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ABSTRACT

We propose a federated learning method with weighted nodes in which the weights
can be modified to optimize the model’s performance on a separate validation
set. The problem is formulated as a bilevel optimization problem where the in-
ner problem is a federated learning problem with weighted nodes and the outer
problem focuses on optimizing the weights based on the validation performance
of the model returned from the inner problem. A communication-efficient feder-
ated optimization algorithm is designed to solve this bilevel optimization problem.
We analyze the generalization performance of the output model and identify the
scenarios when our method is in theory superior to training a model locally and
superior to federated learning with static and evenly distributed weights.

1 INTRODUCTION

Federated learning (FL) is an emerging technique for training a model using data distributed over a
network of nodes without sharing data between nodes (Konečnỳ et al., 2016; McMahan et al., 2017).
In this paper, we focus on the case where data distributions across nodes are heterogeneous and each
node aims at a model with an optimal local generalization performance. In the classical setting of
FL, a globally shared model is learned by minimizing a weighted average loss across all nodes.
However, given the heterogeneity of data distributions, a global model is likely to be sub-optimal
for some node (Fallah et al., 2020). Alternatively, each node can train a model only using its local
data, but such a local model may not generalize well neither when the volume of local data is small.

To achieve a good local generalization performance, each node can still exploit global training data
through FL but, at the same time, identify and collaborate only with the nodes whose data distri-
butions are similar or identical to its local distribution. One way to implement this strategy is to
allow each node to solve its own weighted average loss minimization problem with weights de-
signed based on the performance on a separate set of local (validation) data. Ideally, each node can
learn a better model by allocating more weights on its peers whose data distribution is similar to its
local distribution. In this paper, we formulate the choice of the weights as a bilevel optimization
(BO) problem (Colson et al., 2005; Vicente & Calamai, 1994), which can be solved by a federated
bilevel optimization algorithm, and analyze the generalization performances of the resulting model.

We consider a standard learning problem where the goal is to learn a vector of model parameters θ
from a set Θ that minimizes a generalization loss. This problem can be formulated as

θ∗ ∈ argmin
θ∈Θ

{L0(θ) := Ez∼p0
[l(θ; z)]} , (P)

where l(θ; z) is the loss of θ on a data point z from a space Z , and Ez∼p0
represents the expectation

taken over z when z follows an unknown ground truth distribution p0.

Directly solving (P) is challenging as p0 is unknown, and, typically, training data sampled from p0
is needed for learning an approximation of θ∗. In this paper, we consider the scenario where the
amount of data sampled directly from p0 may not be sufficient to learn a good approximation of θ∗,
but there exist external data distributed on K nodes that can potentially help the learning on θ∗. In
particular, we denote the set of nodes by K := {1, . . . ,K} and assume a training set Dtrain

k is stored
in node k. We also define Dtrain :=

{
Dtrain

k

}K
k=1

and assume |Dtrain
k | = nk and Dtrain

k = {z(i)k }nk
i=1,

where z
(i)
k ∈ Z is an i.i.d. sample from an unknown distribution pk for k ∈ K.
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We assume node k is weighted by wk and the vector of weights w = (w1, . . . , wK) ∈ [0, 1]K is
located on the capped simplex ∆b

K defined as

∆b
K =

{
w = (w1, . . . , wK)

∣∣∣∑K
k=1 wk = 1, 0 ≤ wk ≤ b, k ∈ K

}
,

where b ∈ [ 1K , 1] is a user-defined parameter. The FL on weighted nodes can be formulated as

θ̂(w) ∈ argmin
θ∈Θ

∑K
k=1 wkL̂k(θ), (1)

where L̂k(θ) is the empirical loss of θ on Dtrain
k , namely,

L̂k(θ) :=
1
nk

∑nk

i=1 l(θ; z
(i)
k ), k ∈ K. (2)

When some pk’s are different from p0, w in (1) must be chosen adaptively to ensure θ̂(w) is a
good approximation of θ∗ in (P). To do so, we assume that there is a validation dataset Dvalid with
|Dvalid| = n0 = nvalid and Dvalid =

{
z(i)
}n0

i=1
, where z(i) ∈ Z is an i.i.d. sample from p0. We

assume Dvalid is stored in a node called node 0 or center, which may or may not be a node in K. Set
Dvalid alone may not be sufficient for learning θ∗ precisely but can be used to assist the selection of
w. We then propose to estimate the generalization loss of θ̂(w) using the loss on Dvalid, i.e.,

L̂0(θ) :=
1
n0

∑n0

i=1 l(θ; z
(i)) (3)

and use this validation loss to guide the procedure for updating w. Presumably, when both the
training and validation sets are large enough, the weights in w will be shifted towards the nodes
where the data is helpful for learning θ∗. Following this idea, we formulate the federated learning
problem on adaptively weighted nodes as the following bilevel optimization (BO) problem:

ŵ ∈ argmin
w∈∆b

K

{
F̂ (w) := L̂0(θ̂(w)) s.t. θ̂(w) is defined as in (1)

}
. (P̂)

In Section 4, we will present a federated optimization algorithm for solving (P̂). Suppose an al-
gorithm can find the optimal solution ŵ of (P̂) and the corresponding model parameter θ̂(w). We
are interested in the optimality gap of the generalization loss of θ̂(ŵ), namely, L0(θ̂(ŵ))− L0(θ

∗),
where L0 is defined as in (P). The main contribution of this paper is to establish a high-probability
bound of this gap as a function of the sizes of Dtrain and Dvalid as well as a statistical distance between
p0 and pk’s. Moreover, we compare our generalization bound with the bound achieved by learning
only locally from Dvalid and the bound achieved by solving (1) with evenly distributed weights, and
identify the parameter regimes where our method is preferred in theory.

2 RELATED WORK

The work most related to ours is Chen et al. (2021a) in which the authors proposed a target-aware
weighted training algorithm for cross-task learning. Although their problem is completely different
from FL, the bilevel optimization model they studied contains (P̂) as a special case. In fact, some
steps in the proofs of the generalization bounds in the current work are borrowed from Chen et al.
(2021a) with some modifications. However, our work extends their results in several valuable di-
rections. First, the generalization bound in Chen et al. (2021a) is shown for any weight w without
any small or zero components, which is not necessarily the case for the optimal solution ŵ of (P̂).
Second, their generalization bound contains a term of task distance whose convergence rate is not
characterized. On the contrary, we show the convergence of the entire generalization bound for ŵ
without any conditions on its components. Third, the generalization bound in Chen et al. (2021a) has
a dominating term O(1/

√
nvalid), which is the same as the generalization bound obtained by directly

training with the local data Dvalid. However, we show that, when there exist identical neighbors and
an error bound condition holds (Assumptions 2′ and 3), the model learned by (P̂) can be superior to
a model trained locally when the pk’s are similar enough to (but still different from) p0, providing
an insight on when a node with insufficient data should actively seek collaboration with others.

FL has become a prominent machine learning paradigm for training models with distributed data
Konečnỳ et al. (2016); McMahan et al. (2017). Many federated optimization algorithms have been
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developed for solving (1) or its expectation form (with L̂k replaced by Lk). A well-known method is
the federated averaging (FedAvg) method (McMahan et al., 2017), which applies a local optimiza-
tion method (e.g., stochastic gradient descend (Robbins & Monro, 1951)) to L̂k or Lk in each node
and periodically aggregates the solutions from all nodes by averaging. Many variants of FedAvg
and other federated learning methods have been proposed to reduce the computation and commu-
nication complexity. A partial list includes Gorbunov et al. (2021); Lee et al. (2017); Karimireddy
et al. (2020); Liang et al. (2019); Li et al. (2020); Yuan & Ma (2020); Wu & Wang (2021); Zhao
et al. (2021). In our setting, (1) is a sub-problem we need to solve multiple times with different w’s.
We then apply the Local-SVRG method by Gorbunov et al. (2021) to (1) because it has the lowest
communication complexity for finite-sum problems like (1).

Most FL methods produce a globally-shared model which may not perform well on each node when
data is heterogeneous across nodes. To address this challenge, many personalized FL methods,
including but not limited to Smith et al. (2017); Tan et al. (2022); Fallah et al. (2020); Li & Wang
(2019); Deng et al. (2020); Li et al. (2021), have been developed, where a global model is tailored
using local data for a good local performance. However, many personalized FL methods use a fixed
weight in (1) to obtain the global model. Such a global model may be dominated by the majority
of the data distributions in the network and is hard to personalize for a minority group with unique
data patterns. On the contrary, our method can produce a personalized weight so a node from the
minority group can still find and collaborate with its peers.

BO recently has also been studied actively by the machine learning community. Many efficient
optimization algorithms have been developed recently for BO, including but not limited to Chen
et al. (2021c;b); Ghadimi & Wang (2018); Hong et al. (2020); Guo et al. (2021); Ji et al. (2021);
Grazzi et al. (2020). However, these algorithms are designed for a single-machine setting and may
not be communication efficient if implemented directly in a distributed environment. There are
much fewer studies on BO in a distributed setting. The recent works (Li et al., 2022; Tarzanagh
et al., 2022) consider a BO where both the outer and inner problems are defined with the expectation
over data distributed across nodes. They analyze the communication complexity of their methods
in a non-convex setting. We propose a different FL algorithm based on Local-SVRG because our
problem (P̂) has a finite-sum structure that allows periodically going through all the data points
in each node to obtain exact gradient information and achieving lower communication complexity
than Li et al. (2022); Tarzanagh et al. (2022). (Chen et al., 2022) consider a decentralized BO
problem and their algorithm for the deterministic case can be applied to our problem and achieve
the same communication complexity in the non-convex case. However, we include the results for
the convex case and focus more on the generalization performance of the federated learning based
on BO.

3 GENERALIZATION PERFORMANCE

The following assumption on (P̂) is made for analyzing the generalization performance of θ̂(ŵ) in
(P̂) and the convergence property of the optimization algorithm for solving (P̂) in Section 4.
Assumption 1 (Well-behaved function). The following statements hold. (1) l(θ; z) ∈ [0, 1] and
∇l(θ; z) is ℓ1-Lipschitz continuous in θ for any z ∈ Z . (2) L̂k(θ) and ∇2L̂k(θ) are ℓ0 and ℓ2-
Lipschitz continuous, respectively, for k ∈ K. (3) L̂k(θ) is µ-strongly convex for k ∈ K.

These are standard regularity assumptions in recent literature on bilevel optimization (e.g. Ghadimi
& Wang (2018)). Assuming the strong convexity in the lower-level problem, (1) has a unique solu-
tion so that the inclusion there can be replaced by equality. Similar to L0 in (P), we define

Lk(θ) := Ez∼pk
[l(θ; z)] for k ∈ K,

and we consider the following auxiliary problem

W∗ = argmin
w∈∆b

K

{
F (w) := L0(θ(w)) s.t. θ(w) ∈ argmin

θ∈Θ

∑K
k=1 wkLk(θ)

}
. (P∗)

Problem (P̂) can be viewed as an empirical approximation of (P∗) in both inner and outer problems.

Even if all pk’s are different from p0, it is still possible to learn θ∗ correctly by solving (P∗). A simple
example on mean estimation is minw∈∆1

2
E(θ(w)−z0)

2 s.t. θ(w) ∈ argminθ
∑2

k=1 wkE(θ−zk)
2,
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where z0, z1 and z2 follow normal distributions N (0, 1), N (a, 1) and N (−a, 1), respectively, for
any a ̸= 0. Obviously, w∗ = (0.5, 0.5) is the optimal weight and θ(w∗) = 0 = θ∗. Throughout the
paper, we assume θ∗ can be learned by solving (P∗), which is stated formally below.
Assumption 2 (Learnability of θ∗ by (P∗)). θ(w) = θ∗ for any w ∈ W∗, where θ∗ satsifes (P).

Besides the situation like the aforementioned simple example, Assumption 2 holds obviously when
pk = p0 for at least one k ∈ K. In fact, the latter case happens when node 0 is a node in K,
so w equal to one on that node and zero on others is optimal. Moreover, we will later on provide
a refined generalization performance analysis for the latter case, so we state the latter case as a
separate assumption below.
Assumption 2′ (Existence of identical neighbors). There exists a strict subset J ⊂ K with |J | = J
such that pk = p0 for k ∈ J . Moreover,

W∗ =
{
w ∈ ∆b

K

∣∣wk = 0 for k ∈ K\J
}
. (4)

The first statement in Assumption 2′ implies that the right-hand side of (4) is contained by the
left-hand side. The second statement further assumes that they are equal. Assumption 2′ implies
Assumption 2 because

∑K
k=1 wkLk(θ) = L0(θ) for any θ ∈ Θ and any w ∈ W∗ satisfying (4).

Assumption 3 (Error bound condition). There exist Cr > 0 and r ≥ 1 such that

Dist(w,W∗) := min
w′∈W∗

∥w − w′∥ ≤ Cr

[
F (w)− min

w∈∆b
K

F (w)

]1/r
. (5)

Inequality (5) means problem (P∗) satisfies the error bound condition, which has impact on the
convergence property of many optimization algorithms (Johnstone & Moulin, 2020; Yang & Lin,
2018; Lewis & Pang, 1998; Pang, 1997; Lin et al., 2020). Due to the limit of space, we refer readers
to Appendix B for a practical example satisfying Assumption 3.

We are interested in the generalization performance of θ̂(ŵ), represented by the gap L0(θ̂(ŵ)) −
L0(θ

∗), as both Dvalid and Dtrain grow. For simplicity of notation, we assume nk = ntrain for any
k ∈ K for some integer ntrain ≫ nvalid. To facilitate the analysis, we need to introduce a few
notations. Given a probability measure Q on Z , let H = {l(θ; ·) : θ ∈ Θ} be a pseudometric metric
space equipped with the pseudometric metric ρQ, which is the L2 distance metric with respect Q,

i.e., ρQ(l, l′) :=
√∫

Z(l(z)− l′(z))2dQ(z) for l, l′ ∈ H. The ball with radius ϵ > 0 centered at
l ∈ H is defined as Bϵ(l) := {l′ ∈ H|ρQ(l, l′) ≤ ϵ}. Let N (H; ρQ, ϵ) be the ϵ-covering number of
H with respect to ρQ, i.e., N (H; ρQ, ϵ) := min{m|∃l1, . . . , lm ∈ H,H ⊂ ∪m

i=1Bϵ(li)}.
Following Chen et al. (2021a), we make the following assumption on N (H; ρQ, ϵ), which is impor-
tant for analyzing the generalization performance (Koltchinskii, 2006; Kakade et al., 2008).
Assumption 4. There exist CH > 0 and νH > 0 such that, for any probability measure Q on Z ,

N (H; ρQ, ϵ) ≤ (CH/ϵ)
νH , ∀ϵ > 0. (6)

With the these assumptions, we obtain the following theorems whose proofs are in Appendix D.
Theorem 1 (Bound independent of statistical distance). Suppose Assumptions 1, 2 and 4 hold. There
exists a universal constant1 Cg > 0 such that, with a probability of at least 1− δ,

L0(θ̂(ŵ))− L0(θ
∗) ≤ Cg

(
νH + log(1/δ)

nvalid

) 1
2

+ Cg
ℓ0√
µ

(
νH +K + log(1/δ)

ntrain/(Kb2)

) 1
4

. (7)

Under the same assumptions,2 the generalization bound by Chen et al. (2021a) becomes

L0(θ̂(w))− L0(θ
∗) ≤C′

g

(
νH + log(1/δ)

nvalid

) 1
2

+ C′
g

√
β

√
µ

(
νH +K log(K) + log(1/δ)

Kntrain

) 1
4

+ L0(θ(w))− L0(θ
∗) (8)

1We define a universal constant as a constant that does not depend on any parameter of the problem except
CH and Cr . This definition is made only to simply the constant factors in our bounds.

