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Abstract

Artificial intelligence (AI) has seen a tremendous
surge in capabilities thanks to the use of founda-
tion models trained on internet-scale data. On
the flip side, the uncurated nature of internet-
scale data also poses significant privacy and le-
gal risks, as they often contain personal infor-
mation or copyrighted material that should not
be trained on without permission. In this work,
we propose as a mitigation measure a recipe to
train foundation vision models via self-supervised
learning with differential privacy (DP) guarantee.
We identify masked autoencoders as a suitable
learning algorithm that aligns well with DP-SGD,
and train ViP—a Vision transformer with differ-
ential Privacy—under a strict privacy budget of
ϵ = 8 on the LAION400M dataset. We evalu-
ate the quality of representation learned by ViP
using standard downstream vision tasks; in partic-
ular, ViP achieves a (non-private) linear probing
accuracy of 55.7% on ImageNet, comparable to
that of end-to-end trained AlexNet (trained and
evaluated on ImageNet). Our result suggests that
scaling to internet-scale data can be practical for
private learning. Code and DP pre-trained mod-
els are available at https://github.com/
facebookresearch/ViP-MAE.

1. Introduction
Foundation models (e.g., GPT-3, SimCLR, CLIP,
etc. (Brown et al., 2020; Chen et al., 2020a; Radford et al.,
2021)) pre-trained on vast amounts of diverse unlabeled data
through self-supervised learning (SSL) have emerged as an
important building block for artificial intelligence (AI) sys-
tems (Bommasani et al., 2021). These foundation models
enable downstream applications via fine-tuning, prompting,
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or training a simpler model on top of the learned representa-
tions to perform more specialized tasks, and have performed
tremendously well on challenging benchmarks in both lan-
guage and vision domains (Brown et al., 2020; Radford
et al., 2021; Touvron et al., 2023).

Despite the widespread deployment of foundation models,
there are significant privacy and legal risks of training these
models on uncurated data that often contain personal in-
formation or copyrighted material. Although the training
data for these models are considered public in most cases,
some of the data may be sensitive (Tramèr et al., 2022);
additionally, there are certain privacy and copyright laws
that apply to model training even on such public data (Hen-
derson et al., 2023). In addition, studies have shown that
generative foundation models such as GPT-3 can sometimes
regurgitate memorized information about individuals and
licensed content from its training data when prompted to do
so (Carlini et al., 2021). More recently, Meehan et al. (2023)
showed that non-generative vision SSL models can also
be probed to reveal sensitive information about individual
samples in its training data when given partial information.

Given these risks, there is an urgent need to train foundation
models that can adhere to relevant privacy and copyright
laws. To this end, differential privacy (DP; Dwork et al.
(2006)) seeks to limit the influence of individual training
data points on the trained model, and hence has the potential
to mitigate both privacy and copyright risks for sensitive
information that is confined to a single or a few training ex-
amples (Henderson et al., 2023). For any model that can be
trained using gradient-based optimization, DP-SGD (Song
et al., 2013; Abadi et al., 2016) can be applied to ensure
that the trained model satisfies the rigorous definition of DP.
However, there are still significant technical challenges in
DP-SGD training of large-scale foundation vision models:

1. Differentially private representation learning in general
is a difficult problem. Tramer & Boneh (2020) showed
that even handcrafted features can outperform feature
learned by state-of-the-art DP-trained models, and at-
taining high-utility learned representations requires sig-
nificantly more training data—much more than what is
provided in typical supervised/curated datasets.

2. Combining self-supervised learning (SSL) with internet-
scale uncurated datasets may seem like a natural ap-
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Figure 1. (left) Linear probing accuracies of TAN (Sander et al., 2022) (state-of-the-art DP training method), AlexNet (Krizhevsky et al.,
2017), SimCLR (Chen et al., 2020a) and ViP—our DP-trained model with ϵ = 8. ViP-Large can achieve similar transfer learning result
as SimCLR on iNat-2021 and Places-365, and achieves similar accuracy on ImageNet as end-to-end trained AlexNet. (right) Average
precision (AP) evaluations of SimCLR (Chen et al., 2020a), Mask R-CNN (He et al., 2017) and ViP-Base on MS-COCO. Our DP-trained
model outperforms both SimCLR and Mask R-CNN.

proach to gain access to the large amount of data needed
for DP training. However, most vision SSL training al-
gorithms are based on contrastive learning, where the
objective function depends on multiple samples in an
entangled manner. This makes it difficult to perform the
per-sample gradient computation needed in DP-SGD.

3. SSL training requires a much larger number of training
epochs compared to supervised learning, which sharply
increases the DP parameter ϵ, leading to meaningless
privacy guarantees.

In this paper, we describe a successful recipe for training
differentially private large-scale vision foundation models
via SSL. Firstly, we identify masked autoencoder (MAE;
He et al. (2022)) as a promising SSL training algorithm that
is amenable to DP-SGD. MAE uses an instance-separable
loss function and does not require batch normalization, and
hence per-sample gradients can be easily computed. We
also show that it is tolerant to the large amount of Gaussian
noise added in DP-SGD. Next, we demonstrate that MAE
can effectively leverage synthetic datasets containing only
programmatically-generated synthesized textures (Baradad
et al., 2022) to warm-start the DP training process, signifi-
cantly reducing the number of training epochs required to
reach a high-utility model. The combination of these two in-
gredients forms a powerful DP training recipe for obtaining
high-utility differentially private foundation vision models.

We implement this training recipe on the LAION400M
dataset (Schuhmann et al., 2021). We show that the re-
sulting model, which we call ViP (Vision transformer with
differential Privacy), learns highly useful and transferable
representations—rivaling that of representation learned by
SimCLR on ImageNet—while providing a strong DP guar-
antee with ϵ = 8. In Figure 1, we compare ViP with other
private and non-private models in terms of downstream lin-
ear probing accuracy and fine-tuning accuracy for different
image datasets:

• For iNat-2021 and Places-365 classification, ViP outper-
forms both TAN (Sander et al., 2022)—the previous SOTA
for DP supervised training—and AlexNet (Krizhevsky
et al., 2017), while matching or exceeding the perfor-
mance of SimCLR pre-trained on ImageNet.

• On ImageNet, the linear probing accuracy of ViP matches
that of end-to-end trained AlexNet1.

• On MS-COCO detection and segmentation, ViP outper-
forms both SimCLR pre-trained on ImageNet and Mask
R-CNN.

Our experiments demonstrate that by scaling DP-SGD train-
ing to vast amounts of unlabeled data and using synthetic
data to warm-start the model, we can attain high-utility
foundation vision models under stringent privacy guaran-
tees. Consequently, we hope that future work can continue
to build on our successful recipe and further push the per-
formance boundary of large-scale DP training.

