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Abstract

The rapid proliferation of open-platform text-to-image generative models has
made prompt-wise model selection essential for producing high-quality and se-
mantically accurate images, yet it remains a challenging problem. Existing ap-
proaches, including contextual bandit algorithms, often converge slowly and fail to
exploit the semantic relationships across prompts. We introduce BALROG, a non-
parametric, neighbor-based bandit framework that directly addresses these issues
by transferring information across similar prompts to speed up convergence and
improve generalization. By leveraging similarities between prompts, BALROG
achieves faster learning and comes with strong theoretical guarantees through a
poly-logarithmic regret bound. In addition, we incorporate an active learning strat-
egy that selectively queries ground-truth model rankings on ambiguous prompts,
where ambiguity is quantified by the gap between the estimated rewards of the top
two candidate models. This simple yet effective uncertainty measure substantially
improves convergence and robustness. Extensive experiments on four datasets
with six image generative models show that BALROG reduces regret by up to
60% compared to state-of-the-art baselines, enabling more accurate prompt-wise
model selection in practice.

1 Introduction

In recent years, there has been a proliferation of prompt-guided image generation models, with
improving fidelity and diversity performance (Ho et al., 2020; Rombach et al., 2022; Reed et al.,
2016; Xu et al., 2018; Podell et al., 2024; Ding et al., 2021). As a result, practitioners now face a wide
range of available models, each with their own strengths and weaknesses: some models prioritize
photorealism, others focus on creativity or speed of inference (Jiang et al., 2025). The principle of
one model outperforming all other competitors on any given task thus becomes impossible to achieve
in practice. Therefore, the assignment of a given prompt to the best generative model available is a
problem both critical and non-trivial.

A conventional approach to this challenge relies on aggregate performance scores, typically com-
puted as averages over a large set of prompts using metrics such as CLIPScore (Hessel et al., 2021)
or PickScore (Kirstain et al., 2023). However, these global averaged scores do not reflect potential
variations in model performance across different types of prompts. As demonstrated in the illustra-
tive example of Figure 1, the SDXL-Turbo (Podell et al., 2024) text-to-image model achieves the
highest CLIPScore on the first prompt, while the model Sana (Xie et al., 2024) can offer a higher
CLIPScore for the second prompt. These discrepancies in prompt-level model ranking are not ex-
ceptions, but rather a common occurrence in generative model behavior. This is the result of different
data distributions being used for the training of each model (and often distinct architectures and ob-
jectives being employed (Frick et al., 2025)). This observation highlights a crucial shortcoming of
global ranking methods and motivates the need for prompt-aware model selection strategies.

Model selection has hence recently emerged as a key challenge in generative AI, with offline meth-
ods proposing to rank prompts or datasets against candidate models (Luo et al., 2024; Lewandowski
et al., 2025). Building on this line of work, PAK-UCB (Hu et al., 2025b) addresses prompt-aware
selection by formulating it as a contextual bandit problem. In this scenario the learner observes a
prompt, selects a model, and receives feedback only for that selection. Specifically, it models ex-
pected rewards as linear functions in a kernelized prompt space and uses optimism-based exploration
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Sana
CLIPScore = 29.52

Unidiffuser
CLIPScore = 28.42

LCM
CLIPScore = 29.34

SDXL-Turbo
CLIPScore = 31.27

SSD-1B
CLIPScore = 28.39

Koala
CLIPScore = 26.44

(a) Prompt: “celebrating their show : actor joins the cast and crew of science fiction tv program for the red carpet event”

Sana
CLIPScore = 34.80

Unidiffuser
CLIPScore = 34.57

LCM
CLIPScore = 31.65

SDXL-Turbo
CLIPScore = 29.99

SSD-1B
CLIPScore = 31.46

Koala
CLIPScore = 31.99

(b) Prompt: “girl cracking an egg into a bowl of flour”

Figure 1: Visual comparison of generated images and corresponding averaged CLIP scores from 6
different text-to-image models. All reported scores have a tolerance bounded by ±0.5 CLIPScore.

to guide model selection. Although theoretically grounded, this approach suffers from several lim-
itations in practice. First, it assumes a fixed kernel and a parametric reward structure. However, in
real-world settings, the relationship between prompts and model performance can be highly nonlin-
ear or irregular. Second, PAK-UCB disregards the structural or potential correlational relationships
between models, despite the fact that numerous generative models exhibit architectural similarities
or common training objectives. As a result, the algorithm struggles to leverage shared information
across models. Empirically, we observe that PAK-UCB tends to generalize poorly when the number
of models increases or when prompts become more diverse (see subsection 5.1), suggesting that
these assumptions limit its scalability and adaptability.

To overcome these limitations, we introduce BALROG, a novel approach designed for scalable and
reliable generative model selection. Our method performs nonparametric reward estimation for each
model using the CLIP embedding of the current prompt as well as historical reward observations
from similar prompts. Unlike prior approaches, we enhance this learner with a limited active learn-
ing budget: at selected prompts, the algorithm can query the reward of all models for a given prompt.
This additional signal is strategically used to resolve ambiguity, improve generalization across simi-
lar prompts, and uncover latent correlations between models. The challenge then becomes efficiently
using the query budget based on the chosen metric, e.g., regret minimization.

By combining passive learning from partial feedback with targeted active querying, our proposed
method successfully balances exploration and exploitation. Under mild assumptions on the smooth-
ness of reward functions and the learnability of model behaviors, we derive a novel regret bound
that formalizes the efficiency of our approach. These theoretical guarantees are corroborated by
extensive experiments, which demonstrate that our method consistently outperforms state-of-the-art
baselines. Importantly, we also show that even a small number of active queries can already yield
substantial gains in selection accuracy and learning efficiency (see subsection 5.2).

Our contributions are summarized as follows:

• We are the first to study active learning strategies for online model selection in generative AI,
explicitly leveraging both prompt- and model-level similarities.

• We extend our non-parametric neighbor-based bandit with an active learning mechanism that se-
lectively queries model performances on ambiguous prompts. Measurement of ambiguity is based
on the gap between the estimated rewards, ensuring that queries concentrate where uncertainty is
highest and, therefore, accelerating convergence.
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• We derive a regret bound showing our active, non-parametric approach improves over passive
algorithms. We further confirm these gains empirically across six real-world text-to-image models
(four prompt datasets) and LLM question answering tasks. Our approach outperforms state-of-
the-art baselines under varying budgets, hyperparameters, and model pools.

2 Related works

Offline approaches learn the mapping from inputs to models using prompt-to-model ranking net-
works (Luo et al., 2024), dataset-to-model forecasting for fine-tuning decisions (Lewandowski et al.,
2025), or prompt-specific leaderboard generation (Frick et al., 2025). When deployment and train-
ing distributions align, such predictors can work well, yet they do not re-calibrate in real time when
prompts drift or when new models are introduced, which is what we consider in our setting. More
adaptive strategies based on bandits initially focused on unconditional generators and therefore
missed the prompt-specific nature of the problem (Hu et al., 2025a; Rezaei et al., 2025). PAK-
UCB (Hu et al., 2025b) brings the contextual view we need by fitting, for each model, kernel ridge
regression on CLIP embeddings and acting optimistically with UCB. In practice, however, fixing
a kernel and estimating each model independently can underfit heterogeneous prompts and over-
look correlations between models that share architectures or data. Our method answers these issues
by remaining nonparametric, using neighborhoods instead of a global kernel, and by occasionally
querying the full reward vector on the same prompt.

Generated image evaluation has evolved in parallel with this objective. Distribution level scores
such as FID (Heusel et al., 2017) and Inception Score (Salimans et al., 2016) capture global realism
and diversity, whereas other metrics focus on prompt alignment like CLIPScore (Hessel et al., 2021)
or human preference datasets such as Pick-a-Pic (Kirstain et al., 2023) and HPSv2 (Wu et al., 2023).
Recent surveys and leaderboards warn against single number verdicts and argue for multi dimen-
sional protocols that cover relevance, realism, and diversity (Ku et al., 2024; Zhang et al., 2023). In
this spirit, we report CLIPScore because it is widely adopted and correlates well with human pref-
erences, while we frame our claims as relative improvements under any similar metric. This aligns
precisely with the context in which an online selector is expected to deliver value.

Active learning (Settles, 2009; Hanneke, 2014) selects informative labels under a budget, for exam-
ple with uncertainty sampling (Du et al., 2015) or query by committee and expected model change
(Zhdanov, 2019). Recent works adapts this idea to sequential prediction by learning when to request
extra feedback. For instance, Neuronal-s (Ban et al., 2024) uses two networks, a predictor for re-
wards and an auxiliary component for uncertainty, and triggers full feedback in a streaming setting
through an uncertainty threshold. In our case we keep the estimator simple and nonparametric and
use closed form bonuses rather than learned uncertainties.

