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Abstract

In Conversational Intent Discovery (CID),001
Small Language Models (SLMs) struggle with002
overfitting to familiar intents and fail to label003
newly discovered ones. This issue stems from004
their limited grasp of semantic nuances and005
their intrinsically discriminative framework.006
Therefore, we propose Synergizing Large Lan-007
guage Models (LLMs) with pre-trained SLMs008
for CID (SynCID). It harnesses the profound009
semantic comprehension of LLMs alongside010
the operational agility of SLMs. By utilizing011
LLMs to refine both utterances and existing in-012
tent labels, SynCID significantly enhances the013
semantic depth, subsequently realigning these014
enriched descriptors within the SLMs’ feature015
space to correct cluster distortion and promote016
robust learning of representations. A key advan-017
tage is its capacity for the early identification018
of new intents, a critical aspect for deploying019
conversational agents successfully. Addition-020
ally, SynCID leverages the in-context learning021
strengths of LLMs to generate labels for new022
intents. Thorough evaluations across a wide023
array of datasets have demonstrated its superior024
performance over traditional CID methods.1025

1 Introduction026

Recognizing user intents within conversational ut-027

terances is pivotal for developing intelligent conver-028

sational agents (Yilmaz and Toraman, 2020; Shen029

et al., 2021; Gung et al., 2023). Previous research030

mainly formulates this problem as a close-world031

intent classification task (Zhang et al., 2022a; Yehu-032

dai et al., 2023). However, in real-world appli-033

cations, new intents continuously emerge. This034

spurs increasing interest in the open-world Con-035

versational Intent Discovery (CID) (Zhang et al.,036

2021c, 2022b; Liang and Liao, 2023), a task that037

aims to recognize both known and new intents from038

extensive or even limited amount of user utterances.039
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Figure 1: Existing methods rely on SLMs to cluster
intents (Left), while our SynCID effectively synergizes
LLMs and SLMs via space alignment (Right).

Current attempts at CID primarily rely on pre- 040

trained Small Language Models (SLMs), which fall 041

into two main categories: unsupervised and semi- 042

supervised. Unsupervised methods (Padmasundari 043

and Bangalore, 2018; Shi et al., 2018) firstly train 044

SLMs without using any labeled data to obtain ut- 045

terance representations, and then cluster them to 046

infer intents. In contrast, semi-supervised methods 047

(Lin et al., 2020; Zhang et al., 2021c; Zhou et al., 048

2023) leverage the available labeled data for the ini- 049

tial pre-training of SLMs, followed by fine-tuning 050

these models with pseudo supervisory signals on 051

unlabeled utterances for intent recognition. Given 052

the specialized agility of SLMs, these methods can 053

easily fit user utterances and learn discriminative 054

representations for CID. 055

However, two key challenges persist. The first 056

is overfitting to known intents, where these meth- 057

ods struggle to capture the full scope of intents 058

and accurately model known label semantics. This 059

limitation not only biases them towards existing 060

intent categories but also compromises their ability 061

to detect new intents early, a crucial capability for 062

adaptive conversational agents. The second chal- 063

lenge is the inability to label novel intents, due to 064

the inherently discriminative architecture of CID 065

models, which falls short in recognizing and label- 066

ing emerging intents, marking a critical adaptability 067

gap in current approaches. 068
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Recently, Large Language Models (LLMs)069

