
Graph neural networks and non-commuting operators

Mauricio Velasco
Departamento de Informática

Universidad Católica del Uruguay
Montevideo, Uruguay

mauricio.velasco@ucu.edu.uy

Kaiying O’Hare
Departament of Applied Mathematics and Statistics

Johns Hopkins University
Baltimore, Maryland
kohare3@jh.edu

Bernardo Rychtenberg
Departamento de Informática

Universidad Católica del Uruguay
Montevideo, Uruguay

bernardo.rychtenberg@ucu.edu.uy

Soledad Villar
Departament of Applied Mathematics and Statistics

Johns Hopkins University
Baltimore, Maryland
svillar3@jhu.edu

Abstract

Graph neural networks (GNNs) provide state-of-the-art results in a wide variety of
tasks which typically involve predicting features at the vertices of a graph. They are
built from layers of graph convolutions which serve as a powerful inductive bias
for describing the flow of information among the vertices. Often, more than one
data modality is available. This work considers a setting in which several graphs
have the same vertex set and a common vertex-level learning task. This generalizes
standard GNN models to GNNs with several graph operators that do not commute.
We may call this model graph-tuple neural networks (GtNN).
In this work, we develop the mathematical theory to address the stability and
transferability of GtNNs using properties of non-commuting non-expansive op-
erators. We develop a limit theory of graphon-tuple neural networks and use it
to prove a universal transferability theorem that guarantees that all graph-tuple
neural networks are transferable on convergent graph-tuple sequences. In particular,
there is no non-transferable energy under the convergence we consider here. Our
theoretical results extend well-known transferability theorems for GNNs to the
case of several simultaneous graphs (GtNNs) and provide a strict improvement on
what is currently known even in the GNN case.
We illustrate our theoretical results with simple experiments on synthetic and real-
world data. To this end, we derive a training procedure that provably enforces the
stability of the resulting model.

1 Introduction

Graph neural networks (GNNs) [45, 3, 24, 16] are a widely-used and versatile machine learning tool
to process different kinds of data from numerous applications, including chemistry [15], molecular
geometry [48], combinatorial optimization [21, 36], among many other. Such networks act on
functions on the vertices of a graph (also called signals or vertex features) and use the structure of the
graph as a powerful inductive bias to describe the natural flow of information among vertices. One
of the most common graph neural networks are based on graph convolutions [14], which generalize
the notion of message passing. The typical architecture has building blocks which are polynomial
functions of the adjacency matrix (or more generally of the shift operator) of a graph composed with
componentwise non-linearities. Therefore, such networks implement the idea that the values of a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

function at a vertex are related with the values at the immediate neighbors of the vertex and also with
the values at the neighbors of its neighbors, etc.

Due to the significant practical success and diversity of applications of GNNs, there is a growing
interest in understanding their mathematical properties. Researchers have delved into various theoret-
ical aspects of MPNNs, including, for instance, expressivity [35, 47, 9, 1, 8], oversmoothing [44],
multi-scale properties [18, 5], and model relaxations [12, 17]. One of the fundamental properties
of graph neural networks is their remarkable transferability property, which intuitively refers to
their ability to perform well in large networks when trained in smaller networks, thus transfering
knowledge from one to the other. This is in part possible because the number of parameters that
defines a GNN is independent of the size of the input graphs. The idea is conceptually related to the
algebraic notion of representation stability that has been recently studied in the context of machine
learning models [28]. More precisely, if two graphs describe similar phenomena, then a given GNN
should have similar repercussions (i.e. similar effect on similar signals) on both graphs. In order
to describe this property precisely, it is necessary to place signals and shift operators on different
graphs (of potentially different sizes) in an equal footing to allow for meaningful comparisons and to
characterize families of graphs describing “similar” phenomena. The seminal work [40] has used
the theory of graphons to carry out these two steps, providing a solid theoretical foundation to the
transferability properties of GNNs. The theory was further developed in [27, 41, 32, 23, 10], and was
extended to other models in [6, 26, 43]. The transferability theory is very related to the stability or
perturbation theory of GNNs that studies how GNN outputs change under small perturbations of the
graph input or graph signal [42, 7, 13, 22], and conceptually related to the theory of generalization
for GNNs [46, 11, 29, 33, 31] though the techniques are different.

In many practical situations a fixed collection of entities serves as common vertices to several distinct
graphs simultaneously that represent several modalities of the same underlying object. This occurs,
for instance, in recommendation systems where the items can be considered as vertices of several
distinct similarity graphs. It occurs in the analysis of social networks because individuals often
participate in several distinct social/information networks simultaneously and in a wide array of
multimodal settings.

The goal of this paper is to extend the mathematical theory of GNNs to account for multimodal graph
settings. The most closely related existing work is the algebraic neural network theory of Parada-
Mayorga, Butler and Ribeiro [38, 37, 4] who pioneer the use of algebras of non-commuting operators.
The setting in this paper could be thought of as a special case of this theory. However, there is a crucial
difference: whereas the main results in the articles above refer to the Hilbert-Schmidt norm, we define
and analyze block-operator-norms on non-commutative algebras acting on function spaces. This
choice allows us to prove stronger stability and transferability bounds that when restricted to classical
GNNs improve upon or complement the state-of-the-art theory. In particular, we complement work
in [42] by delivering bounds that do not exhibit no-transferable energy, and we complement results in
[32] by providing stability bounds that do not require convergence. Our bounds are furthermore easily
computable in terms of the networks’ parameters improving on the results of [37] and in particular
allow us to devise novel training algorithms with stability guarantees.

Our contributions. The main contribution of this work is a theoretical analysis for graph neural
networks in the multimodal framework where each graph object (or graph tuple) can have several
adjacency matrices on a fixed set of vertices. We call this model graph-tuple neural networks (GtNNs).
It generalizes GNNs and is naturally suited for taking into account information flows along paths
traversing several distinct graphs. This architecture replaces the polynomials h(X) underlying graph
convolutional neural networks with non-commutative polynomials h(X1, . . . , Xk) on the adjacency
matrices of the k graphs in our tuple. More generally our approach via operator networks gives
a general and widely applicable parametrization for such networks. Our approach is motivated
by the theory of switched dynamical systems, where recent algorithmic tools have improved our
understanding of the iterative behaviour of non-commuting operators [34]. Our main results are tight
stability bounds for GtNNs and GNNs.

The second contribution of this article is the definition of graphon-tuple neural networks (WtNNs)
which are the natural limits of (GtNNs) as the number of vertices grows to infinity. Graphon-tuple
neural networks provide a good setting for understanding the phenomenon of transferability. Our
main theoretical result is a Universal transferability Theorem for graphon-graph transference which
guarantees that every graphon-tuple neural network (without any assumptions) is transferable over

2

sequences of graph-tuples generated from a given graphon-tuple. This means that whatever a GtNN
learns on a graph-tuple with sufficiently many vertices, instantaneously transfers with small error to
all other graph-tuples of sufficiently large size provided the graph-tuples we are considering describe
a “similar” phenomenon in the sense that they have a common graphon-tuple limit. Contrary to some
prior results, under the convergence we consider in this paper, there is no no-transferable energy,
meaning that the graphon-graph transferability error goes to zero as the size of the graph goes to
infinity.

We show with simple numerical experiments that our theoretical bounds seem tight. In Section 7 we
provide experiments on synthetic datasets and a real-world movie recommendation dataset where
two graphs are extracted from incomplete tabular data. The stability bounds we obtain are within a
small factor of the empirical stability errors. And remarkably, the bounds exhibit the same qualitative
behavior as the empirical stability error. In order to perform this experiment we introduce a stable
training procedure where linear constraints are imposed during GNN training. The stable training
procedure could be considered of independent interest (see, for instance, [7]).

2 Preliminary definitions

For an integer n we let [n] := {1, 2, . . . , n}. By a graph G on a set V we mean an undirected, finite
graph without self-loops with vertex set V (G) := V and edge set denoted E(G). A shift matrix for
G is any |V | × |V | symmetric matrix S with entries 0 ≤ Sij ≤ 1 satisfying Sij = 0 whenever i ̸= j
and (i, j) ̸∈ E(G).

Our main object of study will be signals (i.e. functions) on the common vertices V of a set of graphs
so we introduce notation for describing them. We denote the algebra of real-valued functions on the
vertex set V by R[V]. Any function f : V → R is completely determined by its vector of values so,
as a vector space, R[V] ∼= R|V | however, as we will see later, thinking of this space as consisting of
functions is key for understanding the neural networks we consider. Any shift matrix S for G defines
a shift operator TG : R[V] → R[V] by the formula TG(f)(i) =

∑
j∈V Sijf(j).

The layers of graph neural networks (GNNs) are built from univariate polynomials h(x) evaluated
on the shift operator TG of a graph composed with componentwise non-linearities. If we have a
k-tuple of graphs G1, . . . , Gk with common vertex set V then it is natural to consider multivariate
polynomials evaluated at their shift operators TGi

. Because shift operators of distinct graphs generally
do not commute this forces us to design an architecture which is parametrized by noncommutative
polynomials. The trainable parameters of such networks will be the coefficients of these polynomials.

Noncommutative polynomials. For a positive integer k, let R⟨X1, . . . , Xk⟩ be the algebra of
non-commutative polynomials in the variables X1, . . . , Xk. This is the vector space having as
basis all finite length words on the alphabet X1, . . . , Xk endowed with the bilinear product defined
by concatenation on the basis elements. For example in R⟨X1, X2⟩ we have (X1 + X2)

2 =
X2

1 +X1X2 +X2X1 +X2
1 ̸= X2

1 + 2X1X2 +X2
2 .

The basis elements appearing with nonzero coefficient in the unique expression of any element
h(X1, . . . , Xk) are called the monomial words of h. The degree of a monomial word is its length (i.e.
number of letters). For example there are eight monomials of degree three in R⟨X1, X2⟩, namely:
X3

1 , X
2
1X2, X1X2X1, X2X

2
1 , X

2
2X1, X2X1X2, X1X

2
2 , X

3
2 . More generally there are exactly kd

monomial words of length d and kd+1−1
k−1 monomial words of degree at most d in R⟨X1, . . . , Xk⟩.

