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Abstract

High-quality math datasets are essential for
advancing the reasoning capabilities of large
language models (LLMs). However, current
datasets face three major issues: (i) outdated
and insufficient challenging content to match
the rapid advancement of LLMs, (ii) an overem-
phasis on strict step-by-step derivations, ne-
glecting human-like reasoning, and (iii) lim-
ited reliability from single-agent synthetic gen-
eration. To address these challenges, we in-
troduce STORM-BORN, a dataset of chal-
lenging mathematical derivations derived from
the latest and most influential academic pa-
pers. Unlike conventional numerical reason-
ing or formalized proof, STORM-BORN fo-
cuses on natural language mathematical deriva-
tions that include dense human-like approxi-
mations and heuristic cues. To ensure the reli-
ability and quality of the dataset, we propose
a novel human-in-the-loop, multi-agent data
generation framework, integrating reasoning-
dense filters, multi-agent collaboration, and
human mathematicians’ evaluations. We cu-
rates a set of 2,000 synthetic samples, from
which 100 most challenging and high-quality
problems are selected via human experts. Em-
pirical evaluations reveal that state-of-the-art
Al models, such as GPT-o01, solve fewer than
5% of the STORM-BORN problems, under-
scoring the dataset’s inherent difficulty. As
Al approaches mathematician-level reasoning,
STORM-BORN offers a novel, challenging,
and reliable resource to mimic human-like rea-
soning and serves as a high-difficulty evalua-
tion benchmark.

1 Introduction

Mathematical reasoning has emerged as a corner-
stone for scaling large language models (LLMs)
and probing their upper bounds of intelligence
(Shao et al., 2024; Ye et al., 2024; Glazer et al.,
2024). Recent advances stem from architectural

innovations (McLeish et al., 2024), enhanced pre-
training data (Shao et al., 2024; Allal et al., 2025;
Wang et al., 2024b), supervised fine-tuning (Yu
et al., 2024b; Cobbe et al., 2021a), reinforcement
learning (Wang et al., 2024a; Zelikman et al., 2022),
and chain-of-thought prompting (Ye et al., 2024;
Zhang et al., 2022). Current supervised fine-tuning
mathematical datasets can be divided into two cate-
gories: numerical reasoning focuses on arithmetic
computations that always yield a number (Cobbe
et al., 2021a; Hendrycks et al., 2021; Glazer et al.,
2024), and theorem proving uses formal languages
to produce computer-verifiable proofs (Ying et al.,
2024; Wu et al., 2024).

However, existing mathematical datasets still
faces several challenges: (C1) Lack of nuance
and complexity. Current datasets, often limited
to grade-school calculations or competition prob-
lems(Cobbe et al., 2021a; Hendrycks et al., 2021),
oversimplify mathematical reasoning, highlighting
the need for more complex and nuanced problems,
especially as LLMs approach perfect performance
on these benchmarks. (C2) Limited human-like
reasoning. While formal languages like Lean
(de Moura et al., 2015) enable precise verification
in recent dataset (Ying et al., 2024; Wu et al., 2024),
they obscure intuitive human-like reasoning pro-
cesses, which are more valuable and interpretable
compared to strict and formal derivations (Cher-
vonyi et al., 2025; Glazer et al., 2024). (C3) Un-
reliable annotations. LLMs are often used for
automatic data synthesis to scale data (Yu et al.,
2024b; Shao et al., 2024). However, this approach
often leads to unreliable annotations, especially in
step-by-step reasoning tasks, due to LLMs’ ten-
dency to hallucinate or make logical errors.

To address these limitations, we introduce
STORM-BORN, a dataset of challenging math-
ematical derivations derived from recent top-tier
academic papers (see Fig. 1 for examples). To
curate nuanced and challenging dataset (C1), we



(I) Numerical Reasoning (PRM-800K) (ITII) Human-like Derivations (Our STORM-BORN)

Question: An unfair coin lands on heads
with probability 3/4 and tails with proba-
bility 1/4. A heads flip gains $3, but a tails
flip loses $8. What is the expected worth
of a coin flip? Express your answer as a
decimal rounded to the nearest hundredth.

Steps: The expected value is equal to
the probability of getting heads times the
value of heads plus the probability of get-
ting tails times the value of tails. Let’s call
the expected value E. So we can write that
as B = 3/4%3+1/4x(—8). That simplifies
to E = 9/4 — 2. So the expected value is
E = 1/4 = 0.25 dollars.

Answer: $0.25.

\ J

(II) Formalized Theory Proving (MiniF2F)

Informal Question:
Expand the following expression: 7(3y +
2), show that it is 21y + 14.

Formal Question:
theorem mathd_algebra_182 (y : C)

: 7 x (3 xy +2) =21 xy +
14 := by

theorem mathd_algebra_182 (y : C)
: 7% (3 xy +2) =21 xy +

Question. Based on Formula (3):
TY;%X]EIND,yNwe(yu)[%(% y)] — BDkL[mo (y) | Trer (y )]s

which enforces a KL-constrained reward maximization, how can we derive Formula (4):

where Z () is the partition function ensuring 7r,- is a valid probability distribution?

Answer. We optimize the following objective:

under any reward function 7 (x, y), reference model 7. We now have:
max ]ExND)yNﬂ- [r(z, y)] — BDkL {W(ym)“ﬂ'ref(y‘z)}
=maxEy DEy r(y|z) [T(z, y) — Blog

= max ]EzND]EyN—,r(y\m) [1og
= max ExnDEy~r(y|a) [log
where we have partition function:

Note that the partition function is a function of only & and the reference policy 7r.f, but does not
depend on the policy 7. We can now define

which is a valid probability distribution as 7* (y|x) > 0 for all y and PR 7 (ylz) = 1.
Since Z () is not a function of y, we can then re-organize the final objective in Eq. (2) as:

Now, since Z (z) does not depend on 7, the minimum is achieved by the policy that minimizes
the first KL term. Gibbs’ inequality tells us that the KL-divergence is minimized at 0 if and only if
the two distributions are identical. Hence we have the optimal solution:
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forall z € D. This completes the derivation.
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Figure 1: (I) The Numerical Reasoning dataset (e.g. PRM-800K) requires generating numerical values, which may
be too simplistic for state-of-the-art LLMs. (II) The Formalized Theory Proving dataset (e.g. MiniF2F) encodes
problems in formal languages like Lean, hindering intuitive reasoning and real-world generalization. (III) In contrast,
Our STORM-BORN dataset emphasizes human-like reasoning, particularly in the purple-colored segment, requiring
deep understanding, creativity, and complex reasoning. This task is more challenging than (I) and offers better

interpretability and generalizability than (II).