2. Background
Differential privacy (Dwork et al., 2014) is a mathematical
framework for formal reasoning about information leakage
through a private mechanism. A learning algorithm A is
said to be (ϵ, δ)-differentially private (denoted (ϵ, δ)-DP) if
for all training datasets D,D′ that differ2 in a single training
sample, we have:

P (A(D) ∈ S) ≤ eϵP (A(D′) ∈ S) + δ (1)

for all outcome sets S. More generally, equation 1 can
be expressed as a statistical divergence D(A(D)||A(D′))
between the distribution of models trained on D vs. D′,
with (ϵ, δ)-DP corresponding to the “hockey-stick” diver-
gence (Sharma & Warsi, 2013). Another useful variant is

1The model is sourced from the PyTorch website and is end-to-
end trained with supervised learning.

2We adopt the removal notion of adjacency, i.e., D′ = D ∪ z
for some z and vice versa.
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Figure 2. How to pre-train differentially private transformers (ViP) with synthetic data? In Step 1, we first pre-train a MAE model
on synthetic images with standard optimizers (e.g., SGD, AdamW). We denote this model by (Syn)-ViP. In Step 2, we use the MAE
model pre-trained on synthetic images as initialization, and then apply differential private optimizers (e.g., DP-SGD, DP-AdamW) to train
a ViP model that satisfies (ϵ, δ)-DP.

Rényi differential privacy (RDP; (Mironov, 2017)), which
uses the Rényi divergence Dα (Rényi, 1961): A is said to
be (α, ϵ)-RDP if Dα(A(D)||A(D′)) ≤ ϵ. Moreover, RDP
can be converted to DP via the following (Balle et al., 2020):
if A is (α, ϵα)-RDP then it is also (ϵ, δ)-DP with

ϵ = ϵα + log

(
α− 1

α

)
− log δ + logα

α− 1
. (2)

DP-SGD training. Abadi et al. (2016) showed that stochas-
tic gradient descent (SGD)—the quintessential learning
algorithm—can be made differentially private by perturbing
the per-iteration gradient with Gaussian noise. The modified
SGD update with gradient perturbation (often referred to as
DP-SGD) is given by θt+1 = θt − ηtg̃t, and

g̃t =
1

B

(∑
x∈Bt

clipC(∇θℓ(x;θt) +N (0, σ2C2I)

)
, (3)

where ηt is the learning rate, Bt is the sampled batch, B
is the average batch size, σ > 0 is the noise multiplier,
and clipC is the operation that clips the per-sample gradient
norm to at most C > 0. It can be shown that this update pro-
cedure is (α, ϵα)-RDP for some computable ϵα (Mironov
et al., 2019). The end-to-end learning algorithm by running
T iterations of SGD is thus (α, Tϵα)-RDP via composi-
tion (Mironov, 2017), and a conversion to (ϵ, δ)-DP can be
obtained using equation 2. Such privatization mechanism—
per-sample clipping and injecting noise—can be easily inte-
grated with other first-order optimization algorithms such
as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov &
Hutter, 2017).

Self-supervised learning (SSL) has emerged as a promi-
nent approach for scaling up the training of machine learn-
ing models to large-scale unlabeled datasets. Restricting
our attention to the vision domain, SSL pre-trained mod-
els generalize effectively across a wide range of transfer

learning downstream tasks such as classification, instance
segmentation and object detection (Chen et al., 2020b; Bom-
masani et al., 2021), especially under the scenario of lim-
ited downstream training data. Vision SSL methods can
be broadly categorized as either joint embedding-based
learning (JE) (Chen et al., 2020a; He et al., 2020; Grill
et al., 2020; Zbontar et al., 2021; Chen & He, 2021) or
reconstruction-based learning (REC) (Bao et al., 2021; Xie
et al., 2022; He et al., 2022). JE-based approaches design
objective functions so that all views (or image augmenta-
tions) of the same sample have similar embeddings, while
views of different samples have different embeddings. As a
result, most JE-based approaches require a batch containing
multiple samples in order to define the objective function.
On the other hand, REC-based approaches aim to optimize
models to reconstruct image inputs in the pixel space based
on partially masked inputs, which promotes the model to
learn compressed representations that can generalize well.

Related Work

Scaling up DP training. Recently, an expanding body of
literature has emerged on scaling DP training to large-scale
datasets and models in both NLP and vision domains. In
NLP, a series of works (Yu et al., 2021; Li et al., 2022a)
showed that by combining public pre-training and scaling
up the training batch size, it is possible to fine-tune the pre-
trained language model to achieve reasonable downstream
performance. In computer vision, Kurakin et al. (2022)
first attempted to scale DP training of convolutional neural
networks (ResNets) to ImageNet. De et al. (2022) further
improved the performance of Kurakin et al. (2022) with a
Normalizer-Free ResNet architecture and an improved train-
ing recipe. More recently, Sander et al. (2022) proposed a
more efficient hyperparameter tuning method for DP train-
ing that led to state-of-the-art performance on ImageNet. It
is worth noting that all these works on DP-trained computer
vision models focus on training supervised models.
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DP pre-training. There are existing work on exploring the
possibility of learning effective representations with large-
scale differentially private pre-training. In particular, Anil
et al. (2021) studied how to DP pre-train BERT models
and Ponomareva et al. (2022) focused on pre-training T5
models (Raffel et al., 2020) with DP. The main difference
between this work and Anil et al. (2021); Ponomareva et al.
(2022) is that ours focuses on pre-training vision foundation
models, whereas Anil et al. (2021); Ponomareva et al. (2022)
focused on pre-training language models. To the best of our
knowledge, this is the first work to explore how to pre-train
large-scale vision foundation models. Furthermore, previ-
ous works (Anil et al., 2021; Ponomareva et al., 2022) lack
comprehensive studies on the learned representations of the
DP pre-trained models, such as linear probing and few-shot
learning. In contrast, we conduct extensive experiments on
understanding the quality of the learned representations in
this paper. Recent work by Ganesh et al. (2023) considered
a simplified toy setting and demonstrated that public pre-
training is necessary for training DP models in this specific
context. However, this does not rule out the possibility of ef-
fective DP representation learning in large-scale real-world
scenarios, as shown in this work.

3. Recipe for Training DP Foundation Vision
Models

In this work, we identify a successful recipe for training
differentially private foundation vision models. Training
DP foundation models, or in general any deep learning
model with a large number of parameters, poses a signifi-
cant challenge due to the large amount of injected noise—
N (0, σ2C2I) in equation 3. Indeed, current state-of-the-
art differentially private deep learning models even under-
perform linear models with handcrafted features when ϵ is
small (De et al., 2022; Tramer & Boneh, 2020). We propose
two effective techniques that reduce the magnitude of noise
injected during training while attaining strong (ϵ, δ)-DP
guarantees: 1. Scaling up the number of training samples
via self-supervised learning with masked autoencoder; and
2. Facilitating faster training by warm-starting the model
with weights pre-trained on synthetic samples.

3.1. Differential Private SSL with Mask Autoencoder

Most existing works on differentially private training (De
et al., 2022; Sander et al., 2022; Bu et al., 2022) focus on
supervised learning, which inherently restricts the quantity
of training samples that can be utilized. In contrast, self-
supervised learning approaches unlock the use of (albeit
uncurated) internet-scale training data that can be on the
order of billions of samples, which can potentially satisfy
the amount of data needed for DP training of high-utility
models (Tramer & Boneh, 2020).