2A (ρ,Cρ)-transferable assumption is needed in Chen et al. (2021a), which also holds in our case with
ρ = 2 because of the Lipschitz continuity and strong convexity assumed in Assumption 1.
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for a universal constant C ′
g and any w satisfying β−1 ≤ wk/wj ≤ β with k ̸= j for some β > 0.

However, it is likely that the optimal solution w∗ has zero components (e.g., when pk = p0 for
some k). If so, β on the right-hand side of (8) needs to be arbitrarily large for ŵ(≈ w∗) in (P̂) to
satisfy the aforementioned condition. Moreover, when w = ŵ, the convergence of the last term
L0(θ(w)) − L0(θ

∗) in (8) is not characterized in Chen et al. (2021a). On the contrary, Theorem 1
holds without any assumption on ŵ (zero components are allowed), does not depend on β and
provides a generalization bound converging in every term.3 When b = c/K with a constant c ≥ 1,
the right-hand side of (7) improves the first two terms on the right-hand side of (8) by a log(K) term.

The bounds (7) and (8) may both be dominated by the O(1/
√
nvalid) term, which is the same as

the generalization bound achieved simply by learning locally with Dvalid (see Proposition 1 in Ap-
pendix E). However, if Assumption 3 holds and Assumption 2 is strengthened to Assumption 2′,
we can establish a generalization bound different from Theorem 1 which suggests that (P̂) can still
outperform local training when the following statistical distance between p0 and pk’s is small:

G :=
√

maxθ∈Θ

∑
k∈K

(
L0(θ)− Lk(θ)

)2
. (9)

Theorem 2 (Bound dependent on statistical distance). Suppose Assumptions 1, 2′, 3 and 4 hold.
There exists universal constants Ce > 0 and Cw > 0 such that, with a probability of at least 1− 3δ,

Dist(ŵ,W∗) ≤ ε(nvalid, ntrain) := Cw

(
νH + log(1/δ)

nvalid

) 1
2r

+ Cw
ℓ0√
µ

(
νH +K + log(1/δ)

ntrain/(Kb2)

) 1
4r

(10)

and

L0(θ̂(ŵ))− L0(θ
∗) ≤ Ce

√
νH + J + log(1/δ)

Nε
+ Ce

ε(nvalid, ntrain)(K − J)

b
√
Nε

+ 2ε(nvalid, ntrain)G, (11)

where Nε =
ntrain

b2J+ε2(nvalid,ntrain)(K−J) and G is defined in (9).

Note that Nε = Θ(ntrain). Based on the decreasing rate of ε(nvalid, ntrain) in (10), we simplify (11)
by only showing the bounds in terms of nvalid, ntrain and G for a clear comparison with local training.
Corollary 1. Suppose the assumptions of Theorem 2 hold and nvalid and ntrain are large enough such
that ε(nvalid, ntrain) defined in (10) satisfies ε(nvalid, ntrain) ≤ b

√
J

K−J . With a probability of at least

1− 3δ, we have L0(θ̂(ŵ))− L0(θ
∗) ≤ O

(
1/n

1
2
train +G ·

(
1/n

1
2r

valid + 1/n
1
4r
train

))
.

When G = o(1/n
1
2−

1
2r

valid ) and G = o(n
1
4r

train/n
1
2

valid), the bound in Corollary 1 becomes o(1/n
1
2

valid),
meaning that method (P̂) has a better generalization guarantee than training locally. Since G is small
in this case, a natural question is whether optimizing the weight in (P̂) is still needed because the FL
with equally weighted nodes may already have a good performance with respect to p0. However, we
show in Proposition 2 in Appendix E that (P̂) is still preferred to FL with equally weighted nodes
for any G. We show the impacts of b, J and K through Corollary 2 in Appendix D.

4 FEDERATED BILEVEL OPTIMIZATION ALGORITHM

Although our main focus is the generalization performance of (P̂), we present a federated optimiza-
tion algorithm for (P̂) based on the existing techniques by Gorbunov et al. (2021) and Ghadimi &
Wang (2018). Different from a single-level optimization problem, the outer objective F̂ (w) in (P̂)
depends implicitly on w through the inner optimal solution θ̂(w), which makes the exact gradient
∇F̂ (w) difficult to compute. A commonly used solution is to exploit implicit function as shown in
the following lemma, which is from Lemma 2.1 and 2.2 in Ghadimi & Wang (2018).

Lemma 1. Under Assumption 1, ∇F̂ (w) is ℓF -Lipschitz continuous with

ℓF :=

(
2ℓ0ℓ1
µ

+
ℓ2ℓ

2
0

µ2

) √
Kℓ0
µ

+
Kℓ1ℓ

2
0

µ2
, (12)

3As a by-product of our analysis, we show in (38) that L0(θ(ŵ))− L0(θ
∗) also satisfies (7).
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Algorithm 1: Local-SVRG method for (16): Local-SVRG({fk,i}, w, x(0), γ, τ, q, T )

1 Input: functions {fk,i}, weight w, initial vector x(0) ∈ Rd, learning rate γ, communication
period τ ≥ 1, probability q of updating reference point, and the total number of iterations T

2 x
(0)
k = x(0), y(0)k = x(0), k = 1, . . . ,K

3 for t = 0, 1, . . . , T − 1 do
4 for k = 1, . . . ,K in parallel do
5 Choose ik from {1, . . . , nk} uniformly at random
6 g

(t)
k = ∇fk,ik(x

(t)
k )−∇fk,ik(y

(t)
k ) +∇fk(y

(t)
k )

7 y
(t+1)
k = x

(t)
k with probability q and y

(t+1)
k = y

(t)
k with probability 1− q

8 if t+ 1 mod τ = 0 then
9 x

(t+1)
k = x(t+1) :=

∑K
k=1 wk

(
x
(t)
k − γg

(t)
k

)
10 else
11 x

(t+1)
k = x

(t)
k − γg

(t)
k

12 end
13 end
14 end
15 Return: x̄(T ) = U−1

T

∑T
t=0 utx

(t) with ut = (1−min{γµ, q/4})−(t+1) and UT =
∑T

t=0 ut.

and ∇F̂ (w) = (∇kF̂ (w))k=1,...,K , where ∇kF̂ (w) is the partial derivative of F̂ w.r.t. wk and

∇kF̂ (w) = −∇L̂k(θ̂(w))⊤
(∑K

k=1 wk∇2L̂k(θ̂(w))
)−1

∇L̂0(θ̂(w)). (13)

By Lemma 1, computing ∇kF̂ (w) requires solving (1) exactly and taking the inverse of the Hessian
matrix in (13), both of which are challenging. Hence, for a given w, we will find an approximate
solution of (1), denoted by θ̄(w)(≈ θ̂(w)), and approximate the matrix inversion in (13) by solving
a strongly convex quadratic program. In particular, we will approximate ∇F̂ (w) by

∇̄F̂ (w) := (∇̄kF̂ (w))k=1,...,K with ∇̄kF̂ (w) := −∇L̂k(θ̄(w))
⊤h̄, (14)

where h̄ ≈ argminh
1
2h

⊤
(∑K

k=1 wk∇2L̂k(θ̄(w))
)
h− h⊤∇L̂0(θ̄(w)). (15)

Both (1) and (15) can be written as a distributed finite-sum minimization on K weighted nodes:

minx∈Rd f(x) :=
∑K

k=1 wkfk(x), where fk(x) =
1
nk

∑nk

i=1 fk,i(x), k = 1, . . . ,K. (16)

When fk,i(θ) = l(θ; z
(i)
k ), (16) becomes (1). When fk,i(h) = 1

2h
⊤∇2l(θ̄(w); z

(i)
k )h −

h⊤∇L̂0(θ̄(w)), (16) becomes (15).

With this observation, we apply Local-SVRG by Gorbunov et al. (2021) to the aforementioned two
instances (16) to obtain θ̄(w) and h̄, which are used to construct the approximate gradient ∇̄F̂ (w)

in (14). Then we update w using ∇̄F̂ (w) based on the accelerated bilevel approximation method
(ABA) by Ghadimi & Wang (2018). We choose the combination of Local-SVRG and the ABA
methods because it leads to the lowest communication complexity in literature for solving (P̂). We
formally present this approach in Algorithms 1 and 2. Recall that we have assumed Dvalid is stored
in node 0, which is called center in Algorithm 2.

In each iteration of Algorithm 2, in addition to the communication within Local-SVRG, constantly
many rounds of communication are needed to exchange θ(s), h(s) ∇L̂0(θ

(s)) and ∇L̂k(θ
(s)) be-

tween the center and node k. We present the communication complexity of Algorithm 2 which can
be proved by adapting the analysis in Gorbunov et al. (2021) and Ghadimi & Wang (2018) to our
setting. The proofs are deferred to Sections F.1 and F.2.

Theorem 3. Suppose Assumption 1 holds and F̂ (w). Let R := maxw∈∆b
K
∥θ̂(w)∥ and

γ0 :=min

{
3

80ℓ1
,

1

ℓ1
√

5e(τ − 1)[6(τ − 1) + 8 + 16/(1− q)]
,
q

4µ

}
. (17)
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Algorithm 2: Federated Learning Method for Bilevel Optimization (P̂)

1 Input: initial weight w(0), learning rate η, training data Dtrain
k for k ∈ K, validation data Dvalid,

the number of outer iterations S, parameters (γ, τ, q) for Local-SVRG, and the number of
inner iterations Ts for s = 0, . . . , S − 1

2 Set w(0)
ag = w(0)

3 for s = 0, 1, . . . , S − 1 do
4 w

(s)
md = 2

s+2w
(s) + s

s+2w
(s)
ag

5 Compute ∇̄F̂ (w
(s)
md ) as follows:

6 Set fk,i(θ) = l(θ; z
(i)
k ), i = 1, . . . , nk, k = 1, . . . ,K

7 Compute θ(s) = Local-SVRG({fk,i}, w(s)
md , θ

(s−1), γ, τ, q, Ts) and send it to each
node.

8 Compute ∇L̂0(θ
(s)) at center and send it to each node.

9 Set fk,i(h) = 1
2h

⊤∇2l(θ(s); z
(i)
k )h− h⊤∇L̂0(θ

(s)), i = 1, . . . , nk, k = 1, . . . ,K

10 Compute h(s) = Local-SVRG({fk,i}, w(s)
md ,∇L̂0(θ

(s)), γ, τ, q, Ts) and send it to
each node.

11 Each node computes ∇L̂k(θ
(s)) in parallel and send it to the center.

12 Set ∇̄kF̂ (w
(s)
md ) = −∇L̂k(θ

(s))⊤h(s) for k = 1, . . . ,K

13 w(s+1) = argminw∈∆b
K

〈
∇̄F̂ (w

(s)
md ), w

〉
+ 2

η(s+1)∥w − w(s)∥2

14 w
(s+1)
ag = argminw∈∆b

K

〈
∇̄F̂ (w

(s)
md ), w

〉
+ 1

2η∥w − w
(s)
md ∥2

15 end
16 Return: w(S)

ag

Suppose η = 1
3ℓF

in Algorithm 2 with ℓF defined as in (12). There exist constants A1, A2 and A3

that only depend on ℓ0, ℓ1, ℓ2, µ, R, q and K but not on τ such that the following statements hold.

• Suppose τ = 1, γ = γ0 and Ts = 1
γ0µ

ln
(

A1(s+1)4

γ0

)
. Algorithm 2 finds an ϵ-optimal solution of

(P̂) with Õ
(
ϵ−0.5

)
rounds of communication.

• Suppose τ > 1, γ = 1
Ms

and Ts = µ−1Ms ln
(
M3

s

)
, where

Ms = max
{
1/γ0, (s+ 1)2

√
[A1 +A2(τ − 1) +A3(τ − 1)2]

}
, s = 0, 1, . . . . (18)

Algorithm 2 finds an ϵ-optimal solution of (P̂) with Õ
(
ϵ−1.5

)
rounds of communication.

When F̂ in (P̂) is non-convex, we aim at finding an ϵ-stationary point of (P̂). Following Ghadimi
& Wang (2018), we apply a standard proximal gradient method to (P̂) based on the approximate
gradient ∇̄F̂ (w) in (14). This method and its analysis are standard and we include them in Sec-
tion F.3 due to the limit of space. In Remark 1 in Section F.3, we also show that the complexity of
our method is lower than those of Li et al. (2022) and Tarzanagh et al. (2022).

5 NUMERICAL EXPERIMENT

In this section, we demonstrate the performance of our methods on image classification tasks. We
compare our method, denoted by Bi-level, against four baselines, including (1) Local-train, which
solves minθ∈Θ L̂0(θ) locally; (2) FedAvg (McMahan et al., 2017), which solves (1) with wk =
1/K; (3) Ditto (Li et al., 2021); and (4) pFedMe (T Dinh et al., 2020). Ditto and pFedMe are
two personalized FL methods. We apply all methods to train a convolutional neural network (CNN)
on multiple image datasets: Fashion-MNIST (Xiao et al., 2017), MNIST (Deng, 2012), CIFAR-
10 (Krizhevsky et al., 2009) and downsampled 32 × 32 ImageNet (Chrabaszcz et al., 2017). We
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Figure 1: Comparison in test accuracy for the minority group vs number of synchronizations.

denote Fashion-MNIST and downsampled ImageNet by F-MNist and DS-ImageNet, respectively.
See Appendix G for more details on the CNN and the computing environment we use.