carefully select influential publications within the
last two years via the arXiv repository, which also
avoids data contamination and remains scalable.
To capture human-like reasoning (C2), we utilize
heuristic paper filters identify key mathematical rea-
soning markers (e.g. “assume”, “define”, “proof™).
Instead of isolates individual steps like previous
works, we extract extracting full derivations to pre-
serve logical reasoning flow. Our multi-agent LLM
framework generates problems that require deep
theoretical insight, with each derivation contain-
ing at least three reasoning steps. Furthermore,
to ensure reliable annotations (C3), authoritative
sources and expert evaluations are employed.

In this process, we developed a novel multi-agent
data curation framework, STORM (Synergistic
Theorem and fORmula Mining), which integrates
human-in-the-loop processes. This framework en-
sures that the generated data inherently requires
complex reasoning and creativity. The develop-
ment of STORM, including the employment of ex-
pert mathematicians for 2 months, incurred a total
cost of 8000 USD. Even the most advanced LLM,
GPT-01-Pro, is able to solve fewer than 5% of the
problems in our STORM-BORN dataset. In con-
trast, it achieves nearly 95% accuracy on GSM8K,
which highlights the inherent complexity and chal-
lenge of our STORM-BORN dataset. Addition-



ally, we evaluated the generalization ability of our
dataset on numerical reasoning tasks. Remarkably,
even models with relatively lower capacities, such
as TinyLLaMA-1.1B, demonstrated significant im-
provements, even though our dataset derivation
format differs from numerical reasoning. Our key
contributions can be summarized as follows:

¢ We introduce STORM-BORN, a more chal-
lenging mathematical derivation dataset cu-
rated from recent high-impact papers, featur-
ing complex problems that require theoretical
understanding and creative insights.

* We develop a data generation framework,
STORM, that integrates human-in-the-loop
and multi-agent processes to extract complete
derivation processes, ensuring both human-
like reasoning patterns and reliable annota-
tions in the final high-quality samples.

» Extensive human evaluation demonstrates the
challenge of STORM-BORN, even most ad-
vanced LLMs solve fewer than 5% of the prob-
lems. Our dataset demonstrates generalization
capabilities, particularly in the context of nu-
merical reasoning tasks.

2 Related Work

2.1 Large Language Models for Mathematical
Reasoning

Mathematical reasoning has become a critical
benchmark for evaluating and improving the ca-
pabilities of large language models (LLMs). Ad-
vances in this field have been driven by multi-
ple factors, including architectural improvements
(McLeish et al., 2024), enhanced pretraining
datasets (Shao et al., 2024; Allal et al., 2025; Wang
et al., 2024b), supervised fine-tuning (Yu et al.,
2024b; Cobbe et al., 2021a), reinforcement learn-
ing (Wang et al., 2024a; Zelikman et al., 2022), and
prompt-based methods such as chain-of-thought
reasoning (Ye et al., 2024; Zhang et al., 2022).
Frieder et al. (2024) explored LLMs for assisting
mathematicians, advocating a hybrid human-model
approach. Chang et al. (2023) evaluated LLMs
in mathematical reasoning, noting strengths and
limitations. Testolin (2024) and Lu et al. (2023)
analyzed deep learning in math problem-solving,
highlighting challenges in generalization.

Despite advancements, LL.Ms in mathematical
reasoning remain limited by reliance on dataset-
driven learning, leading to brittleness and poor

generalization (Ahn et al., 2024). To address
this, reinforcement learning has been employed
to enhance verification mechanisms (Wang et al.,
2024a), while prompt engineering, such as physics-
inspired prompting (Ye et al., 2024) and automated
chain-of-thought generation (Zhang et al., 2022),
has improved reasoning consistency. These find-
ings highlight the need for structured reasoning
techniques alongside architectural and data im-
provements to further advance mathematical ca-
pabilities in LLM:s.

2.2 Mathematical Datasets

Mathematical datasets for LLMs can be broadly cat-
egorized into numerical reasoning and automated
theorem proving (ATP). For numerical reason-
ing, PRM80OK (Lightman et al., 2024), GSM8K
(Cobbe et al., 2021b), and GSM_PLUS (Li et al.,
2024a) focus on arithmetic problem-solving, re-
quiring step-by-step derivations. FormulaReason-
ing (Li et al., 2024b) assesses formula-based nu-
merical reasoning, while GAOKAO (Zhang et al.,
2024b) benchmarks LLMs’ ability to solve com-
plex mathematical problems in Chinese university
entrance exams. For automated theorem proving,
MiniF2F (Zheng et al., 2022) compiles problems
from formal proof assistants, including Metamath
(Yu et al., 2024a), Isabelle (Frieder et al., 2024),
and Lean (Han et al., 2022). ProofNet (Azerbayev
et al., 2023) spans undergraduate-level mathemat-
ics, bridging LLMs with formal proof verification.
Additionally, DRAW-1K (Upadhyay and Chang,
2017) aids in equation derivation, while Ying et al.
(2024); Wu et al. (2024) introduced datasets for
Lean, supporting machine-verifiable proof genera-
tion.

In contrast, our STORM-BORN dataset focuses
on challenging mathematical derivations in natural
language, demanding complex reasoning and cre-
ativity, and is more likely to contain dense, human-
like thinking patterns, such as approximations and
heuristic cues.

3 Overall Pipeline

In order to enhance LLMs’ reasoning abilities for
mathematical expressions found in research pa-
pers, we created STORM-BORN, a dataset that
involves advanced mathematical reasoning. This
section describes in detail the construction process
of STORM-BORN.
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Figure 2: Overview of the data generation framework of STORM-BORN, which consists of three main components:
(1) Reasoning-dense Content Filtering selects reasoning-dense arXiv papers through linguistic markers and
complexity criteria to ensure high-quality mathematical derivations. (2) Multi-agent Data Generation orchestrates
specialized agents for LaTeX extraction, query formulation, answer retrieval, and context enrichment, culminating

in refined mathematical problems.

