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Abstract

High-quality math datasets are essential for001
advancing the reasoning capabilities of large002
language models (LLMs). However, current003
datasets face three major issues: (i) outdated004
and insufficient challenging content to match005
the rapid advancement of LLMs, (ii) an overem-006
phasis on strict step-by-step derivations, ne-007
glecting human-like reasoning, and (iii) lim-008
ited reliability from single-agent synthetic gen-009
eration. To address these challenges, we in-010
troduce STORM-BORN, a dataset of chal-011
lenging mathematical derivations derived from012
the latest and most influential academic pa-013
pers. Unlike conventional numerical reason-014
ing or formalized proof, STORM-BORN fo-015
cuses on natural language mathematical deriva-016
tions that include dense human-like approxi-017
mations and heuristic cues. To ensure the reli-018
ability and quality of the dataset, we propose019
a novel human-in-the-loop, multi-agent data020
generation framework, integrating reasoning-021
dense filters, multi-agent collaboration, and022
human mathematicians’ evaluations. We cu-023
rates a set of 2,000 synthetic samples, from024
which 100 most challenging and high-quality025
problems are selected via human experts. Em-026
pirical evaluations reveal that state-of-the-art027
AI models, such as GPT-o1, solve fewer than028
5% of the STORM-BORN problems, under-029
scoring the dataset’s inherent difficulty. As030
AI approaches mathematician-level reasoning,031
STORM-BORN offers a novel, challenging,032
and reliable resource to mimic human-like rea-033
soning and serves as a high-difficulty evalua-034
tion benchmark.035

1 Introduction036

Mathematical reasoning has emerged as a corner-037

stone for scaling large language models (LLMs)038

and probing their upper bounds of intelligence039

(Shao et al., 2024; Ye et al., 2024; Glazer et al.,040

2024). Recent advances stem from architectural041

innovations (McLeish et al., 2024), enhanced pre- 042

training data (Shao et al., 2024; Allal et al., 2025; 043

Wang et al., 2024b), supervised fine-tuning (Yu 044

et al., 2024b; Cobbe et al., 2021a), reinforcement 045

learning (Wang et al., 2024a; Zelikman et al., 2022), 046

and chain-of-thought prompting (Ye et al., 2024; 047

Zhang et al., 2022). Current supervised fine-tuning 048

mathematical datasets can be divided into two cate- 049

gories: numerical reasoning focuses on arithmetic 050

computations that always yield a number (Cobbe 051

et al., 2021a; Hendrycks et al., 2021; Glazer et al., 052

2024), and theorem proving uses formal languages 053

to produce computer-verifiable proofs (Ying et al., 054

2024; Wu et al., 2024). 055

However, existing mathematical datasets still 056

faces several challenges: (C1) Lack of nuance 057

and complexity. Current datasets, often limited 058

to grade-school calculations or competition prob- 059

lems(Cobbe et al., 2021a; Hendrycks et al., 2021), 060

oversimplify mathematical reasoning, highlighting 061

the need for more complex and nuanced problems, 062

especially as LLMs approach perfect performance 063

on these benchmarks. (C2) Limited human-like 064

reasoning. While formal languages like Lean 065

(de Moura et al., 2015) enable precise verification 066

in recent dataset (Ying et al., 2024; Wu et al., 2024), 067

they obscure intuitive human-like reasoning pro- 068

cesses, which are more valuable and interpretable 069

compared to strict and formal derivations (Cher- 070

vonyi et al., 2025; Glazer et al., 2024). (C3) Un- 071

reliable annotations. LLMs are often used for 072

automatic data synthesis to scale data (Yu et al., 073

2024b; Shao et al., 2024). However, this approach 074

often leads to unreliable annotations, especially in 075

step-by-step reasoning tasks, due to LLMs’ ten- 076

dency to hallucinate or make logical errors. 077

To address these limitations, we introduce 078

STORM-BORN, a dataset of challenging math- 079

ematical derivations derived from recent top-tier 080

academic papers (see Fig. 1 for examples). To 081

curate nuanced and challenging dataset (C1), we 082
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(I) Numerical Reasoning (PRM-800K)

Question: An unfair coin lands on heads
with probability 3/4 and tails with proba-
bility 1/4. A heads flip gains $3, but a tails
flip loses $8. What is the expected worth
of a coin flip? Express your answer as a
decimal rounded to the nearest hundredth.

Steps: The expected value is equal to
the probability of getting heads times the
value of heads plus the probability of get-
ting tails times the value of tails. Let’s call
the expected value E. So we can write that
as E = 3/4∗3+1/4∗(−8). That simplifies
to E = 9/4 − 2. So the expected value is
E = 1/4 = 0.25 dollars.

Answer: $0.25.

(II) Formalized Theory Proving (MiniF2F)

Informal Question:
Expand the following expression: 7(3y +
2), show that it is 21y + 14.

Formal Question:
theorem mathd_algebra_182 (y : C)

: 7 * (3 * y + 2) = 21 * y +
14 := by

Answer:
theorem mathd_algebra_182 (y : C)

: 7 * (3 * y + 2) = 21 * y +
14 :=

by ring

(III) Human-like Derivations (Our STORM-BORN)

Question. Based on Formula (3):

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)] − βDKL[πθ(y|x)∥πref(y|x)],

which enforces a KL-constrained reward maximization, how can we derive Formula (4):

πr(y|x) =
1

Z(x)
πref(y|x) exp

(
1
β
r(x, y)

)
,

where Z(x) is the partition function ensuring πr is a valid probability distribution?