(Brown et al., 2020; Chowdhery et al., 2023; Ope-070

nAI, 2023) have achieved significant breakthroughs071

in language understanding and generative tasks, in-072

cluding summarization (Liu et al., 2023) and query073

rewriting (Anand et al., 2023). Their success in-074

spires a potential solution for addressing the above075

challenges by adapting LLMs to enhance intent dis-076

covery. Yet, the context length limitation of LLMs077

restricts their direct use in CID, which requires clus-078

tering thousands of utterances. While integrating079

user utterances with task-specific prompts to solicit080

intent labels from LLMs is possible, this prompt-081

ing method risks generating intent labels without082

sufficient control, thus leading to unpredictable and083

uninstructive outcomes (Sun et al., 2023).084

To navigate these challenges while leveraging085

the strengths of both LLMs and SLMs, we intro-086

duce SynCID, a framework that synergizes the087

deep semantic insights of LLMs with the agile,088

specialized capabilities of SLMs. SynCID employs089

a dual-prompting mechanism with LLMs to refine090

both utterances and known intent labels, enhancing091

the semantic precision of intent descriptors. This092

refinement process, informed by the nuanced un-093

derstanding of LLMs, not only clarifies the intent094

representation but also primes the data for more ef-095

fective learning. Following this, SLMs are trained096

through contrastive learning to align the seman-097

tic spaces of utterances with those of the intent098

descriptors. This innovative alignment strategy sig-099

nificantly reduces cluster distortion and improves100

the system’s ability to detect and label new intents101

early, addressing the primary limitations of current102

CID approaches. By selecting a limited number103

of close-to-center utterances from newly formed104

intent clusters for in-context learning with LLMs,105

SynCID achieves precise intent labeling.106

In summary, our contributions are threefold:107

• We propose SynCID, an effective framework that108

synergizes powerful LLMs with agile SLMs to109

identify novel user intents and generate corre-110

sponding intent labels.111

• We introduce a space alignment schema to align112

the representation spaces of utterances and the113

intent descriptors, significantly reducing the risk114

of overfitting to known intents.115

• Experiments show that SynCID not only outper-116

forms existing CID methods, but also provides117

labels for new intent clusters and enables early118

intent detection.119

2 Related Work 120

2.1 Conversational Intent Discovery 121

Unsupervised Methods: Early unsupervised meth- 122

ods (Cheung and Li, 2012; Li et al., 2013) primarily 123

extracted statistical features from unlabeled data to 124

cluster queries with similar intents. Later studies 125

(Xie et al., 2016; Yang et al., 2017; Padmasundari 126

and Bangalore, 2018; Caron et al., 2018; Shi et al., 127

2018; Hadifar et al., 2019) leveraged deep neural 128

networks to learn robust representations for cluster- 129

ing. More recently, the development of LLMs has 130

facilitated their application in unsupervised intent 131

recognition (De Raedt et al., 2023). Despite the 132

progress, none of these unsupervised CID meth- 133

ods can fully harness supervised signals in learning 134

representations and clustering intents. 135

Semi-supervised Methods: Addressing this limi- 136

tation, semi-supervised methods (Hsu et al., 2018, 137

2019; Han et al., 2019; Lin et al., 2020) focus on 138

integrating limited labeled data with extensive un- 139

labeled data to enhance intent identification. For 140

example, Hsu et al. (2018) transferred prior knowl- 141

edge for clustering via predicting pairwise similari- 142

ties. Further, several semi-supervised CID methods 143

(Zhang et al., 2021b,c; Wei et al., 2022; Zhang 144

et al., 2023; Zhou et al., 2023; Mou et al., 2023) 145

formulated a two-stage schema for CID, which in- 146

volves initially pre-training a base SLM and then 147

iteratively fine-tuning it. This schema significantly 148

enhanced CID by utilizing pseudo supervisory sig- 149

nals from the pre-trained SLM. Yet, it often faces 150

issues related to the quality of these pseudo super- 151

visory signals. Thus, there are also efforts (Mou 152

et al., 2022a,b; Zhang et al., 2022b) refined learning 153

objectives, such as contrastive learning, to learn dis- 154

criminative representations for discerning intents. 155

However, challenges persist in comprehensively 156

grasping the nuanced semantics of both utterances 157

and known intent labels, as well as generating new 158

intent labels, which are addressed by our SynCID 159

by synergizing LLMs and SLMs for CID. 160

2.2 The Synergy Between LLMs and SLMs 161

The emergence of LLMs has recently revolution- 162

ized various NLP tasks (Chowdhery et al., 2023; 163

Black et al., 2022; Touvron et al., 2023), spurring 164

research into their synergy with SLMs for boost- 165

ing performance of small task-specific models. A 166

promising direction in this synergy is using LLMs 167

to create new and high-quality data for training 168

downstream SLMs, enabling them to achieve com- 169
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Figure 2: An overview of the proposed SynCID framework. It consists of three stages: LLMs-based Descriptor
Generation, Space Alignment, and Intent Label Generation.

petitive performance.(Yang et al., 2020; Ding et al.,170

2023; Wei and Zou, 2019; Xie et al., 2020). Yet,171

such a method in CID risks unintentionally altering172

the semantic meanings of utterances or introducing173

noise, challenging accurate intent recognition.174

Another effective method for synergizing LLMs175

and SLMs involves distilling task-specific knowl-176

edge from LLMs. Wang et al. (2021) showed the177

potential of GPT-3 as a cost-effective alternative178

to human labeling. Moreover, researchers like Li179

et al. (2022), Shridhar et al. (2023), and Hsieh et al.180

(2023) have utilized LLMs to generate task-specific181

labels and detailed explanations, facilitating the182

training of SLMs for reasoning tasks. Nevertheless,183

all these methods predominantly rely on either us-184

ing a finite set of labels for annotating data or train-185

ing generative models for aligning the knowledge186

from LLMs, which are not applicable in the CID.187

In this work, we further the synergy to enhance188

intent discovery, leveraging a novel space align-189

ment to align LLMs’ comprehensive insights with190

the agility of SLMs and enabling early detection.191

3 The SynCID Framework192

3.1 Problem Formulation193

Here, we study the CID problem as follows: Let Ik194

and Iuk represent the sets of known and unknown195

intents respectively, where {Ik ∩ Iuk} = ∅ and196

|Ik|+|Iuk| = K. Here K is the total number of the197

user intents within the dataset. A typical CID task198

comprises a set of labeled utterance-intent pairs199

Dl = {(xi, yi)}Ni=1, wherein each intent yi ∈ Ik,200

and a set of unlabeled utterances Du = {(xi)}Mi=1,201

where the intent of each utterance xi belongs to202

{Ik ∪ Iuk}. The CID task is to learn a SLM M to 203

recognize all unknown intents Iuk within Du and 204

perform accurate clustering to classify each xi ∈ 205

{Dl ∪ Du} into its corresponding intent category. 206

3.2 Model Overview 207

Figure 2 depicts an overview of the proposed Syn- 208

CID framework for CID. It comprises three stages: 209

LLMs-based Descriptor Generation (§3.3) for 210

generating accurate and contextually rich intent de- 211

scriptors, Space Alignment (§3.4) for aligning the 212

representation spaces of utterances and intent de- 213

scriptors to facilitate the synergy between LLMs 214

and SLMs, and Intent Label Generation (§3.5) 215

for producing labels for new intent clusters. We 216

detail these stages in the subsequent subsections. 217

3.3 LLMs-based Descriptor Generation 218

This stage aims to leverage LLMs to recapitulate 219

utterances and known intent labels into concise, 220

accurate intent descriptors, eliminating irrelevant 221

content in utterances while enriching the semantics 222

of known intent labels. To achieve this, we develop 223

two prompt templates: U_Prompt and L_Prompt, 224

designed to guide the generation of these descrip- 225

tors. As illustrated in Figure 2, U_Prompt is con- 226

structed as (xi, pu), prompting LLMs to generate 227

descriptors related to the utterances as follows: 228

dui = LLM(xi, pu), (1) 229

where each xi ∈ {Dl∪Du} is a user utterance, and 230

pu denotes the prompt tokens. Similarly, L_Prompt 231

is defined as (xi, yi, pl) for the generation of label- 232

enriched intent descriptors: 233

dli = LLM(xi, yi, pl), (2) 234
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where (xi, yi) is an utterance-intent pair in Dl, and235