3 Problem Definition

We consider a contextual multi-armed bandit setting where contexts lie in a metric space. Let X
denote the context space, (i.e. prompt embeddings), equipped with a distance function ρ : X ×
X → R≥0, and let µ be a distribution over X. We assume a finite set of G models, denoted by G,
corresponding to generative models.

At each round t = 1, 2, . . . ,T , the learner observes a prompt Xt ∼ µ, and must choose a model
gt ∈ G. For each model g ∈ G, there exists an unknown reward function f g : X → [0, 1] such that
the observed reward is

Yg
t := f g(Xt) + η

g
t , (1)

where we assume that ηg
t is a zero-mean sub-Gaussian noise (Assumption A.4). Only the reward

(e.g. CLIPScore) Ygt
t corresponding to the selected model is observed. In addition, we allow the

learner to use a limited budget B(T ) of queries, where at selected rounds it can observe the rewards
of all models on the current prompt to accelerate convergence.

Existing contextual bandit methods mainly differ in how they link the context to the expected reward.
Parametric approaches such as LinUCB (Chu et al., 2011) or kernelized bandits (Valko et al., 2013;
Hu et al., 2025b) assume a fixed functional form, for example linear or based on a kernel. They
offer strong theoretical guarantees and learn quickly when the assumption is correct, but they tend
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to generalize poorly when prompts are diverse or when the number of models is large (see subsec-
tion 5.1). Non parametric approaches such as the Zooming Bandit (Slivkins, 2011) and KNN-UCB
(Reeve et al., 2018) make fewer assumptions and are more flexible in heterogeneous settings, but
they converge more slowly and their guarantees are weaker. A further limitation for our application
is that most existing algorithms treat each model independently, while in practice generative models
often share training data or architecture.

Our objective in this setting is to sequentially select models in order to minimize the cumulative re-
gret over a time horizon of T rounds. The cumulative regret R(T ) is defined as the sum of differences
between the reward of the optimal model prompt-wise and the reward of the chosen model:

R(T ) :=
T∑

t=1

(
f g⋆t (Xt) − f gt (Xt)

)
, (2)

where g⋆t = arg max
g∈G

f g(Xt) denotes the optimal model for prompt Xt and gt the model chosen by the

algorithm. At each round t, the learner must select a model gt based solely on the history of past
observations, without access to the reward vector except when a query is made.

4 The BALROG algorithm

We now present our proposed method BALROG in Algorithm 1, a contextual bandit algorithm tai-
lored to prompt-based model selection. We draw on k Nearest Neighbors algorithm (Reeve et al.,
2018) to combine non-parametric reward estimation with active learning under a limited query bud-
get.

4.1 Nearest-neighbor reward estimation

At round t, we assign each model g ∈ G a score called a UCB index that combines a k-NN reward
estimate at Xt with an uncertainty bonus. The estimate is the average of the rewards of the k nearest
past observations of g, motivated by the assumption that similar prompts yield similar rewards. The
bonus consists of a statistical term that decreases with k and a geometric term that increases with the
distance from Xt to its k-th neighbor. We choose k adaptively to balance these effects, and select the
model with the largest index. For models without data, we assign an infinite index to ensure initial
exploration.

History and neighbors Let Hg(t) = {(Xs,Y
g
s ) : s < t and the reward of g at Xs was observed} be

the history of model g at timestep t and Ng(t) = |Hg(t)| its size. Given a candidate neighbor count
k ∈ {1, . . . ,Ng(t)}, we denote by NNg(Xt, k) ⊆ Hg(t) the set of the k nearest neighbors of Xt in Hg(t)
under the metric ρ (in practice, we set ρ to the cosine distance in the CLIP embedding space), and
let

rg,k(t) = max
(x,·)∈NNg(Xt ,k)

ρ(Xt, x)

be the distance to the k-th nearest neighbor.

The UCB index We construct the UCB index Ig(Xt) to approximate the reward of a given prompt
Xt on for each model g. To do so, we first construct the k-NN reward estimate as the average over
its k closest past observations:

f̂g(Xt, k) =
1
k

∑
(x,y)∈NNg(Xt ,k)

y. (3)

We additionally define a confidence bonus on these observations to account for the uncertainty of
our approximation. This term is constructed as a sum of two parts: (i) a statistical uncertainty term
that shrinks with k (proportionate to k−1/2), and (ii) a geometric uncertainty term that grows with the
neighbor radius rg,k(t):

Ug(Xt, k) =

√
θ log Ng(t)

k
+ ϕ(t) rg,k(t), (4)
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where θ > 0 is a constant controlling exploration (cf. subsection B.1) and ϕ(t)>0 (non-decreasing)
weights geometric uncertainty (in practice we set ϕ(t) = log(t)). The neighbor count chosen for the
approximation is the value that balances these two sources of uncertainty:

kg(t) = argmin
1≤k≤Ng(t)

Ug(Xt, k). (5)

We finally construct the UCB-index1 using this kg(t), combining the two estimations:

Ig(Xt) = f̂g
(
Xt, kg(t)

)
+ Ug

(
Xt, kg(t)

)
. (6)

This approximation upper-bounds the true reward with high probability (see Appendix A).

Model selection and cold start If Ng(t) = 0 (the model has never been used), we set Ig(Xt) = +∞
to ensure initial exploration. The algorithm then plays

gt = argmax
g∈G

Ig(Xt). (7)

4.2 Active Querying

Algorithm 1: BALROG

Require: Horizon T , models G, UCB parameter θ, active
query function Q, budget B(T )

1: Initialize Hg(t)← ∅, Ng(t)← 0 for all g ∈ G
2: for t = 1 to T do
3: Observe new prompt Xt
4: for each model g ∈ G do
5: if Ng(t) > 0 then
6: Compute kg(t) minimizing the UCB criterion
7: Estimate reward f̂g(Xt) over kg(t) neighbors
8: Compute UCB index Ig(Xt) & uncertainty

Ug(Xt)
9: else

10: Set Ig(Xt)← +∞
11: Select gt = arg maxg Ig(Xt)
12: if Q(Xt) = True and B > 0 then
13: Query all rewards {Yg

t } and update all Hg(t), Ng(t)
14: Decrement budget B← B − 1
15: else
16: Play gt, observe Ygt

t , update Hgt (t), Ngt (t)

We augment BALROG with an ac-
tive learning mechanism: at selected
rounds, the algorithm may spend one
query from its limited budget B(T )
to observe the rewards of all models
on the current prompt Xt, rather than
only the chosen arm. This additional
feedback helps reduce ambiguity, ac-
celerates the convergence of neigh-
borhood estimates, and uncovers cor-
relations between models. The cen-
tral design choice is hence when to
query. We propose the Delta rule to
comply with our theoretical analysis
and detail its construction thereafter.
We also consider several alternative
criteria as ablation study, but they
consistently fail to perform as well as
the main one empirically (see subsec-
tion 5.2). Related uncertainty-driven
triggers have further been discussed
in active learning surveys (Settles,
2009; Tharwat & Schenck, 2023).

Primary criterion: Delta (top-two
gap). Under this design, we trigger a query when the gap between the top two UCB indices at
Xt is small (below a threshold δ). Intuitively, this captures rounds where the algorithm is “on the
fence” between two candidates, suggesting a full-feedback query is maximally informative there.
This gap can also be interpreted as a proxy for the difference between the future rewards of the two
most promising models: when the gap is large, the choice of the best model is essentially clear,
but when it is small, the learner faces genuine ambiguity about which model will perform best on
the current prompt. By concentrating queries on these uncertain rounds, the algorithm gathers the
most valuable information for refining neighborhood estimates and uncovering cross-model rela-
tionships. This criterion underpins our theory: it directs budget to ambiguous regions, leading to the
regret improvements formalized in Theorem 4.2.

1The reward estimation Ig(Xt) is sometimes referred to as the Upper Confidence Bound (UCB) in the liter-
ature, but it should not be mistaken for the Uncertainty Bonus Ug(Xt, k). To avoid confusion we prefer the use
of the term UCB-index and notation Ig for the former, and the term Confidence Bonus with the notation Ug for
the latter.
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Alternatives. We design three additional criteria to trigger the query of a full feedback on a given
prompt:
UCB-threshold: query whenever the maximum uncertainty bonus maxg∈G Ug(Xt) exceeds ε, which
typically occurs in regions with few neighbors and higher variance.
Warm-start: query systematically during the first B(T ) rounds and then switch to passive KNN-
UCB, effectively front-loading the budget.
Variance-threshold: for the selected arm gt, query when the empirical variance of rewards among
its kgt (t) neighbors around Xt exceeds a threshold v, indicating local inconsistency and the need for
additional information.
Further details on these variants are provided in subsection C.2, and threshold selection and imple-
mentation details are explained in subsection B.2.
Remark 4.1. Unlike classical active learning, where queries usually request a single missing label,
here one could also imagine partial queries that reveal the rewards of only a few models on each
prompt. However, our experiments indicate that, for the same compute budget, full queries that
reveal all model rewards consistently lead to better final performance (see Table 6 and Figure 15 in
the appendix). We therefore focus on full queries in this work.