We use a mini batch of size 50 to construct the stochastic gradients in all methods. In the Bi-level
method, Algorithm 3 is applied to (P̂) with b = 1/3 and five epochs are performed within each call
of Local-SVRG (i.e., Ts = 5ntrain/50). We set q = 1/50, choose γ from {0.05, 0.02, 0.01} when
solving (1) and from {0.0005, 0.0002, 0.0001} when solving (15), choose τ from {10, 20}, and η
from {0.025, 0.02, 0.015}. We choose the combination that produces the highest validation accuracy
after five outer iterations. SVRG is applied to minθ∈Θ L̂0(θ) in Local-train and Local-SVRG is
applied to (1) with wk = 1/K in FedAvg. Parameters τ , q, and η in FedAvg and Local-train are set
the same as in our method. Ditto is implemented by setting St = K, r = τ , s = 25 and ηg = ηl = γ
in Algorithm 2 in Li et al. (2021), where τ and γ are set the same as in our method. Similar to Li
et al. (2021), we choose λ in Ditto from {0.05, 0.1, 0.2} to maximize the validation accuracy after
five outer iterations. pFedMe is implemented by setting β = 1, δ = 0.005, R = τ and η = γ in
Algorithm 1 in T Dinh et al. (2020) with τ and γ set the same as in our method. Each subproblem
in pFedMe is solved by gradient descend with a maximum iterations of 20. Like Li et al. (2021), we
choose λ in pFedMe from {5, 10, 15} to maximize the validation accuracy after five outer iterations.

We set K = {1, . . . , 15} (i.e., K = 15) and partition it into two groups, a minority group Jm =
{1, . . . , 5} and a majority group JM = {6, . . . , 15}. We then generate Dtrain

k for k ∈ K by randomly
sampling data from the training sets with some artificial distributions, such that the data distributions
(i.e., pk’s) are the same within each group but different between groups. In particular, we create the
data distributions of Jm and JM under four different settings. In Setting 1, we create two different
distributions over the classes and use them to sample Dtrain

k with k ∈ Jm and k ∈ JM , respectively.
In Setting 2, Setting 3 and Setting 4, we first sample data in the same way as Setting 1 and,
additionally, we permute the class labels among a few classes in Dtrain

k with k ∈ JM under Setting
2, rotate each image in Dtrain

k with k ∈ JM by 90 degrees in the same but random direction under
Setting 3, and do both under Setting 4. This creates nodes with different levels of heterogeneity.

To compare the performances of the methods on both groups, we conduct two sets of experiments
under each setting, one with p0 being the distribution of Jm (i.e., J = Jm) and the other with
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Figure 2: How w evolves during the Bi-level method under Setting 1.

p0 being the distribution of JM (i.e., J = JM ). Dvalid is then sampled from p0. For out-of-
sample evaluation, we generate testing data by sampling from the testing set of each dataset using
distribution p0 described above under each setting. We denote the testing set by Dtest and let ntest =
|Dtest|. We repeat all experiments five times using different random seeds. The values of nvalid, ntrain,
ntest and the details of data generation are presented in Sections G.1, G.2 and G.3.

We plot the test (top-1) accuracy each method obtains during iterations for the minority group in
Figure 1, where the horizontal axis represents the number of synchronizations, i.e., the rounds of
communications the method performs. Since Local-train does not require any communication, we
just plot a horizontal line positioned at its final accuracy. Due to space limit, we present the accuracy
for the majority group in Figure 7 in Section G.4. We also report the same results in Figure 8 and
Figure 9 but the horizontal axis there represents the cumulative number of data points each method
processes in parallel. In each figure, we show the confidence intervals of the curves as shaded areas.

According to Figure 1, our Bi-level method performs better than the four benchmarks on the minority
group on all datasets under all settings. Local-train does not perform well because it only gets access
to a small amount of data. The poor performance of FedAvg is because of the heterogeneity we
created across nodes. In fact, FedAvg is even worse than Local-train in many cases, especially in
Settings 2, 3 and 4 where the heterogeneity is high. This is consistent with the findings in literature.
Although Ditto and pFedMe are designed for heterogeneous nodes, they still use a fixed weight on
each node to train a global model, which may not provide a good starting point for personalization
due to the high heterogeneity. In fact, their performances drop more or less as the data heterogeneity
increases from Setting 1 to Settings 2, 3 and 4. On the contrary, by updating the weights, our method
filters the information in the network and help the node in the minority group to find its similar peers
and produce a good model through intra-group collaboration. Comparing Figure 1 with Figure 7,
we find that the performances of FedAvg, Ditto and pFedMe are improved on the majority group.
This is again because they utilize the information aggregated from all nodes, which is in favor of the
majority. However, our method perform similarly on both groups and is still overall the best for the
majority group. Similar phenomena are found in Figure 8 and Figure 9.

In addition, we also plot in Figure 2 how the weight wk for each node evolves during the Bi-level
method under Setting 1. We show the results when p0 is the distribution of the majority and the
minority groups separately. In each case, we call the nodes in J similar nodes (to node 0) and call
the others dissimilar nodes. According to Figure 2, our method successfully detects similar nodes in
both cases and increases their weights but decreases the weights of dissimilar nodes. We present the
weights under Settings 2, 3 and 4 in Section G.4. Similar phenomenons are observed.

6 CONCLUSION

We propose a FL approach on a network with weighted nodes and develop a federated bilevel op-
timization algorithm to optimize the weights based on the model’s performance on a validation set.
We analyze the generalization performance of the resulting model and identify the scenarios where
our method theoretically outperforms training with local data and FL with even weights.
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A SUMMARY OF NOTATIONS

Symbol Definition

Z Sample space
p0 An unknown ground truth distribution on Z

Dvalid Validation set i.i.d. sampled from p0 and stored in node 0 (or called center)
n0 Size of validation set also denoted by nvalid
K Set of nodes defined by {1, . . . ,K}
J A strict subset of K
J Size of J
pk The distribution on Z in node k, k = 1, . . . ,K

Dtrain
k Training set i.i.d. sampled from pk and stored in node k, k = 1, . . . ,K
nk Size of training set Dtrain

k

w Vector of weights defined by (w1, . . . , wK) ∈ [0, 1]K

b A user-defined parameter in [ 1K , 1]
∆b

K Capped simplex where w comes from
θ Vector of model parameters
Θ Set where θ comes from

l(θ; z) Loss of θ on a data point z from the space Z
L̂0(θ) Empirical loss of θ on Dvalid

L̂k(θ) Empirical loss of θ on Dtrain
k , k = 1, . . . ,K

L0(θ) Generalization loss of θ on p0
Lk(θ) Generalization loss of θ on pk, k = 1, . . . ,K
ℓ1 Lipschitz constant of l(θ; z) ∈ [0, 1] and ∇l(θ; z) in θ for any z ∈ Z
ℓ0 Lipschitz constant of all L̂k(θ) for k ∈ K
ℓ2 Lipschitz constant of all ∇2L̂k(θ) for k ∈ K
µ parameter of strong convexity of L̂k(θ) for k ∈ K
G Statistical distance between p0 and pk’s defined in (9)

F̂ (w) The objective in the bilevel optimization problem (P̂)
F (w) The objective in the auxiliary problem (P∗)
θ̂(w) Optimal solution of FL on weighted nodes formulated in (1)
θ∗ Optimal solution of the learning problem (P)
W∗ Optimal solution set of the auxiliary problem (P∗)
ŵ Optimal solution of the bilevel optimization problem (P̂)
γ Learning rate
τ Communication period
q Probability of updating reference point in the Local-SVRG method
S Number of stages
Ts Number of iterations for stage s ∈ {0, 1, . . . , S − 1}

Table 1: Notations used throughout the paper.

B EXAMPLES SATISFYING ASSUMPTION 3

We consider (P∗) in the setting of linear regression. Consider data z = (x, y), where x ∈ Rd is a
feature vector and y ∈ R is a continuous target variable, and consider the quadratic loss l(θ; z) =
1
2 (x

⊤θ − y)2. We assume x in all nodes, including node 0 (center) and the nodes in K, follows the
same distribution, and matrix E

[
xx⊤] is non-singular. Moreover, we assume that there is a vector

θ∗k ∈ Rd associated to node k, and y in node k is generated as y = x⊤θ∗k + ϵk for k = 0, 1, . . . ,K,
where ϵk is a zero-mean random noise indepedent of x. In this problem, we have

Lk(θ) =
1
2E
[
(x⊤θ− y)2

]
= 1

2E
[
(x⊤θ− x⊤θ∗k − ϵk)

2
]
= 1

2 (θ− θ∗k)
⊤E
[
xx⊤](θ− θ∗k) +

1
2E
[
ϵ2k
]
.

We can easily show that θ(w) in (P∗) has the closed form θ(w) =
∑K

k=1 wkθ
∗
k, which means

F (w) = L0(θ(w)) =
1
2 (
∑K

k=1 wkθ
∗
k − θ∗0)

⊤E
[
xx⊤](∑K

k=1 wkθ
∗
k − θ∗0) +

1
2E
[
ϵ20
]
.
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This is a quadratic function of w over the polyhedral set ∆b
K and thus satisfies the error bound

condition (5) with r = 2 according to Lemma 1 in Gong & Ye (2014).

C TECHNICAL LEMMAS

In this section, we provide some technical lemmas with proofs which are necessary for establishing
the main theorems. The main steps in the proofs of Lemma 2 and 3 are borrowed from Chen
et al. (2021a). However, the generalization bound in Theorem 3.1 in Chen et al. (2021a) is for a
w satisfying β−1 ≤ wk/wj ≤ β with k ̸= j for some β > 0, and their bound increases with β.
When applied to w = ŵ with zero or nearly zero components (that happens when pk = p0 for some
k), such a β is very large or equals infinity. Therefore, we make necessary changes in the proofs
to extend the results for a generic w and a w that is ε-away from W∗ (see Lemma 3) where the
components can be nearly zero. These extensions are important for proofing our main theorems.
Lemma 2. Suppose Assumptions 1 and 4 hold. There exists a universal constant C0 > 0 such that,
with a probability of at least 1− δ,

sup
θ∈Θ

∣∣∣L0(θ)− L̂0(θ)
∣∣∣ ≤ C0

√
νH + log(1/δ)

nvalid
.

Proof. For simplicity of notation, we write nvalid as n in this proof. Let

Gvalid(D
valid) := sup

θ∈Θ

[
L0(θ)− L̂0(θ)

]
and G′

valid(D
valid) := sup

θ∈Θ

[
L̂0(θ)− L0(θ)

]
.

Consider any i ∈ {1, 2, . . . , n}. Let Dvalid
i be the same as Dvalid except that z(i) is replaced by

another data point z′(i) sampled from p0. Recall (3). We have∣∣∣Gvalid(D
valid)−Gvalid(D

valid
i )

∣∣∣
=

∣∣∣∣ sup
θ∈Θ

[
L0(θ)− L̂0(θ)

]
− sup

θ∈Θ

[
L0(θ)− L̂0(θ) +

1

n

(
l(θ; z(i))− l(θ; z′(i))

)]∣∣∣∣ ≤ 1

n
,

where the inequality is because the loss is in [0, 1] (Assumption 1). This inequality means we can
apply the McDiarmid’s inequality to obtain that, for any ϵ > 0,

P
(
Gvalid(D

valid) ≥ E[Gvalid(D
valid)] + ϵ

)
≤ exp(−2ϵ2n),

or equivalently, with a probability of at least 1− δ,

Gvalid(D
valid) ≤ E[Gvalid(D

valid)] +

√
log(1/δ)

2n
.

Next, we apply the standard symmetrization argument by introducing a ghost dataset

Dvalid
ghost :=

{
z′(i)

}n

i=1
,

which is independent of Dvalid and sampled from p0. Let {σi}ni=1 be Rademacher random variables.
We have

E[Gvalid(D
valid)] =E

[
sup
θ∈Θ

[
L0(θ)− L̂0(θ)

] ]
= E

[
sup
θ∈Θ

[
E
[
L
(
θ;Dvalid

ghost

)]
− L(θ;Dvalid)

]]

≤E

[
sup
θ∈Θ

[
L(θ;Dvalid

ghost)− L(θ;Dvalid)
]]

= E

[
sup
θ∈Θ

1

n

n∑
i=1

σi

(
l
(
θ; z′(i)

)
− l
(
θ; z(i)

))]

≤2E

[
sup
θ∈Θ

1

n

n∑
i=1

σil
(
θ; z(i)

)]
= 2ER̂n(H),

where R̂n(H) = E

[
sup
θ∈Θ

1
n

∑n
i=1 σil

(
θ; z(i)

)∣∣∣∣Dvalid

]
and H = {l(θ; ·) : θ ∈ Θ}.
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Let Mθ := 1√
n

∑n
i=1 σil

(
θ; z(i)

)
for θ ∈ Θ. By Hoeffding’s Lemma, we have for any θ, θ′ ∈ Θ,

E
[
exp

(
λ(Mθ −Mθ′)

)∣∣∣Dvalid
]

=

n∏
i=1

E

[
exp

(
λ√
n
σi

(
l
(
θ; z(i)

)
− l
(
θ′; z(i)

)))∣∣∣∣∣Dvalid

]

≤
n∏

i=1

exp

(
λ2

2n

(
l
(
θ; z(i)

)
− l
(
θ′; z(i)

))2)
= exp

(
λ2

2
d2(θ, θ′)

)
,

where

d(θ, θ′) =

√√√√ n∑
i=1

1

n

(
l
(
θ; z(i)

)
− l
(
θ′; z(i)

))2
≤ 1

is the L2-distance between mappings l(θ; ·) and l(θ′; ·) with respect to the empirical distribution over
Dvalid and is a pseudometric in H. Hence, by Dudley’s entropy integral inequality (see Corollary
13.2 in Boucheron et al. (2013)), there exists a universal constant Cd such that

R̂n(H) =
1√
n
E
[
sup
θ∈Θ

Mθ

∣∣∣∣Dvalid
]
≤ Cd√

n

∫ 1

0

√
log (N (H;d; ϵ))dϵ

According to Assumption 4, we have

E[Gtrain] ≤ 2R̂n(H) ≤ 2Cd√
n

∫ 1

0

√
νH log

(
CH

ϵ

)
dϵ

Hence, with a probability of at least 1− δ,

Gvalid(D
valid) ≤ 2Cd√

n

∫ 1

0

√
νH log

(
CH

ϵ

)
dϵ+

√
log(1/δ)

2n
.