pl refers to the respective prompt tokens. Crucially,236

in Equation 2, we integrate each intent label yi with237

its corresponding utterance xi to prompt LLMs for238

descriptor generation, enhancing the semantics of239

known user intents. After prompting LLMs to gen-240

erate corresponding intent descriptors for all utter-241

ances and known user intents, we then utilize them242

to perform space alignment, facilitating the synergy243

of LLMs and SLMs for recognizing intents. For244

clarity, we formally redefine the training datasets245

Dl and Du as follows: Dl = {(xi, dui , dli, yi)}Ni=1246

and Du = {(xi, dui )}Mi=1. It’s noteworthy that we247

curate the aforementioned prompt templates with-248

out deliberation for better generalization.249

3.4 Intent Discovery with Space Alignment250

Given the intent descriptors from LLMs, we pro-251

pose Space Alignment (SA) to synergize LLMs252

and SLMs for intent recognition. It comprises two253

sub-strategies: (1) SA with Contrastive Learning,254

which directly aligns the semantic spaces of utter-255

ances and intent descriptors, fostering robust utter-256

ance representation learning. (2) SA with Neighbor257

Filtering, which utilizes intent descriptors to refine258

neighborhood relationships between utterances, fil-259

tering out noise and promoting the formation of260

compact intent clusters.261

SA with Contrastive Learning. Utilizing LLMs’262

strength in understanding and generation, we de-263

rive intent descriptors that offer more reliable and264

enriched insights into user intents. To effectively265

synergize LLMs and SLMs, we align the seman-266

tic spaces of utterances and LLM-generated intent267

descriptors via two contrastive learning objectives.268

Given the specialized agility of SLMs, this align-269

ment can adeptly fit them into LLMs’ insights, mit-270

igating cluster distortion and enhancing the identifi-271

cation of new intents. Specifically, given a general272

pre-trained SLMs based CID model M, we ini-273

tially extract representations xi and du
i for each274

utterance xi and its corresponding intent descriptor275

dui . Since dui is derived from xi using LLMs, xi276

and du
i naturally form a positive pair. Following277

Gao et al. (2021), we compute an unsupervised278

contrastive loss between xi and du
i as follows:279

Lucl = −log
esim(xi,d

u
i )/τ1∑

1[k ̸=i]e
sim(xi,d

u
k)/τ1

, (3)280

where sim(xi,d
u
i ) =

xi
Tdu

i
∥xi∥∥du

i ∥
is the cosine sim-281

ilarity and τ1 is the temperature. The Lucl aims282

to pull the representation of xi close to the repre- 283

sentation of its associated intent descriptor while 284

maintaining distinction from others. 285

Additionally, for labeled utterances in Dl, we fur- 286

ther utilize the high-quality supervisory signals to 287

optimize the SynCID. On the one hand, we utilize 288

the supervised contrastive loss to align the extracted 289

representations xi and dl
i for utterance xi and its 290

label-enriched intent descriptor dli, facilitating dis- 291

criminative representation learning as below: 292

Lscl = −
Yxi∑
j=1

log
esim(xi,d

l
j)/τ2∑

1[k ̸=i]e
sim(xi,d

l
k)/τ2

, (4) 293

where τ2 is the temperature. Yxi is the index set of 294

data sharing the same label as xi. 295

On the other hand, we compute a standard cross- 296

entropy loss Lce for the labeled utterances in Dl to 297

regulate the training of SynCID. It optimizes the 298

model M to distinguish the target intent classes of 299

utterances from all known intent classes, enhancing 300

the learning of utterance representations. Specifi- 301

cally, we map the utterance representation xi into a 302

probability distribution using a classifier and max- 303

imize the likelihood of its corresponding ground 304

truth class (equation omitted for space). As a result, 305

the overall loss LSACL is formulated as follows: 306

LSACL = Lce + λLucl + ηLscl, (5) 307

where λ and η denote hyper-parameters that modu- 308

late the respective contributions of distinct losses. 309

SA with Neighbor Filtering. Upon training with 310

LSACL, SynCID can learn some compact utterance 311

representations for clustering. Yet, these represen- 312

tations are inevitably affected by the utterance noise 313

from either the use of the unsupervised contrastive 314

loss Lucl or the limited comprehension capability 315

of the model M. To more effectively synergize 316

LLMs with SLMs and amplify LLMs’ insights for 317

discerning intents, we further enhance SynCID by 318

implementing neighbor utterance filtering, aiming 319

for a more consistent alignment between the seman- 320

tic spaces of the utterances and the intent descrip- 321

tors from LLMs. Specifically, for each utterance xi 322

and its intent descriptor dui , we first retrieve their 323

nearest neighboring utterances Nxi and intent de- 324

scriptors Ndui
respectively. Owing to the accurate 325

comprehension of LLMs, the intent descriptor dui 326

is anticipated to have cleaner neighbors. Thus, we 327

filter out noisy utterance neighbors by omitting any 328

xj ∈ Nxi where its paired duj /∈ Ndui
, retaining 329
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a purified neighbor set N ′
xi