4.3 Theoretical Analysis

4.3.1 Regret Guarantee

We provide a theoretical upper bound on the cumulative regret of BALROG under the assumptions
A.1–A.5, remaining consistent with previous works (cf. Reeve et al., 2018, Section 2.2). Full proof
is provided in Appendix A. Intuitively, each active query uses one unit of the budget to observe all
models’ rewards on a carefully chosen prompt, immediately reducing uncertainty and improving all
subsequent k-NN estimates in that region. However, full-feedback evaluations are costly, so we must
keep the total number of queries sublinear in T . By setting B(T ) = T/ log T , we ensure that queries
are sufficiently frequent to drive the confidence bonuses, and hence the regret, down to a purely
polylogarithmic rate, while still maintaining an overall budget that grows slower than the horizon.

Theorem 4.2 (Regret bound under budgeted active querying). If the assumptions A.1–A.5 are ver-
ified, then, for θ > 2 and active query budget B(T ) = T/ log T, the cumulative regret of BALROG
after T rounds satisfies:

R(T ) =
T∑

t=1

(
fg⋆t (Xt) − fgt (Xt)

)
≤ C log(T )

d+2
α
+

d+2
2 (8)

where d is the intrinsic dimension of X (see Assumption A.1), α is the Tsybakov exponent (see
Assumption A.3) and C is a constant depending on G, θ, α, λ (Lipschitz coefficient in Assumption A.2)
and d.

Remark 4.3. The use of active learning in BALROG leads to a substantial improvement over the
passive KNN-UCB baseline whose regret grows as O

(
T 1− α+1

d+2
)
, which is very close to linear because

in our case α ≪ d since the dimension of the prompt space is very high, as we see in Table 4 in the
appendix. To the best of our knowledge, we are the first to obtain this regret bound in this setting.

4.3.2 Time and Space Complexity of BALROG

Time complexity The overall time complexity of BALROG over a horizon T with G models and
query budget B(T ) is

O
(
G T 2 log T +

(
T +G · B(T )

)
I
)

where I is the max per-model inference cost. We prove this in subsection C.4.

Space complexity. At each iteration, we store the result for the selected arm gt: a prompt embed-
ding and its scalar reward. Additionally, at query steps, we store one such result for each arm g ∈ G.
As a result, the total number of stored entries is at most T + BG, where B(T ) is the budget of query
steps. The overall memory complexity is therefore O(T + BG).

6
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5 Evaluation

We evaluate BALROG by measuring the CLIPScore it achieves on different prompt datasets, and
compare this performance with standard bandit baselines to assess both the overall generation quality
and the accuracy of model selection.

Models. Throughout the evaluations, we use six different text-to-image models: Sana 1.5 (Xie
et al., 2024), LCM Dreamshaper v7(Luo et al., 2023), Unidiffuser v1(Bao et al., 2023), SDXL-
Turbo(Podell et al., 2024), SSD-1B(Gupta et al., 2024), and Koala-Lightning-700M(Lee et al.,
2024). All models are accessed through the diffusers2 library and executed with appropriate
settings for resolution and number of inference steps (see Table 2 in the appendix).

Prompt datasets. We evaluate our method on four different prompt datasets, all accessible via
the Hugging Face datasets library3. The first two, MS-COCO (Lin et al., 2014) and Flickr30k
(Plummer et al., 2015), are broad and diverse, making the model selection task more challenging
due to the strong heterogeneity of the prompts. The remaining two are more focused: one is a
auto-captioned flower image dataset4, and the other is a subset that we manually extracted from MS-
COCO of pictures using the carrot & bowl tag (4640 prompts). These more constrained domains
allow us to highlight the effectiveness of our algorithm in low-variance settings and confirm that
model selection becomes increasingly difficult as prompt diversity increases.

Metrics. We evaluate the performance of the algorithms using two main metrics. The first is
Outscore-to-Best (OtB), defined as the average difference between the CLIPScore obtained by the
algorithm and that of the single best model across the dataset. In the experiments, we report the
sliding average OtB, which is computed by averaging the OtB values over a fixed-size window of
recent iterations. This smooths the curves and highlights the overall performance trend, rather than
the fluctuations at individual rounds. The second metric is the Optimal Pick Ratio (OPR), which
measures the proportion of times the algorithm selects the best model for a given prompt. Together,
these metrics capture both the absolute quality of the selected generations and the algorithm’s ability
to identify the prompt-specific optimal model.

Baselines. We compare the Delta variant of BALROG with budgets of 0, 5 and 20% of the horizon
to several standard baselines from the contextual bandit literature, including LinUCB (Chu et al.,
2011), PAK-UCB (Hu et al., 2025b), and an active bandit baseline: neuronal-s (Ban et al., 2024)
(with a budget of 20% of T ). In addition, we include three reference baselines in our evaluation
plots: a random selection strategy (random), an oracle that always selects the best model for each
prompt (optimal), and a static baseline that always selects the same model: the model that has the
maximum average CLIPScore over the whole dataset (always).
Remark 5.1. To ensure a fair and meaningful comparison between active and passive algorithms,
we always select the model gt before issuing a query, based solely on past observations. Even when
the algorithm decides to query the full reward vector, this additional information is only used to
update the history and guide future choices, not to select the optimal model at the current round.
This ensures that any performance differences truly reflect the benefit of improved information ac-
quisition over time, rather than being driven by immediate access to ground-truth rewards during
query rounds. Results when using the query to guide selection are represented in Figure 11 in the
appendix.

5.1 Results overview

Figure 2 shows the OtB performance of our algorithm compared to the baselines across the four
prompt datasets, using a pool of six generative models. The corresponding budget consumption and
OPR curves are reported in the appendix (see Figure 13 and Figure 14). Our method consistently
outperforms all baselines (see Table 3 in the appendix for numerical values), including the passive
version of BALROG without active queries. This highlights the benefit of incorporating an active
learning strategy into the selection process. Even with a very limited query budget of only 5% of
the horizon T , our algorithm achieves significant performance gains, showing that a small number
of strategically placed full-feedback queries can substantially improve learning. Interestingly, BAL-

2https://huggingface.co/docs/diffusers/index
3https://huggingface.co/datasets
4https://huggingface.co/datasets/pranked03/flowers-blip-captions
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Figure 2: Sliding average OtB comparison between our algorithm and baselines across four prompt
datasets with 6 models. Results are averaged over 10 runs. BALROG outperforms all baselines and
achieves a positive OtB on all datasets.

ROG 5 improves over the Always baseline while requiring lower total GPU cost (see Table 7 in the
appendix). This shows that BALROG successfully leverages smaller models when beneficial for
specific prompts.

As further shown in Table 3 (reported in the appendix), BALROG substantially improves over ex-
isting methods: it reduces the average regret of PAK-UCB by roughly 40-60% across datasets, and
introducing a 20% query budget lowers the regret by an additional 15-25% compared to the passive
KNN-UCB baseline. These gains stem from two key aspects of our approach: first by averaging
over neighboring prompts in the embedding space, BALROG can generalize feedback beyond in-
dividual samples, which is particularly effective in more homogeneous domains such as Flowers
or Carrot-Bowl; and second by issuing active queries in ambiguous regions, the algorithm reduces
wasted exploration on clearly suboptimal models. Together, these mechanisms enable BALROG
to converge faster and to achieve a higher OPR, on average 10 percentage points better than all
baselines as we see in Figure 14 in the appendix.

The improvements in total regret are most pronounced on the less diverse datasets, which is consis-
tent with our theoretical analysis. These datasets exhibit lower values of the ratio d+2

α
(see Table 4

in the appendix), which appears in the regret bound Theorem 4.2, indicating that nearest-neighbor
estimations are more accurate. This corroborates our heuristic: the more homogeneous the prompts,
the easier it is to distinguish between the performance of different models.

Moreover, our algorithm surpasses the performance of the single best model on each dataset, demon-
strating its ability to leverage the complementarity among available models and dynamically adapt
to different prompt types.

Finally, we explore another potential application of our method in the context of large language
models (LLMs). We provide preliminary results on this setting in subsection C.7 in the appendix,
indicating that our approach can also adapt effectively to model selection beyond text-to-image
generation.