Applying the same argument to G′
valid(D

valid), we can show that, with a probability of at least 1− δ

G′
valid(D

valid) ≤ 2Cd√
n

∫ 1

0

√
νH log

(
CH

ϵ

)
dϵ+

√
log(1/δ)

2n
.

By a union bound, we have, with a probability of at least 1− δ

sup
θ∈Θ

∣∣∣L0(θ)− L̂0(θ)
∣∣∣ ≤ 2Cd√

n

∫ 1

0

√
νH log

(
CH

ϵ

)
dϵ+

√
log(2/δ)

2n
,

which completes the proof.

Given ε > 0, we define

W∗
ε :=

{
w ∈ ∆b

K

∣∣Dist(w,W∗) ≤ ε
}

(19)

Nε :=
ntrain

b2J + ε2(K − J)
. (20)

Lemma 3. Suppose Assumptions 1,2 and 4 hold. There exists a universal constant Ca > 0 such
that, with a probability of at least 1− δ,

sup
θ∈Θ,w∈∆b

K

∣∣∣∣∣
K∑

k=1

wk

[
L̂k(θ)− Lk(θ)

]∣∣∣∣∣ ≤ Ca

√
νH +K + log(1/δ)

ntrain/(Kb2)
. (21)

Suppose Assumptions 1, 2′, 3 and 4 hold. There exists a universal constant C ′
a > 0 such that, with

a probability of at least 1− δ,

sup
θ∈Θ,w∈W∗

ε

∣∣∣∣∣
K∑

k=1

wk

[
L̂k(θ)− Lk(θ)

]∣∣∣∣∣ ≤ C ′
a

√νH + J + log(1/δ)

Nε
+

ε(K − J)

b
√
Nε

 . (22)
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Proof. We prove (22) first. Suppose Assumptions 1, 2′, 3 and 4 hold. By Assumptions 2′, we have
w∗

j = 0 for w ∈ W∗ and j ∈ K\J , which means wj ≤
√∑

k∈K\J w2
k ≤ Dist(w,W∗) ≤ ε for

any w ∈ W∗
ε and j ∈ K\J .

Let

Gtrain(D
train) := sup

θ∈Θ,w∈W∗
ε

{
K∑

k=1

wk

[
Lk(θ)− L̂k(θ)

]}
(23)

G′
train(D

train) := sup
θ∈Θ,w∈W∗

ε

{
K∑

k=1

wk

[
L̂k(θ)− Lk(θ)

]}
. (24)

Consider an index j ∈ {1, 2, . . . ,K} and i ∈ {1, 2, . . . , nj}. Let Dtrain
j,i be the same as Dtrain except

that z(i)j is replaced by another data point z′(i)j sampled from pj . Recall (2). We have∣∣∣Gtrain(D
train)−Gtrain(D

train
j,i )

∣∣∣
=

∣∣∣∣∣ sup
θ∈Θ,w∈W∗

ε

{
K∑

k=1

wk

[
Lk(θ)− L̂k(θ)

]}

− sup
θ∈Θ,w∈W∗

ε

{
K∑

k=1

wk

[
Lk(θ)− L̂k(θ)

]
+

wj

nj

(
l
(
θ; z

(i)
j

)
− l
(
θ; z

′(i)
j

))}∣∣∣∣∣
≤ wj

nj
≤

{
b
nj

j ∈ J
ε
nj

j ∈ K\J .
(25)

With this inequality, we can apply the McDiarmid’s inequality to show that, for any ϵ > 0,

P
(
Gtrain(D

train) ≥ E[Gtrain(D
train)] + ϵ

)
≤ exp

(
−2ϵ2ntrain

b2J + ε2(K − J)

)
,

which implies that, with a probability of at least 1− δ,

Gtrain(D
train) ≤ E[Gtrain(D

train)] +

√
log(1/δ)

Nε
. (26)

Next, we apply the standard symmetrization strategy by introducing a ghost dataset Dtrain
ghost :={

Dtrain
k,ghost

}K

k=1
where

Dtrain
k,ghost :=

{
z
′(i)
k

}nk

i=1
for k = 1, . . . ,K

is a dataset independent of Dtrain
k sampled from pk. Let {σk,i}nk

i=1 for k = 1, . . . ,K be Rademacher
random variables. We have

E[Gtrain(D
train)] = E

[
sup

θ∈Θ,w∈W∗
ε

{
K∑

k=1

wk

[
Lk(θ)− L̂k(θ)

]}]

= E

[
sup

θ∈Θ,w∈W∗
ε

{
K∑

k=1

wk

(
E
[
Lk(θ;D

train
k,ghost)

]
− L̂k(θ)

)}]

≤ E

[
sup

θ∈Θ,w∈W∗
ε

{
K∑

k=1

wk

(
Lk(θ;D

train
k,ghost)− L̂k(θ)

)}]

= E

[
sup

θ∈Θ,w∈W∗
ε

K∑
k=1

nk∑
i=1

σk,iwk

nk

(
l(θ; z

′(i)
k )− l(θ; z

(i)
k )
)]

≤ 2E

[
sup

θ∈Θ,w∈W∗
ε

K∑
k=1

nk∑
i=1

σk,iwk

nk
l(θ; z

(i)
k )

]
= 2ER̂ntrain(H,W∗

ε ), (27)
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where R̂ntrain(H,W∗
ε ) := E

[
sup

θ∈Θ,w∈W∗
ε

K∑
k=1

nk∑
i=1

σk,iwk

nk
l
(
θ; z

(i)
k

)∣∣Dtrain
]

and H =
{
l(θ; ·) : θ ∈ Θ

}
.

Let Mθ,w :=
√
Nε

K∑
k=1

nk∑
i=1

σk,iwk

nk
l(θ; z

(i)
k ) for θ ∈ Θ and w ∈ W∗

ε . Hence, by Hoeffding’s Lemma,

we have

E
[
exp

(
λ(Mθ,w −Mθ′,w′)

)∣∣∣Dtrain
]

=

K∏
k=1

nk∏
i=1

E

[
exp

(
λ
√
Nε

σk,i

nk

(
wkl
(
θ; z

(i)
k

)
− w′

kl
(
θ′; z

(i)
k

)))∣∣∣∣∣Dtrain

]

≤
K∏

k=1

nk∏
i=1

exp

(
λ2Nε

2n2
k

(
wkl
(
θ; z

(i)
k

)
− w′

kl
(
θ′; z

(i)
k

))2)
= exp

(
λ2

2
d2(θ, w, θ′, w′)

)
, (28)

where

d(θ, w, θ′, w′) =

√√√√ K∑
k=1

nk∑
i=1

Nε

n2
k

(
wkl
(
θ; z

(i)
k

)
− w′

kl
(
θ′; z

(i)
k

))2
≤

√√√√∑
k∈J

Nεb2

ntrain
+

∑
k∈K\J

Nεε2

ntrain
= 1

is a pseudo distance metric between (l(θ; ·), w) and (l(θ′; ·), w′) in H × W∗
ε . Hence, by Dudley’s

entropy integral inequality (see Corollary 13.2 in Boucheron et al. (2013)), there exists a universal
constant Cd such that

R̂ntrain(H,W∗
ε ) =

1√
Nε

E

[
sup

θ∈Θ,w∈W∗
ε

Mθ,w

∣∣∣∣Dtrain

]
≤ Cd√

Nε

∫ 1

0

√
log (N (H×W∗

ε ;d; ϵ))dϵ,

where N (H×W∗
ε ;d; ϵ) is the ϵ-covering number of H×W∗

ε w.r.t. d.

We next need to bound N (H×W∗
ε ;d; ϵ). Note that

d2(θ, w, θ′, w′)

=

K∑
k=1

nk∑
i=1

Nε

n2
k

(
wkl
(
θ; z

(i)
k

)
− w′

kl
(
θ′; z

(i)
k

))2
≤

K∑
k=1

nk∑
i=1

2Nε

n2
k

w2
k

(
l
(
θ; z

(i)
k

)
− l
(
θ′; z

(i)
k

))2
+

K∑
k=1

nk∑
i=1

2Nε

n2
k

(wk − w′
k)

2l2
(
θ′; z

(i)
k

)
≤
∑
k∈J

nk∑
i=1

2Nε

n2
k

b2
(
l
(
θ; z

(i)
k

)
− l
(
θ′; z

(i)
k

))2
+

∑
k∈K\J

nk∑
i=1

2Nε

n2
k

ε2
(
l
(
θ; z

(i)
k

)
− l
(
θ′; z

(i)
k

))2
+

K∑
k=1

nk∑
i=1

2Nε

n2
k

(wk − w′
k)

2

≤ 2Nε

ntrain

∑
k∈J

ntrain∑
i=1

b2

ntrain

(
l
(
θ; z

(i)
k

)
− l
(
θ′; z

(i)
k

))2
+

∑
k∈K\J

ntrain∑
i=1

ε2

ntrain

(
l
(
θ; z

(i)
k

)
− l
(
θ′; z

(i)
k

))2
+

2Nε

ntrain
∥w − w′∥2. (29)

We then define a probability measure

Q =
Nε

ntrain

∑
k∈J

ntrain∑
i=1

b2

ntrain
δ
z
(i)
k

+
∑

k∈K\J

ntrain∑
i=1

ε2

ntrain
δ
z
(i)
k

 (30)
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on Z , where δ
z
(i)
k

is a point mass at z
(i)
k . Then, we can construct an ϵ-cover for H × W∗

ε

w.r.t. d by taking the Cartesian product of an ϵ
2 -cover for H w.r.t. distance metric ρQ(l, l

′) =√∫
Z(l(z)− l′(z))2dQ(z) for l, l′ ∈ H and a

√
ntrain
Nε

ϵ
2 -cover for W∗

ε w.r.t. the Euclidean dis-

tance. According to Assumption 4, the former has a cardinality of (2CH/ϵ)νH . To construct the
latter, we create a

√
ntrain

(J+1)Nε

ϵ
2 -cover for [0, b] corresponding to a coordinate in J and create a√

ntrain
(K−J)(J+1)Nε

ϵ
2 -cover for [0, ε] corresponding to a coordinate in K\J . (Recall that wj ≤ ε for

j ∈ K\J .) Then we take the Cartesian product of these K one-dimensional covers and project it to
W∗

ε . This provides a
√

ntrain
Nε

ϵ
2 -cover for W∗

ε with a cardinality of(⌈
b
√

(J + 1)Nε√
ntrainϵ

⌉)J (⌈
ε
√

(K − J)(J + 1)Nε√
ntrainϵ

⌉)K−J

≤
(
2

ϵ

)J (⌈
2ε
√
K − J

bϵ

⌉)K−J

, (31)

where the inequality is because Nε ≤ ntrain
b2J by the definition of Nε. This implies

E[Gtrain(D
train)] ≤ 2R̂ntrain(H,W∗

ε ) ≤
2Cd√
Nε

∫ 1

0

√
logN (H×W∗

ε ;d; ϵ)dϵ

=O

 1√
Nε

∫ 1

0

√
(νH + J) log

(
1

ϵ

)
+ (K − J) log

(⌈
2ε
√
K − J

bϵ

⌉)
dϵ


=O

(√
νH + J

Nε

)
+O

(√
K − J

Nε

2ε
√
K − J

b

)
= O

(√
νH + J

Nε

)
+O

(
ε(K − J)

b
√
Nε

)
, (32)

where the first equality is because

N (H×W∗
ε ;d; ϵ) ≤

(
2CH

ϵ

)νH

×
(
2

ϵ

)J (⌈
2ε
√
K − J

bϵ

⌉)K−J

according to Assumption 4 and (31) and the second equality is by changing variable ϵ to bϵ
2ε

√
K−J

in the integral and the fact that
⌈
1
ϵ

⌉
= 0 when ϵ > 1.

Combining (32) with (26), we have that, with a probability of at least 1− δ,

Gtrain(D
train) ≤ O

√νH + J + log(1/δ)

Nε

+O

(
ε(K − J)

b
√
Nε

)
.

Applying the same argument to G′
valid(D

valid), we can show that the same inequality as above holds
for G′

train(D
train) with a probability of at least 1− δ. By a union bound, we have, with a probability

of at least 1− δ

sup
θ∈Θ,w∈W∗

ε

∣∣∣∣∣
K∑

k=1

wk

[
L̂k(θ)− Lk(θ)

]∣∣∣∣∣ ≤ O

√νH + J + log(1/δ)

Nε

+O

(
ε(K − J)

b
√
Nε

)
,

which completes the proof (22).

Next we prove (21). Since the proof is similar to (22), we will mainly elaborate the parts that are
different. Suppose Assumptions 1,2 and 4 hold. We define Gtrain(D

train) and G′
train(D

train) the same
as in (23) and (24) except that W∗

ε is replaced by the entire domain ∆b
K . Following the same proof

of (25), we have∣∣∣Gtrain(D
train)−Gtrain(D

train
j,i )

∣∣∣ ≤ wj

nj
≤ b

nj
for all i ∈ {1, 2, . . . , nj} and j ∈ K.

Then the McDiarmid’s inequality implies that, with a probability of at least 1− δ,

Gtrain(D
train) ≤ E[Gtrain(D

train)] +

√
Kb2 log(1/δ)

2ntrain
. (33)
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By replacing W∗
ε with ∆b

K in the proof of (27), we can show that

E[Gtrain(D
train)] ≤ 2ER̂ntrain(H,∆b

K)

where R̂ntrain(H,∆b
K) := E

[
sup

θ∈Θ,w∈∆b
K

K∑
k=1

nk∑
i=1

σk,iwk

nk
l(θ; z

(i)
k )

∣∣∣∣Dtrain

]
.

Let Nb defined as (20) with ε replaced by b, i.e., Nb = ntrain/(Kb2). Let Mθ,w :=
√
Nb

K∑
k=1

nk∑
i=1

σk,iwk

nk
l(θ; z

(i)
k ) for θ ∈ Θ and w ∈ ∆b

K . With J replaced by ∅ and Nb replaced

by Nε in the proof of (28), we have

E
[
exp

(
λ(Mθ,w −Mθ′,w′)

)∣∣Dtrain] = exp

(
λ2

2
d2(θ, w, θ′, w′)

)
,

where

d(θ, w, θ′, w′) =

√√√√ K∑
k=1

nk∑
i=1

Nb

n2
k

(
wkl
(
θ; z

(i)
k

)
− w′

kl
(
θ′; z

(i)
k

))2
≤
√∑

k∈K

Nbb2

ntrain
= 1

is a pseudo distance metric between (l(θ; ·), w) and (l(θ′; ·), w′) in H × ∆b
K . Hence, by Dudley’s

entropy integral inequality (see Corollary 13.2 in Boucheron et al. (2013)), there exists a universal
constant Cd such that

R̂ntrain(H,∆b
K) =

1√
Nb

E

[
sup

θ∈Θ,w∈∆b
K

Mθ,w

∣∣∣∣Dtrain

]
≤ Cd√

Nb

∫ 1

0

√
log
(
N (H×∆b

K ;d; ϵ)
)
dϵ,

where N (H×∆b
K ;d; ϵ) is the ϵ-covering number of H×∆b

K w.r.t. d.