for xi. During train-330

ing, we update SynCID via a contrastive learning331

objective to pull together all filtered neighboring ut-332

terances and push apart non-neighbors as follows:333

LSANF = −
N ′

xi∑
j=1

log
esim(xi,xj)/τ3∑
1[p̸=i]e

sim(xi,xp)/τ3
, (6)334

where τ3 is the temperature. Here, we update the335

neighbor sets Nxi and Ndui
every several epochs336

for filtering out noisy utterances during training.337

3.5 Intent Label Generation338

After training models to learn discriminative rep-339

resentations, existing CID methods (Zhang et al.,340

2022b, 2023) typically utilize clustering algorithms341

like K-means to group utterances into distinct clus-342

ters for inferring intents. Yet, it remains challeng-343

ing to assign accurate labels for newly identified in-344

tent clusters. SynCID addresses this by utilizing the345

in-context learning capability of LLMs to generate346

suitable labels for new intent clusters. Specifically,347

we devise a label generation prompt (LG_Prompt)348

for extracting labels from LLMs. As illustrated in349

Figure 2, the LG_Prompt is constructed as:350

LG_Prompt = (ICDs,Center Utterances, pc),351

where ICDs = {(xj1, ..., x
j
k, yj)}

n
j=1 is a set of n352

in-context demonstrations. We can set the num-353

ber n ranging from 1 to L considering the context354

size of LLMs. Each demonstration comprises a355

known intent label yj and the top-k utterances near356

the yj cluster center. Center Utterances is a set357

of utterances (x1, ..., xk) located around the same358

unknown intent cluster center. pc is the task de-359

scription. For each unknown intent cluster, we360

integrate the top-k utterances allocated to it into361

the LG_Prompt, prompting LLMs to generate a362

new intent label y specific to it.363

4 Experiments364

4.1 Datasets365

We conduct experiments on three CID datasets:366

BANKING (Casanueva et al., 2020), CLINC (Lar-367

son et al., 2019), and StackOverflow (Xu et al.,368

2015). The detailed statistics are reported in Ap-369

pendix A.1. We keep the same train, development,370

and test splits as previous work (Zhang et al., 2023).371

To avoid randomness, we average the experimental372

results in five random runs. More experimental373

details are provided in the Appendix A.2.374

4.2 Evaluation Metrics 375

We adopt three standard metrics for evaluating the 376

CID performance: Accuracy (ACC) based on the 377

Hungarian algorithm, Adjusted Rand Index (ARI), 378

and Normalized Mutual Information (NMI). The 379

specific definitions are shown in Appendix A.4. 380

Note that ACC is considered as the primary metric, 381

with higher values indicating better performance. 382

4.3 Baselines 383

We mainly compare our SynCID with the following 384

SOTA baselines in our experiments: 385

Unsupervised: (1) DEC (Xie et al., 2016), (2) 386

DCN (Yang et al., 2017), (3) SCCL (Zhang et al., 387

2021a), (4) IDAS (De Raedt et al., 2023). 388

Semi-supervised: (1) DTC (Han et al., 2019), 389

(2) CDAC+ (Lin et al., 2020), (3) DeepAligned 390

(Zhang et al., 2021c), (4) ProbNID (Zhou et al., 391

2023), (5) DCSC (Wei et al., 2022), (6) MTP- 392

CLNN (Zhang et al., 2022b), (7) USNID (Zhang 393

et al., 2023), (8) CsePL (Liang and Liao, 2023). 394

More details are provided in Appendix A.5. 395

4.4 Main Results 396

4.4.1 CID Performance Comparison 397

We report the main CID results in Table 1, with 398

the highest performance highlighted in bold. We 399

analyze the results as follows: 400

SynCID consistently outperforms CID baselines 401

by large margins: Table 1 shows that SynCID ex- 402

ceeds all baseline methods in performance across 403

three CID datasets and various KIR settings. For 404

example, SynCID surpasses the top baseline CsePL 405

by averages of 4.35% in ACC, 5.04% in ARI, and 406

2.07% in NMI on BANKING-25%. Moreover, Syn- 407

CID shows stronger robustness in relation to the 408

ratio of labeled data available. From BANKING- 409

50% to BANKING-25%, SynCID’s performance 410

merely drops 2.42% in ACC, 2.27% in ARI, and 411

0.94% in NMI. In contrast, the corresponding met- 412

rics for CsePL diminish by 5.88%, 6.30%, and 413

2.33%, respectively. This suggests that SynCID, 414

leveraging the nuanced understanding from LLMs, 415

learns more robust utterance representations for 416

recognizing intents and effectively alleviates the 417

issue of overfitting to known user intents. 418

SynCID provides a better way to unleash the 419

power of LLMs for CID. We can observe that our 420

SynCID consistently demonstrates superior perfor- 421

mance over previous unsupervised leading base- 422

line IDAS. Specifically, SynCID surpasses IDAS 423
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KIR Methods
BANKING CLINC StackOverflow

ACC ARI NMI ACC ARI NMI ACC ARI NMI

0%

DEC 38.60 25.32 62.65 48.77 31.71 74.83 59.49 36.23 58.76
DCN 38.59 25.36 62.72 48.69 31.68 74.77 59.48 36.23 58.75
SCCL 40.54 26.98 63.89 50.44 38.14 79.35 68.15 34.81 69.11
USNID 54.83 43.33 75.30 75.87 68.54 91.00 69.28 52.25 72.00
IDAS 67.43 57.56 82.84 85.48 79.02 93.82 83.82 72.20 81.26
SynCID 72.89† 62.42† 84.20† 86.80† 80.85† 94.23* 86.90† 74.42† 81.95*

25%

DTC 31.75 19.09 55.59 56.90 41.92 79.35 29.54 17.51 29.96
CDAC+ 48.00 33.74 66.39 66.24 50.02 84.68 51.61 30.99 46.16
DeepAligned 49.08 37.62 70.50 74.07 64.63 88.97 54.50 37.96 50.86
ProbNID 55.75 44.25 74.37 71.56 63.25 89.21 54.10 38.10 53.70
DCSC 60.15 49.75 78.18 79.89 72.68 91.70 - - -
MTP-CLNN 65.06 52.91 80.04 83.26 76.20 93.17 74.70 54.80 73.35
USNID 65.85 56.53 81.94 83.12 77.95 94.17 75.76 65.45 74.91
CsePL 71.06 60.36 83.32 86.16 79.65 94.07 79.47 64.92 74.88
SynCID 75.41† 65.40† 85.39† 87.85† 82.39† 94.85† 87.86† 76.11† 82.46†