5.2 Active learning metrics
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Figure 3: Performance of different uncertainty
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OPR values.
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Figure 3 compares four query triggers for active learning against a passive baseline (KNN-UCB
without queries). The Delta strategy consistently attains the best final OtB and OPR because it
concentrates queries where they are most informative: rounds in which the top two candidates are
nearly tied. By injecting full feedback precisely at these decision boundaries, BALROG resolves
model ambiguity early and reduces downstream model-switch errors. In contrast, UCB-threshold
tends to fire in globally uncertain (sparsely sampled) regions regardless of competitiveness between
models, which can diffuse the budget. Variance-threshold is more reactive to local noise and may
over-query in heterogeneous neighborhoods. Warm-start front-loads the budget, yielding a fast
initial lift but slower gains later once the query supply is exhausted. Lastly, a Random Queries
baseline triggers full-feedback uniformly at random with probability B(T )/T , providing a sanity
check that improvements stem not only from having more labels, but also from querying at the right
rounds.

Finally, Figure 12 shows that small budgets (5%-10%) already deliver sizeable gains over the passive
baseline, meaning that limited access to ground-truth feedback is enough to calibrate neighborhoods
and sharpen model comparisons. Increasing the budget beyond 20% yields diminishing returns:
once decision boundaries are well resolved and neighbor distances shrink, additional queries rarely
change the selected model, so performance plateaus.

5.3 Model addition

To evaluate the adaptability of our algorithm in non-stationary settings, we consider a dynamic setup
where new models are added during the evaluation phase. Initially, the model pool contains only
three generators (Unidiffuser (Bao et al., 2023), LCM (Luo et al., 2023) and SSD-1B (Gupta et al.,
2024)). At time step 1/3T , SDXL-Turbo (Podell et al., 2024) is introduced, followed by Sana (Xie
et al., 2024) at time step 2/3T . Results are reported in Figure 4.

This experimental design allows us to test the algorithm’s responsiveness to changes in the available
action space. We observe that our method quickly adapts to the addition of new models, whether
the newly added model is highly efficient or relatively weak. In both cases, the algorithm efficiently
explores and integrates the new options into its decision-making process, adjusting its selection
strategy accordingly. Specifically, on the Carrot-Bowl dataset, BALROG achieves a 21% lower final
regret compared to KNN-UCB, and 48% lower than PAK-UCB in this dynamic setting (see Table 5
in the appendix). This robustness to evolving model pools further highlights the practical value of
our approach in real-world scenarios where new models may be introduced or deleted over time (see
subsection C.8 for the model removal results).

5.4 Ablation studies

We conduct several additional ablations to further assess the robustness of BALROG across archi-
tectural and algorithmic choices. Replacing CLIP with BERT (Devlin et al., 2019) textual embed-
dings leads to comparable trends (see Figure 17), showing that BALROG does not rely on a specific
text encoder. Using a fixed neighborhood size instead of an adaptive value consistently worsens
performance (see Figure 16), which confirms the importance of adjusting the size of the local neigh-
borhood to the density of past observations. When we use ImageReward (Xu et al., 2023) instead of
CLIPScore for evaluation, all performance rankings remain unchanged (see Table 9), indicating that
our conclusions are not dependent on a particular reward metric. Testing an alternative geometric
uncertainty schedule with ϕ(t) =

√
log t yields only small variations (see Figure 18), suggesting that

the confidence design is stable across reasonable choices. Both the study of the Delta threshold (see
Table 8) and the exploration parameter θ (see subsection B.1) show that BALROG remains strong
across a wide range of values, which highlights its robustness to hyperparameter selection. In a last
experiment, we report in Figure 19 in the appendix the average estimation error over all models,
comparing BALROG 20 to KNN-UCB. More precisely, the plotted quantity is the error between the
true reward of the models: Yg

t , and the estimate of the reward by the algorithm: fg(Xt, kg(t)), aver-
aged over all models, i.e.: E(t) = 1

G
∑G

g=1 |Y
g
t − f̂g(Xt, kg(t))| These results show that early and well

positioned queries already accelerate the convergence of the nearest neighbor estimates, explaining
the efficiency of our active learning component.
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6 Conclusion

We presented BALROG, a novel framework for prompt-wise model selection in text-to-image gen-
eration. Unlike existing contextual bandit approaches that converge slowly and overlook seman-
tic relationships between prompts, our method exploits similarities across prompts through a non-
parametric, neighbor-based bandit design, and integrates an active learning component that queries
ground-truth rankings only when they are most informative. This combination directly addresses the
key limitations of prior work, enabling faster convergence and better generalization. Theoretically,
we derived a sub-linear regret bound that highlights the tightness of our confidence design and for-
malizes the benefit of selective querying. Empirically, we carried out extensive evaluations on four
datasets with six generative models, showing that BALROG consistently outperforms both state-of-
the-art bandit baselines and individual models, with regret reductions of up to 60%. A promising
direction for future work is to design a cost-aware extension of BALROG that explicitly accounts for
the heterogeneous inference costs of different models, enabling the algorithm to balance predictive
performance with computational efficiency in practical deployments.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Reproducibility statement

We ensure the reproducibility of our results as follows. We provide in Appendix A the complete
proof of Theorem 4.2. In addition, we release the full implementation of our proposed method in
the supplementary material. This includes the code corresponding to Algorithm 1 and the different
baselines presented in section 5, as well as all scripts required to reproduce the experimental results
presented in Figures 1 to 3, 5, 7 and 14.
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A The regret bound

A.1 Assumptions

We make the following assumptions throughout our analysis (these are the same as in Reeve et al.
(2018)):

Assumption A.1. (Intrinsic dimension). There exist constants Cd > 0, d > 0, and RX > 0 such that
for all x ∈ supp(µ) and all r ∈ (0,RX), we have:

µ(B(x, r)) ≥ Cd · rd, (9)

where B(x, r) denotes the open ball of radius r centered at x under the distance ρ.

This assumption ensures that the distribution of prompts µ is sufficiently regular and that X locally
behaves like a d-dimensional manifold.

Assumption A.2. (Lipschitz continuity) There exists a constant λ > 0 such that for all models
g ∈ G and all x, x′ ∈ X, ∣∣∣ fg(x) − fg(x′)

∣∣∣ ≤ λ · ρ(x, x′). (10)

This assumption states that similar prompts should yield similar expected rewards for a given model
(i.e., smoothness of the reward functions fg).

Assumption A.3. (Tsybakov Margin) Let ∆g(x) = f ∗(x) − fg(x) where f ∗(x) = maxa∈G fa(x), and
define ∆(x) = min{∆g(x) : ∆g(x) > 0} if the minimum exists, and 0 otherwise. We assume there exist
constants Cα > 0, δα > 0, and α > 0 such that for all δ ∈ (0, δα),

µ ({x ∈ X : 0 < ∆(x) < δ}) ≤ Cα · δα. (11)

This margin condition quantifies the diffiulty of the model selection problem: it controls the measure
of prompts for which several models are nearly optimal.

Assumption A.4. (Sub-Gaussian noise) For each model g ∈ G and time t, the reward noise is
conditionally sub-Gaussian: for all x ∈ X and η ∈ R,

E
[
exp

(
η · (Yg

t − fg(x))
) ∣∣∣∣ Xt = x

]
≤ exp

(
η2

2

)
. (12)

Assumption A.5. (Bounded rewards) For all t and g ∈ G, we have:

Yg
t ∈ [0, 1]. (13)

A.2 Notations

We recap all the notations used throughout the paper in this table.
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Table 1: Notations

Notation Description
G Set of generative models (arms)
G Number of models
T Horizon (number of rounds)
Xt Prompt observed at round t
gt Model selected at round t
g⋆t Optimal model for Xt (argmax over g ∈ G)
Yg

t Observed reward of model g at round t
Hg(t) History of observed pairs for model g up to round t
Ng(t) Size of Hg(t) (number of feedback points up to t)
ρ(x, x′) Distance (metric) between prompts x and x′
NNg(Xt, k) k nearest neighbors of Xt in Hg(t)
rg,k(t) Neighbor radius (distance to the k-th nearest neighbor)
kg(t) Chosen number of neighbors at round t
f̂g(Xt, k) k-NN reward estimate for model g at Xt
Ug(Xt, k) Confidence bonus (statistical + geometric)
Ig(Xt) UCB index of model g at Xt
θ, ϕ(t) Exploration parameter; geometric-uncertainty weight (non-decreasing)
B(T ) Active-learning query budget as a function of T
Q(Xt) Query trigger predicate at prompt Xt
δ, ε, v Thresholds for Delta, UCB-threshold, Variance-threshold
f̂(1)(Xt), f̂(2)(Xt) Largest / second-largest estimated rewards across models
∆̂(Xt) Top-two gap (largest minus second-largest estimate)
R(T ) Cumulative regret up to time T
d, λ, α, C Intrinsic dimension; Lipschitz constant; Tsybakov exponent; theorem constant
I Per-model inference cost (time-complexity analysis)

A.3 Proof of Theorem 4.2

In this section we prove the regret bound for the Delta-variant of BALROG, since it is the one we
use in all the experiments, and the best one empirically.