Next, we just need to bound N (H×W∗
ε ;d; ϵ). Similar to (29), we can show that

d2(θ, w, θ′, w′) ≤ 2Nb

ntrain

(∑
k∈K

ntrain∑
i=1

b2

ntrain

(
l
(
θ; z

(i)
k

)
− l
(
θ′; z

(i)
k

))2)
+

2Nb

ntrain
∥w − w′∥2.

Similar to (30), we define a probability measure Q = Nb

ntrain

∑
k∈K

ntrain∑
i=1

b2

ntrain
δ
z
(i)
k

on Z , where δ
z
(i)
k

is a point mass at z(i)k . Then, we only need to construct an ϵ-cover for H × ∆b
K by taking the

Cartesian product of an ϵ
2 -cover for H w.r.t. distance metric ρQ and a

√
ntrain
Nb

ϵ
2 -cover for ∆b

K w.r.t.

the Euclidean distance. According to Assumption 4, the former has a cardinality of (2CH/ϵ)νH .
To construct a

√
ntrain
Nb

ϵ
2 -cover for ∆b

K , we first construct a
√

ntrain
KNb

ϵ
2 -cover for [0, b], take its K-fold

Cartesian product, and project it to ∆b
K . This provides a

√
ntrain
Nb

ϵ
2 -cover for ∆b

K with a cardinality

of
⌈
b
√
KNb√
ntrainϵ

⌉K
=
⌈
1
ϵ

⌉K
. This implies N (H×∆b

K ;d; ϵ) ≤
(
2CH
ϵ

)νH ×
⌈
1
ϵ

⌉K
and thus

E[Gtrain(D
train)] ≤ 2R̂ntrain(H,∆b

K) ≤ 2Cd√
Nb

∫ 1

0

√
logN (H×∆b

K ;d; ϵ)dϵ

=O

(
1√
Nb

∫ 1

0

√
νH log

(
1

ϵ

)
+K log

(⌈
1

ϵ

⌉)
dϵ

)
= O

(√
νH +K

Nb

)
. (34)

Combining (34) with (33), we have that, with a probability of at least 1− δ,

Gtrain(D
train) ≤O

√νH +K + log(1/δ)

Nb

 .
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Applying the same argument to G′
valid(D

valid), we can show that the same inequality as above holds
for G′

train(D
train) with a probability of at least 1 − δ. By taking a union bound, we have that, with a

probability of at least 1− δ,

sup
θ∈Θ,w∈∆b

K

∣∣∣∣∣
K∑

k=1

wk

[
L̂k(θ)− Lk(θ)

]∣∣∣∣∣ ≤ O

√νH +K + log(1/δ)

Nb

 ,

which completes the proof of (21) as Nb = ntrain/(Kb2).

D PROOFS OF MAIN THEOREMS AND COROLLARIES

In this section, we provide the proofs of Theorem 1, Theorem 2 and Corollary 1.

Proof of Theorem 1. By the strong convexity of the loss function and the optimality of θ(w) and
θ̂(w) in the inner problems in (P∗) and (P̂), we have, for any w ∈ ∆b

K ,

µ

2

∥∥∥θ(w)− θ̂(w)
∥∥∥2 ≤

K∑
k=1

wkLk(θ̂(w))−
K∑

k=1

wkLk(θ(w)) (35)

µ

2

∥∥∥θ(w)− θ̂(w)
∥∥∥2 ≤

K∑
k=1

wkL̂k(θ(w))−
K∑

k=1

wkL̂k(θ̂(w)). (36)

Adding (35) and (36) on both sides leads to, with a probability of at least 1− δ,

µ
∥∥∥θ(w)− θ̂(w)

∥∥∥2
≤

K∑
k=1

wkLk(θ̂(w))−
K∑

k=1

wkL̂k(θ̂(w)) +

K∑
k=1

wkL̂k(θ(w))−
K∑

k=1

wkLk(θ(w))

≤ 2Ca

√
νH +K + log(1/δ)

ntrain/(Kb2)
, ∀w ∈ ∆b

K , (37)

where the second inequality is because the first conclusion in Lemma 3.

Let w∗ = ProjW∗(ŵ). Then we have, with a probability of 1− 2δ, that
F (ŵ)− min

w∈∆b
K

F (w) =L0(θ(ŵ))− L0(θ(w
∗))

≤L0(θ̂(ŵ))− L0(θ̂(w
∗)) + ℓ0∥θ̂(ŵ)− θ(ŵ)∥+ ℓ0∥θ̂(w∗)− θ(w∗)∥

≤L̂0(θ̂(ŵ))− L̂0(θ̂(w
∗)) + 2C0

√
νH + log(1/δ)

nvalid

+ ℓ0∥θ̂(ŵ)− θ(ŵ)∥+ ℓ0∥θ̂(w∗)− θ(w∗)∥

≤2C0

√
νH + log(1/δ)

nvalid
+ 2ℓ0

√
2Ca

µ

(
νH +K + log(1/δ)

ntrain/(Kb2)

) 1
4

, (38)

where the first inequality is because of Assumption 1, the second is due to Lemma 2, and the last is
due to (37) and the optimality of ŵ for problem (P̂). Therefore, we can show that, with a probability
of 1− 2δ,

L0(θ̂(ŵ))− L0(θ
∗) =L0(θ̂(ŵ))− L0(θ(ŵ)) + L0(θ(ŵ))− L0(θ(w

∗))

≤ℓ0∥θ̂(ŵ)− θ(ŵ)∥+ L0(θ(ŵ))− L0(θ(w
∗))

≤2C0

√
νH + log(1/δ)

nvalid
+ 3ℓ0

√
2Ca

µ

(
νH +K + log(1/δ)

ntrain/(Kb2)

) 1
4

where the equality is because of Assumption 2, the first inequality is by Assumption 1 and the second
by (37) and (38). This completes the proof.
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Proof of Theorem 2. Since Assumption 2′ implies Assumption 2, the proof and the conclusion of
Theorem 1 also hold under the assumptions of Theorem 2. In particular, inequality (38) holds with
a probability of 1− 2δ. According to Assumption 3 and (38), we have with a probability of 1− 2δ
that [

C−1
r Dist(ŵ,W∗)

]r ≤ 2C0

√
νH + log(1/δ)

nvalid
+ 2ℓ0

√
2Ca

µ

(
νH +K + log(1/δ)

ntrain/(Kb2)

) 1
4

.

Applying the fact that s + t ≤ (s
1
r + t

1
r )r for any s > 0 and t > 0 to the right-hand side of the

inequality above, we obtain (10) with an appropriately defined Cw.

Suppose Dist(ŵ,W∗) ≤ ε(nvalid, ntrain), which happens with a probability of 1 − 2δ according to
the proof above. We have ŵ ∈ W∗

ε with ε = ε(nvalid, ntrain) according to the definition in (19). We
then decompose the optimality gap of the generalization loss as follows

L0(θ̂(ŵ))− L0(θ
∗)

= L0(θ̂(ŵ))−
K∑

k=1

ŵkLk(θ̂(ŵ))︸ ︷︷ ︸
T1

+

K∑
k=1

ŵkLk(θ̂(ŵ))−
K∑

k=1

ŵkL̂k(θ̂(ŵ))︸ ︷︷ ︸
T2

+

K∑
k=1

ŵkL̂k(θ̂(ŵ))−
K∑

k=1

ŵkL̂k(θ(ŵ))︸ ︷︷ ︸
T3

+

K∑
k=1

ŵkL̂k(θ(ŵ))−
K∑

k=1

ŵkLk(θ(ŵ))︸ ︷︷ ︸
T4

+

K∑
k=1

ŵkLk(θ(ŵ))−
K∑

k=1

ŵkLk(θ(w
∗))︸ ︷︷ ︸

T5

+

K∑
k=1

ŵkLk(θ
∗)− L0(θ

∗)︸ ︷︷ ︸
T6

. (39)

It is clear that T3 ≤ 0 and T5 ≤ 0 by the optimality of θ̂(ŵ) and θ(ŵ) in (P̂) and (P∗), respectively.
Moreover, by Assumption 2′, we have w∗

j = 0 for w ∈ W∗ and j ∈ K\J . Using the fact that
ŵ ∈ W∗

ε , we have
∑

k∈K\J ŵ2
k ≤ Dist2(ŵ,W∗) ≤ ε2, which implies

T1 =

K∑
k=1

ŵk

(
L0(θ̂(ŵ))− Lk(θ̂(ŵ))

)
=

∑
k∈K\J

ŵk

(
L0(θ̂(ŵ))− Lk(θ̂(ŵ))

)
≤
√ ∑

k∈K\J

ŵ2
k

√
max
θ∈Θ

∑
k∈K\J

(
L0(θ)− Lk(θ)

)2 ≤ ε

√
max
θ∈Θ

∑
k∈K\J

(
L0(θ)− Lk(θ)

)2
.

Using a similar argument, we can also show

T6 ≤ ε

√
max
θ∈Θ

∑
k∈K\J

(
L0(θ)− Lk(θ)

)2
.

According to Lemma 3 and the fact that ŵ ∈ W∗
ε , we have that, with a probability of at least 1− δ,

T2, T4 ≤ C ′
a

√νH + J + log(1/δ)

Nε
+

ε(K − J)

b
√
Nε

 .

Note that G =
√
maxθ∈Θ

∑
k∈K\J

(
L0(θ)− Lk(θ)

)2
under Assumption 2′. Applying the upper

bounds of the six terms to (39) and taking a union bound, we can show that

L0(θ̂(ŵ))− L0(θ
∗) ≤ 2C ′

a

√νH + J + log(1/δ)

Nε
+

ε(K − J)

b
√
Nε

+ 2ε(nvalid, ntrain)G

with a probability of at least 1− 3δ, which completes the proof.
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Before we prove Corollary 1, we first present another corollary of Theorem 2 where we can see the
impact of b more clearly.
Corollary 2. Suppose the assumptions of Theorem 2 hold and nvalid and ntrain are large enough such
that ε(nvalid, ntrain) defined in (10) satisfies ε(nvalid, ntrain) ≤ b

√
J

K−J . With a probability of at least
1− 3δ, we have

L0(θ̂(ŵ))− L0(θ
∗) ≤O

(√
νH + J + log(1/δ)

ntrain/(Jb2)

)

+G ·O
(
νH + log(1/δ)

nvalid

) 1
2r

+G ·O
(
νH +K + log(1/δ)

ntrain/(Kb2)

) 1
4r

, (40)

Proof. Theorem 2 guarantees that (11) holds with a high probability. When ε(nvalid, ntrain) ≤ b
√
J

K−J ,
the second term on the right-hand side of (11) can be merged with the first term. Also, we have
Nε = ntrain

b2J+ε2(nvalid,ntrain)(K−J) ≥ ntrain
b2J+b2J/(K−J) ≥ ntrain

2b2J , where the last inequality is because
K − J ≥ 1. As a result, the first two terms in (11) together has the order of

O

(√
νH + J + log(1/δ)

ntrain/(Jb2)

)
.

Then (40) is proved by applying the definition of ε(nvalid, ntrain) to the third term on the right-hand
side of (11).

Suppose ntrain ≫ nvalid. The first term on the right-hand side of (40) is smaller than the entire right-
hand side of (7). If, in addition, G = o(1/n

1
2−

1
2r

valid ) and G = o(1/n
1
4−

1
4r

train ), the other two terms in
(40) are also smaller than the two terms in (7), respectively, so the bound in (40) is tighter than (7).

Proof of Corollary 1. Corollary 1 is directly from Corollary (2) by only keeping G, ntrain and ntest
in the order of magnitude given in (40).

E GENERALIZATION PERFORMANCE BY TRAINING LOCALLY AND
TRAINING WITH EQUALLY WEIGHTED NODES

In this section, we first consider a model locally trained only with data Dvalid in node 0, namely,

θ̂valid ∈ argmin
θ∈Θ

L̂0(θ) (41)

where L̂0 is given in (3). The generalization bound of θ̂valid is well-known, so we omit the proof but
directly give the result.
Proposition 1. Suppose Assumptions 1 and 4 hold. There exists a universal constant C0 > 0 such
that, with a probability of at least 1− δ,

L0(θ̂valid)− L0(θ
∗) ≤ 2C0

√
νH + log(1/δ)

nvalid
.

For the purpose of theoretical comparison, we also consider a model trained only with data Dtrain

distributed over equally weighted nodes, namely,

θ̂equal ∈ argmin
θ∈Θ

1

K

K∑
k=1

L̂k(θ), (42)

where L̂k is defined as in (2). It is easy to construct an example where each pk with k ∈ K\J is
significantly different from p0 so that L0(θ̂equal) does not convergence to L0(θ

∗) as ntrain goes to
infinity. Motivated by Corollary 1 and the discussion afterwards, it will be interesting to show the
generalization bound of θ̂equal when each pk with k ∈ K\J is similar to p0 with a small G defined
in (9).
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Proposition 2. Suppose Assumptions 1, 2′ and 4 hold. There exists a universal constant Ca > 0
such that, with a probability of at least 1− 3δ,

L0(θ̂equal)− L0(θ
∗) ≤ 2Ca

√
νH +K + log(1/δ)

Kntrain
+

2
√
K − J

K
G,

where G is defined in (9).

Proof. We first define

θequal ∈ argmin
θ∈Θ

1

K

K∑
k=1

Lk(θ). (43)

We first decompose the optimality gap of the generalization loss as follows

L0(θ̂equal)− L0(θ
∗)

= L0(θ̂equal)−
1

K

K∑
k=1

Lk(θ̂equal)︸ ︷︷ ︸
T1

+
1

K

K∑
k=1

Lk(θ̂equal)−
1

K

K∑
k=1

L̂k(θ̂equal)︸ ︷︷ ︸
T2

+
1

K

K∑
k=1

L̂k(θ̂equal)−
1

K

K∑
k=1

L̂k(θequal)︸ ︷︷ ︸
T3

+
1

K

K∑
k=1

L̂k(θequal)−
1

K

K∑
k=1

Lk(θequal)︸ ︷︷ ︸
T4

+
1

K

K∑
k=1

Lk(θequal)−
1

K

K∑
k=1

Lk(θ
∗)︸ ︷︷ ︸

T5

+
1

K

K∑
k=1

Lk(θ
∗)− L0(θ

∗)︸ ︷︷ ︸
T6

(44)

It is clear that T3 ≤ 0 and T5 ≤ 0 by the optimality of θ̂equal and θequal in (42) and (43), respectively.
Moreover, we have

T1 =
1

K

K∑
k=1

(
L0(θ̂equal)− Lk(θ̂equal)

)
=

∑
k∈K\J

1

K

(
L0(θ̂equal)− Lk(θ̂equal)

)

≤
√

K − J

K2

√
max
θ∈Θ

∑
k∈K\J

(
L0(θ)− Lk(θ)

)2
.