50%

DTC 49.85 37.05 69.46 64.39 50.44 83.01 52.92 37.38 49.80
CDAC+ 48.55 34.97 67.30 68.01 54.87 86.00 51.79 30.88 46.21
DeepAligned 59.38 47.95 76.67 80.70 72.56 91.59 74.52 57.62 68.28
ProbNID 63.02 50.42 77.95 82.62 75.27 92.72 73.20 62.46 74.54
DCSC 68.30 56.94 81.19 84.57 78.82 93.75 - - -
MTP-CLNN 70.97 60.17 83.42 86.18 80.17 94.30 80.36 62.24 76.66
USNID 73.27 63.77 85.05 87.22 82.87 95.45 82.06 71.63 78.77
CsePL 76.94 66.66 85.65 88.66 83.14 95.09 85.68 71.99 80.28
SynCID 77.83† 67.67† 86.33† 90.64† 85.96† 95.91* 88.40† 77.24† 83.34†

Table 1: Main performance results on CID across three public datasets. KIR denotes the ratio of known intents. Re-
sults are averaged over five random runs. († and * denote p-value<0.01 and p-value<0.05 under t-test respectively.)

by margins of 5.46% in ACC, 4.86% in ARI, and424

1.36% in NMI on the BANKING-0%. On the multi-425

domain CLINC dataset, SynCID records improve-426

ments of 1.32% in ACC, 1.83% in ARI, and 0.41%427

in NMI. It is noteworthy that IDAS utilizes LLMs428

to refine a frozen pre-trained encoder for discern-429

ing intents. Our SynCID, by contrast, dynamically430

synergizes LLMs and SLMs through the alignment431

between original utterances and intent descriptors.432

This observation suggests that our SynCID can ef-433

fectively unleash LLMs’ nuanced comprehension434

capability to synergize them with SLMs for CID,435

guiding the SLMs in learning clarified utterance436

representations for intent identification.437

4.4.2 Generated New Intent Labels438

To study the quality of intent labels produced439

by SynCID, we conduct a comparative analysis440

between the gold standard labels and SynCID-441

generated intent labels on the CLINC dataset. Ta-442

ble 2 presents the comparison across different cat-443

egories of intent labels. We can observe that for444

those clusters with specific and well-rounded user445

intent information, SynCID can accurately gener-446

ate their corresponding intent labels, such as Book447

hotel and Flight status. Regarding the clusters that448

describe general user questions, SynCID can pro-449

vide intent labels by condensing the user questions450

into high-level intents. For example, the intents451

Gold Intent Label Generated Intent Label

Book hotel Book hotel
Flight status Flight status

Who do you work for Employer
Do you have pets Pet ownership

Application status Credit card application status
Oil change when Oil change schedule

Table 2: Examples of generated new labels on CLINC.

Who do you work for and Do you have pets are 452

succinctly transformed into Employer and Pet own- 453

ership, respectively. As for the clusters with overly 454

general gold labels, i.e., Application status and Oil 455

change when, the SynCID is able to integrate addi- 456

tional cluster details to construct more specific and 457

accurate intent labels. This analysis indicates that 458

SynCID, leveraging the capabilities of LLMs, can 459

effectively capture the intrinsic intents conveyed 460

within utterances and generate high-quality intent 461

labels for newly identified intents clusters. 462

4.4.3 Early Detection of New Intents 463

Effectively identifying new intents at their initial 464

emergence is vital for developing adaptive conver- 465

sational agents. To meet this practical demand, we 466

evaluate the performance of SynCID in the early 467

discovery of new intents, comparing it with existing 468

top-performing baselines. Table 3 showcases ex- 469
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Shots Methods
BANKING

ACC ARI NMI

5

MTP-CLNN 45.72 33.56 69.07
USNID 43.64 33.00 69.78
CsePL 47.44 37.34 70.98
SynCID 56.06 44.40 74.54

10

MTP-CLNN 46.00 35.69 70.54
USNID 47.29 37.61 72.73
CsePL 52.31 39.85 73.12
SynCID 59.01 46.25 75.67

20

MTP-CLNN 50.08 40.15 73.90
USNID 50.17 40.66 74.77
CsePL 61.43 49.16 77.33
SynCID 66.09 54.06 80.22

Table 3: Results of early new intent detection on
BANKING-25%. Shots denote the number of utter-
ances within each unknown intent.

perimental results in scenarios with a limited num-470

ber of utterances per unknown intent, specifically471

at {5, 10, 20} shots. It is observed that existing472

baselines demonstrate a notable decrease in perfor-473

mance compared to their prior evaluations. In con-474

trast, our SynCID, despite the reduction in perfor-475

mance, consistently surpasses other leading base-476

lines. For example, with 20 utterances per unknown477

intent on BANKING-25%, SynCID achieves im-478

provements over the baseline CsePL by 4.66% in479

ACC, 4.90% in ARI, and 2.89% in NMI. Addition-480

ally, it is noted that SynCID’s performance gains481

over existing baselines progressively amplify as the482

number of utterance shots decreases. With only 5483

utterance shots available for each unknown intent,484

SynCID attains improvements of 8.62% in ACC,485

7.06% in ARI, and 3.56% in NMI. We hypothe-486

size this observation can be explained by two main487

points: (1) Existing methods, which predominantly488

rely on SLMs, necessitate a sufficient quantity of489

utterances to cluster intents for reaching compet-490

itive performance. (2) In contrast, our SynCID491

synergizes LLMs and SLMs by aligning the se-492

mantic spaces of utterances with intent descriptors,493

providing a nuanced semantic understanding that494

compensates for limited data and thus enhancing495

the early discovery of new intents.496

4.5 Detailed Analysis497

4.5.1 Effect of Different LLMs498

In addition to utilizing text-davinci-003 as our ba-499

sic LLM in the experiments, we further explore the500

use of various distinct LLMs, including the open-501

sourced Flan-T5-XXL (Chung et al., 2022) and the502

KIR Methods
BANKING

ACC ARI NMI

25%

SynCID-Flan-T5-XXL 73.47 61.90 83.84
SynCID-gpt-3.5-turbo 74.29 62.86 84.21
SynCID-davinci-003 75.41 65.40 85.39
SynCID-gpt-4 77.79 65.95 85.46

Table 4: Effect of different LLMs on BANKING.