For a subset S ⊂ X and a model g ∈ G, we define the minimum gap of model g in region S as:

∆g(S ) := inf
x∈S
∆g(x). (14)

and ∆(S ) = ming∈G ∆g(S ). Note that ∆(x) refers to the true gap function, and should not be confused
with its empirical estimate ∆̂(x) computed from finite samples.

We split the cumulative regret according to the “good event” V(t) on which all UCB indices are
valid:

Vg(t) = { f̂g(Xt, kg(t)) − Ug(Xt, kg(t)) ≤ fg(Xt) ≤ f̂g(Xt, kg(t)) + Ug(Xt, kg(t))} (15)

V(t) =
⋂
g∈G

Vg(t) (16)

Let r(t) = fg⋆t (Xt) − fgt (Xt) so that R(T ) =
∑T

t=1 r(t), we can then split the regret in two terms :

r(t) = r(t)1V(t) + r(t)1V(t)∁ . (17)

The following lemma bounds the number of times we pull a suboptimal model in a given region S .
Lemma A.6. Let S ⊂ X, and consider a model g ∈ G. On the event V(T ), if ∆g(S ) > 2ϕ(T )·diam(S ),
then the number of times model g is selected in region S while being suboptimal satisfies

Ng
T (S ) ≤

4θ log T(
∆g(S ) − 2ϕ(T ) · diam(S )

)2 + 1. (18)
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Proof. Assume without loss of generality that Ng
T (S ) > 1. Let t be the last round where model g is

selected and the context Xt lies in S , and where the event V(t) holds:

t := max {s ≤ T | Xs ∈ S , gs = g, V(s) holds} . (19)

Let k(S ) be the number of neighbors used to estimate f̂g(Xt, kg(t)) that are also in S :

k(S ) := |{(X, r) ∈ NNg(Xt, kg(t)) | X ∈ S }|. (20)

Then, all neighbors used to compute f̂g(Xt, kg(t)) lie within S , and their distances to Xt are at most
diam(S ). Since each new selection of g in S adds a new point to its history within S , we have:

Ng
T (S ) ≤ k(S ) + 1. (21)

Now, let g⋆t denote the optimal model at Xt, so fg⋆t (Xt) = maxg′ fg′ (Xt). Since g is selected at round
t:

Ig⋆t (Xt) ≤ Ig(Xt), (22)

where Ig(Xt) = f̂g(Xt, kg(t)) + Ug(Xt, kg(t)). Using the good event V(t), we also know:

fg⋆t (Xt) ≤ Ig⋆t (Xt), (23)

fg(Xt) ≥ Ig(Xt) − 2Ug(Xt, kg(t)). (24)

Subtracting:
fg⋆t (Xt) − fg(Xt) ≤ 2Ug(Xt, kg(t)). (25)

But fg⋆t (Xt) − fg(Xt) = ∆g(Xt) ≥ ∆g(S ), so:

∆g(S ) ≤ 2Ug(Xt, kg(t)). (26)

Now use the definition of Ug:

Ug(Xt, kg(t)) =

√
θ log T
k(S )

+ ϕ(T ) · diam(S ). (27)

Hence:

∆g(S ) ≤ 2


√
θ log T
k(S )

+ ϕ(T ) · diam(S )

 . (28)

Solving for k(S ) yields:

k(S ) ≤
4θ log T(

∆g(S ) − 2ϕ(T ) · diam(S )
)2 . (29)

Thus:
Ng

T (S ) ≤ k(S ) + 1 ≤
4θ log T(

∆g(S ) − 2ϕ(T ) · diam(S )
)2 + 1, (30)

which concludes the proof. □

Since the rewards are between 0 and 1, the total regret is bounded by the number of times the
algorithm pulls suboptimal models. Then, we deduce from this the total regret over a region S ⊂ X
with ∆g(S ) > 2ϕ(T ) · diam(S ):

RV (S ,T ) :=
T∑

t=1

r(t)1V(t)1Xt∈S ≤ G
(

4θ log T
(∆(S ) − 2ϕ(T ) · diam(S ))2 + 1

)
. (31)

The following lemma shows that for t large enough, our estimate of ∆ is close to its true value.
Lemma A.7. Let t ≤ T, and N(t) = ming∈G Ng(t)∣∣∣∣∆(Xt) − ∆̂(Xt)

∣∣∣∣ ≤ 2

√
θ log T + ϕ(t)

N(t)
1

d+2

(32)
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Proof. Let t ≤ T . We have: ∣∣∣∣∆(Xt) − ∆̂(Xt)
∣∣∣∣

2
≤ max

g∈G
Ug(Xt, kg(t))

With:

Ug(Xt, k) =

√
θ log Ng(t)

k
+ ϕ(t) · max

(x,·)∈NNg(Xt ,k)
ρ(Xt, x)

Let g ∈ G and let us choose k′g = Ng(t)
2

d+2 . Since kg(t) minimizes the confidence bonus of model g,
we know that:

Ug(Xt, kg(t)) ≤

√
θ log Ng(t)

k′g
+ ϕ(t) · max

(x,·)∈NNg(Xt ,k′g)
ρ(Xt, x) ≤

√
θ log(T )

Ng(t)
1

d+2

+
ϕ(T )

Ng(t)
1

d+2

Where the inequality about the distance to the k′g-th nearest neighbor in a space of dimension d with
Ng(t) points:

max
(x,·)∈NNg(Xt ,k′g)

ρ(Xt, x) ∼
( k′g

Ng(t)

) 1
d

is proven in Bhattacharyya & Chakrabarti (2008, Section II). Taking the maximum over all models
g ∈ G proves the lemma.

□

Let N0 :=
(

4
ε

( √
θ log(T ) + ϕ(T )

))d+2
, and let us assume that every model g has a total number of

play Ng(T ) ≥ N0. If that’s not the case for some models g, then these models contribute at most
N0 to the regret. Let T0 be such that ∀t ≥ T0 we have N(t) ≥ N0. Thus, by Lemma A.7 and the
definition of T0, we have

∣∣∣∣∆(Xt) − ∆̂(Xt)
∣∣∣∣ ≤ 1

2ε and therefore :

∆̂(Xt) ≥ ε =⇒ ∆(Xt) ≥
ε

2
(33)

We can now decompose the total regret:

R(T ) =
T∑

t=1

1t≤T01V(t)r(t) +
T∑

t=1

1t≥T01V(t)r(t) +
T∑

t=1

1V(t)∁r(t) (34)

with the first sum :
T∑

t=1

1t≤T01V(t)r(t) ≤ GT0

In order to bound the second sum, we now have to partition the space X into regions that each
satisfy the condition ε > 4ϕ(T ) · diam(S ) and to use Lemma A.6 on these regions, because we know
that for every prompt Xt in this sum, ∆(Xt) ≥ ε2 , or else the algorithm would have chosen to query
(according to Equation 33). This can be done in a straightforward manner, and the number of such
regions is therefore upper bounded by O

(( 1
ε
ϕ(T )

)d
)
, where d is the intrinsic dimension of the space

(see Vershynin, 2012, Lemma 5.2). On all of these regions, the regret is bounded by Lemma A.6 by:

R(S ,T ) ≤ G

4θ log T(
ε
2

)2 + 1

 . (35)

The second sum is then bounded by this regret multiplied by the number of regions :
T∑

t=1

1t≥T01V(t)r(t) ≤ 4θG

 log T
ε2

(
ϕ(T )
ε

)d . (36)

By the Tsybakov assumption, the budget needed for our active algorithm is:

Tµ(0 ≤ ∆(X) ≤ ε) = TCαεα (37)
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Then, ε =
(

B
CαT

) 1
α , so we can bound the regret by a function of the budget :

R(T ) ≤ 4θG · log T · ϕ(T )d
(CαT

B

) 2+d
α

+G

4 (CαT
B

) 1
α ( √
θ log(T ) + ϕ(T )

)d+2

(38)

We now set the query budget as a function of the time horizon:

B(T ) =
T

log T
.