Noncommutative polynomials have a fundamental structural relationship with linear operators which
makes them suitable for transference. If W is any vector space let End(W) denote the space of linear
maps from W to itself. If T1, . . . , Tk ∈ End(W) are any set of linear maps on W then the individual
evaluations Xi → Ti extend to a unique evaluation homomorphism R⟨X1, . . . , Xk⟩ → End(W),
which sends the product of polynomials to the composition of linear maps. This relationship (known
as universal freeness property) determines the algebra R⟨X1, . . . , Xk⟩ uniquely. This proves that
noncommutative polynomials are the only naturally transferable parametrization for our networks.
For a polynomial h we denote the linear map obtained from evaluation as h(T1, . . . , Tk).

Operator filters and non-commuting operator neural networks. Using noncommutative polyno-
mials we will define operator networks, an abstraction of both graph and graphon neural networks.

3

Operator networks will provide us with a uniform generalization to graph-tuple and graphon-tuple
neural networks and allow us to describe transferability precisely.

The domain and range of our operators will be powers of a fixed vector space F of signals. More
formally, F consists of real-valued functions on a fixed domain V endowed with a measure µV . The
measure turns F into an inner product space (see [25, Chapter 2] for background) via the formula
⟨f, g⟩ :=

∫
V
fgdµV and in particular gives it a natural norm ∥f∥ := (⟨f, f⟩) 1

2 which we will use
throughout the article. In later sections the set F will be either R[V] or the space L := L2([0, 1]) of
square integrable functions in [0, 1] but operator networks apply much more generally, for instance
to the spaces of functions on a manifold V used in geometric deep learning [2]. By an operator
k-tuple on F we mean a sequence T⃗ := (T1, . . . , Tk) of linear operators Tj : F → F . The tuple is
nonexpansive if each operator Tj has norm bounded above by one.

If h ∈ R⟨X1, . . . , Xk⟩ is a noncommutative polynomial then the operator filter defined by h =∑
α cαX

α and the operator tuple T⃗ is the linear operator Ψ(h, T⃗) : F → F given by the formula

h(T1, . . . , Tk)(f) =
∑
α

cαX
α(T1, . . . Tk)(f)

where Xα(T1, . . . , Tk) is the composition of the Ti from left to right in the order of the word α. For
instance if h(X1, X2) := −5X1X2X1 + 3X2

1X2 then the graph-tuple filter defined by h applied to
a signal f ∈ F is Ψ(h, T1, . . . , Tk)(f) = −5T1(T2(T1(f))) + 3T 2

1 (T2(f)).

More generally, we would like to be able to manipulate several features simultaneously (i.e. to
manipulate vector-valued signals) and do so by building block-linear maps of operators with blocks
defined by polynomials. More precisely, if A,B are positive integers and H is a B × A matrix
whose entries are non-commutative polynomials hb,a ∈ R⟨X1, . . . , Xk⟩ we define the operator filter
determined by H and the operator tuple T⃗ to be the linear map Ψ(H, T⃗) : FA → FB which sends a
vector x = (xa)a∈[A] to a vector (zb)b∈[B] using the formula

zb =
∑
a∈[A]

hb,a(T1, . . . , Tk)(xa)

An operator neural layer with ReLU activation is an operator filter composed with a pointwise
non-linearity. This composition σ ◦Ψ(H, T⃗) yields a (nonlinear) map Ψ̂(H, T⃗) : FA → FB .

Finally an operator neural network (ONN) is the result of composing several operator neural layers.
More precisely if we are given positive integers α0, . . . , αN and N matrices H(j) of noncommutative
polynomials H

(j)
b,a := h

(j)
b,a(X1, . . . , Xk) for (b, a) ∈ [αj+1] × [αj] and j = 0, . . . , N − 1, the

operator neural network (ONN) determined by H⃗ := (H(j))N−1
j=0 and the operator tuple T⃗ is the

composition Fα0 → Fα1 → · · · → FαN where the j-th map in the sequence is the operator neural
layer with ReLu activation Ψ̂j(H

(j), T⃗) : Fαj → Fαj+1 . We write Φ(H⃗, T⃗) : Fα0 → FαN to refer
to the full composite function. See Appendix A for a discussion on the trainable parameters and the
transfer to other k-tuples. We conclude the Section with a key instance of operator networks:

An Example: Graph-tuple neural networks (GtNNs). Henceforth we fix a positive integer k,
a sequence G1, . . . , Gk of graphs with common vertex set V and a given set of shift operators
TG1 , . . . , TGk

. We call this information a graph-tuple G⃗ := (G1, . . . , Gk) on V .

The graph-tuple filter defined by a noncommutative polynomial h(X1, . . . , Xk) ∈ R⟨X1, . . . , Xk⟩
and G⃗ is the operator filter defined by h evaluated at T⃗ := (TG1

, . . . , TGk
) denoted Ψ(h, T⃗) :

R[V] → R[V]. Exactly as in Section 2 and using the notation introduced there, we define graph-tuple
filters, graph-tuple neural layers with ReLu activation and graph-tuple neural networks (GtNN) on
the graph-tuple G⃗ as their operator versions when evaluated at the tuple T⃗ above.

3 Perturbation inequalities

In this Section we introduce our main tools for the analysis of operator networks, namely perturbation
inequalities. To speak about perturbations we endow the Cartesian products FA with max-norms

∥z∥ ∗ := max
a∈[A]

∥za∥ if z = (za)a∈[A] ∈ FA.

4

where the norm ∥ • ∥ on the right-hand side denotes the standard L2-norm on F coming from
the measure µV as defined in the previous section. Fix feature sizes α0, . . . , αN and matrices
H⃗ := (H(j))j=0,...,N−1 of noncommutative polynomials in k-variables of dimensions αj+1 × αj

for j = 0, . . . , N − 1 and consider the operator-tuple neural networks Φ(H⃗, T⃗) : Fα0 → Fαn

defined by evaluating this architecture on k-tuples T⃗ of operators on the given function space F . A
perturbation inequality for this network is an estimate on the sensitivity (absolute condition number)
of the output when the operator-tuple and the input signal are perturbed in their respective norms,
more precisely perturbation inequalities are upper bounds on the norm∥∥∥Φ(H⃗, W⃗

)
(f)− Φ

(
H⃗, Z⃗

)
(g)
∥∥∥ ∗

(1)

in terms of the input signal difference ∥f − g∥ ∗ and the operator perturbation size as measured by

the differences ∥Zj−Wj∥op. The main result of this Section are perturbation inequalities that depend
on easily computable constants, which we call expansion constants of the polynomials appearing
in the matrices H⃗ , allowing us to use them to obtain perturbation estimates for a given network and
to devise training algorithms which come with stability guarantees. A key reason for the success of
our approach is the introduction of appropriate norms for computations involving block-operators: If
A,B are positive integers and z = (za)a∈[A] ∈ FA and R : FA → FB is a linear operator then we
define

∥R∥ op := sup
z:∥z∥ ∗ ≤1

(
∥R(z)∥ ∗

)
. (2)

If h ∈ R⟨X1, . . . , Xk⟩ is any noncommutative polynomial then it can be written uniquely as∑
α cαx

α where α runs over a finite support set of sequences in the numbers 1, . . . , k. For any such
polynomial we define a set of k + 1 expansion constants via the formulas

C(h) :=
∑
α

|cα| and Cj(h) :=
∑
α

qj(α)|cα| for j = 1, . . . , k

where qj(α) equals the number of times the index j appears in α. Our main result is the following
perturbation inequality, which proves that expansion constants estimate the perturbation stability of
nonexpansive operator-tuple networks (i.e. those which satisfy ∥Tj∥op ≤ 1 for j = 1, . . . , k).

Theorem 1. Suppose W⃗ and Z⃗ are two nonexpansive operator k-tuples. For positive integers A,B
let H be any B × A matrix with entries in R⟨X1, . . . , Xk⟩. The operator-tuple neural layer with
ReLu activation defined by H satisfies the following perturbation inequality: For any f, g ∈ FA and
for m := min(∥f∥ ∗ , ∥g∥ ∗) we have

∥∥∥Ψ̂(H, W⃗)(f)− Ψ̂(H, Z⃗)(g)
∥∥∥ ∗

≤

∥f − g∥ ∗ max
b∈[B]

 ∑
a∈[A]

C(hb,a)

+mmax
b∈[B]

 ∑
a∈[A]

k∑
j=1

Cj(hb,a)∥Wj − Zj∥op

 . (3)

The proof is in Appendix C. We apply the previous argument inductively to obtain a perturbation
inequality for general graph-tuple neural networks by adding the effect of each new layer to the
bound. More concretely if α0, . . . , αN denote the feature sizes of such a network and RW and RZ

denote the network obtained by removing the last layer then

Corollary 2. Let m := min

(
∥RW⃗ (f)∥ ∗ , ∥RZ⃗(g)∥ ∗

)
. The end-to-end graph tuple neural

network satisfies the following perturbation inequality:

∥Φ(H⃗, W⃗)(f)− Φ(H⃗, Z⃗)(g)∥ ∗ ≤

∥RW⃗ (f)−RZ⃗(g)∥ ∗ max
b∈[αN]

 ∑
a∈[αN−1]

C(h
(N−1)
b,a)

+m max
b∈[αN]

 ∑
a∈[αN−1]

k∑
j=1

Cj(h
(N−1)
b,a)∥Wj − Zj∥op

 .