KIR Methods
BANKING

ACC ARI NMI

0% SynCID-BERT 72.89 62.42 84.20
SynCID-E5 74.06 63.91 85.34

25% SynCID-BERT 75.41 65.40 85.39
SynCID-E5 77.34 68.16 86.70

50% SynCID-BERT 77.83 67.67 86.33
SynCID-E5 79.71 70.27 87.84

Table 5: Effect of different SLMs on BANKING.

close-sourced gpt-3.5-turbo and gpt-4, for deriv- 503

ing intent descriptors within SynCID. As shown in 504

Table 4, integrating SynCID with different LLMs 505

for intent descriptor generation consistently sur- 506

passes the top-performing baseline CsePL, in all 507

three evaluation metrics on the BANKING-25% 508

dataset. Notably, utilizing gpt-4 for intent descrip- 509

tor generation yields further enhancements over 510

text-davinci-003. We hypothesize that this enhance- 511

ment is attributable to the superior quality of intent 512

descriptors generated by the more advanced LLM, 513

which are more constructive in accurately fulfilling 514

user intent discovery. 515

4.5.2 Effect of Different Pre-trained SLMs 516

The proposed SynCID primarily synergizes the ag- 517

ile responsiveness of the pre-trained SLMs and 518

LLMs’ reliable insights for effectively discovering 519

new intents. We inspect the contribution of dif- 520

ferent pre-trained SLMs, such as the BERT-based 521

model and the more recent E5 model (Wang et al., 522

2022), to our SynCID, as detailed in Table 5. We 523

can observe that integrating the E5 model into Syn- 524

CID leads to further performance enhancements 525

across various known intent rates when compared 526

to the standard SynCID. It suggests that our Syn- 527

CID framework stands to gain from synergizing 528

LLMs and more advanced pre-trained SLMs. 529

4.5.3 Effect of Space Alignment 530

To verify the impact of different contrastive learn- 531

ing objectives within the space alignment on Syn- 532

CID’s performance, we conduct a comprehensive 533

ablation study on BANKING-25%, with the results 534

detailed in Table 6. Specifically, we selectively re- 535
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KIR Methods
BANKING

ACC ARI NMI

25%

SynCID 75.41 65.40 85.39
- w/o Lscl 72.69 62.42 84.12
- w/o Lucl 72.86 62.47 84.11
- w/o LSANF 68.20 57.28 81.38

Table 6: Ablation results on BANKING.

move three distinct contrastive losses from SynCID536

for analysis, where w/o denotes the model with-537

out the corresponding loss. Findings from Table 6538

show a performance decline in CID when any con-539

trastive loss is excluded. For example, removing540

Lscl results in SynCID’s performance dropping by541

2.72% in ACC, 2.98% in ARI, and 1.27% in NMI.542

Yet, despite these reductions, SynCID variants still543

maintain competitive performance compared to ex-544

isting top-performing baselines. This underscores545

the efficacy of the contrastive learning objectives546

in the space alignment, highlighting their effective-547

ness in synergizing the powerful LLMs and the548

agile SLMs to learn discriminative representations,549

thereby facilitating the new intent identification.550

4.5.4 Impact of Descriptor Shots551

To further validate the efficacy of the intent descrip-552

tors within the proposed SynCID, we explore the553

impact of varying intent descriptor shots on Syn-554

CID’s performance in intent discovery. We con-555

duct experiments on StackOverflow-25%, where556

the improvement observed with SynCID is most557

pronounced, thus providing a solid foundation for558

this investigation. Figure 3 showcases a compari-559

son of the CID performance corresponding to dif-560

ferent intent descriptor shots within the SynCID. It561

can be observed that increasing the quantity of the562

intent descriptors for optimizing the SynCID does563

not yield substantial improvements in identifying564

new intents. We hypothesize this can be attributed565

to the propensity of LLMs to generate similar in-566

tent descriptors, even when prompted to generate567

multiple descriptors for a single utterance. These568

analogous intent descriptors do not provide enough569

supplementary information for the SynCID while570

increasing computation costs.571

4.6 Visualisation of Alleviating Overfitting572

For a more intuitive analysis of the effect of our573

SynCID on utterance representation learning, we574

present the t-SNE visualizations comparing the575

SynCID framework with the top baseline CsePL, as576

illustrated in Figure 4. We can observe that the Syn-577
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Figure 3: Effect of descriptor shots on StackOverflow.

Represnetation visualization of the CsePL

Push Apart

Push Apart

Represnetation visualization of the SynCID

why_verify_identity
unable_to_verify_identity
top_up_failed

top_up_limits
automatic_top_up
pending_top_up

verify_top_up
verify_source_of_funds

Figure 4: T-SNE visualization. The prefix “UK_” and
“K_” denote unknown intents (hollow circles) and known
intents (solid circles) respectively.