(3) Human Expert Selection applies rigorous evaluation criteria to select

the most challenging and well-structured problems, resulting in the final STORM-BORN dataset for advancing

mathematical reasoning capabilities.

3.1 Reasoning-dense Content Filtering

Distinguishing between basic concept explanations
and genuinely complex reasoning requires human-
like cognitive processes. To ensure our dataset
contains more data and of higher quality, a key as-
pect lies in the selection of data sources—academic
papers. Different papers vary in the amount and
quality of data they provide, with some contain-
ing extensive mathematical content and detailed
proofs and derivation processes, while others do
not. Therefore, the focus should be on papers that
not only contain a sufficient number of formulas but
also provide thorough theorem proofs and deriva-
tion processes. More specifically, we select papers
based on the following principles.

Publication Status and Review Score. To en-
sure data reliability, we prioritize papers from rep-
utable journals and conferences, which are peer-
reviewed and meet stringent acceptance criteria.
We also limit the selection to papers published from
May 2023 to October 2024 to ensure content fresh-
ness and reduce the risk of using outdated material.
Additionally, all selected papers must receive a
score higher than "weak accept” from reviewers

on the OpenReview platform, ensuring high data
quality.

Richness of Mathematical Derivations. We use
linguistic markers such as “assume”, “derive”, and
“proof™ to filter papers that contain detailed deriva-
tions and complete sequences of proofs (especially
in the appendices). If the target keywords appear
more than five times in a paper, we consider it to
have a higher likelihood of being our target pa-
per. This ensures that the filtered papers contain
high-quality mathematical reasoning.

3.2 Multi-agent Data Generation

We present a six-agent methodology to generate
data. This streamlined workflow (see Fig. 2) en-
sures that each mathematical expression is accom-
panied by a coherent proof or derivation, a self-
contained question and human-like step-by-step
answer. Subsequently, we will introduce the entire
process. To achieve this goal, we repeatedly refined
the workflow, distributed tasks across multiple
agents, and continuously modified and validated
the prompts. This process was tedious and time-
consuming, consuming a lot of effort. We spent



200 USD for GPT-o01-Pro and spent about three
weeks on prompts engineering. Appendix A con-
tains further details. This multi-agent framework
aims to generate high-quality mathmatical data by
systematically extract expressions, pose meaning-
ful questions, retrieve and refine answers, gather
requisite background information, and present the
self-contained results, ultimately providing more
transparent insight into mathematical derivations
and proofs. In each step, all mathematical symbols
and expressions are converted to latex format.

Why not single-agent? We initially experi-
mented with a single-agent approach for data gen-
eration, but the results were poor. The task is inher-
ently complex and involves multiple steps. Using
a single LLM leads to excessively long prompts
with numerous critical points, making it difficult
for the model to follow the instructions effectively.
By employing a multi-agent system, we can de-
compose the task into smaller, more manageable
components, allowing each LLM agent to focus on
a specific step or key point, which improves the re-
sults. Additionally, this modular approach provides
greater flexibility, making it easier to modify, refine,
or integrate new modules for further improvements.
In practice, the multi-agent system significantly
enhances both the efficiency and quality of data
generation.

Math Expression Extractor Agent We utilize
lightweight multi-modal LLMs with extensive
prompts for accurate LaTeX formula extraction,
avoiding the limitations of traditional OCR tech-
niques (He et al., 2024). It uses a multi-modal large
language model (MLLM) that can recognize math-
ematical expressions in text. After collecting these
expressions, the original paper and the extracted ex-
pressions are forwarded to the Query Draft Agent.

Query Draft Agent We employ the GPT-o1-Pro
LLM as our Query Draft Agent, leveraging a well-
structured and effective long prompt exceeding 1k
tokens. It receives the entire paper rather than
the chunked paper, which ensure it could compre-
hensively understand the entire paper. For each
expression extracted from the Math Expression Ex-
tractor Agent, it generates at least one query, focus-
ing on the theorem or formula derivation problems.
We also added few-shots to enhance the output
format stability. The details of its prompt is in
Appendix A.2.

Answer Retriever Agent The Answer Retriever
takes the entire paper, a given expression, and its
corresponding query as input. The Answer Re-
triever Agent searches the paper for relevant con-
tent that can answer the query. Once relevant con-
tent is found, it extracts the entire answer directly
from the paper rather than make a proof itself to
avoid hallucination. Similar to Query Draft Agent,
practice has proved that the task of this agent is
also difficult and requires a more powerful LLM
(e.g. GPT-01-Pro). The effective prompt we finally
get is also relatively long with nearly 500 tokens.
The details of this prompt is in Appendix A.3.

Context Collector Agent Although Query Draft
Agent and Answer Retriever Agent could gener-
ate high-quality query and answer, there still re-
mains the possibility that they lack full informa-
tion to make them self-contained, which means we
could give the proof based on the query and check
whether the proof is same as the answer retrieved
from the original resource. The Context Collector
captures these information and stores them as ev-
idence for the target self-contained question and
answer.

Question Refiner Agent The goal of this agent
is to incorporate the information from the evidence
into the query and answer, thereby generating self-
contained question that can be answered indepen-
dently without reading original resource.

Answer Filter Agent Since our goal is to fo-
cus on mathematical reasoning, the Answer Filter
Agent filters out any irrelevant content after receiv-
ing the data processed by Question Refiner Agent,
retaining only the essential information needed to
understand how the expression is derived or proven.
By filtering out unnecessary data, the subsequent
modules can significantly reduce redundant work-
load and generates the self-contained question and
answer.

3.3 Human Expert Selection

Through Multi-agent Data Generation, we obtained
2k samples. We could directly train on our 2k
samples, however, our goal is to extract the most
challenging and high-quality dataset. To achieve
this, we employ an expert mathematicians group
to conduct a rigorous selection process, ultimately
arriving at a refined set of 100 samples. We sent
the self-contained question and answer generated
in (Sec. 3.2) to human experts who are familiar



with the reasoning-dense paper samples for selec-
tion. Human experts conducted strict audits on
data quality, retained data that meets the standards,
eliminated data that has no research value, and
manually modified and optimized data that is not
of borderline quality but can be improved. Each
paper was processed by experts for about 30 sam-
ples of question and answer, and the processing
of a single paper took about 15 minutes. Through
iterative expert feedback and revision, we refined
the dataset, ensuring that each sample meets the
high-quality standards set by our guiding princi-
ples. This expert-driven process was critical to
ensuring that the dataset reflects complex human-
like mathematical reasoning, resulting in the final
STORM-BORN dataset. This process was guided
by the following five core principles: Reasoning
Density, Problem Clarity, Derivation Correctness,
Reasoning Density, and Evidence Quality.