(4)

5

Corollary 3 below shows that constraining expansion constants allows us to design operator-tuple
networks of depth N whose perturbation stability scales linearly with the network depth N ,

Corollary 3. Suppose W⃗ and Z⃗ are two nonexpansive operator k-tuples. If the inequality

max
b∈[αj+1]

 ∑
a∈[αj]

C(h
(j)
b,a)

 ≤ 1

holds for j = 0, . . . , N − 1 then for m := min(∥f∥, ∥g∥) ∗ we have:

∥Φ(H⃗, W⃗)(f)−Φ(H⃗, Z⃗)(g)∥ ∗ ≤ ∥f − g∥ ∗ +m

N−1∑
d=0

max
b∈[αd+1]

∑
a∈[αd]

k∑
j=1

Cj(h
(d)
b,a)∥Wj − Zj∥op. (5)

4 Graphons and graphon-tuple neural networks (WtNNs).

In order to speak about transferability precisely, we have to address two basic theoretical challenges.
On one hand we need to find a space which allows us to place signals and shift operators living
on different graphs in equal footing in order to allow for meaningful comparisons. On the other
hand objects that are close in the natural norm in this space should correspond to graphs describing
“similar” phenomena. As shown in [41], both of these challenges can be solved simultaneously by the
theory of graphons. A graphon is a continuous generalization of a graph having the real numbers in
the interval [0, 1] as vertex set. The graphon signals are the space L of square-integrable functions
on [0, 1], that is L := L2([0, 1]). In this Section we give a brief introduction to graphons and define
graphon-tuple neural networks (WtNN), the graphon counterpart of graph-tuple neural networks.
Our first result is Theorem 4 which clarifies the relationship between finite graphs and signals on
them and their induced graphons and graphon signals respectively allowing us to make meaningful
comparisons between signals on graphs with distinct numbers of vertices. The space of graphons has
two essentially distinct natural norms which we define later in this Section and review in Appendix B.
Converging sequences under such norms provide useful models for families of “similar phenomena”
and Theorem 5 describes explicit sampling methods for using graphons as generative models for
graph families converging in both norms.

Comparisons via graphons. A graphon is a function W : [0, 1]× [0, 1] → [0, 1] which is measurable
and symmetric (i.e. W (u, v) = W (v, u)). A graphon signal is a function f ∈ L := L2([0, 1]). The
shift operator of the graphon W is the map TW : L → L given by the formula

TW (f)(u) =

∫ 1

0

W (u, v)f(v)dv

where dv = dµ(v) denotes the Lebesgue measure µ in the interval [0, 1].

A graphon-tuple W1, . . . ,Wk consists of a sequence of k graphons together with their shift operators
TWi

: L → L. Exactly as in Section 2 and using the notation introduced there, we define (A,B)
graphon-tuple filters, (A,B) graphon-tuple neural layers with ReLu activation and graphon-tuple neu-
ral networks (WtNN) as their operator versions when evaluated at the k-tuple W⃗ := (TW1

, . . . , TWk
).

For instance, if we are given positive integers α0, . . . , αN and matrices H(j) with entries given
by noncommutative polynomials H

(j)
b,a := h

(j)
b,a ∈ R⟨X1, . . . , Xk⟩ for (b, a) ∈ [αj+1] × [αj] and

j = 0, . . . , N − 1, the graphon-tuple neural network (WtNN) defined by H⃗ := (H(j))N−1
j=0 and W⃗

will be denoted by Φ(H⃗, W⃗) : Lα0 → LαN .

Next we focus on the relationship between (finite) graphs and graphons. Our main interest are
signals (i.e. functions) on the common vertex set V of all the graphs which we think of as a
discretization of the graphon vertex set [0, 1]. More precisely, for every integer n we fix a collection
of n intervals I(n)j := [j−1

n , j
n) covering [0, 1) and n vertices v(n)j := 2j−1

2n ∈ Ij which constitute
the set V (n) ⊆ [0, 1].

To compare functions on different V (n) we will use an interpolation operator in and a sampling
operator pn. The interpolation operator in : R[V (n)] → L extends a set of values at the points of V (n)

6

to a piecewise-constant function in [0, 1] via in(g)(u) :=
∑n

i=1 g(v
(n)
i)1

I
(n)
i

(u) where 1Z(x) denotes

the {0, 1} characteristic function of the set Z. The sampling operator pn : L → R[V (n)] maps a
function f to its conditional expectation with respect to the Ij , namely the function g ∈ R[V (n)]
given by the formula g(vj) :=

∫
Ij
f(v)dv/µ(Ij) = n

∫
Ij
f(v)dv. The sampling and interpolation

operators satisfy the identities pn ◦ in = idR[V (n)], and in(pn(f)) is the piecewise function which on
each interval Ij has constant value equal to the average of f on Ij . Note that in ◦ pn(f) approaches
any continuous function f as n → ∞.

Any graph G with n vertices and shift matrix Sij ∈ [0, 1] induces a (piecewise constant) graphon
WG. The graphon induced by G is given by the formula

WG(x, y) =

n∑
i=1

n∑
j=1

Sij1I(n)
i

(x)1
I
(n)
j

(y)

The following Theorem clarifies the relationship between the shift operator of a graph and that
of its induced graphon and how this basic relationship extends to neural networks. Part (2) will
allow us to compare graph-tuple neural networks on different vertex sets by comparing their induced
graphon-tuple networks (the proof is in Appendix C).

Theorem 4. For every graph-tuple G1, . . . , Gk on vertex set V (n) and their induced graphons
Wj := WGj the equality

TWj
= in ◦

TGj

n
◦ pn

holds. Moreover, this relationship extends to networks: given feature sizes α0, . . . , αN and matrices
H(j) of noncommutative polynomials having no constant term and of compatible dimensions αj+1 ×
αj for j = 0, . . . , N − 1 the graphon-tuple neural network Φ(H⃗, W⃗) : Lα0 → LαN and the
normalized graph-tuple neural network Φ(H⃗, G⃗/n) : R[V]α0 → R[V]αN satisfy the identity

Φ(H, T⃗) = in ◦ Φ(H, T⃗G/n) ◦ pn
where pn and in are applied to vectors componentwise.

Graphon norms. The space of graphons is infinite-dimensional and therefore allows for several
norms. In infinite-dimensional spaces it is customary to speak about equivalent norms, meaning
pairs that differ by multiplication by a constant, but also about the coarser relation of topologically
equivalent norms (two norms are topologically equivalent if a sequence converges in one if and only
if it converges in the other). Here we describe two specific norms of interest and describe explicit
mechanisms for producing converging sequences in the operator norm.

The most fundamental norm on graphons is ∥W∥□ :=

∣∣∣∣∣ sup
U,V⊆[0,1]

∫∫
U×V

W (u, v)dudv

∣∣∣∣∣. Known as

the cut norm, its importance stems from the fact that two graphons differing by a small cut norm must
have similar induced subgraphs in the sense of the counting Lemma of Lovasz and Szegedi (see [30,
Lemma 10.23] for details).

As an analytic object however, the cut norm is often unwieldy, so it is typically bounded via more
easily computable norms. More precisely, the space of graphons admits two topologically inequivalent
norms represented by the operator and Hilbert-Schmidt norms of graphon shift operators respectively
(Example 6 shows that they are indeed inequivalent and why this is important in the present context).

Recall that the operator is defined by ∥TW ∥op := sup
∥f∥,∥g∥≤1

∣∣∣∣∫ 1

0

∫ 1

0

W (u, v)f(u)g(v)dudv

∣∣∣∣ which

is the induced norm of TW as operator from L2([0, 1]) to L2([0, 1]). It is topologically equivalent
to the cut norm (see Appendix B). The Hilbert-Schmidt (HS) norm of TW is the ℓ2-norm of the
eigenvalues of TW or equivalently the norm ∥W∥L2 thinking of W as a function in the square.

Graphons as generative models. Given a graphon W we explicitly construct families of graphs
of increasing size which have W as limit. The family associated to a graphon provides a practical
realization of the intuitive idea of a collection of graphs which “represent a common phenomenon”.

7

Explicitly constructing such families is of considerable practical importance since they provide us
with a controlled setting in which properties like transferability can be tested experimentally over
artificially generated data.

Assume W (x, y) is a given graphon. For every integer n we fix a finite set of equispaced vertices as
above and a collection of intervals Ij := [vj , vj+1) for j = 1, . . . , n− 1 and In := [0, v1) ∪ [vn, 1].
We will produce two kinds of undirected graphs with vertex set V (n) := {v1, . . . , vn}:

1. A deterministic weighted graph, the weighted template graph Hn with vertex set V (n) and

shift operator S(vi, vj) :=
∫∫

Ii×Ij
W (x,y)dxdy

µ(Ii×Ij)
on the edge (vi, vj).

2. A random graph, the graphon-Erdos-Renyi graph Gn with vertex set V (n) and shift operator
S(vi, vj) ∈ {0, 1} sampled from a Bernoulli distribution with probability W (vi, vj), which
is independent for distinct pairs of vertices.

The main result in this Section is that, under mild assumptions on the function W , the weighted
template graphs and the random graphon-Erdos-Renyi have induced shift operators converging to
TW in suitable norms (see Appendix C for a proof). Note that the second part of the theorem can be
seen as a consequence of the analysis in [32] as well.

Theorem 5. For any positive integer n let Ĥ(n) and Ĝ(n) be the graphons induced by Hn and Gn.
The following statements hold

1. If W is continuous then ∥TW − TĤ(n)∥HS → 0

2. If W is Lipschitz continuous then ∥TW − TĜ(n)∥op → 0 almost surely.

Example 6. Fix p ∈ (0, 1) and let W (x, y) = p for x ̸= y and zero otherwise. The graphon Erdos-
Renyi graphs G(n) constructed from W as in (2) above are precisely the usual Erdos-Renyi graphs.
Theorem 5 part (2) guarantees that ∥TW −TĜ(n)∥op → 0 almost surely so this is a convergent graph
family in the operator norm. By contrast we will show that the sequence of TĜ(n) does not converge to
TW in the Hilbert-Schmidt norm by proving that ∥TĜ(n)(x, y)− TW (x, y)∥HS > min(p, 1− p) > 0
almost surely. To this end note that for every n ∈ N and every (x, y) ∈ [0, 1]2 with x ̸= y the
difference |WĜ(n)(x, y)−W (x, y)| ≥ min(p, 1− p) since the term on the left is either 0 or 1. We
conclude that ∥TĜ(n)(x, y)−TW (x, y)∥HS = ∥WĜ(n)(x, y)−W (x, y)∥L2([0,1]2) ≥ min(p, 1−p) >
0 for every n and therefore the sequence fails to converge to zero almost surely.