Plugging this into the regret bound gives the following expression:

R(T ) ≤ 4θG · log T · ϕ(T )d ·
(
Cα log T

) 2+d
α +G ·

(
4
(
Cα log T

) 1
α

( √
θ log T + ϕ(T )

))d+2
. (39)

We now extract the leading term in log T to express the regret asymptotically. Ignoring constant
factors and lower-order terms (which can be taken into account by the constant C), and taking
ϕ(t) = λ we obtain:

R(T ) ≤ C · log(T )
d+2
α +

d+2
2 ,

where C is a constant that depends on G, θ, α, Cα, λ and d.

Lemma A.8. The contribution to the regret from the iterations t for which V(t) is not true (i.e. the
third sum in Equation 34) is a constant:

T∑
t=1

E
[
1V(t)c

]
= O(1). (40)

Proof. Recall that the event V(t) holds if, for all models g ∈ G, the following inequality is satisfied:∣∣∣∣ f̂g(Xt, kg(t)) − fg(Xt)
∣∣∣∣ ≤ Ug(Xt, kg(t)), (41)

where the uncertainty bonus is defined as:

Ug(Xt, kg(t)) =

√
θ log t
kg(t)

+ ϕ(t) · max
(x,·)∈NNg(Xt ,kg(t))

ρ(Xt, x). (42)

Suppose V(t)∁ holds. Then there exists some g ∈ G such that:∣∣∣∣ f̂g(Xt, kg(t)) − fg(Xt)
∣∣∣∣ >

√
θ log t
kg(t)

+ ϕ(t) · max
(x,·)∈NNg(Xt ,kg(t))

ρ(Xt, x). (43)

For each s ∈ [1, t − 1], define:

εs = 1{(Xs,Y
g
s ) ∈ NNg(Xt, kg(t))}, (44)

Zs = εs · (Y
g
s − fg(Xs)). (45)

Then the k-NN estimate can be decomposed as:

f̂g(Xt, kg(t)) =
1

kg(t)

t−1∑
s=1

εsY
g
s =

1
kg(t)

t−1∑
s=1

εs fg(Xs) +
1

kg(t)

t−1∑
s=1

Zs. (46)

By the Lipschitz assumption (Assumption A.2), for all s ∈ NNg(Xt, kg(t)):

| fg(Xs) − fg(Xt)| ≤ λ · ρ(Xs, Xt) ≤ λ · rg,kg(t)(t), (47)

where rg,kg(t)(t) denotes the distance from Xt to its kg(t)-th nearest neighbor in Hg(t). This implies:∣∣∣∣∣∣∣ 1
kg(t)

t−1∑
s=1

εs fg(Xs) − fg(Xt)

∣∣∣∣∣∣∣ ≤ λ · rg,kg(t)(t). (48)
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Therefore: ∣∣∣∣ f̂g(Xt, kg(t)) − fg(Xt)
∣∣∣∣ ≤

∣∣∣∣∣∣∣ 1
kg(t)

t−1∑
s=1

Zs

∣∣∣∣∣∣∣ + λ · rg,kg(t)(t). (49)

If V(t)∁ holds, then: ∣∣∣∣∣∣∣
t−1∑
s=1

Zs

∣∣∣∣∣∣∣ >
√
θ log t · kg(t). (50)

Since Zs are conditionally sub-Gaussian and zero-mean (Assumption A.4), we apply the inequality
proved in Lemma A.9:

P


∣∣∣∣∣∣∣

t−1∑
s=1

Zs

∣∣∣∣∣∣∣ >
√
θ log t · kg(t)

 ≤ C · t−θ/2, (51)

for some constant C depending on θ. Taking a union bound over all g ∈ G and all t ∈ [1,T ] gives:

T∑
t=1

P(V(t)∁) ≤ G
T∑

t=1

C · t−θ/2 < ∞, (52)

which implies:
T∑

t=1

E[1V(t)∁ ] = O(1). (53)

□

A.4 Concentration inequality

We next state and prove the Bernstein-type concentration inequality used in Lemma A.8.

Lemma A.9. Fix a model g and a round t > G. Recall that

εs = 1{gs = g}1{(Xs,Y
g
s ) ∈ NNg(Xt, kg(t))}, Zs = Yg

s − fg(Xs),

and k = kg(t) =
∑t−1

s=1 εs. Under Assumption A.4 (sub-Gaussian noise), for any θ > 0,

P
(∣∣∣ t−1∑

s=1

εs Zs

∣∣∣ > √
θ log t k

)
≤ 2 t−θ/2.

Proof. Let {Fs} be the natural filtration generated by (X1,Y1), . . . , (Xs,Ys). By construction εs is
Fs−1–measurable and Zs is independent of Fs−1. Moreover under Assumption A.4,

E
[
eρZs | Fs−1

]
≤ exp

( ρ2

2
)
∀ρ ∈ R. (54)

For any ρ > 0 define the process

Ws(ρ) = exp
(
ρ

s∑
u=1

εuZu −
ρ2

2

s∑
u=1

εu

)
, W0(ρ) = 1. (55)

Then

E
[
Ws(ρ) | Fs−1

]
= Ws−1(ρ)E

[
eρ εsZs−

ρ2

2 εs

∣∣∣∣ Fs−1

]
.

Since εs ∈ {0, 1} is Fs−1–measurable,

E
[
eρ εsZs | Fs−1

]
= (1 − εs) + εs E[eρZs | Fs−1] ≤ (1 − εs) + εs eρ

2/2 = e
ρ2

2 εs .

Hence E[Ws(ρ) | Fs−1] ≤ Ws−1(ρ), so {Ws(ρ)} is a supermartingale. By Markov’s inequality, for any
η > 0,

P
(
Wt−1(ρ) > eη

)
≤ e−η E[Wt−1(ρ)] ≤ e−η. (56)
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Now on the event
t−1∑
s=1

εsZs >
√
θ log t k, (57)

choose ρ =
√
θ log t / k and set

η = ρ
√
θ log t k − ρ

2

2 k = θ2 log t.

Then

Wt−1(ρ) = exp
(
ρ

t−1∑
s=1

εsZs −
ρ2

2 k
)
> exp

(
ρ
√
θ log t k − ρ

2

2 k
)
= e

θ
2 log t = tθ/2. (58)

Therefore

P
( t−1∑

s=1

εsZs >
√
θ log t k

)
≤ P

(
Wt−1(ρ) > tθ/2

)
≤ t−θ/2. (59)

The same argument applies to the negative tail
∑t−1

s=1 εsZs < −
√
θ log t k. A union bound yields the

stated result. □

B Hyperparameter tuning

B.1 Optimal value of θ

Figure 5: Performance of different θ values on the carrot-bowl dataset with 6 models. OPR (on the
left), and OtB (on the right) are reported. Results are averaged over 10 runs.

Figure 5 reports the performance of our algorithm for different values of the UCB parameter θ.
Overall, the results show that the algorithm is relatively robust to the choice of this hyperparameter:
performance varies only slightly across a wide range of values. In particular, θ values between
0.5 and 1 consistently yield strong performance. Based on this observation, we set θ = 1 for all
experiments.

B.2 Thresholds calibration

This section details the calibration procedures used to set the threshold values for each variant de-
scribed in subsection C.2 (except for the Warm-start variant which has no threshold).

In order to control the full-feedback budget in our active variants, we must set threshold parameters
that determine when to trigger a query. Each variant relies on a different scoring mechanism—such
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Figure 6: Quantile curves for each variant, plotting the threshold value as a function of the quantile
level α. These curves guide the choice of thresholds corresponding to a desired budget ratio.

as the top-two model gap (Variant 1), the local reward variance in the neighborhood (Variant 4), or
the maximum UCB bonus (Variant 2)—and queries are triggered when this quantity falls below or
exceeds a threshold.

To calibrate these thresholds meaningfully across datasets and budgets, we adopt a quantile-based
strategy. Specifically, for each variant, we empirically compute the distribution of the associated
quantity over a large set of prompts (e.g., 2,000 prompts from the Flickr dataset). Then, we deter-
mine the threshold as the α-quantile of this distribution, where α reflects the target budget usage.
For instance, setting α = 0.25 will result in queries being triggered on roughly 25% of the prompts.

Quantile curves. Figure 6 displays the quantile curves for all three variants, showing the value of
the threshold as a function of α ∈ [0, 1]. These curves are computed using the full validation set and
reflect the empirical behavior of the scoring quantities.

Practical usage. Given a desired budget ratio ρ ∈ (0, 1) (e.g., ρ = 0.2 for 20% full feedback),
we set the threshold for each variant to the ρ-quantile of the corresponding score distribution. This
ensures that, on average, full-feedback queries are issued in only ρ · T rounds, where T is the total
number of iterations. The quantile curves provide a principled and interpretable method for aligning
the budget with the scoring criteria used by each variant.