(Q1) Reasoning Type: Does the problem de-
mand creative insight and complex reasoning? Ini-
tially, mathematicians determine whether the prob-
lem involves genuinely complex reasoning like de-
riving or proving a formula, as opposed to simple
explanation or definition.

(Q2) Problem Clarity: Is the problem clear,
well-defined, and solvable with the existing infor-
mation? This step evaluates the explicitness of the
problem’s goal and conditions. Ambiguities or in-
complete queries, where critical context is missing,
are flagged for refinement. Human expert interven-
tion is crucial here, as mathematical clarity often
requires subjective interpretation, especially when
key information is implied or subtly conveyed.

(Q3) Derivation Correctness: Are all deriva-
tion steps logically valid, error-free, and complete?
Mathematicians carefully review each derivation
step for correctness, ensuring that all logical transi-
tions are accurate and coherent. This stage presents
a significant challenge, as identifying logical er-
rors or omissions often requires a deep theoretical
understanding and specialized expertise.

(Q4) Reasoning Density: Does the reasoning
process include sufficient logical steps, exhibit
heuristic reasoning cues, and demonstrate trial-
and-error similar to human problem-solving ? This
requires human expertise to assess whether the rea-
soning is sufficiently dense, complete, and heuristic.
Mathematicians identify patterns in the reasoning
that reflect human-like trial-and-error approaches.

Missing or incomplete justifications are flagged for
further revision.

(Q5) Evidence Quality: Are external references,
if provided, accurate and relevant? The final chal-
lenge assesses whether the references used to sub-
stantiate derivations are both accurate and relevant.
Human expertise is essential for ensuring the ap-
propriateness and correctness of these references,
as the task often involves subjective interpretation
of their relevance to the derivation.

4 Experiments

4.1 Case Study

In this preliminary case study, we compared three
different types of datasets (see Fig. 1): (I) Numeri-
cal reasoning datasets such as PRM-800K, which
mainly examine numerical calculations, but may
be too simple for advanced language models. For
example, it can be solved like the expected value
of a coin toss, which first calculates the probability
of heads and tails, then calculate the payoff. (II)
Formal proof datasets such as Minif2F, which use
formal languages such as Lean to describe prob-
lems. Although rigorous, they are not easy to under-
stand intuitively and are not easy to associate with
real-world scenarios. Moreover, the answer exam-
ples can be solved with only one ring. (III) Our
proposed STORM-BORN dataset focuses more
on human-like reasoning processes and requires
deeper understanding, flexible thinking, and com-
plex reasoning. It is not only more challenging than
(D), but also more interpretable and general than (II).
In our example, the system in the DPO (Rafailov
et al., 2023) paper, the system captures the deriva-
tion of important formulas and extracts the com-
plete details of the derivation from the appendix of
the paper, demonstrating the effectiveness of our
method in scenarios of complex research.

4.2 Human Evaluation

Since our data mainly contains difficult mathemat-
ical proofs and derivation processes, rather than
numerical data, it is difficult to directly evaluate the
correctness. Existing similarity evaluation methods
and LLMs also have difficulty in ensuring the accu-
racy of the evaluation (Fig. 3). So for experimental
results on our dataset, we rely on human evaluation
(following Q3, Q4 in Sec. 3.3).

Based on the above human evaluation criteria.
We systematically evaluated six leading language
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Figure 3: Performance of leading language models on STORM-BORN based on a human expert evaluation. All
models show consistently poor performance, with even the best models solving less than 5% of problems. When
re-evaluating problems that were solved at least once by any model, GPT-o01-Pro demonstrated the strongest

performance across repeated trials.

Model GSMSK GSM_PLUS MATH
Tiny-Llama-1.1B-chat 1.36% 1.18% 1.20%
Tiny-Llama-1.1B-chat (Ours) 2.05% (10.69 1.29% (10.11) 4.00% (1 2.80)
Tiny-Llama-1.1B-chat (GSMSK) 8.79% 4.52% 2.80%
Tiny-Llama-1.1B-chat (GSMSK + Ours) 9.55% (1 0.76) 4.79% (10.27) 4.80% (1 2.00)
Tiny-Llama-1.1B-chat (MiniF2F) 1.67 % 1.42% 3.20%
Tiny-Llama-1.1B-chat MiniF2F + Ours) 1.59% (1 0.08) 1.41% (1 0.01) 3.80% (1 0.60)
Llama2-7B-hf 7.96% 2.80% 1.60%

Llama2-7B-hf (Ours)

8.80% (1 0.84)

4.85% (12.05 2.60% (1 1.00)

Table 1: Experimental Results of 1.1B and 7B LLMs on GSM8K, GSM8K_PLUS, and MATH. (-) means finetuned
dataset (e.g. GSM8k, MiniF2F, Our STORM-BORN), “+” denotes data combination. The best results are highlighted

in bold.

models on our dataset - GPT-o01-Pro, GPT-o1, GPT-
ol-Preview, GPT-40, and DeepSeek-R1. Exper-
imental results show that GPT-o1-Pro has an ac-
curacy rate of 5% on the test data, which is the
best performance among all the tested models (see
Fig. 3). Compared to other datasets (e.g. MMLU,
Omni-MATH), which are almost solved, obviously,
even the most advanced models still have limited
performance on our dataset, which further high-
lights the challenge of this dataset and the complex-
ity of mathematical reasoning tasks.

4.3 Data Quality By Downstream Application

To evaluate the impact of STROM-BORN on en-
hancing mathematical reasoning abilities, we per-
form full fine-tuning on Tiny-Llama-1.1B-chat
(Zhang et al., 2024a) and Llama-2-7B (Touvron
et al., 2023) and evaluate them on the GSM8K

(Cobbe et al., 2021b), GSM-Plus (Li et al., 2024a),
and MATH (Hendrycks et al., 2021) datasets.