On the other hand, most existing SSL training approaches
do not align with requirements in DP-SGD training. For
example, SimCLR (Chen et al., 2020a) requires a mini-
batch of samples in order to compute the contrastive loss;
BYOL (Grill et al., 2020) computes per-sample loss but it
utilizes batch normalization (BN) (Ioffe & Szegedy, 2015)
in the model architecture, resulting in each loss depend-
ing on a mini-batch of training samples.3 Therefore, it is
challenging to perform the per-sample gradient clipping as
described in equation 3. Among various types of SSL meth-
ods, we identify reconstruction-base learning with masked
autoencoders (MAE) (He et al., 2022) as one of the most
suitable SSL approaches for training DP foundation vision
models. The training objective LMAE(θ) is defined as:

LMAE(θ) :=
1

n

n∑
i=1

ℓMSE(g ◦ ψ(mask(xi);θ),xi)︸ ︷︷ ︸
ℓ(xi;θ)

, (4)

where n is the number of training samples, xi ∈ RC×H×W

is the input of the i-th training image (C-number of chan-
nels, H-height, W -width), mask(·) is a function that mask
out a fraction of the image, ψ : RC×H×W → Rd is the en-
coder and g : Rd → RC×H×W is the decoder. We use θ to
denote the trainable parameters of the ψ and g, and use ℓMSE
to denote the mean squared error (MSE) loss defined on the
pixel space, i.e., ℓMSE(x1,x2) = ∥x1 − x2∥2F . Similar to
He et al. (2022), we apply vision transformers (Dosovitskiy
et al., 2020) to instantiate the encoder and decoder maps.
As shown in equation 4, the training objective can be de-
composed into n individual losses, and each individual loss
ℓ(xi;θ) only depends on the i-th training sample xi and
does not require the label of xi. Therefore, we can compute
per-sample gradient ∇θℓ(xi;θ) and perform per-sample
gradient clipping without modifying the MAE training.

By leveraging the self-supervised MAE training paradigm,
we can now significantly scale up the training data size for
DP SSL pre-training. Dataset scaling can effectively reduce
the magnitude of noise in DP-SGD while maintaining the
same (ϵ, δn)-DP guarantee, where δn = 1/2n. As shown in
Figure 3a, we investigate the impact of injected noise in ViP
training by keeping all training hyperparameters the same
except for the number of training samples4. With more train-
ing samples, the magnitude of the injected noise σ becomes
smaller. We find that when the noise magnitude is large,
the training loss cannot be further optimized after certain

3Subsequent work by Richemond et al. (2020) demonstrated
that BN can be substituted with group normalization by carefully
modifying the model architecture. However, we have observed
that the design of exponential moving averaged online network
in BYOL can result in dynamic instability during training, which
poses challenges in the context of DP training.

4We maintain the same batch size across various data size
settings while modifying the noise multiplier σ. Consequently, as
the data size increases, the corresponding σ values decrease.
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number of training steps. In contrast, smaller magnitude of
noise (as a result of larger training dataset) facilitates faster
optimization of the training loss in comparison to larger
noise scenarios. Importantly, the optimization trajectory
is stable despite the presence of noise, allowing the MAE
model to learn useful features.

3.2. Synthetic Pre-training Enables Faster DP Training
for ViP

Non-private training of SSL models often require a signif-
icant number of training epochs, much larger than what is
required in supervised learning (Chen et al., 2020a; He et al.,
2022; Balestriero et al., 2023). This creates an additional
challenge for DP training since the number of training it-
erations T directly impacts the privacy guarantee. Indeed,
as mentioned in Section 2, DP-SGD with T iterations is
(α, Tϵα)-RDP. Consequently, naively applying DP-SGD
to MAE training results in an unfavorable privacy-utility
trade-off.

Fortunately, He et al. (2019) demonstrated that using pre-
trained initialization enables much faster model convergence
compared to random initialization. However, in light of our
discussion in Section 1, it is critical that the pre-training data
does not contain any private information, even if the data is
deemed “public”. One promising alternative is pre-training
on programmatically-generated synthetic images (Kataoka
et al., 2020; Baradad et al., 2022), which was shown to
achieve competitive downstream performance compared to
pre-training on natural images. Doing so allows the MAE
to learn spatial structure in the transformer modules (Jelassi
et al., 2022) without expending any privacy budget for the
natural image data. More importantly, synthetic pre-training
does not carry any privacy risk, and legal risk is limited to
obtaining proper license for the synthetic image generation
code.
Thus, to accelerate ViP training, we pre-train the model
on synthetic images generated using the Shaders21k tool
developed in Baradad et al. (2022). Figure 2 shows samples
of synthetic images generated by the tool. In Figure 3b,
we compare the ViP training with and without synthetic
pre-trained initialization. Notably, training ViP with syn-
thetic pre-trained weights converges significantly faster than
those with random initialized weights. Increasing the syn-
thetic pre-training from 20 to 900 epochs further improves
convergence for ViP training. Interestingly, as shown in
Table 1, MAE trained on the synthetic dataset already out-
performs existing state-of-the-art DP-trained models (De
et al., 2022; Sander et al., 2022) under our transfer learn-
ing evaluation, which shows that DP training on datasets
even as large as ImageNet does not learn sufficiently expres-
sive features (see Table 1). A concurrent work (Tang et al.,
2023) also studied how to leverage the programmatically-
generated synthesized textures (Baradad et al., 2022) for

improving the privacy-utility trade-off of DP-SGD trained
models. However, Tang et al. (2023) mainly studied the
small-scale supervised learning setting, whereas our work
focuses on differentially private self-supervised learning at
scale and building foundation models with DP.

3.3. Our Proposed Approach
We now summarize our approach for DP foundation vision
model training (also see Figure 2). It is worth mentioning
that our proposed approach offers flexibility in the selection
of both SSL training methods and synthetic datasets. For
example, developing better synthetic datasets or more effec-
tive SSL learning method can further push the performance
of the final DP foundation model.

DP-MAE with Synthetic Pre-training

• Step 1: Synthetic pre-training for initializa-
tion. Pre-train mask autoencoder on the synthetic
dataset with non-private optimizers.

• Step 2: DP training with synthetic initialization.
Apply the synthetic pre-trained model as initializa-
tion and train mask autoencoder on a large-scale
natural image dataset (e.g., LAION400M) with
DP-SGD. The DP guarantee then applies to the
natural image dataset.

4. Evaluation
We evaluate the effectiveness of our training recipe by apply-
ing it to the LAION400M dataset to train our private foun-
dation vision model: ViP. We consider various downstream
tasks in order to demonstrate the quality and transferability
of its learned representation. Furthermore, we compare ViP
to previous state-of-the-art DP-trained models as well as
widely adopted non-privately trained models, and find that
ViP significantly improves SOTA for DP training on down-
stream transfer tasks (Section 4.2) and even outperforms
non-private models on several challenging datasets. In ad-
dition to assessing the performance of ViP on non-private
downstream tasks, in Section B.3, we also evaluate the ViP
model via DP fine-tuning on ImageNet-1K, which shows a
notable improvement of 10%+ absolute top-1 accuracy com-
pared to previous SOTA (Sander et al., 2022). For additional
experimental results on ViP, see Appendix B.