C Additional experimental details and results

C.1 Inference Parameters for T2I Models

Model Resolution Inference steps

Sana 1.5 1024×1024 18
LCM Dreamshaper v7 768×768 50
Unidiffuser v1 512x512 20
SDXL-Turbo 512×512 4
SSD-1B 1024×1024 50
Koala-Lightning-700M 1024×1024 25

Table 2: Recommended inference settings (resolution and number of steps) from each model’s Hug-
ging Face card and Diffusers defaults.

All models were run on a Nvidia RTX 3090 using Python 3.11 with Pytorch 2.7 for CUDA 12.8 on
Ubuntu 22.04. All the model parameters used, including floating point precision, were the default
ones from the huggingface library. CLIP Score was computed using the CLIP-ViT-L/14 model from
the original paper (Radford et al., 2021).
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C.2 Active variant details

Formally, we implement each variant via a Boolean function Q : X ∈ X → {True,False}, chosen
from one of four variants. In practice, we evaluate all four and select the best-performing strategy
on a held-out prompt set (see subsection 5.2). Our regret analysis (Theorem 4.2) applies to the Delta
variant.

Variant 1: Delta (top-two gap). This strategy triggers a full-query when the gap between the top
two UCB indices is below a threshold δ. Specifically, if f̂(1)(Xt) and f̂(2)(Xt) denote respectively the
largest and second-largest estimates:

Q(Xt) = True ⇐⇒ ∆̂(Xt) := f̂(1)(Xt) − f̂(2)(Xt) < δ. (60)

This criterion ensures that queries are concentrated in regions where the algorithm is “on the fence,”
i.e. where passive learning would struggle to confidently discriminate between competing models.
It plays a critical role in improving the convergence rate by providing decisive information at the
points of highest ambiguity.

Crucially, this variant also allows us to improve the regret bound compared to passive algorithms.
The Delta strategy ensures that the algorithm avoids spending too much time selecting suboptimal
models in regions where the best model is clearly better. More precisely, we prove in Lemma A.6
any region of the prompt space where the gap ∆ between the best model and the others is sufficiently
large, the number of times a suboptimal model is chosen remains tightly controlled, scaling loga-
rithmically in the time horizon T . Even though we do not have access to the true value of ∆, we can
compute its empirical estimate ∆̂. We show in Lemma A.7 that, in the long run, this estimate closely
approximates the true gap, supporting its use.

Variant 2: UCB-threshold. Here, we query whenever the maximum uncertainty bonus across all
models (the term Ug(Xt) in the UCB index) exceeds a threshold ε. This captures situations of overall
high variance in reward estimates:

Q(Xt) = True ⇐⇒ max
g∈G

Ug(Xt) > ε. (61)

UCB-threshold tends to allocate queries to regions of the prompt space that are sparsely sampled,
enforcing exploration of under-represented contexts.

Variant 3: Warm-start. A simple baseline: devote the first B(T ) rounds to full-feedback queries,
then revert to passive KNN-UCB. This “bootstrap” strategy can be effective, as it allows the algo-
rithm to leverage the information gained from early queries throughout the entire run:

Q(Xt) = True ⇐⇒ t ≤ B(T ). (62)
Warm-start front-loads the budget to rapidly seed each model’s neighbourhood with diverse obser-
vations.

Variant 4: Variance-threshold. Finally, we query when the empirical variance of the kgt (t) neigh-
bours’ rewards for the selected arm exceeds a threshold v. High local variance indicates that similar
prompts have produced inconsistent rewards, suggesting that further full-feedback would clarify the
true reward surface:

Q(Xt) = True ⇐⇒ Var
({

y | (x, y) ∈ NNgt (Xt, kgt (t))
})
> v. (63)

The procedures for selecting the thresholds δ, ε, and v are provided in subsection B.2.

Observation and updates

• If Q(Xt) = True and B > 0, we observe the full reward vector {Yg
t }g∈G, update each Hg(t)←

Hg(t) ∪ {(Xt,Y
g
t )}, increment Ng(t), and decrement B← B − 1 (lines 12–14).

• Otherwise, we observe only Ygt
t (lines 15–16) and update Hgt (t) ← Hgt (t) ∪ {(Xt,Y

gt
t )} and

Ngt (t) accordingly.

By comparing these four strategies empirically, we identify which uncertainty signal best balances
exploration and budget usage in diverse prompt distributions (subsection 5.2).
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C.3 CLIPScore

In all our experiments, we use a single metric to evaluate the quality of generated images: the CLIP-
Score (Hessel et al., 2021). This metric is based on the CLIP embedding framework (Radford et al.,
2021), which maps both the input prompt and the generated image into a shared embedding space.
This enables a direct measurement of alignment between the textual and visual representations.

Formally, the CLIPScore between a prompt and a generated image is defined as:

CLIPScore(X,Y) = max (0, 100 · cos(X,Y)) , (64)
where X and Y are the CLIP embeddings of the prompt and the generated image, respectively.

The CLIPScore thus reflects how well the semantic content of the generated image matches the input
prompt, with higher values indicating stronger alignment.
Remark C.1. As we will observe in the experiments, CLIPScore is far from being a perfect eval-
uation metric. While it performs reasonably well at distinguishing poor-quality generations from
clearly relevant ones, it often fails to discriminate between high-quality images produced by different
state-of-the-art models. In practice, state-of-the-art models tend to achieve very similar CLIPScores,
making them particularly hard to distinguish based on this metric alone. In particular, images that
are judged by humans as less aligned with the prompt may sometimes receive a higher CLIPScore
than better-aligned alternatives. However, this limitation is not critical for our study, as our algorithm
is agnostic to the choice of evaluation metric and can operate with any scalar reward function.

C.4 Time complexity of BALROG

Proof of BALROG Time complexity. We assume that each model g ∈ G has been played at least
once by round t, which holds whenever t > G. Under this assumption, we have Ng(t) > 0 for all g,
and at each round t > G, the algorithm performs three main operations:

1. Compute the distance between the current prompt Xt and each entry in the history Hg(t), an
O
(
Ng(t)

)
operation.

2. Sort these Ng(t) distances to identify the nearest neighbors, which costs
O
(
Ng(t) log

(
Ng(t)

))
.

3. Find the optimal number of neighbors kg(t) by minimizing the UCB term, which costs
O(Ng(t)).

The per-arm cost over the horizon is therefore:

O
( T∑

t=1

Ng(t) log
(
Ng(t)

))
= O

( T∑
t=1

t log t
)
= O

(
T 2 log T

)
.

In addition to this selection cost, we must account for the inference time of the models. Even though
inference is a constant-time operation for a given model (with maximum cost I), it adds a total cost
of O

(
(T + BG)I

)
.

Summing both contributions, the overall time complexity becomes:

O
(
G T 2 log T + (T + BG)I

)
.

□

C.5 Effect of Sampling on CLIPScore Estimation

In this section, we study the convergence behavior of our algorithm with respect to the hyperparam-
eter g, which denotes the number of samples used to compute the CLIPScore. In our experimental
setup, the reward for each prompt-model pair is defined as the average CLIPScore over g = 5 in-
dependently generated images. Averaging over multiple generations reduces the variance of the
reward signal and improves stability during training. However, it also implies that even an oracle
algorithm, which always selects the model with the highest expected CLIPScore per prompt, cannot
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Figure 7: Regression plot of the error with respect to g

deterministically achieve the true optimum. This is because the observed reward is a finite-sample
estimate of the model’s mean performance, and thus inherently noisy.

We can therefore decompose the expected error of our algorithm, defined as the difference between
its achieved CLIPScore and the true per-prompt optimum, as a function of g:

err(g) = a +
b
√

g
, (65)

for some constants a, b ≥ 0. The g−1/2 decay reflects the standard Monte Carlo convergence rate for
the estimation of a mean from g i.i.d. samples. Here, a captures the irreducible approximation error
of the algorithm in the zero-variance limit (i.e., as g→ ∞), while b quantifies the effect of noise due
to finite sampling.

A regression analysis presented in Figure 7, for g ∈ {1, 2, 3, 4, 5}, illustrates this trade-off and allows
us to estimate the values of a and b. The points in the plot correspond to the final OtB values
achieved by our algorithm on the MS-COCO dataset after T = 5000 iterations, for each value of
g. Fitting the model err(g) = a + b

√
g to the data yields an estimate of a = 0.17, indicating that

our algorithm remains on average only 0.17 CLIPScore points below the oracle. This gap reflects
the intrinsic approximation limit of our algorithm, independent of sampling noise. We expect this
constant to decrease as the number of iterations T increases, since more training steps allow the
algorithm to better explore and exploit the prompt space.