The previous example is important for two reasons. First it shows that the operator and Hilbert-
Schmidt norm are not topologically equivalent in the space of graphons. Second, the simplicity of
the example shows that for applications to transferability, we should focus on the operator norm.
More strongly, it proves that trasferability results that depend on the Hilbert-Schmidt norm are not
applicable even to the simplest families of examples, namely Erdos-Renyi graphs.

5 Universal transferability

Our next result combines perturbation inequalities for graphon-tuple networks and Theorem 4
which compares graph-tuple networks and their induced graphon-tuple counterparts resulting in a
transferability inequality. As a corollary of this inequality we prove a universal transferability result
which shows that every architecture is transferable in a converging sequence of graphon-tuples, in
the sense that the transferability error goes to zero as the index of the sequence goes to infinity. This
result is interesting and novel even for the case of graphon-graph transferability (i.e. when k = 1).

Theorem 7. Let W⃗ be a graphon-tuple and let G⃗ be a graph-tuple with equispaced vertex set
V ⊂ [0, 1]. Let H be any B×A matrix with entries in R⟨X1, . . . , Xk⟩ and let Ψ̂(H, W⃗) : LA → LB

(resp Ψ̂(H, G⃗) : R[V] → R[V]) denote the graphon-tuple neural layer (resp. graph-tuple neural
layer) with ReLu activation defined by H . If Ĝi denotes the graphon induced y Gi then for every

8

f ∈ L the transferability error for f satisfies∥∥∥∥Ψ̂(H, T⃗W)(f)− iV ◦ Ψ̂
(
H,

1

|V |
T⃗G

)
(pV (f))

∥∥∥∥ ∗
≤

∥f − iV ◦pV (f)∥ ∗ max
b∈[B]

∑
a∈[A]

C(hb,a)

+∥f∥max
b∈[B]

∑
a∈[A]

k∑
j=1

Cj(hb,a)∥TWj − TĜj
∥op

 .

We are now able to prove the following Universal transferability result:

Theorem 8. Suppose ⃗G(N) := (G
(N)
1 , . . . , G

(N)
k) is a sequence of graph-tuples having vertex

set V (N) ⊆ [0, 1]. If the vertex set is equispaced for every N and the sequence converges to a
graphon-tuple W⃗ in the sense that ∥T

Ĝ
(N)
j

− TWj
∥op → 0 as N → ∞ for j = 1, . . . , k then every

graphon-tuple neural network on W⃗ transfers. More precisely, for every neural network architecture
Φ(H⃗, •) and every essentially bounded function f ∈ L2([0, 1]) the quantity∥∥∥∥Φ(H⃗, T⃗W)(f)− iV (N)Φ

(
H⃗,

1

|V (N)|
T⃗G

)
(pV (N)(f))

∥∥∥∥ ∗
converges to zero as N → ∞. Furthermore the convergence is uniform among functions f with a
fixed Lipschitz constant.

6 Training with stability guarantees

Following our perturbation inequalities (i.e., Theorem 1 and Corollary 3) we propose a training
algorithm to obtain a GtNN that enforces stability by constraining all the expansion constants C(h)

and Cj(h). Consider a GtNN Φ(H⃗, T⃗G) and nonexpansive operator k-tuples T⃗G. Denote the set of
k + 1 expansion constants for each layer d = 0, . . . , N − 1 as

C(H(d)) := max
b∈[αd+1]

∑
a∈[αd]

C(h
(d)
b,a) and Cj(H

(d)) := max
b∈[αd+1]

∑
a∈[αd]

h
(d)
b,a for j = 1, . . . , k,

and write C⃗(H⃗) = (C(H(d)))N−1
d=0 and C⃗j(H⃗) = (Cj(H

(d)))N−1
d=0 for j = 1, . . . , k. Given k + 1

vectors of target bounds C⃗ := (C(d))N−1
d=0 and C⃗j := (C

(d)
j)N−1

d=0 for j = 1, . . . , k, and training data
(xi, yi) ∈ Fα0 ×FαN for i ∈ I , we train the network by a constrained minimization problem

min
c

1

|I|
∑
i∈I

ℓ(Φ(H⃗(c), T⃗G)(xi), yi) s.t. C⃗(H⃗(c)) ≤ C⃗, C⃗j(H⃗(c)) ≤ C⃗j for j = 1, . . . , k,

where ℓ(·, ·) is any nonnegative loss function depending on the task, and c denotes all the polynomial
coefficients in the network. If we pick C⃗ to be an all ones vector (or smaller), by Corollary 3, the
perturbation stability is guaranteed to scale linearly with the number of layers N .

To approximate the solution of the constrained minimization problem we use a penalty method,

min
c

1

|I|
∑
i∈I

ℓ(Φ(H⃗(c), T⃗G)(xi), yi) + λ[p(C⃗(H⃗(c))− C⃗) +

k∑
j=1

p(C⃗j(H⃗(c))− C⃗j)], (6)

where p(·) is a componentwise linear penalty function p(C⃗) = (p(C(d)))N−1
d=0 with p(C(d)) =

max(0, C(d)). The stable GtNN algorithm picks a fixed large enough penalty coefficient λ and trains
the network with local optimization methods.

7 Experimental data and numerical results

We perform three experiments1: (1) we test the tightness of our theoretical bounds on a simple
regression problem on a synthetic dataset consisting of two weighted circulant graphs (see Figure

1Code available: https://github.com/Kkylie/GtNN_weighted_circulant_graphs
and https://github.com/mauricio-velasco/operatorNetworks

9

https://github.com/Kkylie/GtNN_weighted_circulant_graphs
https://github.com/mauricio-velasco/operatorNetworks

Figure 1: We assess the tightness of our theoretical results on a regression problem on a synthetic data toy
example consisting of two weighted circulant graphs. See Appendix D.1 for details. (Left) Numerical stability
bound C(h) (dashed) and stability metrics ∥h(T⃗)∥op (solid) with respect to input signal perturbation as a
function of the number of epochs for both the standard (1-layer) GtNN (orange) and (1-layer) stable GtNN
(blue). (Middle) Similar plot for the stability metrics with respect to the graph perturbation ∥h(W⃗)− h(Z⃗)∥op
and its upper bound (Lemma 12 part 2 and 3b). For this plot we take W⃗ = T⃗ , and Z⃗ is a random perturbation
from T⃗ with ∥Z1 − W1∥op ≈ ∥Z2 − W2∥op ≈ 0.33. (Right) For all four models, compute the 2-norm of
the vector of output perturbations from Equation (1) over the test set for various sizes of graph perturbation
(∥T1 −W1∥op + ∥T2 −W2∥op)/2, where the additive graph perturbation T1 −W1 and T2 −W2 are symmetric
matrices with iid Gaussian entries. In addition, each Tj and Wj are normalized such that ∥Tj∥op ≤ 1 and
∥Wj∥op ≤ 1 for j = 1, 2, so they are nonexpansive operator-tuple networks. (All) We observe that adding
stability constraints does not affect the prediction performance: the testing R squared value for GtNN is 0.6866,
while for stable GtNN is 0.6543.

Figure 2: This is an experiment on the MovieLens 100k database, a collection of movie ratings given by a set
of 1000 users [39] to 1700 movies. Using collaborative filtering techniques [19] we extract two weighted graphs
that we use to predict ratings of movies by user from a held out test set. See details in Appendix D.3. We report
the mean squared error (MSE) in the test set as a function of the number of training iterations (Left) from 0
to 500 and (Right) from 0 to 1500 for the movie recommendation system experiments. We compare the two
models GtNN on the tuple of two graphs (2ONN) and GNN on the best single graph between those two (GNN)
on various ridge-regularized versions (the legend contains the values of the chosen regularization constants).

1 and Appendix D.1 for details) (2) we assess the transferability of the same model (Appendix
D.2), and (3) we run experiments on a real-world dataset of a movie recommendation system where
the information is summarized in two graphs via collaborative filtering approaches [19] and it is
combined to infer ratings by new users via the GtNN model (see Figure 2 and Appendix D.3).

8 Conclusions

In this paper, we introduce graph-tuple networks (GtNNs), a way of extending GNNs to a multi-
modal graph setting through the use tuples of non-commutative operators endowed with appropriate
block-operator norms. We show that GtNNs have several desirable properties such as stability to
perturbations and a universal transfer property on convergent graph-tuples, where the transferability
error goes to zero as the graph size goes to infinity. Our transferability theorem improves upon the
current state-of-the-art even for the GNN case. Furthermore, our error bounds are expressed in terms
of computable quantities from the model. This motivates a novel algorithm to enforce stability during
training. Experimental results show that our transferability error bounds are reasonably tight, and
that our algorithm increases the stability with respect to graph perturbation. They also suggest that
the transferability theorem holds for sparse graph tuples. Finally, the experiments on the movie
recommendation system suggest that allowing for architectures based on GtNNs is of potential
advantage in real-world applications.

10

Acknowledgments

We thank Alejandro Ribeiro for fostering our interest in this topic through various conversations, and
Teresa Huang for helpful discussions about theory and code implementation. We thank the organizing
committee of the Khipu conference (Montevideo, Uruguay, 2022) for providing a setting leading
to the present collaboration. SV is partially supported by NSF CCF 2212457, the NSF–Simons
Research Collaboration on the Mathematical and Scientific Foundations of Deep Learning (MoDL)
(NSF DMS 2031985), NSF CAREER 2339682, and ONR N00014-22-1-2126. Mauricio Velasco
was partially supported by ANII grants FCE-1-2023-1-176172 and FCE-1-2023-1-176242. Bernardo
Rychtenberg was partially supported by ANII grant FCE-1-2023-1-176242.

References
[1] Jan Böker, Ron Levie, Ningyuan Huang, Soledad Villar, and Christopher Morris. Fine-grained

expressivity of graph neural networks. Advances in Neural Information Processing Systems, 36,
2024.