4.1. Evaluation Setup

Our implementation uses PyTorch, along with the functorch
package (Horace He, 2021) for computation of per-sample
gradients and the opacus package (Yousefpour et al., 2021)
for privacy accounting. See Appendix A for additional
implementation details.

Datasets. We use 1.05 million samples generated using the
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Figure 3. (a). We vary the number of training samples n with the (ϵ, δn)-DP guarantee (δn = 1/2n), and compare the training losses
of MAE-DP. By scaling up the training dataset size, we can consistently improve the ViP training under the same ϵ-DP budget. (b).
Compared to ViP training from random initialization, we can significantly speed up the ViP training by leveraging the synthetic pre-trained
MAE model as initialization.

Table 1. Linear probing evaluation on downstream classification. We compare ViP with both private pre-training (DP-NFNet and TAN)
and non-private pre-training (AlexNet and SimCLR) baselines, as well as the synthetically pre-trained MAE model: (Syn)-ViP. ViP
consistently outperforms all private baselines, and has similar transfer learning performance as non-private SimCLR pre-trained on
ImageNet-1K. (‡All models except for (Syn)-ViP and ViP are pre-trained on ImageNet-1K, giving them an unfair advantage for the linear
probing evaluation on ImageNet-1K.)

Model DP? SSL? Pre-train dataset # pre-train samples ImageNet-1K‡ Places-365 Places-205 iNat-2021

DP-NFNet ✓ ✗ ImageNet-1k ∼1 million 45.3% 40.1% 39.2% 28.2%

TAN ✓ ✗ ImageNet-1k ∼1 million 49.0% 40.5% 38.2% 31.7%

AlexNet ✗ ✗ ImageNet-1k ∼1 million 56.5% 39.8% 35.1% 23.7%

SimCLR ✗ ✓ ImageNet-1k ∼1 million 67.5% 46.8% 49.3% 34.8%

(Syn)-ViP ✓ ✓ Shaders21k ∼1 million 49.8% 43.2% 45.8% 32.4%

ViP-LAION ✓ ✓ LAION ∼233 million 55.7% 46.1% 48.5% 38.1%

ViP-ImageNet ✓ ✓ ImageNet-1k ∼1 million 52.6% 44.3% 46.5% 34.2%

Shader21k (Baradad et al., 2022) tool as our synthetic pre-
training dataset, and the LAION400M (Schuhmann et al.,
2021) as our private pre-training dataset for the ViP model5.
We evaluate ViP and baseline models via non-private lin-
ear probing and fine-tuning on the following downstream
classification datasets: ImageNet-1K (Deng et al., 2009),
Places-365 and Places-205 (Zhou et al., 2014), iNaturalist-
2021 (Van Horn et al., 2021), CIFAR-100 (Krizhevsky et al.,
2009), Caltech101 (Fei-Fei et al., 2006), and Aircraft (Maji
et al., 2013). The input images are resized and center-
cropped to 224×224 resolution. We also evaluate using
MS-COCO instance segmentation and object detection (Lin
et al., 2014), and semantic segmentation with the ADE20K
dataset (Zhou et al., 2019) (in Appendix B.1).

Model architecture. Following He et al. (2022), we use

5The pre-training dataset we applied in this work is a curated
and deduplicated version of LAION based on the curation tech-
niques (Abbas et al., 2023; Xu et al., 2023a). We use LAION233M
to denote this subsampled version of LAION400M.

vision transformer (ViT) (Dosovitskiy et al., 2020) to instan-
tiate the masked autoencoder models. The default MAE-
encoder has 12 transformer blocks and width 768, and the
default MAE-decoder has 4 transformer blocks and width
512. We denote this MAE model as MAE-base. We also
consider MAE models with different model sizes, including
MAE-Nano, MAE-Tiny, MAE-Small and MAE-Large in
Section 4.3. We present the ViP-Large (DP-trained MAE-
Large) results in Figure 1. The complete numerical values
can be found in Table 9. Apart from the data shown in
Figure 1, the remainder of the experiments in this paper
primarily focus on ViP-Base unless otherwise noted.

Optimization and hyperparameters for (DP-)MAE train-
ing. We use AdamW (Loshchilov & Hutter, 2017) for train-
ing MAE – both for synthetic pre-training and differentially
private MAE pre-training. When evaluating pre-trained
models in downstream tasks, we apply LARS (You et al.,
2017) for linear probing and AdamW for fine-tuning. For
MAE training, we set the masking ratio to 75%. In terms
of DP training, we set ϵ = 8.0 and δ = 1/2n by default
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Table 2. Fine-tuning evaluation on few-shot downstream classification. ViP consistently outperforms both TAN (private) and AlexNet
(non-private), as well as (Syn)-ViP by a large margin. Performance does fall short compared to non-private SimCLR pre-trained on
ImageNet-1K despite having access to more than 100× more data, suggesting that there is much room for improvement for private
learning.

Model Aircraft Caltech-101 CIFAR-100
10-shot 20-shot 30-shot 5-shot 10-shot 30-shot 5-shot 10-shot 30-shot

AlexNet 23.27% 34.47% 41.35% 64.70% 73.57% 81.40% 29.74% 36.31% 49.28%

SimCLR 38.79% 56.90% 64.90% 81.70% 89.11% 94.51% 49.93% 60.18% 71.84%

TAN 22.84% 37.93% 46.01% 49.32% 66.42% 77.87% 21.28% 27.78% 42.35%

(Syn)-ViP 21.79% 46.85% 58.45% 60.51% 76.21% 88.48% 27.62% 38.96% 55.84%

ViP 31.62% 53.05% 64.26% 68.05% 79.03% 88.90% 30.73% 40.95% 57.52%

for training (ϵ, δ)-DP model. We set the clipping parameter
C = 0.1, sampling ratio q = 98304/n, noise parameter
σ = 0.48, and the total number of iterations T = 6100.
More details about the training hyperparamters can be found
in Appendix A.2. We apply the Opacus package (Yousef-
pour et al., 2021) for privacy accounting in all training runs.
Figure 6 in Appendix A.2 visualizes the RDP curves across
training iterations.

Existing methods for comparison. We compare with ex-
isting state-of-the-art DP-trained models: DP-NFNet (De
et al., 2022) and TAN (Sander et al., 2022)), both of which
are trained differentially privately on ImageNet-1K using
supervised learning. In addition, we present the results
of several widely used non-private models that are pre-
trained on ImageNet-1K including AlexNet (Krizhevsky
et al., 2017) (supervised learning-based) and SimCLR (Chen
et al., 2020a) (SSL-based) for reference. To measure the
effectiveness of DP pre-training compared to synthetic pre-
training, we also evaluate the model pre-trained on synthet-
ically generated Shader21k data, denoted (Syn)-ViP. We
also compare ViP with the non-private MAE model pre-
trained on the same datasets and summarize the results in
Table 6 (Appendix B.4).