CID framework performs space alignment to align 578

the original utterance semantic space with LLMs’ 579

intent descriptor space for representation learning, 580

thereby facilitating the formation of more compact 581

and distinct intent clusters. Additionally, we can 582

notice that SynCID effectively segregates the inter- 583

twined intent clusters, i.e., UK_automatic_top_up 584

and K_top_up_limits, K_unable_to_verify_identity 585

and K_why_verify_identity, compared with the 586

CsePL. The visualization of utterance representa- 587

tions demonstrates the proficiency of SynCID in 588

alleviating the issue of overfitting to known intents. 589

5 Conclusion 590

In this paper, we introduced SynCID, a novel frame- 591

work that can effectively synergize LLMs and pre- 592

trained SLMs for conversational intent discovery. 593

By aligning LLMs’ reliable insights with the agile 594

responsiveness of specialized SLMs, SynCID ef- 595

fectively alleviates the risk of overfitting to known 596

intents in CID. Furthermore, SynCID enables the 597

LLMs with in-context learning to skillfully produce 598

labels for newly identified intent clusters. Through 599

extensive experiments, our findings confirm Syn- 600

CID’s effectiveness. Deeper analysis reveals that 601

SynCID not only sets new benchmarks in CID but 602

also generates appropriate intent labels and enables 603

early detection of new intents. 604
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Limitations605

Despite the promising results obtained by our Syn-606

CID, it is important to acknowledge several limita-607

tions: (1) The SynCID’s reliance on LLMs subjects608

it to LLMs’ inherent flaws, including biases in the609

training data and the propensity for hallucinating610

incorrect information. (2) The financial cost of uti-611

lizing commercial LLM APIs, such as OpenAI’s,612

for experiments is significant. In our case, access-613

ing APIs of LLMs such as gpt-4, gpt-3.5-turbo,614

and davinci-003 for getting all the experimental615

results incurred a cost of approximately $510. (3)616

Our SynCID, similar to existing baselines, assumes617

a known ground-truth number of intents for clus-618

tering utterances — a condition that diverges from619

real-world applications where the exact number of620

intents remains unknown. To validate SynCID’s621

effectiveness and robustness, we conduct further622

experiments with an estimated number of intents623

and explore the impact of various intent numbers624

around it on the CID performance of our SynCID.625

The findings from these additional experiments are626

detailed in Appendix B.627
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A Experimental Details877

A.1 Dataset Statistics878

Table 7 reports the detailed statistics for the BANK-879

ING, CLINC, and StackOverflow datasets. Specifi-880

cally, the BANKING dataset includes over 13,000881

carefully curated customer queries from the bank-882

ing domain, categorized into 77 unique intents. The883

CLINC dataset encompasses a diverse collection884

of 22,500 labeled utterances distributed across 150885

intents, covering multiple domains. StackOver-886

flow, sourced from Kaggle.com, is a specialized887

dataset featuring 20,000 technical questions, orga-888

nized into 20 distinct categories.889

A.2 Implementation Details890

For the dataset configuration, we randomly select a891

portion of intents to be designated as known intents,892

defining this portion as the known intent rate (KIR)893

at levels of 0%, 25%, and 50%. The KIR = 0%894

indicates the unsupervised setting to CID, whereas895

the KIR > 0% implies the semi-supervised CID896

setting. From each intent selected as known, we897

sample 10% of the labeled utterances to create the898

labeled dataset Dl. The remaining utterances are899

considered unlabeled, forming the basis of the un-900

labeled dataset Du.901

For the LLMs-based Descriptor Generation and902

Intent Label Generation, our experiments are con-903

ducted with text-davinci-003 serving as the basic904

LLM. To ensure deterministic outputs during de-905

scriptor generation, the temperature parameter is906

fixed at 0, and the output is limited to a maximum907

of 256 tokens. All other parameters are maintained908

at their default settings.909

Within the Space Alignment, we utilize the pre-910

trained BERT model (bert-uncased), featuring a 12-911

layer transformer architecture, as the foundational912

SLM for training. The optimization of model pa-913

rameters is conducted using the AdamW optimizer914

(Loshchilov and Hutter, 2019). During the SA with915

Contrastive Learning, the learning rate is set to916

5× 10−5. The model outputs are projected from a917

768-dimensional space to a 128-dimensional space918

for computing the contrastive loss. The tempera-919

tures {τ1, τ2} for Equation 3 and 4 are uniformly920

set to 0.07. Furthermore, to achieve a balanced921

integration of Lucl and Lscl, we apply λ and η922

values of 1.0. A more detailed analysis of these923

hyper-parameters is available in Section A.3.924

We leverage an early stopping mechanism with925

a patience setting of 20 epochs on the development926

Dataset Domain Intents Utterances

BANKING banking 77 13,083
CLINC multi-domain 150 22,500

StackOverflow question 20 20,000

Table 7: Statistics of datasets used in the experiments.
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Figure 5: Impact of hyper-parameters λ and η on CID
performance.

set to train the model. For the SA with Neigh- 927

bor Filtering, the learning rate is set to 1 × 10−5. 928

We set the temperature τ3 in Equation 6 to 0.07 929

similarly. Regarding the selection of neighbor- 930

hood sizes {|Nxi |, |Ndui
|}, following Zhang et al. 931

(2022b), we empirically assign the values {100, 932

50} for the BANKING dataset, {120, 50} for the 933

CLINC dataset, and {1000, 500} for the StackOver- 934

flow dataset. 935

A.3 Hyper-parameter Analysis 936

We conduct extensive hyper-parameter exploration 937

experiments on BANKING-25% for selecting the 938

proper λ and η to optimize the proposed SynCID. 939

In the experiments, We carefully considered a range 940

of values λ and η, ranging from 0.5 to 1.5. Figure 941

5 illustrates the effect of different settings of these 942

hyper-parameters on the overall performance of 943

SynCID. It is observed that varying these hyper- 944
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parameters, either by increasing or decreasing their945

values, does not result in a significant change in946

the model performance, which demonstrates the947

robustness and stability of our SynCID.948

A.4 Evaluation Metrics949

During our experimental analysis, we utilize three950

metrics for evaluating CID performance: ACC,951

ARI, and NMI. Specifically, ACC is employed952

to assess the CID effectiveness by comparing the953

model’s predicted labels against the actual ground-954

truth labels. The calculation of ACC is defined as955

follows:956

ACC =

∑N
i=1 1yi=map(ŷi)