C.6 Analysis of distance/CLIPScore correlation

To better understand the relationship between the semantic similarity of prompts and the variability
in their associated CLIP scores, we compute the cosine distance between all pairs of prompts (using
CLIP text embeddings) and measure the absolute difference in their mean CLIP scores. We then
discretize the distance range [0, 1] into small bins (of width 0.01) and calculate the average CLIP
score difference for each bin.

Figure 8 shows the resulting curve for the SDXL-Turbo model. As expected, prompt pairs that
are semantically close (low cosine distance) tend to exhibit lower differences in CLIP scores,
whereas more distant prompts show increasingly larger score variations. However, the correlation
is not strictly linear: beyond a certain distance (around 0.4-0.6), the average CLIP score difference
plateaus, indicating that highly dissimilar prompts do not necessarily lead to arbitrarily high score
discrepancies. This suggests that semantic similarity is a useful but imperfect predictor of CLIP
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score differences, with additional factors (e.g., prompt structure or model-specific biases) contribut-
ing to variability.
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Average CLIP score difference vs. Prompt distance (SDXL-Turbo)

Figure 8: Average absolute difference in CLIP scores as a function of cosine distance between
prompts, computed over 200k sampled prompt pairs for the SDXL-Turbo model on the Flowers
dataset.

This analysis supports the intuition that closer prompts are more likely to have similar quality scores,
justifying the use of nearest-neighbor methods for estimating expected reward in our bandit algo-
rithms. Nonetheless, the observed noise and plateau region highlight the limitations of relying solely
on prompt distance for score prediction.

C.7 Results with LLMs

In this section, we present experiments where the text-to-image (T2I) task is replaced by a language
modeling task. Input prompts are sampled from the CommonsenseQA Talmor et al. (2019) dataset,
and we consider two LLMs: Gemma Gemma Team et al. (2024) and LLaMA Grattafiori et al.
(2024). In this setting, the reward is binary, with a value of 1 if the selected model provides a correct
answer, and 0 otherwise. The input of all baselines is the RoBERTa embeddings of the prompts Liu
et al. (2019). Performance is evaluated using OtB and OPR metrics, as shown in Figure 9. BALROG
is able to very well adapt to this different task, by achieving a positive OtB and the best OPR among
all baselines, even with a budget of only 5% of T .

C.8 Model removal

To further assess adaptability, we also investigate a complementary model removal scenario where
the pool of available generators is progressively reduced during evaluation. Starting with all six
models, Unidiffuser is removed at time step 1/3T , followed by SSD-1B at 2/3T . Results, reported
in Figure 10, show that BALROG remains robust to such contractions of the action space. The al-
gorithm efficiently reallocates its budget toward the remaining candidates, maintaining competitive
performance despite the reduced diversity. On MS-COCO and Carrot-Bowl, BALROG consistently
outperforms baseline strategies, sustaining lower regret even after strong model removals, which
highlights its resilience to real-world settings where underperforming or costly models may be dis-
carded.
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Figure 9: Performance evolution of BALROG and baseline methods on the CommonsenseQA
dataset, using two language models. Metrics shown are OtB and OPR over time. Results are aver-
aged over 10 runs.
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Figure 10: Performance of BALROG with a 20% budget and other baselines under the model re-
moval setup on 2 datasets (MS-COCO on the left and Carrot-bowl on the right). OtB is reported.
Results are averaged over 10 runs. BALROG adapts to both strong and weak model removal by
allocating its budget strategically.

C.9 Additional tables and figures

Table 3: Average regret per dataset and algorithm.

Algorithm MS-COCO Flickr Flowers Carrot-bowl
Optimal 0 0 0 0
Always 1.032 1.161 0.884 1.232
Random 1.905 1.713 2.476 2.003
Neuronal-s 2.023 1.511 1.845 1.976
PAK-UCB 1.714 1.546 2.243 1.800
KNN-UCB 1.112 1.206 1.031 1.158
LinUCB 2.013 1.161 1.690 1.603
BALROG (5%) 1.016 1.141 0.953 1.032
BALROG (20%) 0.930 0.989 0.767 0.894
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Figure 11: Sliding average OtB comparison between our algorithm and baselines across four prompt
datasets with 6 models when using the query results to select. Results are averaged over 10 runs.

Table 4: Estimated values of α, d, and (d+ 2)/α. d is estimated with the method presented in Levina
& Bickel (2004), and α via a logarithmic regression.

Dataset α d (d + 2)/α

MS-COCO 1.03 49 49.51
Flickr 1.06 50 49.06
Carrot-Bowl 1.00 32 34.00
Flowers 0.84 14 19.05

Figure 12: Performance of BALROG with different budget on the carrot-bowl dataset with 6 models.
OPR (on the left), budget consumption (in the middle) and OtB (on the right) are reported. Results
are averaged over 20 runs.

Table 5: Average total regret in the model addition setup.

Algorithm MS-COCO Carrot-Bowl
Random 1.542 1.668
PAK-UCB 1.378 1.387
KNN-UCB 0.868 0.880
BALROG 0.734 0.709
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Figure 13: Budget consumption of the active algorithms shown in Figure 2 across the four datasets.
BALROG effectively distributes its budget over the entire horizon to maximize learning efficiency.
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Figure 14: OPR plots corresponding to Figure 2.

Number of models (K) considered in the queries Avg regret

BALROG (K=2, budget=25.00%) 1.0505
BALROG (K=3, budget=12.50%) 1.0527
BALROG (K=4, budget=8.33%) 1.0362
BALROG (K=5, budget=6.25%) 1.0545
BALROG (K=6, budget=5.00%) 1.0085

Table 6: Average total regret of BALROG for different values of K on MS-COCO. The budget
is defined as a function of K so that each version of BALROG has the same additional compute
compared to the passive variant.
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Figure 15: Sliding average OtB of BALROG for different values of K on MS-COCO.
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Figure 16: Constant K ablation study: Comparison between BALROG with constant K=30 (this
value achieved the best performance over the grid {10, 20, . . . , 100}) versus original adaptive K se-
lection. Results show sliding average OtB over 2000 iterations on Carrot-bowl dataset, averaged
over 10 runs with window size 400.

400 600 800 1000 1200 1400 1600 1800 2000
Iteration (t)

0.1

0.0

0.1

0.2

0.3

O
tB

 (
Sl

id
in

g 
Av

er
ag

e)

BALROG 5% - BERT Embeddings Ablation

BERT Embeddings
BALROG (Original)
Always

400 600 800 1000 1200 1400 1600 1800 2000
Iteration (t)

0.0

0.1

0.2

0.3

0.4

0.5

O
tB

 (
Sl

id
in

g 
Av

er
ag

e)

BALROG 20% - BERT Embeddings Ablation

BERT Embeddings
BALROG (Original)
Always

Carrot-bowl dataset (T=2000, 10 runs, window size=400)

Figure 17: BERT embeddings ablation study: Comparison between BALROG with BERT embed-
dings versus original CLIP embeddings. Results show sliding average OtB over 2000 iterations on
Carrot-bowl dataset, averaged over 10 runs with window size 400.
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Figure 18: Different ϕ ablation study: Comparison between BALROG with ϕ(t) =
√

log(t) versus
original exploration function (ϕ(t) = log(t)). Results show sliding average OtB over 2000 iterations
on Carrot-bowl dataset, averaged over 10 runs with window size 400.
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Figure 19: Intermediate results ablation study: Performance comparison of BALROG and baseline
algorithms showing average estimation error on Carrot-bowl dataset (T=2000, averaged over 10
runs).

Table 7: GPU runtime comparison across baseline algorithms on Carrot-bowl dataset (T=2000).
Runtime includes inference time for selected models and additional time when active queries are
issued.

Algorithm Runtime (minutes)

Optimal 18.33
Always 33.33
Random 17.74
PAK-UCB 17.73
KNN-UCB 20.72
LinUCB 18.78
Neuronal-S 38.96
BALROG 5% 24.54
BALROG 20% 40.06

Table 8: Delta (δ) analysis showing average regret for different exploration parameter values on
Carrot-bowl dataset (T=2000, averaged over 10 runs). Average Regret = Cumulative Regret / T.

δ Average Regret

δ = 0.2 0.875
δ = 0.25 0.850
δ = 0.3 0.855
δ = 0.35 0.804
δ = 0.4 0.839
δ = 0.45 0.807
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Table 9: ImageReward experiment results showing average regret on Carrot-bowl dataset (T=2000,
averaged over 10 runs). Comparison of all baseline algorithms using ImageReward-based evaluation
metric.

Algorithm Average Regret

Optimal 0.000
BALROG 20% 0.249
BALROG 5% 0.319
KNN-UCB 0.347
LinUCB 0.400
Always 0.432
Neuronal-S 0.448
PAK-UCB 0.474
Random 0.489
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