4.2. Transfer Learning Evaluation

To show that ViP learns high-quality representations from its
training data, we evaluate its transfer learning performance
on a suite of image classification tasks using both linear
probing and few-shot fine-tuning. For linear probing, we
use all the training samples in the downstream task training
set to learn the linear classifier, while freezing all layers
except for the final linear layer. For few-shot fine-tuning,
we randomly select K training samples from each class and
fine-tune the entire model. It is worth noting that both linear
probing and fine-tuning evaluations are done using non-
private training; our pre-trained ViP model only satisfies
(ϵ, δ)-DP on the LAION233M dataset.

Linear probing. Table 1 shows the linear probing results on
four large-scale image classification datasets: ImageNet-1K,

Places-365/205 and iNat-2021. The most suitable baselines
in this setting are DP-NFNet and TAN, both of which are DP-
trained on ImageNet-1K with ϵ = 8 and represent previous
state-of-the-art in large-scale DP pre-training. First of all,
we find that MAE pre-training only on synthetic images
(i.e., (Syn)-ViP) is already comparable or even outperforms
SOTA DP pre-trained models. After differentially privately
pre-training on LAION233M, ViP effectively improves the
performance of (Syn)-ViP on all datasets by a large margin.

Importantly, ViP even outperforms non-private Sim-
CLR pre-trained on ImageNet-1K on all datasets (except
ImageNet-1k itself because SimCLR does not need to trans-
fer), and achieves similar performance as end-to-end non-
privately trained AlexNet. To the best of our knowledge,
this is the first time a DP-trained model can achieve simi-
lar performance on vision benchmark datasets as that of a
mainstream (albeit older) model, which demonstrates the
potential of our training recipe.

Few-shot fine-tuning. Table 2 shows the few-shot fine-
tuning results on Aircraft, Caltech-101 and CIFAR-100.
Similar to the linear probing result, (Syn)-ViP already out-
performs TAN—the previous SOTA DP-trained model—
across all evaluation settings except for 10-shot classifica-
tion on Aircraft. Next, we find that ViP can largely improve
upon (Syn)-ViP when the number of samples per class is
small, attaining SOTA performance in all evaluation settings.
ViP also achieves better performance than non-privately pre-
trained AlexNet by a large margin, but falls short against
non-private SimCLR despite having access to more than
100× training data. Thus, our result can be viewed as both
a positive and a negative result, showing that there is still
a long way to go for private learning before matching the
performance of mainstream vision models across the board.

COCO object detection and segmentation. We fine-
tune the pre-trained (Syn)-ViP and ViP on COCO with the
Detectron2 package (Wu et al., 2019). We apply the
pre-trained (Syn)-ViP-Base and ViP-Base as the ViT ini-
tializations for the detection and segmentation tasks, and
apply the default hyperparameter config in Detectron2
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convergence.
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Figure 5. Effect of scaling up model size on downstream performance. ViP with synthetic pre-training (blue line) benefits substantially
from larger model size. In comparison, ViP with random initialization (gray line) does not benefit as much from model scaling, as the
difference in performance between MAE-Large and MAE-Nano is considerably smaller.

for ViTDet-Base. As shown in Figure 1 and Table 4, we find
that the pre-trained ViPmodel outperforms several existing
non-private models, such as SimCLR and Mask R-CNN,
and performs slightly worse than the non-private MAE on
these tasks.

4.3. Scaling Properties

We now study scaling properties of our training recipe, in-
cluding scaling up (1) the model size, (2) the training set
size, and (3) the previously known successful recipe of scal-
ing up batch size.
Scaling up model size. DP-SGD training is generally un-
favorable to large models because the noise magnitude in-
creases with model size. Interestingly, we show that model
performance in fact improves by scaling up model size
using our training recipe. Specifically, we change the MAE-
encoder size while fixing the MAE-decoder size, resulting in
five different model sizes from MAE-Nano to MAE-Large;
Table 3 in Appendix A.1) gives architecture details includ-
ing number of parameters. All models are trained to satisfy
the same (ϵ, δ)-DP guarantee with ϵ = 8.
Figure 4a plots the training curve for the different-sized
models. At the beginning of DP training, due to synthetic

pre-training, a larger MAE model can learn more expressive
features and hence the MAE training loss on LAION233M
decreases as model size increases. Intriguingly, the train-
ing losses of MAE-Small/Base/Large are similar at the be-
ginning, but larger ViT models achieve faster convergence
despite the large amount of DP noise. Although similar ob-
servations on larger models converge faster have also been
described in the context of non-private learning (Li et al.,
2020), the fact that we observe the same phenomenon in
Figure 4a suggests that model scaling can be effective even
for private learning under our training recipe.
Figure 5 shows the effect of model scaling on downstream
linear probing and fine-tuning performance. In particular,
the effective reduction in training loss shown in Figure 4a
indeed translates to better downstream performance, with
larger ViP model consistently achieving better accuracy
without modifications to the training process. Moreover,
comparing ViP with synthetic pre-training (blue line) vs.
random initialization (gray line) shows that synthetic pre-
training is crucial for unlocking this scaling behavior: the
difference in performance between MAE-Large and MAE-
Nano is much smaller when the model is randomly initial-
ized.
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Scaling up dataset size. Next, we investigate the effect of
scaling up the number of training samples in ViP training.
We vary the training dataset size from 2M to 23M to 233M
while choosing the magnitude of injected noise σ so that
models trained on different dataset sizes satisfy (ϵ, δn)-DP
guarantee with ϵ = 8 and δn = 1/2n, where n is the number
of training samples. Table 10 shows downstream evaluation
results. The first row corresponds to the synthetically pre-
trained ViP model and rows 2-4 correspond to DP-trained
ViP models with different dataset sizes. As expected, a
larger pre-training dataset size results in a higher-utility
ViP model. For example, scaling from 2M to 233M gives
3.1% linear probing accuracy gain on ImageNet-1K (from
52.6% to 55.7%). Given that the collection of large labeled
datasets is very costly in practice, these results highlight the
significance of self-supervised learning in DP training.
Scaling up batch size. Scaling up the training batch size is
a known effective way to achieve strong performance in DP
supervised learning (Li et al., 2022a). We analyze the effect
of batch size in training ViP models and show that the same
observation holds for DP self-supervised learning. We con-
sider three different batch size B ∈ {8192, 32768, 98304},
and keep the computational budget—number of per-sample
gradient computation—the same for all batch sizes. We then
select the noise σ such that models trained with different
batch size satisfy the same (ϵ, δ)-DP. As shown in Figure 4b,
we find that larger batch size leads to better stability in the
training process as well as faster convergence under the
same computational budget. Rows 5-7 in Table 10 demon-
strate that larger batch size also translates to a substantial
improvement in ViP’s transfer learning performance.

5. Discussion and Future Work
We developed a recipe for DP self-supervised learning of
foundation vision models, and showed that the resulting
model—ViP—can achieve downstream performance match-
ing or exceeding that of mainstream non-private models
such as SimCLR (with ImageNet-1K pre-training). Our
work shows the potential of scaling DP training to internet-
scale unlabeled datasets and presents several opportunities
for future work.