N
957

where {ŷi, yi} represent the predicted and ground-958

truth labels for an input utterance xi, respectively.959

The function map(·) aligns each predicted label ŷi960

with its associated ground-truth label yi, utilizing961

the Hungarian algorithm for this mapping process.962

ARI measures the concordance of the predicted963

and actual clusters through an assessment of pair-964

wise accuracy within clusters. The formulation of965

ARI is as follows:966

ARI =
∑

i,j

(ni,j

2

)
−[

∑
i

(
ui
2

)∑
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(vj
2

)
]/
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2
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1
2
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∑
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∑
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∑
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)967

where ui =
∑

j ni,j , and vj =
∑

i ni,j . The total968

number of samples is given by N , and ni,j indicates969

the count of sample pairs concurrently classified970

into the ith predicted and the jth actual cluster.971

NMI is calculated to gauge the degree of con-972

cordance between the predicted and actual clusters973

by quantifying the normalized mutual information974

between them, as delineated below:975

NMI(ŷ,y) =
2 · I(ŷ,y)

H(ŷ) +H(y)
976

where {ŷ,y} denote the predicted labels and the977

ground-truth labels respectively. I(ŷ,y) is the mu-978

tual information between ŷ and y. H(·) represents979

the entropy function.980

A.5 Baselines981

In this work, we compare the SynCID with the982

following SOTA baselines in our experiments:983

Unsupervised Methods: (1) DEC (Xie et al.,984

2016): An unsupervised intent discovery method985

that iteratively learns and refines features by op-986

timizing a clustering objective based on an aux-987

iliary distribution. (2) DCN (Yang et al., 2017):988

A method that combines nonlinear dimensionality 989

reduction with k-means clustering to learn cluster- 990

friendly representations for CID. (3) SCCL (Zhang 991

et al., 2021a): An end-to-end clustering framework 992

that jointly optimizes a top-down clustering loss 993

with a bottom-up instance-wise contrastive loss. 994

(4) IDAS (De Raedt et al., 2023): An unsupervised 995

method that utilizes LLMs to refine a frozen pre- 996

trained encoder for identifying intents. 997

Semi-supervised Methods: (1) DTC (Han et al., 998

2019): A semi-supervised deep learning methodol- 999

ogy for clustering, featuring an innovative mecha- 1000

nism for estimating the number of intents by lever- 1001

aging labeled data. (2) CDAC+ (Lin et al., 2020): 1002

An approach based on pseudo-labeling employs 1003

pairwise constraints and a target distribution strat- 1004

egy to facilitate the learning process in intent recog- 1005

nition. (3)DeepAligned (Zhang et al., 2021c): A 1006

semi-supervised technique that addresses inconsis- 1007

tencies in clustering through an alignment strategy, 1008

enhancing the learning of utterance embeddings. 1009

(4) ProbNID (Zhou et al., 2023): A probabilistic 1010

framework employs the expectation-maximization 1011

technique, considering intent categorizations as 1012

potential latent variables. (5) DCSC (Wei et al., 1013

2022): An approach for discovering intents through 1014

pseudo-labeling incorporates a dual-task mecha- 1015

nism, utilizing the SwAV algorithm alongside the 1016

Sinkhorn-Knopp method (Cuturi, 2013) for the as- 1017

signment of soft clusters. (6) MTP-CLNN (Zhang 1018

et al., 2022b): A two-stage approach that improves 1019

the learning of utterance representations for discov- 1020

ering novel intents by integrating an initial multi- 1021

task pre-training with a subsequent nearest neigh- 1022

bor contrastive learning. (7) USNID (Zhang et al., 1023

2023): A framework for both unsupervised and 1024

semi-supervised intent discovery, featuring a novel 1025

strategy for initializing centroids effectively to de- 1026

rive cluster representations using historical cluster- 1027

ing information. (8) CsePL (Liang and Liao, 2023): 1028

A method that employs two-level contrastive learn- 1029

ing with label semantic alignment for enhancing 1030

the cluster semantics, alongside a soft prompting 1031

strategy for identifying new intents. 1032

B Estimate the Intent Number K 1033

Predicting the precise number of intent clusters in 1034

conversational intent discovery systems presents 1035

a significant challenge in real-world applications. 1036

Leveraging the approach presented by Zhang et al. 1037

(2021c), our research utilizes the pre-initialized in- 1038
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Cluster Num K
BANKING

ACC ARI NMI

K = 74 (predicted) 75.13 63.74 84.74
K = 77 (gold) 75.41 65.40 85.39

K = 71 73.90 62.43 84.17
K = 73 74.94 63.57 84.88
K = 75 75.10 63.94 84.78
K = 79 75.32 64.73 85.30
K = 81 75.39 65.19 85.39

Table 8: Experimental results of different cluster number
K under the BANKING-25% setting.

tent features to autonomously ascertain the optimal1039

number of intent clusters, represented as K. Ini-1040

tially, we assign a larger estimated number of clus-1041

ters, K ′, and extract feature representations for the1042

training dataset using a meticulously trained model.1043

Subsequent clustering via the K-means algorithm1044

divides these features into distinct groups. From1045

this division, we distinguish between substantive1046

intent clusters, characterized by their density and1047

distinct boundaries, and smaller, less consequential1048

clusters, which are then disregarded. The criteria1049

for discerning between these cluster types can be1050

outlined as follows:1051

K =
K′∑
i=1

δ(|Si| > ρ)1052

where |Si| is the size of the ith grouped cluster, and1053

ρ serves as the threshold for filtering. The function1054

δ(·) acts as an indicator, yielding a value of 1 when1055

a specified condition is met.1056

Results of the experiments are reported in Table1057

8, where, in addition to the predicted number of1058

clusters K, we examine the performance across a1059

range of intent numbers proximal to it. The com-1060

parative results reveal that SynCID experiences1061

merely marginal reductions in performance when1062

confronted with inaccurate numbers of intents, in-1063

dicating the robustness of SynCID in adapting to1064

variations in the prediction of intent numbers.1065
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