[2] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep
locally connected networks on graphs. In 2nd International Conference on Learning
Representations, ICLR 2014, 2014.

[4] Landon Butler, Alejandro Parada-Mayorga, and Alejandro Ribeiro. Learning with multigraph
convolutional filters. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1–5, 2023.

[5] Chen Cai. Local-to-global perspectives on graph neural networks. arXiv preprint
arXiv:2306.06547, 2023.

[6] Chen Cai and Yusu Wang. Convergence of invariant graph networks. In International
Conference on Machine Learning, pages 2457–2484. PMLR, 2022.

[7] Juan Cerviño, Luana Ruiz, and Alejandro Ribeiro. Training stable graph neural networks
through constrained learning. In ICASSP 2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 4223–4227, 2022.

[8] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

[9] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

[10] Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, and Samuel Vaiter. Convergence of
message passing graph neural networks with generic aggregation on random graphs. In Graph
Signal Processing workshop 2023, 2023.

[11] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
Advances in neural information processing systems, 32, 2019.

[12] Ben Finkelshtein, İsmail İlkan Ceylan, Michael Bronstein, and Ron Levie. Learning on large
graphs using intersecting communities. arXiv preprint arXiv:2405.20724, 2024.

[13] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural
networks. IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

[14] Fernando Gama, Antonio G Marques, Geert Leus, and Alejandro Ribeiro. Convolutional neural
network architectures for signals supported on graphs. IEEE Transactions on Signal
Processing, 67(4):1034–1049, 2018.

11

[15] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pages 1263–1272. PMLR, 2017.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[17] Ningyuan Huang, Ron Levie, and Soledad Villar. Approximately equivariant graph networks.
Advances in Neural Information Processing Systems, 36, 2024.

[18] Ningyuan Huang, Soledad Villar, Carey E Priebe, Da Zheng, Chengyue Huang, Lin Yang, and
Vladimir Braverman. From local to global: Spectral-inspired graph neural networks. arXiv
preprint arXiv:2209.12054, 2022.

[19] Weiyu Huang, Antonio G. Marques, and Alejandro R. Ribeiro. Rating prediction via graph
signal processing. IEEE Transactions on Signal Processing, 66(19):5066–5081, 2018.

[20] Svante Janson. Graphons, cut norm and distance, couplings and rearrangements. New York
journal of mathematics, 2013.

[21] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[22] Henry Kenlay, Dorina Thano, and Xiaowen Dong. On the stability of graph convolutional
neural networks under edge rewiring. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 8513–8517. IEEE, 2021.

[23] Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph
convolutional networks on large random graphs. Advances in Neural Information Processing
Systems, 33:21512–21523, 2020.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016.

[25] Alexei I. Kostrikin and Yuri I. Manin. Linear algebra and geometry, volume 1 of Algebra,
Logic and Applications. Gordon and Breach Science Publishers, Amsterdam, english edition,
1997. Translated from the second Russian (1986) edition by M. E. Alferieff.

[26] Thien Le and Stefanie Jegelka. Limits, approximation and size transferability for gnns on
sparse graphs via graphops. Advances in Neural Information Processing Systems, 36, 2024.

[27] Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability
of spectral graph convolutional neural networks. Journal of Machine Learning Research,
22(272):1–59, 2021.

[28] Eitan Levin and Mateo Díaz. Any-dimensional equivariant neural networks. In International
Conference on Artificial Intelligence and Statistics, pages 2773–2781. PMLR, 2024.

[29] Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization
bounds for graph neural networks. In International Conference on Learning Representations,
2020.

[30] László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.

[31] Sohir Maskey, Gitta Kutyniok, and Ron Levie. Generalization bounds for message passing
networks on mixture of graphons. arXiv preprint arXiv:2404.03473, 2024.

[32] Sohir Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: an
extended graphon approach. Applied and Computational Harmonic Analysis, 63:48–83, 2023.

[33] Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of
message passing neural networks on large random graphs. Advances in neural information
processing systems, 35:4805–4817, 2022.

12

[34] Elvira Moreno and Mauricio Velasco. On random walks and switched random walks on
homogeneous spaces. Combinatorics, Probability and Computing, 2023.

[35] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019.

[36] Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. Revised note on learning
quadratic assignment with graph neural networks. In 2018 IEEE Data Science Workshop
(DSW), pages 1–5. IEEE, 2018.

[37] Alejandro Parada-Mayorga, Landon Butler, and Alejandro Ribeiro. Convolutional filters and
neural networks with noncommutative algebras. IEEE Transactions on Signal Processing,
71:2683–2698, 2023.

[38] Alejandro Parada-Mayorga and Alejandro Ribeiro. Algebraic neural networks: Stability to
deformations. IEEE Transactions on Signal Processing, 69:3351–3366, 2021.

[39] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens:
an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, CSCW ’94, page 175–186, New York,
NY, USA, 1994. Association for Computing Machinery.

[40] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the
transferability of graph neural networks. Advances in Neural Information Processing Systems,
33:1702–1712, 2020.

[41] Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Transferability properties of graph
neural networks. IEEE Transactions on Signal Processing, 2023.

[42] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Graph neural networks: Architectures,
stability, and transferability. Proceedings of the IEEE, 109(5):660–682, 2021.

[43] Luana Ruiz, Ningyuan Teresa Huang, and Soledad Villar. A spectral analysis of graph neural
networks on dense and sparse graphs. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 9936–9940. IEEE, 2024.

[44] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing
in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

[45] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[46] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis
dimension of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

[48] Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu,
Yuchao Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum,
atomistic, and continuum systems. arXiv preprint arXiv:2307.08423, 2023.

13

A Training and transference in operator networks

The trainable parameters of an operator network are precisely the coefficients of the
noncommutative polynomials involved. For instance, if we have feature sizes α0, . . . , αN and all
involved noncommutative polynomials have degree at most d then the number of trainable
parameters of the operator network is equal to kd+1−1

k−1

∑N−1
i=0 αiαi+1. For each choice c⃗ of such

coefficients the network defines a function Φ(H⃗(c), T⃗) : Fα0 → FαN .

For a fixed collection c⃗ of coefficients (for instance the one obtained from training on the data (xi, yi)
for i ∈ I), the resulting polynomials in their respective matrices H(j)(c) allow us to evaluate the
trained operator network Φ(H⃗(c), T1, . . . , Tk) on any other k-tuple of operators
M⃗ := (M1, . . . ,Mk). Here the Mj are linear maps acting on a vector space of functions L (possibly
different from F) so evaluation defines a new network Φ(H⃗(c), M⃗) : Lα0 → LαN . Because the
coefficients c⃗ were obtained by training using the operators T⃗ , this network is said to be built by
transference from T⃗ to M⃗ .

B Graphon norms

The following facts about norms in the space of graphons are well-known:

1. The cut-norm is equivalent to a norm computable from the shift operator. More precisely,
define

∥W∥♢ := sup
∥f∥∞,∥g∥∞≤1

∣∣∣∣∫ 1

0

∫ 1

0

W (u, v)f(u)g(v)dudv

∣∣∣∣
and note that it this norm is expressible in terms of TW as ∥W∥♢ = ∥TW ∥op,∞,1 which is
the operator norm of TW as map from L∞([0, 1]) to L1([0, 1]). By [20, Equation 4.4] the
cut norm and ∥ • ∥♢ are equivalent because ∥W∥□ ≤ ∥W∥♢ ≤ 4∥W∥□.

2. The cut-norm and the standard operator norm are topologically equivalent. This can be seen
by letting p → ∞ in [20, Lemma E.7, part 1] obtaining the inequality

∥W∥♢ ≤ ∥TW ∥op ≤
√
2∥W∥

1
2

♢

3. The elementary inequalities ∥TW ∥op ≤ ∥TW ∥HS and ∥W∥♢ ≤ ∥W∥L1 hold where
∥W∥L1 is defined by thinking of W as a function on the square, that is as
∥W∥L1 :=

∫∫
[0,1]2

|W (x, y)|dxdy.

4. The Hilbert-Schmidt norm is topologically equivalent to ∥ • ∥L1 . This is implied by the

inequality in [20, Lemma E.7, part 2] namely ∥W∥L1 ≤ ∥TW ∥HS ≤ ∥W∥
1
2

L1 .

C Proofs

C.1 Proof of Theorem 1 (operator-tuple perturbation inequality).

Our first lemma gives a formula for computing the block operator norms introduced in Section 3.
Recall that for a positive integer A and z = (za)a∈[A] ∈ FA we have ∥z∥ ∗ := maxa∈[A] ∥za∥

where ∥ • ∥ is the norm defined by the measure on V and σ : FA → FA denotes the componentwise
ReLu. Furthermore for positive integers A,B and a linear operator T : LA → LB we have

∥T∥ op := sup
z:∥z∥ ∗ ≤1

(
∥T (z)∥ ∗

)
.

Lemma 9. For any linear operator M : FA → FB with block-decomposition
(M(z))b =

∑
a∈[A] Mb,a(za) for b ∈ [B] we have

∥M∥ op = max
b∈[B]

∑
a∈[A]

∥Mb,a∥op

14

Proof. Assume ∥z∥ ∗ ≤ 1. By definition of the norm ∥ • ∥ ∗ we have

∥M(z)∥ ∗ = max
b∈[B]

∥∥∥∥∥∥
∑
a∈[A]

Mb,a(za)

∥∥∥∥∥∥
By the triangle inequality and the definition of operator norm the last term is bounded by

max
b∈[B]

∑
a∈[A]

∥Mb,aza∥ ≤ max
b∈[B]

∑
a∈[A]

∥Mb,a∥op∥za∥ ≤ max
b∈[B]

∑
a∈[A]

∥Mb,a∥op

where the last inequality follows since ∥z∥ ∗ ≤ 1. To prove the equality let b∗ be the index for

which the sum
∑

a∈[A] ∥Mb,a∥op achieves the maximum and for a ∈ [A] let z∗a be a unit vector in F
with ∥Mb∗,a(z

∗
a)∥ = ∥Mb∗,a∥op. Letting z∗ = (z∗a)a∈[A] we have ∥z∗∥ ∗ ≤ 1 and

∥M(z∗)∥ ∗ = maxb∈[B]

(∑
a∈[A] ∥Mb,a∥op

)
as claimed.