Experimental results indicate that STROM-
BORN improves model performance across multi-
ple mathematical reasoning benchmarks. To quan-
tify its impact, we first fine-tune models using only
the 73 training samples from STROM-BORN and
evaluate them on benchmarks. The results show
that fine-tuning solely on STROM-BORN leads
to an accuracy improvement of 2.80 percentage
points on MATH for Tiny-Llama-1.1B-chat and
1.00 percentage point for Llama-2-7B. These find-
ings suggest that STROM-BORN enhances multi-
step logical reasoning capabilities, particularly in
complex problem-solving scenarios.

To ensure alignment between the training and

testing data distributions, we randomly insert 73
STROM-BORN training samples into the GSM8K



training split and evaluate the models on GSM&8K,
GSM-Plus and MATH. The results indicate that
this strategy yields a 0.76 percentage point im-
provement on GSM8K and a 2.00 percentage point
improvement on MATH, further demonstrating that
STROM-BORN contributes positively when inte-
grated into larger training corpora.

Furthermore, the learnability of STROM-BORN
is compared with that of the MiniF2F (Zheng et al.,
2022) dataset, which primarily consists of formal
mathematical proofs. Fine-tuning Tiny-Llama-
1.1B-chat exclusively on MiniF2F results in lower
accuracy on GSM8K and MATH compared to fine-
tuning on STROM-BORN, with performance dif-
ferences of 0.38 and 0.80 percentage points, respec-
tively. Even when jointly trained with MiniF2F, the
model’s accuracy on MATH remains largely depen-
dent on the contribution of STROM-BORN, yield-
ing a 0.20 percentage point improvement. These
results suggest that STROM-BORN is more learn-
able and better aligns with the reasoning patterns of
language models, making it a more effective fine-
tuning dataset for mathematical problem-solving
tasks.

5 Conclusion

In conclusion, we present STORM-BORN, a novel
dataset designed to address the limitations of ex-
isting mathematical derivation datasets. Curated
from recent top-tier academic papers via the arXiv
repository, STORM-BORN is both nuanced and
scalable, while avoiding data contamination. Un-
like isolated steps, we capture full derivations to
preserve logical flow and encourage deep theoret-
ical reasoning. Using a human-in-loop and multi-
agent LLM framework STORM, we generate prob-
lems requiring at least three reasoning steps, en-
suring complexity and creativity. Expert evalu-
ations ensure reliable annotations. Empirical re-
sults highlight the dataset’s challenge, with ad-
vanced LLMs like GPT-o01-Pro solving fewer than
5% of the problems, compared to 95% accuracy
on GSMS8K. Additionally, STORM-BORN demon-
strates strong generalization capabilities, offering a
high-difficulty evaluation benchmark for AI’s ap-
proach to mathematician-level reasoning.

Limitations

This study addresses an important gap in the field,
but it also faces certain limitations. Specifically,
the automated evaluation of data quality remains

challenging, as our focus on complex mathematical
derivations rather than numerical computing makes
quality assessment difficult (a problem also noted
by Glazer et al. (2024)). Currently, we rely pri-
marily on a carefully designed multi-agent curation
pipeline and manual inspection by mathematicians.
However, with the rapid advancement and scaling
of LLMs, we believe that in the future, LLMs can
be fully employed to automate this process, itera-
tively improving and optimizing it.

Ethics Statement

The dataset construction process in this study
strictly adheres to ethical guidelines and fully com-
plies with relevant legal regulations. We obtain
publicly accessible, high-quality academic papers
from ArXiv and utilize a combination of multi-
modal models and human evaluation feedback for
data processing and optimization, ensuring data
quality and reliability before generating the final
dataset. The entire data collection and process-
ing workflow is transparent and traceable, with all
papers sourced from legal and publicly available
channels, guaranteeing compliance and traceability
of data. The dataset constructed in this study is
intended solely for academic research and experi-
mental purposes, with no involvement in commer-
cial applications or risk of sensitive information
leakage.
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A  Workload and Prompts

We invested a lot of work, energy, and time in this research. Our goal is to generate high-quality formula
derivation and question-answering. At first glance, this seems to be a simple task, but in fact it involves
extremely complex and extensive workload. Initially, we explored various technical solutions, such
as optical character recognition (OCR), but when using OCR for formula recognition and extraction,
we often encountered incomplete positioning (only part of the formula was framed out), resulting in
inaccurate formula extraction. After repeated comparisons and experiments, we finally chose the method
of multi-agent large language model (LLM) collaboration, which has consumed some time and energy.

The biggest challenge appeared in the prompt design and optimization stage. Practice has shown that
LLM will encounter a series of problems, such as identifying key data in long texts, following instructions,
and producing stable output. To solve these difficulties, we continuously refined the overall workflow and
assigned complex tasks to multiple appropriate numbers of agents (see Fig. 2) for collaborative execution.
At the same time, the prompts of each agent were modified, iterated, and verified for multiple rounds.
This process is tedious and time-consuming, and consumes a lot of energy.

Regarding manual evaluation and feedback, each paper required individuals with relevant academic
background to read, assess, and provide feedback on the generated data, which increases labor and time
Ccosts.

For resource costs and time costs, please see Appendix B.

Thanks to this painstaking and systematic workflow, we were finally able to obtain high-quality
question-answering data. We will introduce our prompts below, hoping to provide further insight into
the complexity of this study, the extensive workload involved, and our efforts to overcome a variety of
challenges.

A.1 Math Expression Extractor Agent

We encountered many problems in the process, such as: the set of extracted mathematical expressions
omitted important items, contained unnecessary items and repeated items; the output latex format did not
meet the requirements. To solve these problems, we added new rules to the prompt and repeatedly verified
the effect in practice, and iterated continuously. Through repeated iterations in practice, these problems
were solved, which enables the MLLM to follow the instructions to extract all important mathematical
expressions (formulas, theorems, lemmas, etc.), ignore unimportant mathematical expressions (such
as intermediate expressions that appear in the derivation process, mathematical content inserted in the
paragraph), and ensure that the output expression is in the correct format.

Prompt of Math Expression Extractor

"""Read the paper, then:

1. Formula Recognition:

— Identify all mathematical formulas, theorems, lemmas, and corollaries in
the paper. Especially Numbered formulas.Retain the formula's number (if
any) .