1. Our recipe adapted MAE to DP-SGD training with mini-
mal modifications. One limitation of this recipe is that
it does not support other popular SSL methods such as
SimCLR (Chen et al., 2020a), BYOL (Grill et al., 2020)
and DINO (Caron et al., 2021; Oquab et al., 2023). It
may be possible to design more specialized SSL training
algorithms that conform to the requirements of DP-SGD
and are more effective at learning useful representations.

2. Multi-modal SSL is generally more effective than single-
modality pre-training due to the additional supervision
from cross-modal alignment (Mu et al., 2022). However,

existing multi-modal SSL methods are mostly based on
contrastive learning (e.g., CLIP (Radford et al., 2021),
SLIP (Mu et al., 2022) and FLIP (Li et al., 2022b)) and
do not admit per-sample gradient computation. Recent
work (Huang et al., 2023) investigated how to fine-tune
CLIP on vision-language tasks with DP guarantee. Ad-
ditional work may be needed to adapt these methods to
DP-SGD training.

Discussion on DP pre-training vs. DP fine-tuning. One
popular paradigm for training large-scale DP deep learn-
ing models is: (1) non-private pre-training on public data;
and (2) further fine-tuning on sensitive data with DP. This
paradigm has achieved great success in a wide range of
applications for specialized tasks (Yu et al., 2021; Li et al.,
2022a). However, one major weakness of this “public pre-
training then DP fine-tuning” paradigm is that it relies heav-
ily on having high-utility pre-trained foundation models that
are typically trained on potentially privacy-sensitive “pub-
lic data” (Thomas et al., 2020; Yang et al., 2022). Recent
work (Tramèr et al., 2022) questioned whether the use of
large, web-scraped datasets should be considered privacy-
preserving. Meanwhile, Thomas et al. (2020) demonstrates
that one can successfully infer membership of pre-training
examples when given access to fine-tuned models.
Given these limitations, it is valuable to consider the al-
ternative paradigm of training foundation models that can
privacy-preserving with respect to the pre-training data. Our
work seeks to address this weakness by leveraging unlabeled
private datasets to train foundation models that satisfy DP.
On the other hand, one limitation of DP pre-training is the
requirement for a large amount of data samples in the pre-
training dataset. If the pre-training dataset is not sufficiently
large, the noise added during the DP-SGD process would
significantly degrade the performance of the DP pre-trained
models. We believe that both paradigms—DP fine-tuning
and DP pre-training—are valuable and complement each
other for future research and development.

Discussion on sample-level DP vs. user-level DP. In this
work, our privacy unit is at the sample level, which is the
standard approach adopted in most works on differentially
private machine learning. While sample-level DP is the
most dominant notion, it is also important to consider user-
level DP in scenarios where data can be clearly attributed
to a particular user, for example, on-device data (Xu et al.,
2023b) is a prime example of such a scenario.
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Appendix

A. Implementation and Evaluation Details
In this section, we provide implementation details for training and evaluating (Syn)-ViP, ViP, as well as other existing
methods.

A.1. Details for MAE model

In Table 3, we provide details for backbones of MAE model with different model sizes. Both MAE-Large and MAE-Base
encoders are constructed following the identical setup described in He et al. (2022).

Table 3. Details of MAE backbone variants used in ViP.

ViP model MAE Backbone Encoder depth Encoder width Decoder depth Decoder width # parameters

ViP-Nano MAE-Nano 12 192 4 512 18.6M

ViP-Tiny MAE-Tiny 12 384 4 512 34.8M

ViP-Small MAE-Small 12 576 4 512 61.6M

ViP-Base MAE-Base 12 768 4 512 99.0M

ViP-Large MAE-Large 24 1024 4 512 233.3M

A.2. Details for ViP Pre-training

For (Syn)-ViP pre-training, we follow the training setup outlined in (He et al., 2022): we apply the training parameters
specified in Table 8 of He et al. (2022) and pre-train pre-train (Syn)-ViP on the S21k dataset developed in Baradad et al.
(2022), which comprises of 1,300,000 training samples, for a total of 1,000 epochs. Our (Syn)-ViP pre-training applies the
self-supervised MAE training methodology and does not use the label information available in the S21k dataset.

We now present details for differentially private ViP pre-training. As mentioned in Section 3, we first initialize the
model weights with (Syn)-ViP pre-trained on S21k dataset. Then we apply DP-AdamW6. See the table below for training
hyperparameters.

Model lr (η) warmup iterations wd (λ) (β1, β2) epsilon (ϵadamw) lr decay

ViP-Base 3.84 · 10−4 1,000 0.005 (0.9, 0.95) 10−8 cosine

For masking in the MAE training, we follow the random masking strategy and masking ratio of 75% in He et al. (2022) for
both (Syn)-ViP pre-training and ViP pre-training. The process of executing each iteration of DP-AdamW for training the
ViP-Base model takes approximately 25 seconds when utilizing 48 A100 (40GB) GPUs. Each epoch of the (Syn)-ViP-Base
model’s training process takes roughly 90 seconds to complete with 48 A100 (40GB) GPUs.

Comparative analysis with non-private training in terms of computational costs and memory. To provide a more
detailed comparison between differentially private training and non-private training, we consider the case with NVIDIA
V100 32GB GPUs. Here we take the default MAE model (MAE-base) we studied in the submission as an example: (1). For
non-private training, consider the batch size of 4096 (the batch size used in the MAE paper (He et al., 2022)), we distributed
the batch across 32 GPUs with a per-GPU batch size of 128. Each iteration of non-private MAE training takes around 0.32
seconds. The default training iterations for MAE training is 124,800. (2). For differentially private training, we used a
batch size of 81,920 distributed across 128 GPUs. Here, because of the memory overhead of using functorch.vmap for
computing the per-sample gradients, we used a per-GPU batch size of 12 with gradient accumulation. Each iteration of
private ViP training takes around 10 seconds. We mainly considered the number of DP iterations as 6,000, which is much
less than the one used in MAE training. This is mainly because we applied the pre-trained Syn-ViP model that has been

6A variant of the standard DP-SGD — we first compute the noisy clipped stochastic gradient described in equation 3, then apply one
step update of AdamW (Loshchilov & Hutter, 2017) using the estimated gradient.
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Figure 6. RDP curve across training iterations for the sampling rate q = 98304/n.

already trained on programmatically-generated synthesized textures (Baradad et al., 2022), which significantly speeds-up
the training.

Overall, the ViP DP training is more costly than non-private MAE training, the main reasons are: (a). Larger batch
size is needed to reduce the effective noise in DP training; (b). Per-sample gradient computation is less efficient than
standard data-parallel computations in PyTorch. Although (b) can be alleviated by newer techniques for per-sample gradient
computation such as Bu et al. (2023), we believe (a) will remain as the primary computational overhead for DP training
going forward.