Lemma 10. The componentwise ReLu is contractive in the ∥ • ∥ ∗ norm, that is

∥σ(f)− σ(g)∥ ∗ ≤ ∥f − g∥ ∗ holds for every f, g ∈ FA.

Proof. For any two real valued functions fj , gj on any space V the inequality

|max(0, fj(u))−max(0, gj(u))| ≤ |fj(u)− gj(u)|

holds at every point. Since the left hand side equals the absolute value of a component of
σ(f)− σ(g) the claim is proven by squaring, integrating and taking square roots on both sides and
finally maximizing over j.

Remark 11. The previous proof shows that the same conclusion as for ReLu holds for any
componentwise non-linearity with the property that its derivative exists almost everywhere and has
absolute value uniformly bounded by one.

The following Lemma summarizes some key inequalities for nonexpansive operator-tuples.

Lemma 12. Assume T⃗ , W⃗ and Z⃗ are non-expansive operator k-tuples. The following inequalities
hold:

1. For every α ∈ [k]d we have ∥xα(T⃗)∥op ≤ 1 and for every noncommutative polynomial h
we have

∥h(T)∥op ≤ C(h)

2. For every α ∈ [k]d we have ∥xα(W⃗)− xα(Z⃗)∥op ≤
∑k

j=1 qj(α)∥Wj − Zj∥op and for
every noncommutative polynomial h we have

∥h(W⃗)− h(Z⃗)∥op ≤
k∑

j=1

Cj(h)∥Wj − Zj∥op

3. If H is any B ×A matrix with entries in R⟨X1, . . . , Xk⟩ then:

(a) ∥Ψ(H, T⃗)∥ op ≤ maxb∈[B]

(∑
a∈[A] C(hb,a)

)
and

(b) ∥Ψ(H, W⃗)−Ψ(H, Z⃗)∥ op ≤ maxb∈[B]

(∑
a∈[A]

∑k
j=1 Cj(hb,a)∥Wj − Zj∥op

)
.

Proof. (1) The statement holds for a monomial xα because operator norms are multiplicative and
each Tj has ∥Tj∥op ≤ 1 by nonexpansivity. The claim for h(x) =

∑
cαx

α follows from the triangle

15

inequality. (2) First, for any two bounded linear operators TA, TB : F → F and any two signals f, g
the triangle inequality implies that

∥TA(f)− TB(g)∥ ≤ ∥TA∥op∥f − g∥+ ∥TA − TB∥op∥g∥.

In particular, for any two nonexpansive operators TA, TB we have

∥TA(f)− TB(g)∥ ≤ ∥f − g∥+ ∥TA − TB∥op min(∥g∥, ∥f∥)

Applying this observation inductively to Z⃗, W⃗ , any two signals f, g and any word α ∈ [k]d we have∥∥∥xα(W⃗)(f)− xα(Z⃗)(g)
∥∥∥ ≤ ∥f − g∥+min(∥f∥, ∥g∥)

k∑
j=1

qj(α)∥Wj − Zj∥op

where qj(α) is the number of times the index j appears in the word α. Setting f = g to be any signal
with ∥f∥ ≤ 1 we conclude

∥xα(W⃗)− xα(Z⃗)∥op ≤
k∑

j=1

qj(α)∥Wj − Zj∥op

Combining the previous conclusion with the triangle inequality yields

∥h(W⃗)− h(Z⃗)∥op ≤
k∑

j=1

Cj(h)∥Wj − Zj∥op

for any noncommutative polynomial h. (3a) By Lemma 9

∥Ψ(H, T⃗)∥ op = max
b∈[B]

∑
a∈[A]

∥hb,a(T⃗)∥op

and the claim follows by applying the upper bound we just proved in part (1). (3b) By Lemma 9

∥Ψ(H, W⃗)−Ψ(H, Z⃗)∥ op = max
b∈[B]

∑
a∈[A]

∥hb,a(W⃗)− hb,a(Z⃗)∥op

and the claim follows from applying the upper bound we just proved in part (2).

We are now ready to prove the main result of this Section,

Proof of Theorem 1. By Lemma 10 we have∥∥∥Ψ̂(H, W⃗)(f)− Ψ̂(H, Z⃗)(g)
∥∥∥ ∗

≤ ∥Ψ(H, W⃗)(f)−Ψ(H, Z⃗)(g)∥ ∗

By the triangle inequality the quantity above is bounded by the smallest of

∥Ψ(H, W⃗)−Ψ(H, Z⃗)∥ op ∥f∥ ∗ + ∥Ψ(H, Z⃗)∥ op ∥f − g∥ ∗ (7)

and

∥Ψ(H, W⃗)−Ψ(H, Z⃗)∥ op ∥g∥ ∗ + ∥Ψ(H, W⃗)∥ op ∥f − g∥ ∗ . (8)

The Theorem is proven by applying Lemma 12 part (3) to the operator norms and taking the
minimum of the resulting upper bounds.

Remark 13. We expect the bounds of the previous Theorem to be reasonably tight. To establish a
precise result in this direction it suffices to prove that the bounds describe the true behavior in
special cases. Consider the case k = 1, n = 1 assuming TV , TW and f ≥ g are nonnegative scalars
with 0 ≤ TW ≤ TV ≤ 1 (a similar reasoning applies to the case of simultaneously diagonal

16

nonexpansive operator tuples of any size). For a univariate polynomial h(X) =
∑d

j=0 hjX
j with

nonnegative coefficients we have

|h(TV)(f)− h(TV)(g)| =

 d∑
j=0

hjT
j
V

 (f − g) ≤
d∑

j=0

|hj |(f − g)

with equality when TV = 1 and

|h(TV)(f)−h(TW)(f)| =
d∑

j=0

hj

(
T j
V − T j

W

)
f =

d∑
j=0

hj

(
jvj−1

(j) (TV − TW)
)
f ≤ C1(h)|TV −TW |f

where the second equality follows from the intermediate value theorem (for some v(j) in the interval
[TW , TV]). This equality shows that C1(h) is the optimal constant bound since the ratio of the
left-hand side by TV − TW approaches C1(h) as TV and TW simultaneously approach one.

C.2 Proofs of Graphon perturbation Theorems

Lemma 14. The following statements hold:

1. For every graphon W the inequality ∥TW ∥op ≤ 1 holds. As a result, for every α ∈ [k]d and
any k-tuple of graphon shift operators the inequality ∥xα(TW1 , . . . , TWk

)∥op ≤ 1 holds.

2. For any two bounded linear operators TA, TB : L → L and any two signals f, g ∈ L we
have

∥TA(f)− TB(g)∥ ≤ ∥TA∥op∥f − g∥+ ∥TA − TB∥op∥g∥.
In particular, for any two graphons A,B and any two signals X,Y we have

∥TA(f)− TB(g)∥ ≤ ∥f − g∥+ ∥TA − TB∥op min(∥g∥, ∥f∥)

3. For any two k-tuples of graphon shift operators T⃗W , T⃗Z , any two signals f, g ∈ L and any
word α ∈ [k]d we have∥∥∥xα(T⃗W)(f)− xα(T⃗Z)(g)

∥∥∥ ≤ ∥f − g∥+min(∥f∥, ∥g∥)
k∑

j=1

qj(α)∥TWj
− TZj

∥op

where qj(α) is the number of times the index j appears in the word α.

Proof. (1) Since the operator norm is bounded above by the Hilbert Schmidt norm we have

∥TW ∥op ≤
(∫ 1

0

∫ 1

0

W (u, v)2dudv

) 1
2

and the right hand side is bounded above by one since every graphon satisfies W (u, v) ∈ [0, 1]. The
inequality on operator norms of monomial words follows from what we have just proven and the
submultiplicativity (i.e. ∥AB∥op ≤ ∥A∥op∥B∥op) of operator norms. (2) The triangle inequality
implies that

∥TA(f)− TB(g)∥ = ∥TA(f)− TA(g) + TA(g)− TB(g)∥ ≤ ∥f − g∥∥TA∥op + ∥TA − TB∥op∥g∥

The second inequality follows from combining the inequality that we just proved with part (1) and
exchanging the roles of A and B. (3) We prove the statement by induction on d ≥ 0. If d = 0 then
α = ∅, xα is the identity and the claimed inequality holds with equality. If d > 0 let j := α(1) and
let β ∈ [k]d−1 be the word obtained from α y removing the first (leftmost) term. By construction the
equality xα = Xjx

β holds and therefore

∥xα(TA1
, . . . , TAk

)(f)− xα(TB1
, . . . , TBk

)(g)∥

=
∥∥TAj

xβ(TA1
, . . . , TAk

)(f)− TBj
xβ(TB1

, . . . , TBk
)(g)

∥∥
17

By the second inequality in part (2) and part (1) this is quantity is bounded above by

∥xβ(TA1
, . . . , TAk

)(f)− xβ(TB1
, . . . , TBk

)(g)∥+

∥TAj − TBj∥op min
(
∥xβ(TA1 , . . . , TAk)(f)∥, ∥x

β(TB1 , . . . , TBk)(g)∥
)

applying part (1) we know this is quantity is bounded above by

∥xβ(TA1
, . . . , TAk

)(f)− xβ(TB1
, . . . , TBk

)(g)∥+ ∥TAj
− TBj

∥op min (∥f∥, ∥g∥)

Applying the induction hypothesis to the first term, because β ∈ [k]d−1, we see that this expression
is bounded above by

(
∥f − g∥+min(∥f∥, ∥g∥)

k∑
i=1

qi(β)∥TAi − TBi∥op

)
+ ∥TAj − TBj∥op min (∥f∥, ∥g∥)

where qi(β) is the number of times the index i appears in the word α. For each index i ∈ [k] we have

qi(α) =

{
qi(β) if i ̸= j

qi(β) + 1 if i = j

so we conclude that the above sum equals

∥f − g∥+min(∥f∥, ∥g∥)
k∑

i=1

qi(α)∥TAi − TBi∥op

proving the claimed inequality.