- For formulas without explicit labels (i.e., those not labeled as "theorem,
" "lemma, " or "corollary"), classify them as "formula."

- Required types of formulas to recognize:

— Numbered formulas.
— Formulas that appear on separate lines (for example, occupying a line
or multiple lines by themselves in the paper).

— Ignore:

- Formulas that appear in the middle of a paragraph without separate
lines or numbers.

— Make sure there are no duplicates in the results (duplicates refer to
formulas that are exactly the same after conversion to LaTeX. If the same
formula appears in the paper under different numbers, treat them as the
same formula) .
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2. LaTeX Conversion (Convert the formulas identified in step 1 into LaTeX
format strings):

- Symbols: Convert mathematical symbols accurately.

- Subscripts and superscripts: Convert subscripts and superscripts correctly.

- Uppercase and lowercase: Preserve the original variable and constant casing.

- Formula structure: Keep the entire structure of the formula intact.

- Formula numbering: Retain the formula's number (if any).

— Italics: For italicized variables in the text, wrap them with \textit{} in
LaTeX.

- Math environment: Use “$ ... $° for inline formulas and “$$ ... $$° for block
(display) formulas.

— Additional conditions: Check whether the paper includes definitions or
explanations immediately following the formula (for example, "where X is
..") and incorporate them if present.

3. JSONL Output:

- Output all converted LaTeX strings in multi-line JSONL format so they can
be parsed line by line.

- Each line should be a JSON object whose key is the type of the formula
("formula", "lemma", "theorem", "corollary", etc.) and whose value is the
LaTeX string obtained from step 2.

- Be sure to follow the requirements in step 2!

Ensure the formulas are exactly the same as in the original text!"""

\

A.2 Query Draft Agent

The more difficult task also leads to more problems encountered in the process, such as the generated
questions are too rigid, the questions lack prerequisites, and only the formula reference number is output
without the original formula which emphasizes the need of Context Collector Agent and Question Refiner
Agent.

Prompt of Query Draft

"""T will provide you with a dataset extracted from this paper, in JSONL
format. Each entry is a dictionary whose keys are "formula, " "lemma,
"theorem, " etc., representing the category of the mathematical
expression, and whose values contain a mathematical expression in LaTeX
format, extracted from the paper.

Carefully read and understand the paper's content, especially the parts
related to each formula in the JSONL. For each formula, please complete
the following steps:

Step 1:

Locate where the formula is first defined or fully derived in the paper, and
use the relevant context to extract all the direct necessary conditions
for deriving or proving that formula. These preconditions include, but
are not limited to:

1. Which other formulas this formula is derived from or depends on. For each
such formula, record its full content (in LaTeX format), its numbering
(if any), and its name (if any).

2. Relevant problem settings.

3. The specific meaning of symbols or variables involved in the formula.

Step 2:

Based on the extracted preconditions, generate a complete gquestion that
clearly asks how to derive or prove the formula. The question should
include:
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1. The formula itself: Present the full content of this formula (in LaTeX
format). Do not only reference its number.

2. The preconditions: Explicitly integrate the preconditions extracted from
the paper into the question. List out the full contents of all the
formulas it depends on and reference them by their respective numbers or
names. Do not produce a question such as "What are the preconditions?"

The form of the question must meet the following requirements:

- If a formula is derived from one or more other formulas, you must
explicitly list the full content (in LaTeX) of these preceding formulas
and reference them by their numbers or names, and explain how the current
formula is derived from them. For example, if the paper contains Formula
3 (content: X) and Formula 4 (content: Y), and Formula 4 is derived from
Formula 3, then the generated question should be:

"Based on Formula 3: X, how can we derive Formula 4: Y?"

- If the formula is a theorem, lemma, or corollary, please generate a
question asking how to prove it, for example:

"How can we prove Lemma 1l: X is true?"

Note: The question must be structured and logical, clearly showing the
derivation or proof process of the formula and explicitly reflecting the
dependency between formulas while fully presenting all related formulas.

Step 3:
Match each formula with its corresponding question and output the result in
multi-line JSONL format.

Each data entry should be a dictionary containing the following two key-value
pairs:

1. Formula type:

- The key is "formula, " "lemma, " "theorem, " etc.

— The value is the LaTeX content of the formula.

2. Generated question:

- The key is "query."

— The value is the complete question generated according to Step 1 and Step 2.

Important Notes:

1. Format Requirements:

- Ensure the output is in JSONL format, with each line corresponding to one
data entry.

2. Formula Accuracy:

- If the question contains mathematical expressions, convert them into LaTeX
format. Make sure they align with the original mathematical meaning.
Minor formatting differences can be ignored.

3. LaTeX Conversion (Converts the mathematical expressions contained in the
problem to strings in LaTeX format):

- Symbols: Convert mathematical symbols accurately.

- Subscripts and superscripts: Convert subscripts and superscripts correctly.

- Uppercase and lowercase: Preserve the original variable and constant casing.

- Formula structure: Keep the entire structure of the formula intact.

- Formula numbering: Retain the formula's number (if any).

— Italics: For italicized variables in the text, wrap them with \textit{} in
LaTeX.

- Math environment: Use “$ ... $° for inline formulas and “$$ ... $$° for block
(display) formulas.

4. Completeness of Preconditions:

— The question content must include all direct necessary conditions.
Particularly, indicate which other formulas the current formula is
derived from or depends on, and clearly specify the entire content,
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numbering, or name of those referenced formulas. Do not produce questions
such as "What are the preconditions?"

Examples:
Here are some example questions and their corresponding output formats for
reference:

— Suppose the paper contains the following formula:

{"lemma": "Lemma 1. The function $f (x)$ is continuous."}

The generated question might be:

{"query":"How can we prove Lemma 1l: The function $f (x)$ is continuous. is
true?"}

- Suppose the paper contains the following formula:

{"formula": "y = mx + b"}

and it is explained that this formula is derived from y = f (x) and f (x) =
mx + b. Then the generated question might be:

{"query":"Based on the formulas: Sy = f (x)$ and $f (x) = mx + b$, how can we

derive the formula: $y = mx + bS$?"}

— Suppose the paper contains the following formula:

{"formula": "$$\\pi_r (y | x) = \\frac{l}{Z (x)} \\pi_{refl(y | x) \\exp
(\\frac{l}{\\beta} r (x, y))$s$"}

and it is explained that this formula is derived from Formula 3, S$KL (\\pi_r

(vIx) |1 \\pi_{ref}(yIx)) \\leg \\epsilon$. Then the generated question
should be:

{"query":"Based on Formula 3: $KL (\\pi_r (yIx) || \\pi_{ref} (vIx)) \\leqg
\\epsilon$, how can we derive Formula: $\\pi_r (y | x) = \\frac{l}{z2 (x)}

\Mpi_{ref}(y | x) \\exp (\\frac{l}{\\beta} r (x, y))$?"}

The dataset is as follows:\n

\.