A.3. Details for Downstream Classification Task

Linear probing. We follow the training setup in He et al. (2022): we apply BatchNorm (Ioffe & Szegedy, 2015) before the
last linear layer, and use the LARS (You et al., 2017) optimizer. We choose the base learning rate blr ∈ {0.1, 0.05, 0.01},
batch size B = 16, 384, weight decay λ = 0.0. We set warmup epoch as 10, and total training epoch as 90. We use the
RandomResizedCrop and RandomHorizontalFlip augmentations.

Few-shot fine-tuning. For vision transformer based architectures, we apply the AdamW optimizer with learning rate of
lr ∈ {3 · 10−3, 3 · 10−4, 3 · 10−5} and set weight decay as 0.05. For convolutional neural networks (AlexNet, ResNet
used in SimCLR), we apply the SGD optimizer because it consistently outperforms AdamW. We select learning rate
lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4}, while setting the momentum as 0.9 and the weight decay as 0.0. For all models
we apply the cosine learning rate decay, and use 10 warm-up epochs and fine-tine with 200 total epochs. We apply
AutoAugment (Cubuk et al., 2018) for data augmentation.

A.4. Details for Downstream Segmentation and Detection Tasks

COCO object detection and segmentation. We fine-tune the pre-trained (Syn)-ViP and ViP on COCO with the
Detectron2 package (Wu et al., 2019). We apply the pre-trained (Syn)-ViP-Base and ViP-Base as the ViT initial-
izations for the detection and segmentation tasks, and apply the default hyperparameter config in Detectron2 for
ViTDet-Base.

ADE20K semantic segmentation. We follow the setup described in He et al. (2022) on evaluating pre-trained MAE models
for semantic segmentation. We apply the UPerNet (Xiao et al., 2018) and perform fine-tuning for 100 epochs with a batch
size of 16.

A.5. Details for Differentially Private Fine-tuning on ImageNet

We use the pre-trained encoders of (Syn)-ViP and ViP and apply DP-AdamW for DP end-to-end fine-tuning. The details for
parameters in DP-AdamW can found in the following table.
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Model sampling ratio q noise σ iterations T lr wd

ViP-Base / (Syn)-ViP-Base 262, 144/n 5.6 1,500 1.02 · 10−3 0.005

We use 50 iterations for learning rate warm-up, and then keep the learning rate constant afterwards. For selecting parameters
not presented in the aforementioned table, we adopt the default configuration of AdamW in PyTorch (Paszke et al., 2017).
The fine-tuned model satisfies (8, 8 · 10−7)-DP on the ImageNet-1K dataset in addition to the LAION233M dataset.

A.6. Details for Figure 1

For the linear probing results, we present the performance of the ViP-Large model, with the summarized results shown
in the last row of Table 3. Regarding the detection and segmentation results, we utilize the ViP-Base model as the ViT
backbone, and the corresponding outcomes can be found in Table 4.
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B. Additional Experimental Results
In this section, we provide additional experimental results on evaluating (Syn)-ViP, ViP, as well as other existing methods.

B.1. Segmentation and Detection Evaluations of (Syn)-ViP/ViP

We summarize the results for object detection and segmentation in Table 4. Training details can be found in Appendix A.4.

Table 4. Evaluation of our DP models ((Syn)-ViP, ViP) as well as existing non-private baselines on COCO object detection/segmentation
and ADE20K semantic segmentation.

Model DP? COCO ADE20K
APbox APmask mIoU

SimCLR (Chen et al., 2020a) ✗ 37.9 33.3 -

Mask R-CNN (He et al., 2017) ✗ 40.0 37.1 -

RefineNet (Lin et al., 2017) ✗ - - 40.7

MAE (He et al., 2022) ✗ 50.3 44.9 48.1

(Syn)-ViP ✓ 45.0 40.1 38.8

ViP ✓ 45.2 40.4 40.1

B.2. Additional Experiments on ViP Pre-training

In Figure 7, we plot the training loss v.s. number of training steps for ViP training without (Syn)-ViP initialization. Compared
to the results in Figure 4a, when pre-training from scracth with DP-AdamW, larger models do not converge faster than
smaller ones. These results further demonstrate the effectiveness of synthetic pre-training for unlocking DP-SGD training of
larger vision models.

102 103

Training Step
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Tr
ai

ni
ng

 L
os

s

Random Initialization
Nano
Tiny
Small
Base
Large

Figure 7. Training loss of different model sizes. (with random initialization).

B.3. DP Fine-tuning ViP on ImageNet-1K

Thus far, our main emphasis has been on evaluating DP pre-trained ViP through non-private linear probing or fine-tuning
on downstream tasks. For certain use cases, the downstream task training set may be privacy-sensitive as well and DP
fine-tuning is required. We simulate such a scenario by fine-tuning the privately pre-trained ViP model7 on ImageNet-1K
with DP-SGD. As a result, the fine-tuned model satisfies (8, 8 · 10−7)-DP on the ImageNet-1K dataset in addition to the
LAION233M dataset. We compare against prior works on training DP ImageNet models without pre-training (Kurakin
et al., 2022; De et al., 2022; Sander et al., 2022); results are summarized in Table 5.

By utilizing our pre-trained ViP as an initialization, we observe an improvement in top-1 accuracy of more than 10%
compared to the previous SOTA (Sander et al., 2022), demonstrating the efficacy of our DP pre-training recipe.

7ViP-Base pre-trained on LAION233 shown in the last row of Table 1.
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Table 5. DP fine-tuning evaluation on ImageNet-1K. We compare (Syn)-ViP and ViP with existing DP training methods (DP-ResNet-18,
DP-NFNet, and TAN) on ImageNet-1K. The (ϵ′, δ′) represents the privacy budget w.r.t. the ImageNet dataset.

Model (ϵ′, δ′)-DP Top-1 Accuracy

DP-ResNet-18 (Kurakin et al., 2022) (13.2, 10−6) 6.2%

DP-NFNet (De et al., 2022) (8, 8 · 10−7) 32.4%

TAN (Sander et al., 2022) (8, 8 · 10−7) 39.2%

(Syn)-ViP (8, 8 · 10−7) 48.9% ± 0.2

ViP (8, 8 · 10−7) 50.3% ± 0.3

B.4. Additional Experiments on the Classification Task

Comparison with non-private MAE. To gain a better understanding of the gap between non-private training and private
training, we use the same synthetic pre-trained model as initialization and perform DP-AdamW training on LAION233M
with σ = 0.08. We keep most of the training parameters the same except for setting the sampling ratio to q = 4096/n
and the number of iterations T = 60, 0009. We then evaluate the linear probing (few-shot fine-tuning) performance of the
trained model and provide the results in Table 6 (Table 7).

For linear probing, our ViP model closes more than half the gap between the (Syn)-ViP model and the non-private MAE
model. With a more refined training recipe, it is plausible that the gap can be reduced even further, allowing DP-trained
foundation vision models to rival non-privately trained ones on certain downstream tasks. In the context of few-shot
fine-tuning, a comparison between private learning and the non-private MAE model reveals considerable potential for
improvement in the private learning approach.