Lemma 15. Let A,B be positive integers.

1. The componentwise ReLu is contractive in the ∥ • ∥ ∗ norm, that is

∥σ(f)− σ(g)∥ ∗ ≤ ∥f − g∥ ∗ holds for every f, g ∈ LA.

2. Let W⃗ and Z⃗ be two graphon k-tuples. If H is any B ×A matrix with entries in
R⟨X1, . . . , Xk⟩ then the perturbation of the filter ∥Ψ(H, T⃗W)−Ψ(H, T⃗Z)∥ op is

bounded above by

max
b∈[B]

∑
a∈[A]

k∑
j=1

Cj(hb,a)∥TWj − TZj∥op

and furthermore

max

(
∥Ψ(H, T⃗W)∥ op , ∥Ψ(H, T⃗Z)∥ op

)
is bounded above by maxb∈[B]

(∑
a∈[A] C(hb,a)

)
.

Proof. The Claim follows by applying this inequality to M := Ψ(H, T⃗W) and to the difference
M := Ψ(H, T⃗W)−Ψ(H, T⃗Z) together with the operator norm estimates of Lemma 16.

Lemma 16. If W⃗ := (W1, . . . ,Wk) and Z⃗ := (Z1, . . . , Zk) are two operator-tuples then for any

two signals f, g ∈ L the quantity
∥∥∥h(T⃗W)(f)− h(T⃗Z)(g)

∥∥∥ is bounded above by

C(h)∥f − g∥+min(∥f∥, ∥g∥)
k∑

j=1

Cj(h)∥TWj − TZj∥op

18

Proof. By the triangle inequality, for any f, g the quantity
∥∥∥h(T⃗W)(f)− h(T⃗Z)(g)

∥∥∥ is bounded
above by ∑

α∈[k]≤d

|cα|
∥∥∥xα(T⃗W)(f)− xα(T⃗Z)(g)

∥∥∥
so the claim follows by applying Lemma 14 part (3), reordering the second sum and using the
definitions of the expansion constants C(h) and Cj(h).

Proof of Theorem 7. Denote by T⃗G be the operators in the graph-tuple Ĝ and let T⃗Ĝ denote their
induced graphon operators. If f ∈ FA is any signal then Theorem 1 implies that the following
inequality holds∥∥∥Ψ̂(H, T⃗W)(f)− Ψ̂

(
H, T⃗Ĝ

)
(iV ◦ pV (f))

∥∥∥ ∗
≤

∥f − iV ◦pV (f)∥ ∗ max
b∈[B]

∑
a∈[A]

C(hb,a)

+∥f∥max
b∈[B]

∑
a∈[A]

k∑
j=1

Cj(hb,a)∥TWj
− TĜj

∥op

 .

Since the points in V are equispaced, Theorem 4 implies that

Ψ̂
(
H, T⃗Ĝ

)
(iV ◦ pV (f)) = iV ◦ Ψ̂

(
H,

T⃗G

|V |

)
(pV ◦ iV ◦ pV (f)) = iV ◦ Ψ̂

(
H,

T⃗G

|V |

)
(pV (f))

where the last equality follows from the fact that pV ◦ iV equals the identity map for any choice of
finite set V ⊆ [0, 1]. The proof is completed by substituting this equality in the left-hand side of the
previous inequality.

Proof of Theorem 8. For a positive integer N apply Theorem 7 to the graphon-tuple W⃗ and the
graph-tuple ⃗G(N) inductively for every layer of the given architecture H⃗ . Since the matrices H⃗
defining our architecture involve only finitely many polynomials the hypothesis
∥T

G
(N)
j

− TWj
∥op → 0 guarantees that the upper bound we obtain converge to zero provided

∥f − iV (N) ◦ pV (N)(f)∥ ∗ converges to zero as N → ∞ or equivalently if the function f , or more

precisely its components are well approximated by their local averages at the sampling points V (N).
This is obviously true for essentially bounded functions and happens uniformly for Lipschitz
functions with a common constant proving the claim.

C.3 Proof of Theorem 4.

We begin with the following preliminary Lemma,

Lemma 17. For a positive integer n let G be a graph with vertex set V (n) and let WG be its induced
graphon. The following statements hold:

1. If f ∈ L then the equality TWG
(f) = in ◦ TG

n ◦ pn(f) holds. More generally for any
polynomial h with zero constant term we have

h(TW) = in ◦ h(TG/n) ◦ pn

2. If g ∈ R[V (G)] is any function on the vertices of G and h(x) is any univariate polynomial
with zero constant term then

h(TW)(in(g)) = in (h(TG/n)(g)) .

3. If σ, σ denote the componentwise ReLu functions in L and R[V] respectively then the
equality σ ◦ in = in ◦ σ holds.

19

Proof. (1) Recall that for f ∈ L we have TW (f)(x) =
∫ 1

0
WG(x, y)f(y)dy which equals

=

∫ 1

0

n∑
i=1

n∑
j=1

Sij1I(n)
i

(x)1
I
(n)
j

(y)f(y)dy =

=

n∑
i=1

n∑
j=1

Sij1I(n)
i

(x)

∫
I
(n)
j

f(y)dy =

=

n∑
i=1

 n∑
j=1

Sijµ(I
(n)
j)

(∫
I
(n)
j

f(y)dy/µ(I
(n)
j)

) 1
I
(n)
i

(x) =

=

(
in ◦ TG

n
◦ pn(f)

)
(x)

where the last equality holds by definition of pn and in and because µ(I
(n)
j) = 1/n for all j. For the

second claim note that both sides are linear operators it suffices to prove the claim when h(x) is a
monomial of degree k ≥ 1. This follows immediately by induction using the fact that
pn ◦ in = idR[V (n)] for every n. (2) Apply the identity proven in part (1) to the function in(g) and
use the equality pn ◦ in = idR[V (n)]. (3) If g ∈ R[V] then

σ(in(g)) = σ

 n∑
j=1

g(vj)1I(n)
j

(x)

 =

n∑
j=1

max(g(vj), 0)1I(n)
j

(x) = in(σ(g)).

Remark 18. If the points of the set V are not equally spaced in [0, 1] then the identity in part (1)
above does not hold. This is a common misconception appearing in several articles in the literature.

Proof of Theorem 4. The first claim is Lemma 17 part (1). For the second claim apply Lemma 17
inductively on layers.

C.4 Proof of the sampling Theorem

Proof of Theorem 5. (1) By compactness of the square [0, 1]2 given ϵ > 0 there exists δ > 0 such
that for all n sufficiently large, every rectangle Ii × Ij is entirely contained in balls of radius δ with
the property that |W (xi, xj)−W (ai, aj)| < ϵ whenever (xi, xj) and (ai, aj) are in Ii × Ij . In
particular, at every point of each square the function deviates at most ϵ from its mean on this square
proving that ∥W − Ĥ(n)∥L1 ≤ ϵ. From the results summarized in Section 4 we conclude that
∥TW − TĤ(n)∥HS → 0 in the operator norm as claimed. (2) For a positive integer n let B(n) be the
discretization of the graphon W from the values at V (n) × V (n) defined by

B(n)(x, y) =

n∑
i=1

n∑
j=1

W (v
(n)
i , v

(n)
j)1Ii(x)1Ij (y)

Via the triangle inequality we estimate ∥W − Ĝ(n)∥⋄ from above as the sum of ∥W −B(n)∥♢ and
∥B(n) − Ĝ(n)∥♢. The first term satisfies the inequality ∥W −B(n)∥♢ ≤ ∥W −B(n)∥L1 and thus
goes to zero by continuity of W by the argument from part (1). For the second term
∥B(n) − Ĝ(n)∥♢ note that both graphons are constant in the squares Ij × Ik and therefore

∥B(n) − Ĝ(n)∥♢ = max
a,b∈{0,1}n

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aibj
W (v

(n)
i , v

(n)
j)− S

(n)
ij

n2

∣∣∣∣∣∣
where the S

(n)
ij are independent Bernoulli random variables with success probability W (v

(n)
i , v

(n)
j).

Given ϵ > 0, let An be the event that maxa,b∈{0,1}n

∣∣∣∣∑n
i=1

∑n
j=1 aibj

W (v
(n)
i ,v

(n)
j)−S

(n)
ij

n2

∣∣∣∣ ≥ ϵ where

20

1/n2 = µ(Ii × Ij) for every i, j. We will show that the series
∑

n P(An) < ∞ concluding by the
Borel-Cantelli Lemma that ∥B(n) − Ĝ(n)∥♢ ≤ ϵ for all but finitely many integers n. Since ϵ > 0

was arbitrary this proves that ∥B(n) − Ĝ(n)∥♢ → 0 almost surely as claimed. To verify the
summability we will use a simple concentration inequality. The probability P(An) equals

P

 ⋃
a,b∈{0,1}n

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aibj
W (v

(n)
i , v

(n)
j)− S

(n)
ij

n2

∣∣∣∣∣∣ ≥ ϵ

which is bounded above by

≤
∑

a,b∈{0,1}n

P

∣∣∣∣∣∣

n∑
i=1

n∑
j=1

aibj
W (v

(n)
i , v

(n)
j)− S

(n)
ij

n2

∣∣∣∣∣∣ ≥ ϵ

Since each of the summands is the sum of ≤ n2 independent Bernoulli random variables shifted by
their mean and divided by n2, Bernstein’s inequality implies that the sum is bounded above by

2n+1e

(
− n2ϵ2

2(1+ϵ/3)

)
= e−

n2ϵ2

2(1+ϵ/3)
+(n+1) log(2)

this quantity is summable by the ratio test proving the claim. From the results summarized in
Section 4 we know that ∥ • ∥♢ is topologically equivalent to ∥ • ∥op and we conclude that
∥TW − TĜ(n)∥op → 0 proving the theorem.