A.3 Answer Retriever Agent

In order to solve the problems encountered in the process, such as: the answer is not extracted from the
original text but the large model generates the answer itself, the answer retrieved in this agent may
lack the important complete proof process in the appendix, or is a summary of the answer in the original
text, the effective prompt we finally get is also relatively long with nearly 500 tokens.

Prompt of Answer Retriever

"""T will provide a JSONL-format dataset extracted from this paper. Each
piece of data in the dataset is a dictionary containing two main
key-value pairs:

1. x»xFormula-related keys ("formula", "lemma", "theorem", etc.)=** indicating
the type of mathematical expression; the value is the LaTeX-formatted
mathematical expression extracted from the paper.

2. **query**, whose value is a question generated by a large model based on
the paper and the mathematical expression.

Please process this dataset according to the following steps and requirements.

### Step One:

For the "expression" and "query" in each piece of data, determine whether the
answer to that question can be found in the paper. The specific steps are
as follows:

1. »xFind the first occurrencexx
- Locate where the expression first appears in the paper and check the
surrounding context for relevant clues.
— If there are any references or citations, follow those as well.
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2. *%Check the appendix and other sectionsx*=x
— Search the paper's appendix or other relevant chapters to see if the
proof or derivation steps for that expression are provided. This may well
be the answer to the question.

3. *xConfirm feasibilityxx*
— If the paper does not include any relevant content addressing the
question, you may skip this expression and proceed to the next one.
— If the paper does indeed contain content that can answer the question,
extract the relevant content from the original text.

When extracting the answer, please note the following requirements:

— *xCompleteness**: The extracted answers should cover all the relevant steps
needed to solve the problem in the paper.

- xxConsistencyxx: Include only content from the original text in the answer
(you may make minimal necessary edits for coherence, but do not change
the original meaning). Avoid adding extra content or descriptions not
found in the original text.

- x*xCitation handling**: If the answer cites other formulas or theorems from
the paper, also include their original content in the derivation or proof
process, rather than leaving only references or labels.

- xxLaTeX conversions**: Ensure all mathematical expressions are converted to
the same LaTeX format as in the original text, including:

— Accuracy of symbols, subscripts, superscripts, and capitalization.

- Preserving the original structure and numbering (if any).

- Using \textit{} for italicized variables.

- Using $...$ for inline math expressions and $$...$$ for display math
expressions.

### Step Two:

Match the answers extracted in Step One with the corresponding entries in the
dataset, and add a new key-value pair to form a new data record. The
specific requirements are:

- For each original data entry, add a new key called “whole_label”, whose
value is the LaTeX-formatted answer content extracted from the paper.
- Output format must be **multi-line JSONL+*%, one piece of data per line:
1. The original two key-value pairs remain unchanged and must not be
modified.
2. Add the “whole_label” key as the third key-value pair.

### Output Requirements:

1. »xMulti-line JSONL format*x: One data entry per line.

2. **xAccuracy of contentxx: Formulas must match the original text of the
paper exactly, with correct symbols, subscripts, superscripts, and
capitalization.

3. xx Content consistency =+ : Only retain the original content in the answer
(you can make a small amount of necessary cohesive editing, but do not
change the original meaning), and try to avoid adding additional content
or descriptions that do not appear in the original.

### Note:

— Please strictly follow the above requirements to avoid omitting any key
content.

- Ensure there are no errors or incomplete parts in the output text.

Below is the dataset:
mmw
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B Resource and Time Costs

At the outset, it is important to highlight the considerable workload entailed in our approach, with the
associated resource and time costs reflecting the extensive efforts required for its implementation.

B.1 Resource Costs

To support the multi-agent system, we subscribed to GPT-o1-Pro for a one-month period at an approximate
cost of 200 USD. For simpler tasks, such as Math Expression Extraction and Answer Filtering, we utilize
free LLMs as agents. For more complex tasks, such as Query Generation and Answer Retrieval, we rely
on the paid GPT-01-Pro model to ensure enhanced performance and accuracy. An illustrative example is
provided below. After the Math Expression Extraction step, using GPT-o01-Pro for both Query Generation
and Answer Retrieval yielded the results shown in Appendix B.1.1. In contrast, using the gemini-2.0-flash-
exp model for the same tasks resulted in Appendix B.1.2. Furthermore, when using the query generated by
GPT-01-Pro and applying gemini-2.0-flash-exp for Answer Retrieval, the result was Appendix B.1.3. This
comparison clearly illustrates the necessity of using more powerful models like GPT-01-Pro for complex
tasks.

B.1.1 GPT-01-Pro Results

Here we provide the results of GPT-o1-Pro as follows:

GPT-01-Pro as Query Draft and Answer Retriever.

formula:

"$S\\pi_{r}(y | x)=\\frac{1l}{z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{l}{\\beta} r (x, y)), S$SS(4)"

"Based on Formula (3): $$\\max _{\\pi_{\\theta}} \\mathbb{E}_{x \\sim D, y
\\sim \\pi_{\\theta} (y|x)}[r_{\\phi}(x, y)]l-\\beta D_{K
L} [\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)], $$ which enforces a
KL-constrained reward maximization, how can we derive Formula (4): $$
\N\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e £} (y | x) \\exp\\Bigl
(\\tfrac{l}{\\beta} r (x, y)\\Bigr), $$ where $Z (x)$ is the partition
function ensuring $\\pi_{r}$ is a valid probability distribution?"

answer:

"In the paper's Appendix A.1l (pp. 15-16), "~"Deriving the Optimum of the
KL-Constrained Reward Maximization Objective, '' the authors
write:\n\n " [We] optimize the following objective:\n$$\\max_{\\pi}\\,
\\mathbb{E}_{x\\sim D, y\\sim\\pi (y\\mid x) }\\bigl[r (x, y)\\bigrl\\;
=\\; \\betal\\, D_{\\mathrm{KL}}\\bigl[\\pi (y\\mid x)\\, \\I\\,
\\pi_{\\mathrm{ref}} (y\\mid x)\\bigr].$$\n\n... We now
have:\n$s\\max_ {\\pi}\\, \\mathbb{E}_{x\\sim D, y\\sim \\pi (y\\mid
x) }\\bigllr (x, y)\\; =\\; \\log\\frac{\\pi (y\\mid
x) }{\\pi_{\\mathrm{ref}} (y\\mid x) }\\bigrl\\; =\\; \\max_{\\pi}\\,
\\mathbb{E}_{x\\sim D, y\\sim \\pi (y\\mid x)} \\bigl[\\, r (x, y)\\;
-\\; \\log\\pi (y\\mid x)\\; +\\; \\log\\pi_{\\mathrm{ref}} (y\\mid
x)\\bigr].s$$\n\nSince $Z (x)$ does not depend on $\\pi$, the minimum is
achieved by the policy that minimizes the first KL term. Gibbs'
inequality tells us that the KL-divergence is minimized at 0 if and only
if the two distributions are identical. Hence we have the optimal
solution:\n$S\\pi~{*} (y\\mid x)\\; =\\; \\frac{l}{Z (x)}\\,
\\pi_{\\mathrm{ref}} (y\\mid x)\\; \\exp\\Bigl (\\tfrac{l}{\\beta}\\, r
(x, y)\\Bigr), $$\nfor all $x\\in\\mathcal{D}$. This completes the
derivation.''\n\n\\ (\\textit{Here, }\\; Z (x)=\\sum_{y}\\,
\\pi_{\\mathrm{ref}} (y\\mid x)\\exp\\bigl (\\tfrac{l}{\\betalr (x,

v) \\bigr)\\; \\textit{ensures}\\; \\pi~{*} (y\\mid x)\\; \\textit{is a
valid probability distribution.}\\)\n\nevidence: Appendix A.1l, pp. 15-16
of the paper"}
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B.1.2 Gemini-2.0-Flash-Exp Results 838

Here we provide the results of Gemini-2.0-Flash-Exp as follows: 839

Gemini-2.0-Flash-Exp as Query Draft and Answer Retriever, using the same formula as Ap-
pendix . It is evident that compared to Appendix , the query generated by gemini-2.0-

flash-exp did not fully display the formula conditions (formula 4 in Fig. ), and the derivation
process was overly general rather than a detailed step-by-step derivation.

formula:

"SS\\pi_{r}(y | x)=\\frac{l}{Z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{l}{\\beta} r (x, y)), $$(4)"

"Given the RL objective in Formula (3):$$\\max _{\\pi_{\\theta}}
\\mathbb{E}_{x \\sim D, y \\sim \\pi_{\\theta} (yvIx)}[r_{\\phi} (x,
y)1-\\beta D_{K L} [\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | )], $$ how
can we express the optimal solution $\\pi_{r}(y | x)$ to the
KL-constrained reward maximization objective, where $7Z (x)$ is the
partition function?"

answer:

"Following prior work [31, 30, 19, 15], it is straightforward to show that
the optimal solution to the KL-constrained reward maximization objective
in Egq. 3 takes the form:\n$$\\pi_{r}(y | x)=\\frac{l}{Z (x)} \\pi_{r e
£}y I x) \\exp (\\frac{l}{\\beta}l r (x, y)), $$(4)\nwhere $$Z (x) =
Msum_{y} \\pi_{r e f}(y | x) \\exp (\\frac{l}{\\beta} r (x, y)), $$ is
the partition function. See Appendix A.l1 for a complete derivation."

L 840
B.1.3 Gemini-2.0-Flash-Exp Results 841
Here we provide the results of Gemini-2.0-Flash-Exp as follows: 842

Gemini-2.0-Flash-Exp as Answer Retriever, using the same formula and query as Appendix

It is evident that the result was less comprehensive and detailed than Appendix

formula:

"S$S\\pi_{r}(y | x)=\\frac{1}{z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{l}{\\beta} r (x, y)), S$SS(4)"

"Based on Formula (3): $$\\max _{\\pi_{\\theta}} \\mathbb{E}_{x \\sim D, vy
\\sim \\pi_{\\theta} (vIx)}[r_{\\phi} (%, y)]l-\\beta D_{K
LY [\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)]1, $$ which enforces a
KL-constrained reward maximization, how can we derive Formula (4): $$
NMpi_{r}(y | x)=\\frac{l}{Z (x)} \\pi_{r e £} (y | x) \\exp\\Bigl
(\\tfrac{l}{\\beta} r (x, y)\\Bigr), $$ where $7Z (x)$ is the partition
function ensuring $\\pi_{r}$ is a valid probability distribution?"

answer:

"Following prior work [31, 30, 19, 15], it is straightforward to show that
the optimal solution to the KL-constrained reward maximization objective
in Eg. 3 takes the form:\n$$\\pi_{r}(y | x)=\\frac{1l}{z (x)}
\Mpi_{\\textit{ref}} (v | x) \\exp (\\frac{l}{\\beta} r (x, y)), $$
(4) \nwhere $zZ (x)=\\sum_{y} \\pi_{\\textit{refl}}(y | x) \\exp
. 843
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(\\frac{l}{\\beta} r (x, y))$ is the partition function. evidence:
Section A.1l, Appendix"

B.2 Time Costs

On average, the processing time for each paper using the multi-agent system is approximately 20 minutes,
with variability depending on the paper’s length and the number of formulas. When utilizing GPT-o1-Pro
for more challenging tasks, the processing time can be significantly longer. Moreover, output failures
may occur, requiring multiple retries—sometimes two or even three times—leading to substantial time
costs. Additionally, issues such as the “dumbing down” of LLMs during intensive tasks can further hinder
experimental progress, creating delays in task completion. This represents a significant source of time
cost, as repeated attempts are necessary to recover from failures and ensure valid results. In addition, there
is no API for GPT-o1-Pro, so we have to use the web version. And the model can not receive pdf files, so
we can only convert the paper into page screenshots and gradually upload, which increases the labor costs
and time costs.
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