Using a similar argument, we can also show

T6 ≤
√

K − J

K2

√
max
θ∈Θ

∑
k∈K\J

(
L0(θ)− Lk(θ)

)2
.

Since Assumption 2′ implies Assumption 2, by the first statement of Lemma 3 with b = 1
K , we

have, with a probability of at least 1− δ, that

T2, T4 ≤ Ca

√
νH +K + log(1/δ)

Kntrain
.

Applying the upper bounds of the six terms to (44) and a taking union bound, we have

L0(θ̂equal)− L0(θ
∗) ≤ 2Ca

√
νH +K + log(1/δ)

Kntrain
+

2
√
K − J

K
G

with a probability of at least 1− 3δ, which completes the proof.

Note that the bound in Proposition 2 is strictly worse than the one we showed in Corollary 1 for any
value of G. In fact, the former is O(1/

√
ntrain +G) and the latter is O(1/

√
ntrain) + o(G)
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F COMMUNICATION COMPLEXITY OF ALGORITHM 2 AND EXTENSION TO
NON-CONVE CASE

In this section, we present the communication complexity of Algorithm 2 for convex problems as
well as the corresponding algorithm and complexity for non-convex problems. To do so, we first
present the convergence property of Algorithm 1, which is originally established by Gorbunov et al.
(2021). Then, we combine the analysis by Gorbunov et al. (2021) and Ghadimi & Wang (2018) with
some minor but necessary modifications, for example, to allow for a generic weight w instead of the
uniform weight in Gorbunov et al. (2021), and to handle the approximation error between ∇F̂ (w)

and ∇̄F̂ (w), which is a little different from the one considered in Ghadimi & Wang (2018).

F.1 CONVERGENCE PROPERTY OF ALGORITHM 1

As mentioned in Section 4, we need to solve subproblems (1) and (15) in Algorithm 2, both of
which are instances of (16). Because of Assumption 1, problem (16) in these two cases satisfies the
following assumption with ℓ1 and µ exactly the same as the ℓ1 and µ in Assumption 1.
Assumption 5. fk,i(x) is convex, ∇fk,i(x) is ℓ1-Lipschitz continuous and fk(x) is µ-strongly con-
vex for i = 1, . . . , nk and k = 1, 2, . . . ,K.

A unified analysis is provided in Gorbunov et al. (2021) for a large class of FL methods including
Local-SVRG given in Algorithm 1. The following proposition is obtained by applying Theorem 2.1
in Gorbunov et al. (2021) to Local-SVRG under our setting after minor modifications. It character-
izes the convergence property of Algorithm 1. We omit its proof because it is the almost the same
as the proof of Theorem G.7 in Gorbunov et al. (2021).
Proposition 3. Suppose Assumption 5 holds for (16) and γ ≤ γ0 with γ0 defined in (17). Algorithm 1
guarantees

E
[
f(x(T )

)
− f(x∗)

]
≤ 1

γ

(
1− γµ

)T+1
(
4 +

32γ2ℓ21
3q

+ 30eγ3ℓ31(τ − 1)
2 + q

q

)∥∥x(0) − x∗∥∥2
+

45e

2
ℓ1γ

2(τ − 1)2
K∑

k=1

wk

∥∥∇fk
(
x∗)∥∥2, (45)

where x∗ be the optimal solution of (16).

F.2 COMMUNICATION COMPLEXITY OF ALGORITHM 2

To analyze the complexity of Algorithm 2, we needs to bound the error of the approximate gradient
of F̂ , namely, the quantity ∥∥∥∇̄F̂ (w

(s)
md )−∇F̂ (w

(s)
md )
∥∥∥ , s = 0, 1, . . . ,

and then the convergence analysis in Ghadimi & Wang (2018) can be directly applied. This error
depends the suboptimality of θ(s) and h(s) in iteration s of Algorithm 2, which can be characterized
using Proposition 3. To do so, we first bound ∥∇fk

(
x∗)∥∥ and ∥x(0)−x∗

∥∥ appearing in Proposition 3
for these two instances. For simplicity, we assume Local-SVRG is initialized at x(0) = 0 when it is
applied to any instance of (16).

Suppose fk,i(θ) = l(θ; z
(i)
k ), i = 1, . . . , nk, k = 1, . . . ,K and x∗ is the optimal solution of (16),

namely, x∗ = θ̂(w). Because of Assumption 1, we have that
∥∥∇fk

(
x∗)∥∥ ≤ ℓ0 for any k in any

iteration s of Algorithm 2 and x∗ = θ̂(w) is a continuous of w on ∆b
K , which means ∥x(0)−x∗

∥∥2 =

∥x∗
∥∥2 ≤ maxw∈∆b

K
∥θ̂(w)∥2 in any iteration s of Algorithm 2.

Suppose fk,i(h) = 1
2h

⊤∇2l(θ(s); z
(i)
k )h−h⊤∇L̂0(θ

(s)), i = 1, . . . , nk, k = 1, . . . ,K. The optimal
solution of (16) in this case is

x∗ =

(
K∑

k=1

w
(s)
k ∇2L̂k(θ

(s))

)−1

∇L̂0(θ
(s))
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which means ∥x(0)−x∗
∥∥2 = ∥x∗

∥∥2 ≤ 1
µ2 ∥∇L̂0(θ

(s))∥2 ≤ ℓ20
µ2 because of Assumption 1. Moreover,

∇fk(x
∗) = ∇2L̂k(θ

(s))

(
K∑

k=1

w
(s)
k ∇2L̂k(θ

(s))

)−1

∇L̂0(θ
(s))−∇L̂0(θ

(s)),

so ∥∇fk(x
∗)∥ ≤ ℓ1ℓ0

µ + ℓ0 for any k and s by Assumption 1.

Since f is µ-strongly convex, we have µ
2 ∥x

(T )−x∗∥2 ≤ f(x(T )
)
− f(x∗). With this inequality and

the discussion observations, we can derive from (45) that

E
[∥∥x(T ) − x∗∥∥2] ≤ 2

γµ

(
1− γµ

)T+1
(
4 +

32γ2ℓ21
3q

+ 30eγ3ℓ31(τ − 1)
2 + q

q

)
·max

{
R2,

ℓ20
µ2

}
+

45e

µ
ℓ1γ

2(τ − 1)2(
ℓ1
µ

+ 1)2ℓ20 (46)

with R := maxw∈∆b
K
∥θ̂(w)∥ when Local-SVRG is applied to either (1) or (15) in any iteration of

Algorithm 2.

The following lemma bounds the error of the approximate gradient for F̂ .

Lemma 4. Suppose Assumption 5 holds and γ ≤ γ0 with γ0 defined in (17). We have

E
[∥∥∇F̂ (w

(s)
md )− ∇̄F̂ (w

(s)
md )
∥∥2] ≤ C1

γ

(
1− γµ

)Ts+1
(
C2 + C3(τ − 1)

)
+ C4γ

2(τ − 1)2, (47)

where C1, C2 and C3 are constants that depend on ℓ0, ℓ1, ℓ2, µ, R, q and K but not τ , Ts and γ.
Consequently,

• when τ = 1, γ = γ0 and Ts =
1

γ0µ
ln
(

C1C2(s+1)4

γ0

)
OR

• when τ > 1, γ = 1
Ms

and Ts = µ−1Ms ln
(
M3

s

)
,

where

Ms = max

{
1

γ0
, (s+ 1)2

√
[C1(C2 + C3(τ − 1)) + C4(τ − 1)2]

}
,

we have E
[∥∥∇F̂ (w

(s)
md )− ∇̄F̂ (w

(s)
md )
∥∥2] ≤ 1

(s+1)4 .

Moreover,

• when τ = 1, γ = γ0 and Ts =
1

γ0µ
ln
(

C1C2(s+1)2

γ0

)
OR

• when τ > 1, γ = 1
M ′

s
and Ts = µ−1M ′

s ln
(
M ′3

s

)
,

where

M ′
s = max

{
1

γ0
, (s+ 1)

√
[C1(C2 + C3(τ − 1)) + C4(τ − 1)2]

}
,

we have E
[∥∥∇F̂ (w

(s)
md )− ∇̄F̂ (w

(s)
md )
∥∥2] ≤ 1

(s+1)2 .

Proof. Let ∇̃F̂ (w
(s)
md ) = (∇̃kF̂ (w

(s)
md ))k=1,...,K , where

∇̃kF̂ (w
(s)
md ) = −∇L̂k(θ

(s))⊤

(
K∑

k=1

w
(s)
md,k∇

2L̂k(θ
(s))

)−1

∇L̂0(θ
(s)). (48)

Recall that
∇̄kF̂ (w

(s)
md ) = −∇L̂k(θ

(s))⊤h(s).
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We then obtained from (46) that

E
[∥∥∇̃F̂ (w

(s)
md )− ∇̄F̂ (w

(s)
md )
∥∥2]

≤Kℓ20E

[∥∥∥∥∥∥h(s) −

(
K∑

k=1

w
(s)
md,k∇

2L̂k(θ
(s))

)−1

∇L̂0(θ
(s))

∥∥∥∥∥∥
2 ]

≤2Kℓ20
γµ

(
1− γµ

)Ts+1
(
4 +

32γ2
0ℓ

2
1

3q
+ 30eγ3

0ℓ
3
1(τ − 1)

2 + q

q

)
·max

{
R2,

ℓ20
µ2

}
+

45eKℓ20
µ

ℓ1γ
2(τ − 1)2(

ℓ1
µ

+ 1)2ℓ20 (49)

According to Lemma 2.2 in Ghadimi & Wang (2018) and (46), we have

E
[∥∥∇̃F̂ (w

(s)
md )−∇F̂ (w

(s)
md )
∥∥2]

≤K

(
2ℓ0ℓ1
µ

+
ℓ2ℓ

2
0

µ2

)2

E
[
∥θ(s) − θ̂(w

(s)
md )∥

2
]

≤K

(
2ℓ0ℓ1
µ

+
ℓ2ℓ

2
0

µ2

)2
2

γµ

(
1− γµ

)Ts+1
(
4 +

32γ2
0ℓ

2
1

3q
+ 30eγ3

0ℓ
3
1(τ − 1)

2 + q

q

)
·max

{
R2,

ℓ20
µ2

}
+K

(
2ℓ0ℓ1
µ

+
ℓ2ℓ

2
0

µ2

)2
45e

µ
ℓ1γ

2(τ − 1)2(
ℓ1
µ

+ 1)2ℓ20 (50)

Combining (49) and (50) by the triangle inequity leads to (47).

When τ = 1, γ = γ0 and Ts = 1
γ0µ

ln
(

C1C2(s+1)4

γ0µ

)
, it is easy to show that E

[∥∥∇F̂ (w
(s)
md ) −

∇̄F̂ (w
(s)
md )
∥∥2] ≤ 1

(s+1)4 .

Suppose τ > 1, γ = 1
Ms

and Ts = µ−1Ms ln
(
M3

s

)
. We have

E
[∥∥∇F̂ (w

(s)
md )− ∇̄F̂ (w

(s)
md )
∥∥2] ≤C1

γ

(
1− γµ

)Ts+1

(C2 + C3(τ − 1)) + C4γ
2(τ − 1)2

≤ exp

(
−µTs

Ms

)
MsC1 (C2 + C3(τ − 1)) +

C4(τ − 1)2

M2
s

≤ exp
(
− ln(M3

s )
)
MsC1 (C2 + C3(τ − 1)) +

C4(τ − 1)2

M2
s

≤C1 (C2 + C3(τ − 1))

M2
s

+
C4(τ − 1)2

M2
s

≤ 1

(s+ 1)4
.

The conclusion with E
[∥∥∇F̂ (w

(s)
md )−∇̄F̂ (w

(s)
md )
∥∥2] ≤ 1

(s+1)2 can be proved in the same way except
that (s+ 1)4 must be changed to (s+ 1)2, and thus we omit the proof.

The complexity of Algorithm 2 when F̂ (w) is convex can be showed using the proof in Ghadimi &
Wang (2018) with their gradient approximation error replaced by the one in Lemma 4.

Proof of Theorem 3. According to Lemma 2.2 in Ghadimi & Wang (2018), F̂ (w) is ℓF -smooth with
ℓF defined in (12). Let Es :=

∥∥∇F̂ (w
(s)
md ) − ∇̄F̂ (w

(s)
md )
∥∥ According to (2.51) in Ghadimi & Wang
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(2018), we have

F̂ (w(s+1)
ag ) ≤ s

s+ 2
F̂ (w(s)

ag ) +
2

s+ 2
F̂ (ŵ) +

16

η(s+ 1)(s+ 2)

(
∥ŵ − w(s)∥2 − ∥ŵ − w(s+1)∥2

)
+

2

s+ 2
∥ŵ − w(s+1)∥Es +

η

2
E2

s

≤ s

s+ 2
F̂ (w(s)

ag ) +
2

s+ 2
F̂ (ŵ) +

16

η(s+ 1)(s+ 2)

(
∥ŵ − w(s)∥2 − ∥ŵ − w(s+1)∥2

)
+

4

s+ 2
Es +

η

2
E2

s ,

where the second inequality is because ∥ŵ − w(s+1)∥ ≤ 2 as both ŵ and w(s+1) are on a simplex.
Subtracting F̂ (ŵ) from both sides of the inequality above and dividing both sides by 2

(s+1)(s+2) , we
have

(s+ 1)(s+ 2)

2

[
F̂ (w(s+1)

ag )− F̂ (ŵ)
]

≤s(s+ 1)

2

[
F̂ (w(s)

ag )− F̂ (ŵ)
]
+

8

η

(
∥ŵ − w(s)∥2 − ∥ŵ − w(s+1)∥2

)
+ 2(s+ 1)Es +

η(s+ 1)(s+ 2)

4
E2

s .

