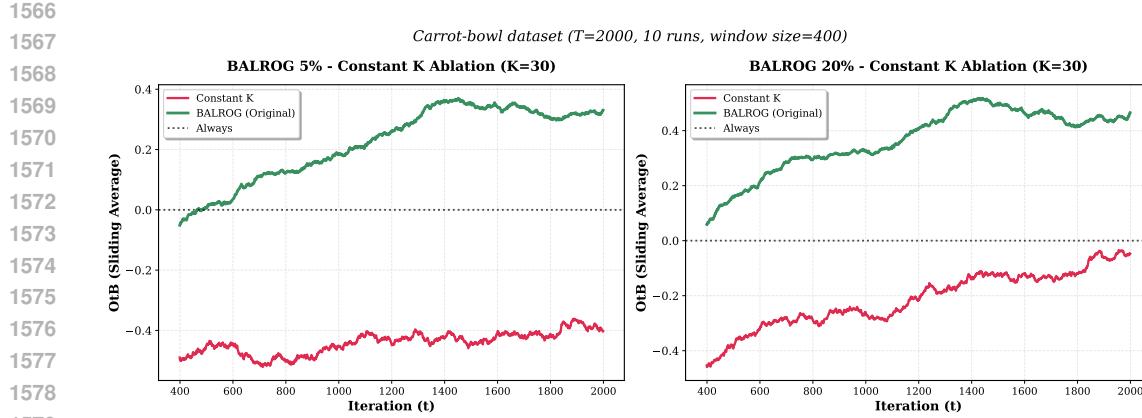


Figure 16: Constant K ablation study: Comparison between BALROG with constant $K=30$ (this value achieved the best performance over the grid $\{10, 20, \dots, 100\}$) versus original adaptive K selection. Results show sliding average OtB over 2000 iterations on Carrot-bowl dataset, averaged over 10 runs with window size 400.

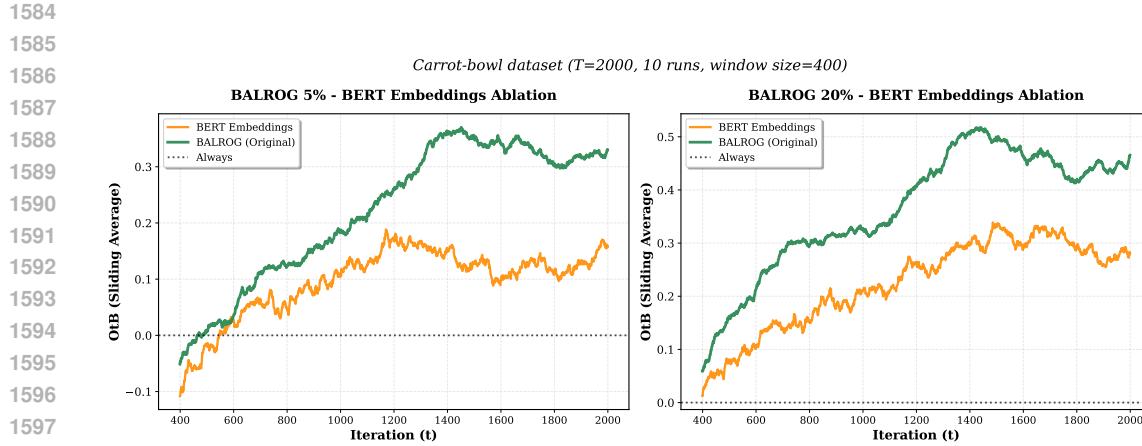


Figure 17: BERT embeddings ablation study: Comparison between BALROG with BERT embeddings versus original CLIP embeddings. Results show sliding average OtB over 2000 iterations on Carrot-bowl dataset, averaged over 10 runs with window size 400.