Remark 19. It is necessary to add some assumption on W for the conclusions of the Lemma above
to hold. For instance if W is just in L2([0, 1]× [0, 1]) then it can be modified in the countable, and
thus Lebesgue measure zero, set

⋃
n

(
V (n) × V (n)

)
without altering the operator TW making an

approximation scheme as suggested above impossible.

D Experimental details and additional experiments

The code for experiments on stability for graph tuples and experiments on transferability for sparse
graph tuples are available here:
https://github.com/Kkylie/GtNN_weighted_circulant_graphs.git. And the code for
experiments on real-world data from a movie recommendation system is available here:
https://github.com/mauricio-velasco/operatorNetworks.git.

D.1 Details of experiments on stability for graph tuples

For this experiments we consider a weighted circulant graph of size n with shift matrix S(l) as

S
(l)
ij =

p, if i = j

(1− p)/2, if |i− j| mod n = l

0, otherwise.

We generate our data pair (xi, yi) ∈ F × F with F = R[V] as

yi = [0.76S(l2)S(l1) + 0.33S(l1)S(l2) + 0.3(S(l1))3]xi + ϵi,

where each value of xi is uniformly distributed between [0, 1], ϵi ∈ F is normal distributed with
standard deviation σ = 0.1, and we pick n = 293, p = 0.05, l1 = 1, and l2 = 30. Noted that both
input and output have only one feature, i.e., α0 = αN = 1. We train our model with 800 training
data I and test it on 200 testing data Itest. We use MSE loss, and use ADAM with learning rate 0.01,
β1 = 0.9 and β2 = 0.999 to train our models. Running these experiments took a few hours on a
regular laptop (just CPU).

Denote T1 and T2 as the shift operator corresponding to S(l1) and S(l2) respectively. Recall from the
main text (Section 7) that we consider four different models: (i) one layer unconstrained GtNN (i.e.,
λ = 0 in (6)), (ii) one layer stable GtNN (with λ = 10), (iii) two layers GtNN with number of hidden
feature α1 = 2, and (iv) two layers unconstrained GtNN (with λ = 10 and α1 = 2). For all four
models, we set the non-commutative polynomial h(T1, T2) to be any polynomial of degree at most

21

https://github.com/Kkylie/GtNN_weighted_circulant_graphs.git
https://github.com/mauricio-velasco/operatorNetworks.git

d = 3. Thus, we have 15 trainable coefficients for both one layer models and 60 for both two layer
models. For the stable GtNN model, we constrain the expansion constants to be at most half of the
corresponding expansion constants obtained after training the unconstrained model. Specifically, let
C⃗(H⃗(i)) and C⃗j(H⃗

(i)) denotes the resulting expansion constants vectors for model (i). Then, we set
the constraints for model (ii) to be C⃗ = C⃗(H⃗(i))/2 and C⃗j = C⃗j(H⃗

(i))/2 for j = 1, 2. Similarly,
we set the constraints for model (iv) to be C⃗ = C⃗(H⃗(iii))/2 and C⃗j = C⃗j(H⃗

(iii))/2 for j = 1, 2.

Figure 1 shows the empirical stability metrics and the corresponding upper bounds as a function of
the number of epochs for the one layer models (i) and (ii).

As we see in the proof of Theorem 1 (equation (7) and equation (8)), the equation
∥Ψ(H, T⃗)∥ op = ∥h(T⃗)∥op shows the output perturbation due to the perturbation from input

signal, and ∥Ψ(H, W⃗)−Ψ(H, Z⃗)∥ op = ∥h(W⃗)− h(Z⃗)∥op shows the output perturbation due to

the perturbation from the graph. Meanwhile, C(h) and Cj(h) are the expansion constants that we
constrained for the stable GtNN model. We note that the upper bounds exhibit the same qualitative
behavior as the empirical stability metrics, especially for the stable GtNN model where all the curves
drop due to the parameter reaching the boundary of the constraint sets. This suggests that our
stability bound is tight, and controlling the expansion constants increase the model stability. In
addition, adding stability constraints has no harm on the prediction performance, since the testing R
squared value for GtNN is 0.6867, while for stable GtNN is 0.6864.

To demonstrate the improvement on stability by our algorithms, we test all four models on various
perturbed graphs (while fixing input signal). As shown in Figure 1(right) the stable GtNNs increases
the stability under graph perturbations, especially in the 2-layer model.

D.2 Experiments on transferability for sparse graph tuples

We test the transferability behavior on the weighted circulant graph model from Appendix D.1. We
are motivated by the practical setting where we aim to train a model on a small graphs and evaluate it
on larger graphs. We consider a piecewise constant graphon tuple (W1,W2) induced from the
n = 300 circulant graph tuple, and similarly we generate a piecewise constant functions by the
interpolation operator in for each data point.

Next, we use this graphon and piecewise constant function as a generative model to generate
deterministic weighted graphs (G1, G2) of size m ≤ n as training graphs (normalized by m) and to
generate training data by the sampling operator pm. Since ||TWj − TĜj

||op → 0 as m → n,
according to Theorem 7 the transferability error goes to 0 too. To demonstrate this, we train five
different models, trained with graphs tuples of fixed size m = 100, 150, 200, 250, 300 (respectively)
and compare the performance of the testing data with n = 300.

Figure 3: Mean squared error (MSE) on the test set (with testing graph of size n = 300) as a
function of the number of training epochs for (Left) (1-layer) GtNN and (Middle) (1-layer) stable
GtNN. In both plots we depict the performance of five different models, trained with graphs of sizes
m = 100, 150, 200, 250, 300 respectively. (Right) Comparison of testing MSE between (1-layer)
GtNN (blue) and (1-layer) stable GtNN (orange) for training graphs of size m = 100 as a function of
the number of epochs.

Figure 3 shows that the best testing MSE decreases as the training size m approaches n for the GtNN,
which shows transferability holds for sparse graph tuples. For the stable GtNN, the general trend of
the testing MSE curves also indicates transferability. In addition, the performance comparison

22

between GtNN and stable GtNN for m = 100 shows that our stability constraint improves the
transferability by reducing the best testing MSE. However, this improvement only appears for the
m = 100 case. All the other cases have worse performance for the stable GtNN. We conjecture this
is because the stability constraint makes the training process take a longer time to converge, and
whenever it hits the constraint boundaries the MSE jumps, which also makes it harder to converge to
a local minimum. It will be interesting to see if other learning algorithms or penalty functions for the
stability constraints help improve the performance.

D.3 Experiments on real-world data from a movie recommendation system

Finally, we present results on the behavior of graph-tuple neural filters on real data as a tool for
building a movie recommendation system. We use the publicly available MovieLens 100k database,
a collection of movie ratings given by a set of 1000 users [39] to 1700 movies. Our objective is to
interpolate ratings among users: starting from the ratings given by a small set of users to a certain
movie, we wish to predict the rating given to this movie by all the remaining users. Following [19]
we center the data (by removing the mean rating of each user from all its ratings) and try to learn a
deviation from the mean rating function. More precisely, letting U be the set of users, we wish to
learn the map ϕ : R[U] → R[U] which, given a partial deviation from the mean ratings function
f : U → 1, 2, . . . , 5 (with missing data marked as zero) produces the full rating function f̂ = ϕ(f)
where f(u) contains the deviation of the mean ratings for user u.

The classical Collaborative filtering approach to this problem consists of computing the empirical
correlation matrix B among users via their rating vectors. A more recent approach [19] defines a
shift operator S on the set of users by sparsifying B. More precisely we connect two users whenever
their pairwise correlation is among the k highest for both and then approximate ϕ as a linear filter or
more generally a GNN evaluated on S. Although typically superior to collaborative filtering, this
approach has a fundamentally ambiguous step: How to select the integer k? To the best of our
knowledge, there is no principled answer to this question so we propose considering several values
simultaneously, defining a tuple of shift operators, and trying to learn ϕ via graph-tuple neural
networks on R[U]. More specifically we compute two shift operators T1, T2 by connecting each user
to the 10 and 15 most correlated other users respectively, and compare the performance of the GtNN
on the tuple (T1, T2) (2ONN) with the best between the GNNs on each of the individual operators T1

and T2 (GNN). To make the comparison fair we select the degrees of the allowed polynomials so that
all models have the same number of trainable parameters (seven).

Figure 2 (left) shows that an appropriately regularized Graph-tuple network significantly outperforms
all other models at any point throughout the first 500 iterations (the minimum occurs when the
training error stops improving significantly). However, if the model is over-trained as in the right plot
of Figure 2 then it can suffer from a vanishing gradients limitation which may lead to a trained model
worse than the best one obtained from standard graph filters. This example suggests that graph-tuple
neural networks are of potential relevance to applications.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of the paper are the theoretical results described in the
abstract. A small set of experiments to verify the theoretical claims are provided in Section
7.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The assumptions under which the theoretical claims are valid are clearly
stated.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The
authors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text system
might not be used reliably to provide closed captions for online lectures because it fails
to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an
important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning
limitations.

3. Theory Assumptions and Proofs

24

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theorem statements have the full set of assumptions. The proofs are
provide in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments setup and data are described in Appendix D in detail. The
code is publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with the
same dataset, or provide access to the model. In general. releasing code and data is
often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

25

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: The code is publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [No]
Justification: We didn’t compute error bars. The experiments are simply used to illustrate
the theory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted the research ethically.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is theoretical work on stability and transferablity of GNNs. We don’t
identify any societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to
point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained IRB
approval, you should clearly state this in the paper.

29

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Preliminary definitions
	Perturbation inequalities
	Graphons and graphon-tuple neural networks (WtNNs).
	Universal transferability
	Training with stability guarantees
	Experimental data and numerical results
	Conclusions
	Training and transference in operator networks
	Graphon norms
	Proofs
	Proof of Theorem 1 (operator-tuple perturbation inequality).
	Proofs of Graphon perturbation Theorems
	Proof of Theorem 4.
	Proof of the sampling Theorem

	Experimental details and additional experiments
	Details of experiments on stability for graph tuples
	Experiments on transferability for sparse graph tuples
	Experiments on real-world data from a movie recommendation system