Summing up this inequality for s = 0, 1, . . . , S − 1 gives

S(S + 1)

2
E
[
F̂ (w(S)

ag )− F̂ (ŵ)
]
≤16

η
+

S−1∑
s=0

2(s+ 1)
√

E
[
E2

s

]
+

S−1∑
s=0

η(s+ 1)(s+ 2)

4
E
[
E2

s

]
,

which, when E
[
E2

s

]
≤ 1

(s+2)4 , implies

E
[
F̂ (w(S)

ag )− F̂ (ŵ)
]
≤ 32

ηS(S + 1)
+

4 log(S)

S(S + 1)
+

π2η

12S(S + 1)
.

This means, as long as E
[
E2

s

]
≤ 1

(s+2)4 , Algorithm 2 finds an ϵ-optimal solution of (P̂) in Õ(ϵ−0.5)

iterations.

Let A1 = C1C2, A2 = C1C3 and A3 = C1C4 with C1, C2, C3 and C4 defined in Lemma 4.

Suppose τ = 1, γ = γ0 and Ts = 1
γ0µ

ln
(

A1(s+1)4

γ0

)
. By Lemma 4, we have E

[
E2

s

]
≤ 1

(s+2)4 . In
iteration s of Algorithm 2, the total number of rounds of communication needed in Local-SVRG is
O(Ts) = O(ln(s)) so that means the total number of rounds is Õ(ϵ−0.5).

Suppose τ > 1, γ = 1
Ms

and Ts = µ−1Ms ln
(
M3

s

)
. By Lemma 4, we have E

[
E2

s

]
≤ 1

(s+2)4 . In
iteration s of Algorithm 2, the total number of rounds of communication needed in Local-SVRG is
O(Ts/τ) = O(s2) so that means the total number of rounds is Õ(ϵ−1.5).

F.3 ALGORITHM AND COMMUNICATION COMPLEXITY FOR NON-CONVEX F̂

When F̂ in (P̂) is non-convex, we no long expect any algorithm to find an ϵ-optimal solution and
change our goal to finding an ϵ-stationary point of (P̂), which is defined as a solution w̄ ∈ ∆b

K
satisfying

η−1
∥∥∥w̄ − Proj∆b

K
(w̄ − η∇F̂ (w̄))

∥∥∥ ≤ ϵ.

for some η > 0. There exist multiple numerical techniques for finding an ϵ-stationary, among
which the proximal gradient method is the simplest one. When the gradient can only be computed
inexactly, there exist studies on the iteration complexity of the proximal gradient method for finding
an ϵ-stationary point, including Ghadimi & Wang (2018) for bilevel optimization and Gu et al.
(2018) for a general problem. We will simply apply the proximal gradient method to (P̂) using the
approximate gradient ∇̄F̂ (w) in (14). We formally present this approach in Algorithm 3. Again, the
center is node 0, i.e., the node where Dvalid is stored.
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Algorithm 3: Federated Learning Method for Bilevel Optimization (P̂) (Non-Convex Case)

1 Input: initial weight w(0), learning rate η, training data Dtrain
k for k ∈ K, validation data Dvalid,

the number of outer iterations S, parameters (γ, τ, q) for Local-SVRG, and the number of
inner iterations Ts for s = 0, . . . , S − 1

2 for s = 0, 1, . . . , S − 1 do
3 Compute ∇̄F̂ (w(s)) as follows:
4 Set fk,i(θ) = l(θ; z

(i)
k ), i = 1, . . . , nk, k = 1, . . . ,K

5 Compute θ(s) = Local-SVRG({fk,i}, w(s), θ(s−1), γ, τ, q, Ts) and send it to each
node.

6 Compute ∇L̂0(θ
(s)) at center and send it to each node.

7 Set fk,i(h) = 1
2h

⊤∇2l(θ(s); z
(i)
k )h− h⊤∇L̂0(θ

(s)), i = 1, . . . , nk, k = 1, . . . ,K

8 Compute h(s) = Local-SVRG({fk,i}, w(s),∇L̂0(θ
(s)), γ, τ, q, Ts) and send it to

each node.
9 Each node computes ∇L̂k(θ

(s)) in parallel and send it to the center.
10 Set ∇̄kF̂ (w(s)) = −∇L̂k(θ

(s))⊤h(s) for k = 1, . . . ,K

11 w(s+1) = argminw∈∆b
K

〈
∇̄F̂ (w(s)), w

〉
+ 1

2η∥w − w(s)∥2

12 end
13 Return: w(s̄) with s̄ sampled randomly from {0, 1, . . . , S − 1}.

The convergence result of Algorithm 3 can be proved in a standard way (e.g., see Theorem 2.1 in
Ghadimi & Wang (2018)). We present it below only for the sake of completeness.

Theorem 4. Suppose Assumption 1 holds. Let R := maxw∈∆b
K
∥θ̂(w)∥ and ℓF and γ0 defined as

in (12) and (17). Suppose η = 1
3ℓF

in Algorithm 3. There exist constants A1, A2 and A3 that only
depend on ℓ0, ℓ1, ℓ2, µ, R, q and K but not on τ such that the following statements hold.

• Suppose τ = 1, γ = γ0 and Ts = 1
γ0µ

ln
(

A1(s+1)2

γ0

)
. Algorithm 3 finds an ϵ-stationary solution

of (P̂) with Õ
(
ϵ−2
)

rounds of communication.

• Suppose τ > 1, γ = 1
M ′

s
and Ts = µ−1M ′

s ln
(
M ′3

s

)
, where

M ′
s = max

{
1

γ0
, (s+ 1)

√
[A1 +A2(τ − 1) +A3(τ − 1)2]

}
, s = 0, 1, . . . . (51)

Algorithm 3 finds an ϵ-stationary solution of (P̂) with Õ
(
ϵ−4
)

rounds of communication.

Proof. Let Es :=
∥∥∇F̂ (w(s))− ∇̄F̂ (w(s))

∥∥. Since w(s+1) = Proj∆b
K
(w(s) − η∇̄F̂ (w(s))), by the

property of projection mapping, we have∥∥∥w(s) − Proj∆b
K
(w(s) − η∇F̂ (w(s)))

∥∥∥2
≤ 2

∥∥∥w(s) − w(s+1)
∥∥∥2 + 2

∥∥∥Proj∆b
K
(w(s) − η∇̄F̂ (w(s)))− Proj∆b

K
(w(s) − η∇F̂ (w(s)))

∥∥∥2
≤ 2

∥∥∥w(s) − w(s+1)
∥∥∥2 + 2η2E2

s . (52)

By the definition of w(s+1) and the 1
η -strong convexity of function

〈
∇̄F̂ (w(s)), w

〉
+ 1

2η∥w−w(s)∥2,

we have, for any w ∈ ∆b
K〈

∇̄F̂ (w(s)), w(s+1) − w(s)
〉
+

1

2η
∥w(s+1) − w(s)∥2 + 1

2η
∥w − w(s+1)∥2

≤
〈
∇̄F̂ (w(s)), w − w(s)

〉
+

1

2η
∥w − w(s)∥2. (53)
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Taking w = w(s) in (53) gives〈
∇̄F̂ (w(s)), w(s+1) − w(s)

〉
+

1

η
∥w(s+1) − w(s)∥2 ≤ 0. (54)

Since F̂ is ℓF -Lipschitz continuous and η ≤ 1
ℓF

, we have

F̂ (w(s+1))− F̂ (w(s)) ≤
〈
∇F̂ (w(s)), w(s+1) − w(s)

〉
+

1

2η
∥w(s+1) − w(s)∥2. (55)

Adding (54) and(55) gives us

F̂ (w(s+1))− F̂ (w(s)) +
1

2η
∥w(s+1) − w(s)∥2 ≤

〈
∇F̂ (w(s))− ∇̄F̂ (w(s)), w(s+1) − w(s)

〉
≤ Es∥w(s+1) − w(s)∥ ≤ 2Es,

which, together with (52), implies

1

4η

∥∥∥w(s) − Proj∆b
K
(w(s))

∥∥∥2 ≤ F̂ (w(s))− F̂ (w(s+1)) + 2Es +
ηE2

s

2
.

Summing this inequality and taking expectation give us

η−2E
[ ∥∥∥w(s̄) − Proj∆b

K
(w(s̄))

∥∥∥2 ] ≤ 4

ηS

[
F̂ (w(0))− F̂ (ŵ)

]
+

8

ηS

S−1∑
s=0

E
[
Es

]
+

2

S

S−1∑
s=0

E
[
E2

s

]
.

When E
[
E2

s

]
≤ 1

(s+1)2 , the inequality above implies

η−2E
∥∥∥w(s̄) − Proj∆b

K
(w(s̄))

∥∥∥2 ≤ 4

ηS

[
F̂ (w(0))− F̂ (ŵ)

]
+

8 log(S)

ηS
+

π2

3S
.

This means, as long as E
[
E2

s

]
≤ 1

(s+1)2 , Algorithm 3 finds an ϵ-stationary solution of (P̂) in Õ(ϵ−2)

iterations.

Note that Lemma 4 still holds with w
(s)
md replaced by w(s) in Algorithm 3. Let A1 = C1C2, A2 =

C1C3 and A3 = C1C4 with C1, C2, C3 and C4 defined in Lemma 4.

Suppose τ = 1, γ = γ0 and Ts = 1
γ0µ

ln
(

A1(s+1)2

γ0

)
. By Lemma 4, we have E

[
E2

s

]
≤ 1

(s+2)2 . In
iteration s of Algorithm 3, the total number of rounds of communication needed in Local-SVRG is
O(Ts) = O(ln(s)) so that means the total number of rounds is Õ(ϵ−2).

Suppose τ > 1, γ = 1
M ′

s
and Ts = µ−1M ′

s ln
(
M ′3

s

)
. By Lemma 4, we have E

[
E2

s

]
≤ 1

(s+2)4 . In
iteration s of Algorithm 3, the total number of rounds of communication needed in Local-SVRG is
O(Ts/τ) = O(s) so that means the total number of rounds is Õ(ϵ−4).

Remark 1. The federated bilevel optimization methods by Li et al. (2022) and Tarzanagh et al.
(2022) can find an ϵ-stationary point within Õ(ϵ−3) and Õ(ϵ−4) rounds of communication, respec-
tively. In the first setting of Theorem 4 (τ = 1), Algorithm 3 has complexity of Õ(ϵ−2), which
is better than Li et al. (2022) and Tarzanagh et al. (2022). We want to point out that the lower
complexity of Algorithm 3 is because it utilizes the finite-sum structure in (P̂), which allows comput-
ing a deterministic gradient infrequently to accelerate the convergence. However, Li et al. (2022)
and Tarzanagh et al. (2022) both consider objective functions given in expectation, which does not
allow computing a deterministic gradient in general. One can check the following Table 2 for a
comparison.

G ADDITIONAL MATERIALS FOR NUMERICAL EXPERIMENTS

In this section, we present additional details and results of our numerical experiments in Section 5.
The CNN we train in the experiments consists of two layers of 2D convolution, each equipped with
2D batch normalization and ReLU activation, and followed by a fully connected layer to generate
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Table 2: Comparison in Remark 1.

Paper Structure Case Number of Rounds

This work Finite-sum Convex Õ(ϵ−0.5)

This work Finite-sum Non-convex Õ(ϵ−2)

Chen et al. (2022) Deterministic Non-convex Õ(ϵ−2)

Li et al. (2022) Expectation Non-convex Õ(ϵ−3)

Chen et al. (2022) Expectation Non-convex Õ(ϵ−4)

Tarzanagh et al. (2022) Expectation Non-convex Õ(ϵ−4)

predictions. The first convolution layer is set to output the same number of channels as the input,
and uses kernels with a size of 4, a stride of 4 and one padding. The second convolution layer
returns two output channels for Fashion-MNIST and MNIST and five for CIFAR-10 and ImageNet,
and uses kernels with a size of 2, a stride of 2 and one padding. All experiments are conducted with
PyTorch 1.9.0 and CUDA 11.1 computing platform on a computer with the CPU Intel Xeon Gold
6330@2.0GHz (Turbo up to 3.1GHz) and the GPU NVIDIA GeForce RTX 2080 Ti.

G.1 DATA GENERATION WITH DIFFERENT CLASS DISTRIBUTIONS (SETTING 1)

In this section, we describe in details how we generate Dvalid, Dtrain and Dtest from each original
dataset for our experiments under Setting 1.

G.1.1 FASHION-MNIST

Fashion-MNIST (Xiao et al., 2017) contains a training set of 60,000 images and a testing set of
10,000 images. Each image is in grayscale, has a size of 28×28, and is associated with a label from
ten classes: 0: T-shirt/top, 1: Trouser, 2: Pullover, 3: Dress, 4: Coat, 5: Sandal, 6: Shirt, 7: Sneaker,
8: Bag and 9: Ankle boot. We merge the ten classes into four classes as follows:

C1: Classes 2, 4 and 6 which include long-sleeve upper-body clothes;

C2: Classes 0 and 3 which include short-sleeve upper-body clothes;

C3: Classes 1 and 8 which include pants and bags;

C4: Classes 5, 7 and 9 which include only shoes.

Note that these four merged classes are only used for generating data. In the classification task, we
still have ten classes. This is the same for the other three datasets. We set ntrain = 4000, nvalid = 500
and ntest = 5000. Each image is sampled from one of the four merged classes with a probability
distribution (P1, P2, P3, P4). Once a merged class is chosen, each image in that merged class has
an equal chance to be sampled. For Dtrain

k with k ∈ J , we sample data from the training set with
P1 = 0.42, P2 = 0.08, P3 = 0.38 and P4 = 0.12. For Dtrain

k for k ∈ JM , we sample data with
P1 = 0.12, P2 = 0.38, P3 = 0.08 and P4 = 0.42. Depending on p0 is the distribution of Jm or
JM , Dvalid and Dtest are sampled from p0 the corresponding distribution. Note that Dvalid and Dtest

are sampled from the training set and testing set of the original data, respectively, although they have
the same probability distribution over the four merged classes. Since Dvalid and Dtest are generated
in the similar way for the other three datasets, we will only discuss the generation of Dtrain

k ’s in the
subsequent sections.

G.1.2 MNIST

MNIST (Deng, 2012) contains a training set of 60,000 images and a testing set of 10,000 images.
Each image is a handwritten digit in grayscale and has a size of 28×28. Since MNIST has the same
number of classes, same class distribution, and same data size as Fashion-MNIST, we directly apply
the same procedure in Section G.1.1 to sample data. In particular, we merge the ten digits into four
classes as follows:

C1: Digits 2, 4 and 6;

C2: Digits 0 and 3;
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C3: Digits 1 and 8;

C4: Digits 5, 7 and 9.