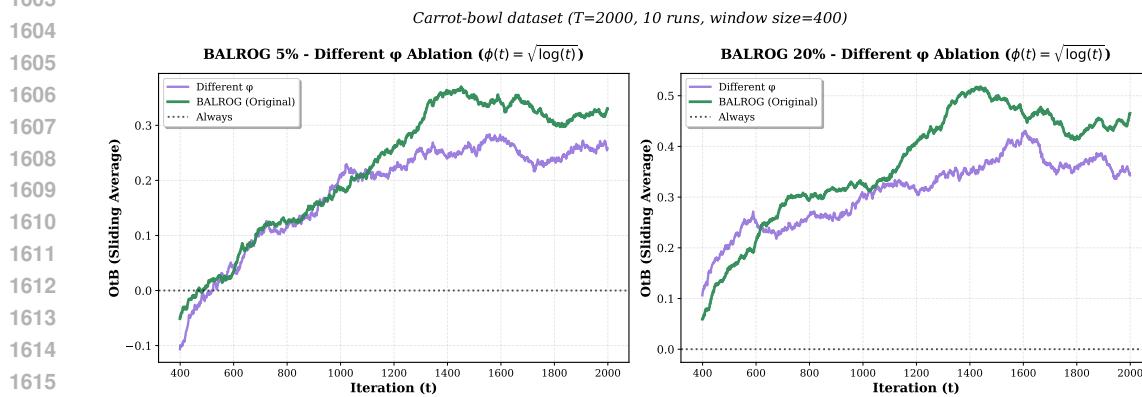


Figure 18: Different ϕ ablation study: Comparison between BALROG with $\phi(t) = \sqrt{\log(t)}$ versus original exploration function ($\phi(t) = \log(t)$). Results show sliding average OtB over 2000 iterations on Carrot-bowl dataset, averaged over 10 runs with window size 400.

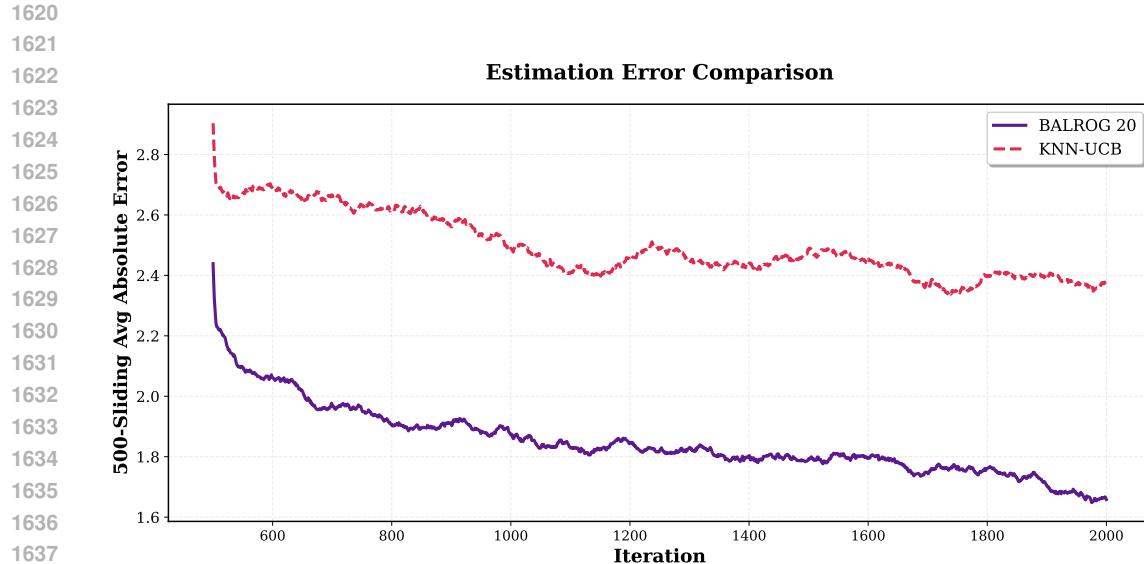


Figure 19: Intermediate results ablation study: Performance comparison of **BALROG** and baseline algorithms showing average estimation error on Carrot-bowl dataset ($T=2000$, averaged over 10 runs).

Table 7: GPU runtime comparison across baseline algorithms on Carrot-bowl dataset ($T=2000$). Runtime includes inference time for selected models and additional time when active queries are issued.

Algorithm	Runtime (minutes)
Optimal	18.33
Always	33.33
Random	17.74
PAK-UCB	17.73
KNN-UCB	20.72
LinUCB	18.78
Neuronal-S	38.96
BALROG 5%	24.54
BALROG 20%	40.06

Table 8: Delta (δ) analysis showing average regret for different exploration parameter values on Carrot-bowl dataset ($T=2000$, averaged over 10 runs). Average Regret = Cumulative Regret / T .

δ	Average Regret
$\delta = 0.2$	0.875
$\delta = 0.25$	0.850
$\delta = 0.3$	0.855
$\delta = 0.35$	0.804
$\delta = 0.4$	0.839
$\delta = 0.45$	0.807

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

Table 9: ImageReward experiment results showing average regret on Carrot-bowl dataset (T=2000, averaged over 10 runs). Comparison of all baseline algorithms using ImageReward-based evaluation metric.

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Algorithm	Average Regret
Optimal	0.000
BALROG 20%	0.249
BALROG 5%	0.319
KNN-UCB	0.347
LinUCB	0.400
Always	0.432
Neuronal-S	0.448
PAK-UCB	0.474
Random	0.489