Comparison with ViP trained on de-duplicated LAION-2B. Recent work has demonstrated that there exist duplicated
samples in the LAION dataset, which poses copyright and privacy challenges for foundation models trained on LAION.
Therefore, we also pre-train our proposed ViP model on a de-duplicated subset of LAION-2B (Schuhmann et al., 2022),
denoted by Dedup-LAION-245M, which consists of a similar number of training samples (245 million) as the one we
mainly consider in this work. We summarize the linear probing performance of the ViP pre-trained on Dedup-LAION-245M
in Table 6. We find the ViP model pre-trained on the de-duplicated LAION achieves similar performance as the one trained
on LAION-400M (Schuhmann et al., 2021).

Table 6. Linear probing evaluation on downstream classification. We compare ViP and (Syn)-ViP with (non-private) MAE (He et al.,
2022).

Model Pre-train dataset DP? SSL? ImageNet-1K‡ Places-365 Places-205 iNat-2021

(non-private) MAE LAION-233M ✗ ✓ 60.5% 48.3% 51.8% 38.5%

(Syn)-ViP LAION-233M ✓ ✓ 49.8% 43.2% 45.8% 32.4%

ViP LAION-233M ✓ ✓ 55.7% 46.1% 48.5% 38.1%

ViP Dedup-LAION-245M ✓ ✓ 55.5% 46.3% 48.1% 38.0%

Linear probing evaluation of ViP with different model sizes. We study the scaling behavior of ViP and (Syn)-ViP
through linear probing. As shown in Table 9, we compare the performance of ViP and (Syn)-ViP with different model
sizes. The performance of ViP consistently improves across all datasets as the model size increases. In contrast, increasing
the model size from MAE-Base to MAE-Large results in less than 1% improvement in top-1 accuracy for (Syn)-ViP.
These findings further underscore the effectiveness of our proposed ViP training recipe for scaling up model size in private
pre-training.

8In this case, the ϵ = +∞ for the (ϵ, δ)-DP.
9While the trained model may not necessarily achieve optimal performance, our main purpose is to present a non-private model that

follows a similar training setup, with the exception of setting the noise to zero. This allows us to compare its performance to the private
model.
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Table 7. Fine-tuning evaluation on few-shot downstream classification. We compare ViP and (Syn)-ViP with (non-private) MAE (He et al.,
2022).

Model Aircraft Caltech-101 CIFAR-100
10-shot 20-shot 30-shot 5-shot 10-shot 30-shot 5-shot 10-shot 30-shot

(non-private) MAE 36.78% 56.82% 66.20% 72.93% 84.50% 92.78% 34.38% 47.98% 62.88%

(Syn)-ViP 21.79% 46.85% 58.45% 60.51% 76.21% 88.48% 27.62% 38.96% 55.84%

ViP 31.62% 53.05% 64.26% 68.05% 79.03% 88.90% 30.73% 40.95% 57.52%

Table 8. Linear probing evaluation of pre-trained ViP-LAION with different privacy budget. Here we evaluate the linear probing on the
ImageNet-1k dataset. We vary the privacy budget epsilon (ϵ) from 2.0 to +∞, where our default privacy budget is ϵ = 8.0 and we use
ϵ = +∞ to denote the non-private MAE model. The ϵ represents the privacy budget w.r.t. the LAION dataset. For ϵ ∈ {2.0, 4.0},
we use the same training hyperparameters as the default ViP (ϵ = 8.0) except for the noise multiplier σ and total iterations T . We let
(σ = 0.787, T = 1500) for ϵ = 2.0 and (σ = 0.603, T = 3000) for ϵ = 4.0.

Model Downstream dataset ϵ = 2.0 ϵ = 4.0 ϵ = 8.0 ϵ = +∞

ViP-LAION ImageNet-1k 51.4% 53.8% 55.7% 60.5%

Table 9. Additional linear probing evaluation on downstream classification (ViP with different model sizes).

Model # parameters Backbone ImageNet-1K Places-365 Places-205 iNat-2021

(Syn)-ViP-S 61.6M MAE-Small 46.0% 40.9% 43.2% 28.3%

(Syn)-ViP-B 99.0M MAE-Base 49.8% 43.2% 45.8% 32.4%

(Syn)-ViP-L 233.3M MAE-Large 50.2% 43.3% 46.5% 32.7%

ViP-S 61.6M MAE-Small 49.6% 42.4% 44.7% 30.0%

ViP-B 99.0M MAE-Base 55.7% 46.1% 48.5% 38.1%

ViP-L 233.3M MAE-Large 58.0% 48.5% 50.8% 40.6%
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B.5. ViP Ablation Experiments

We study the effect of dataset size and batch size in ViP pre-training, and evaluate different models with linear probing and
fine-tuning on ImageNet-1K. We consider the ViP-Base setting and the results are summarized in Table 10.

Table 10. Ablation studies on the effect of dataset size and batch size. The first row shows the result of (Syn)-ViP, which is the common
starting point for all models in the subsequent rows. Difference in performance compared to (Syn)-ViP is shown in parentheses. See text
for details. (‡ represents linear probing evaluation and ⋄ represents 10-shot fine-tuning evaluation.)

Model Batch Size # Train data Noise σ ImageNet-1K ‡ Places-365 ‡ iNat-2021‡ Aircraft⋄ CIFAR-100⋄

(Syn)-ViP - - - 49.8% 43.2% 32.4% 21.8% 39.0%

ViP 98,304 2M 2.50 52.6% (+2.8%) 44.8% (+1.6%) 37.0% (+4.6%) 29.1% (+7.3%) 39.9% (+0.9%)

ViP 98,304 23M 0.66 53.7% (+3.9%) 45.2% (+2.0%) 37.6% (+5.2%) 31.5% (+9.7%) 40.5% (+1.5%)

ViP 98,304 233M 0.48 55.7% (+5.9%) 46.1% (+2.9%) 38.1% (+5.7%) 31.6% (+9.8%) 41.0% (+2.0%)

ViP 8,192 233M 0.41 43.9% (- 5.9%) 41.0% (- 2.2%) 27.6% (- 4.8%) 15.0% (- 6.8%) 39.2% (+0.2%)

ViP 32,768 233M 0.45 53.0% (+3.2%) 45.1% (+1.9%) 36.2% (+3.8%) 30.0% (+8.2%) 40.3% (+1.3%)

ViP 98,304 233M 0.48 55.7% (+5.9%) 46.1% (+2.9%) 38.1% (+5.7%) 31.6% (+9.8%) 41.0% (+2.0%)

We study the effect of MAE-decoder depth and MAE-masking ratio in ViP pre-training, and evaluate different models with
linear probing on ImageNet-1K. We consider the ViP-Base setting and the results are summarized in Table 11.

Table 11. Ablation studies on the effect of decoder depth and masking ratio in MAE.

Model decoder depth masking ratio ImageNet-1K

ViP (default) 4 0.75 55.7%

ViP 1 0.75 43.4%

ViP 2 0.75 51.7%

ViP 8 0.75 50.1%

ViP 4 0.25 53.5%

ViP 4 0.5 54.7%
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