We set ntrain = 4000, nvalid = 500 and ntest = 5000. Following Section G.1.1, for Dtrain
k with

k ∈ Jm, we sample data from the four merged classes with P1 = 0.42, P2 = 0.08, P3 = 0.38 and
P4 = 0.12. For Dtrain

k with k ∈ JM , we sample data with P1 = 0.12, P2 = 0.38, P3 = 0.08 and
P4 = 0.42.

G.1.3 CIFAR-10

CIFAR-10 (Krizhevsky et al., 2009) contains a training set of 50,000 images and a testing set of
10,000 images. Each image is in color, has a size of 32× 32, and is associated with a label from ten
classes: 0: airplane, 1: automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship and 9:
truck. We merge the ten classes into four classes as follows:

C1: Classes 1 and 9 which are related to ground transportation;

C2: Classes 0 and 8 which are related to non-ground transportation;

C3: Classes 2, 3 and 4 which form a set of animals;

C4: Classes 5, 6 and 7 which form another set of animals.

We set ntrain = 4000, nvalid = 500 and ntest = 5000. Similar to the procedure with Fashion-MNIST,
for Dtrain

k with k ∈ Jm, we sample data from the four merged classes with P1 = 0.36, P2 = 0.04,
P3 = 0.54 and P4 = 0.06. For Dtrain

k with k ∈ JM , we sample data with P1 = 0.04, P2 = 0.36,
P3 = 0.06 and P4 = 0.54.

G.1.4 DOWNSAMPLED IMAGENET

Downsampled ImageNet (Chrabaszcz et al., 2017) is created by downsampling each image in Im-
ageNet (Deng et al., 2009) to 32 × 32 pixels without changing the class labels. Just as ImageNet,
downsampled ImageNet has 1000 classes and we choose ten classes and merge them into four classes
as follows. (The class labels listed below are consistent with ImageNet.)

C1: Classes 7, 9, 10, 29, 54, 75, 84 and 189, which are cats or animals similar to cat;

C2: Classes 61, 66, 68, 101, 114, 124, 131 and 148, which are dogs or animals similar to cat;

C2: Classes 383, 397, 403, 404, 405, 406, 412, 414, 420, 426, 433 and 434, which are all birds;

C3: Classes 224, 441, 442, 443, 444, 445, 449, 453, 454, 498, 499 and 500, which are either
fishes or frogs.

We set ntrain = 4000, nvalid = 1500, ntest = 1000. For Dtrain
k for k ∈ Jm, we sample data from

the four merged classes with P1 = 0.36, P2 = 0.04, P3 = 0.54 and P4 = 0.06. For Dtrain
k with

k ∈ JM , we sample data with P1 = 0.04, P2 = 0.36, P3 = 0.06 and P4 = 0.54.

G.1.5 COVTYPE

Covtype (Blackard & Dean, 1999) is an imbalanced dataset of 581,012 instances. Each instance
records ten features in integer value and two categorical features one-hot encoded into 44 binary
values, and is associated with a label from seven classes: 1: Spruce/Fir, 2: Lodgepole Pine, 3:
Ponderosa Pine, 4: Cottonwood/Willow, 5: Aspen, 6: Douglas-fir, 7: Krummholz. According to the
imbalance on class labels, we merge the seven classes into four classes as follows:

C1: Classes 1 which consists of approximately 36.5% of the raw data;

C2: Classes 2 which consists of approximately 48.8% of the raw data;

C3: Classes 3 which consists of approximately 6.2% of the raw data;

C4: Classes 4, 5, 6 and 7 which consist of the rest.
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We set ntrain = 40000, nvalid = 5000 and ntest = 50000. Similar to the procedure with Fashion-
MNIST, for Dtrain

k with k ∈ Jm, we sample data from the four merged classes with P1 = 0.72,
P2 = 0.14, P3 = 0.12 and P4 = 0.02. For Dtrain

k with k ∈ JM , we sample data with P1 = 0.10,
P2 = 0.82, P3 = 0.06 and P4 = 0.02.

We train a liner multi-class logistic regression model using the same computing platform in this
experiment as before. We use a mini batch of size 400 to construct the stochastic gradients in all
methods. In the Bi-level method, Algorithm 3 is applied to (P̂) with b = 1/3 and five epochs are
performed within each call of Local-SVRG (i.e., Ts = 5ntrain/400). We set q = 1/100. Other
parameters are the same as our choice in Section 5. We only run Setting 1 with one random seed on
this dataset. The results are shown in Figure 3.

G.2 DATA GENERATION WITH DIFFERENT CLASS DISTRIBUTIONS AND LABEL
PERMUTATION (SETTING 2)

In this section, we discuss in details how Dtrain, Dvalid and Dtest are generated from each original
dataset for our experiments under Setting 2. For each dataset, we first sample data Dtrain, Dvalid and
Dtest in the same way as Setting 1 described in Section G.1. Then we permute the class labels in
Dtrain

k with k ∈ JM . For each dataset, the class labels in Dtrain
k with k ∈ Jm are unchanged. If p0

is the distribution of JM , the labels of Dvalid and Dtest are permuted in the same way as Dtrain
k with

k ∈ JM . If p0 is the distribution of Jm, the labels of Dvalid and Dtest are unchanged.

We then describe how the class labels in Dtrain
k for k ∈ JM are permuted for each dataset. For

Fashion-MNIST and MNIST, we permute the class labels in Dtrain
k for k ∈ JM by changing label 2

to 0, 0 to 1, 1 to 5, and 5 to 2. For CIFAR-10, we permute the class labels in Dtrain
k for k ∈ JM by

changing label 1 to 0, 0 to 2, 2 to 5, and 5 to 1. For downsampled ImageNet, we permute the class
labels in Dtrain

k for k ∈ JM by changing label 7 to 61, 61 to 383, 383 to 224, 224 to 9, 9 to 66, 66 to
397, 397 to 441, 441 to 10, 10 to 68, 68 to 403, 403 to 442, and 442 to 7.

G.3 DATA GENERATION WITH DIFFERENT CLASS DISTRIBUTIONS, LABEL PERMUTATION
AND/OR RANDOM ROTATION (SETTINGS 3 AND 4)

In this section, we discuss in details how we generate Dvalid, Dtrain and Dtest from each original
dataset for our experiments under Settings 3 and 4.

Under Setting 3, we first generate data in the same way as in Setting 1 described in Section G.1.
Then, we randomly choose a rotation direction, clockwise or anti-clockwise, and rotate each image
in Dtrain

k with k ∈ JM toward that direction for 90 degrees. Under Setting 4, we first generate data in
the same way as in Setting 2 described in Section G.2. Then, we apply the same rotation procedure
as we do in Setting 3.

G.4 ADDITIONAL NUMERICAL RESULTS

In this section, we first plot how the weight wk for each node evolves during the Bi-level method
under Setting 2, 3 and 4 respectively in Figure 4, Figure 5 and Figure 6. We show the results when
p0 is the distribution of the majority and the minority groups separately.

Since the performance of an algorithm may fluctuate during training, we are interested in comparing
the methods in the best performance they achieved during training. To do so, we save the model
generated by each method at the iteration where the highest accuracy is achieved on the validation
data. Then, we report the performance of the saved model’s by each method on the testing set in
Table 3. Again, we show the results when p0 is the distribution of the majority and the minority
groups separately. Our method outperforms the baselines in most of the cases.

Next, we plot the test (top-1) accuracy each method obtains during iterations for the minority group
and the majority group in Figure 8 and Figure 9, respectively, where the horizontal axis represents
the cumulative number of data points each method processes in parallel.

At last, we give the results of the ablation study. We choose the case of Setting 2 Seed 1, and
consider four choices on the size of the validation dataset Dvalid, i.e. n0. The choices are 100, 200,
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500 and 1000 for Fashion-MNIST, MNIST and CIFAR- 10, and 1000, 1200, 1500 and 2000 for the
downsampled 32 × 32 ImageNet. Similarly, we save the model generated by our Bi-level method
at the iteration where the highest accuracy is achieved on the respective validation data. Then,
we report the test (top-1) accuracy each method obtains during iterations for the minority group in
Table 4 and the majority group in Table 5 .
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Figure 3: Results for Covtype.
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Figure 4: How w evolves during the Bi-level method under Setting 2.
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Figure 5: How w evolves during the Bi-level method under Setting 3.
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Figure 6: How w evolves during the Bi-level method under Setting 4.

Table 3: Test accuracy when reaching the highest validation accuracy.

Setting 1 Minority Model Majority Model

Method\Data F-MNIST MNIST CIFAR-10 DS-ImageNet F-MNIST MNIST CIFAR-10 DS-ImageNet

Bi-level 0.7758±0.0059 0.8824±0.0198 0.5175±0.0065 0.2668±0.0079 0.8364±0.0121 0.8443±0.0096 0.5928±0.0068 0.2630±0.0091
Local-train 0.6926±0.0175 0.7850±0.0269 0.3036±0.0102 0.1108±0.0127 0.7427±0.0110 0.7550±0.0095 0.3568±0.0144 0.1150±0.0072

FedAvg 0.7507±0.0097 0.8297±0.0171 0.2965±0.0075 0.2008±0.0117 0.8327±0.0119 0.8484±0.0123 0.5705±0.0052 0.2612±0.0116
Ditto 0.7297±0.0146 0.8358±0.0201 0.4361±0.0166 0.1582±0.0037 0.8086±0.0141 0.8059±0.0053 0.5021±0.0204 0.1874±0.0126

pFedMe 0.7418±0.0235 0.8568±0.0204 0.4860±0.0067 0.2084±0.0068 0.8297±0.0070 0.8320±0.0162 0.5588±0.0110 0.2324±0.0087

Setting 2 Minority Model Majority Model

Method\Data F-MNIST MNIST CIFAR-10 DS-ImageNet F-MNIST MNIST CIFAR-10 DS-ImageNet

Bi-level 0.7754±0.0082 0.8580±0.0283 0.5148±0.0051 0.2734±0.0052 0.8332±0.0063 0.8384±0.0196 0.5979±0.0044 0.2694±0.0104
Local-train 0.6763±0.0116 0.7874±0.0129 0.3159±0.0110 0.1260±0.0033 0.7343±0.0104 0.7650±0.0146 0.3594±0.0086 0.1276±0.0110

FedAvg 0.5686±0.0211 0.5809±0.0405 0.2870±0.0106 0.1676±0.0044 0.7824±0.0062 0.7746±0.0121 0.5431±0.0087 0.2542±0.0089
Ditto 0.7204±0.0059 0.7841±0.0217 0.3951±0.0121 0.1536±0.0178 0.7889±0.0093 0.7841±0.0089 0.4946±0.0131 0.1724±0.0068

pFedMe 0.7207±0.0130 0.7506±0.0224 0.4422±0.0131 0.1936±0.0113 0.8091±0.0044 0.7911±0.0283 0.5574±0.0104 0.2146±0.0081

Setting 3 Minority Model Majority Model

Method\Data F-MNIST MNIST CIFAR-10 DS-ImageNet F-MNIST MNIST CIFAR-10 DS-ImageNet

Bi-level 0.7726±0.0170 0.8736±0.0055 0.5235±0.0060 0.2680±0.0072 0.8234±0.0119 0.8342±0.0135 0.5861±0.0064 0.2788±0.0142
Local-train 0.6762±0.0126 0.7803±0.0204 0.3061±0.0107 0.1162±0.0054 0.7262±0.0074 0.7698±0.0100 0.3632±0.0083 0.1224±0.0071

FedAvg 0.5940±0.0211 0.6225±0.0195 0.3084±0.0099 0.1756±0.0088 0.7702±0.0143 0.7632±0.0171 0.5705±0.0123 0.2676±0.0074
Ditto 0.6856±0.0247 0.7452±0.0160 0.4184±0.0149 0.1626±0.0093 0.7628±0.0115 0.7742±0.0167 0.4986±0.0175 0.1792±0.0133

pFedMe 0.7123±0.0239 0.7203±0.0201 0.4535±0.0068 0.1938±0.0144 0.7871±0.0104 0.7650±0.0341 0.5563±0.0038 0.2188±0.0122

Setting 4 Minority Model Majority Model

Method\Data F-MNIST MNIST CIFAR-10 DS-ImageNet F-MNIST MNIST CIFAR-10 DS-ImageNet

Bi-level 0.7658±0.0117 0.8588±0.0133 0.5172±0.0107 0.2698±0.0115 0.8160±0.0051 0.8455±0.0064 0.5935±0.0074 0.2678±0.0062
Local-train 0.6809±0.0079 0.7645±0.0270 0.3086±0.0052 0.1148±0.0059 0.7012±0.0066 0.7476±0.0282 0.3709±0.0079 0.1172±0.0087

FedAvg 0.5648±0.0481 0.5475±0.0205 0.3612±0.0181 0.1722±0.0090 0.7644±0.0258 0.7577±0.0127 0.5529±0.0077 0.2600±0.0068
Ditto 0.6974±0.0130 0.7176±0.0185 0.3970±0.0105 0.1538±0.0077 0.7646±0.0085 0.7608±0.0063 0.4986±0.0102 0.1744±0.0159

pFedMe 0.7035±0.0187 0.6932±0.0140 0.4548±0.0069 0.1794±0.0114 0.7910±0.0110 0.7688±0.0171 0.5489±0.0060 0.2232±0.0063

Table 4: Test accuracy’s of the minority model by the Bi-level method using validation sets of
different sizes.

nvalid F-MNIST MNIST CIFAR-10 nvalid DS-ImageNet

Test Accuracy

100 0.7782 0.8444 0.5226 1000 0.2850
200 0.7830 0.8778 0.5170 1200 0.2700
500 0.7756 0.8108 0.5100 1500 0.2740

1000 0.7842 0.8852 0.5292 2000 0.2930

Table 5: Test accuracy’s of the majority model by the Bi-level method using validation sets of
different sizes.

nvalid F-MNIST MNIST CIFAR-10 nvalid DS-ImageNet

Test Accuracy

100 0.8286 0.7946 0.5664 1000 0.2600
200 0.8362 0.8480 0.5620 1200 0.2710
500 0.8216 0.8044 0.5920 1500 0.2920

1000 0.8394 0.8514 0.5890 2000 0.2640
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Figure 7: Comparison in test accuracy for the majority group vs number of synchronizations.
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Figure 8: Comparison in test accuracy for the minority group vs number of points processed.
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Figure 9: Comparison in test accuracy for the majority group vs number of points processed.
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