Answer. We optimize the following objective:

max
π

Ex∼D,y∼π
[
r(x, y)

]
− βDKL

[
π(y|x)∥πref(y|x)

]
, (1)

under any reward function r(x, y), reference model πref . We now have:

max
π

Ex∼D,y∼π
[
r(x, y)

]
− βDKL

[
π(y|x)∥πref(y|x)

]
=max

π
Ex∼DEy∼π(y|x)

[
r(x, y) − β log

π(y|x)
πref(y|x)

]
=max

π
Ex∼DEy∼π(y|x)

[
log

π(y|x)
πref(y|x)

− 1
β
r(x, y)

]
=max

π
Ex∼DEy∼π(y|x)

log
π(y|x)

1
Z(x)

πref(y|x) exp
(

1
β

r(x,y)
) − logZ(x)

 ,

(2)
where we have partition function:

Z(x) =
∑
y

πref(y|x) exp
(

1

β
r(x, y)

)
. (3)

Note that the partition function is a function of only x and the reference policy πref , but does not
depend on the policy π. We can now define

π
∗
(y|x) =

1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
, (4)

which is a valid probability distribution as π∗(y|x) ≥ 0 for all y and
∑

y π∗(y|x) = 1.
Since Z(x) is not a function of y, we can then re-organize the final objective in Eq. (2) as:

min
π

Ex∼D

[
Ey∼π(y|x)

[
log

π(y|x)
π∗(y|x)

]
− logZ(x)

]
=min

π
Ex∼D

[
DKL(π(y|x)∥π∗

(y|x)) − logZ(x)
]
.

(5)

Now, since Z(x) does not depend on π, the minimum is achieved by the policy that minimizes
the first KL term. Gibbs’ inequality tells us that the KL-divergence is minimized at 0 if and only if
the two distributions are identical. Hence we have the optimal solution:

π(y|x) = π
∗
(y|x) =

1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
(6)

for all x ∈ D. This completes the derivation.

Figure 1: (I) The Numerical Reasoning dataset (e.g. PRM-800K) requires generating numerical values, which may
be too simplistic for state-of-the-art LLMs. (II) The Formalized Theory Proving dataset (e.g. MiniF2F) encodes
problems in formal languages like Lean, hindering intuitive reasoning and real-world generalization. (III) In contrast,
Our STORM-BORN dataset emphasizes human-like reasoning, particularly in the purple-colored segment, requiring
deep understanding, creativity, and complex reasoning. This task is more challenging than (I) and offers better
interpretability and generalizability than (II).

carefully select influential publications within the083

last two years via the arXiv repository, which also084

avoids data contamination and remains scalable.085

To capture human-like reasoning (C2), we utilize086

heuristic paper filters identify key mathematical rea-087

soning markers (e.g. “assume”, “define”, “proof”).088

Instead of isolates individual steps like previous089

works, we extract extracting full derivations to pre-090

serve logical reasoning flow. Our multi-agent LLM091

framework generates problems that require deep092

theoretical insight, with each derivation contain-093

ing at least three reasoning steps. Furthermore,094

to ensure reliable annotations (C3), authoritative095

sources and expert evaluations are employed.096

In this process, we developed a novel multi-agent 097

data curation framework, STORM (Synergistic 098

Theorem and fORmula Mining), which integrates 099

human-in-the-loop processes. This framework en- 100

sures that the generated data inherently requires 101

complex reasoning and creativity. The develop- 102

ment of STORM, including the employment of ex- 103

pert mathematicians for 2 months, incurred a total 104

cost of 8000 USD. Even the most advanced LLM, 105

GPT-o1-Pro, is able to solve fewer than 5% of the 106

problems in our STORM-BORN dataset. In con- 107

trast, it achieves nearly 95% accuracy on GSM8K, 108

which highlights the inherent complexity and chal- 109

lenge of our STORM-BORN dataset. Addition- 110
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ally, we evaluated the generalization ability of our111

dataset on numerical reasoning tasks. Remarkably,112

even models with relatively lower capacities, such113

as TinyLLaMA-1.1B, demonstrated significant im-114

provements, even though our dataset derivation115

format differs from numerical reasoning. Our key116

contributions can be summarized as follows:117

• We introduce STORM-BORN, a more chal-118

lenging mathematical derivation dataset cu-119

rated from recent high-impact papers, featur-120

ing complex problems that require theoretical121

understanding and creative insights.122

• We develop a data generation framework,123

STORM, that integrates human-in-the-loop124

and multi-agent processes to extract complete125

derivation processes, ensuring both human-126

like reasoning patterns and reliable annota-127

tions in the final high-quality samples.128

• Extensive human evaluation demonstrates the129

challenge of STORM-BORN, even most ad-130

vanced LLMs solve fewer than 5% of the prob-131

lems. Our dataset demonstrates generalization132

capabilities, particularly in the context of nu-133

merical reasoning tasks.134

2 Related Work135

2.1 Large Language Models for Mathematical136

Reasoning137

Mathematical reasoning has become a critical138

benchmark for evaluating and improving the ca-139

pabilities of large language models (LLMs). Ad-140

vances in this field have been driven by multi-141

ple factors, including architectural improvements142

(McLeish et al., 2024), enhanced pretraining143

datasets (Shao et al., 2024; Allal et al., 2025; Wang144

et al., 2024b), supervised fine-tuning (Yu et al.,145

2024b; Cobbe et al., 2021a), reinforcement learn-146

ing (Wang et al., 2024a; Zelikman et al., 2022), and147

prompt-based methods such as chain-of-thought148

reasoning (Ye et al., 2024; Zhang et al., 2022).149

Frieder et al. (2024) explored LLMs for assisting150

mathematicians, advocating a hybrid human-model151

approach. Chang et al. (2023) evaluated LLMs152

in mathematical reasoning, noting strengths and153

limitations. Testolin (2024) and Lu et al. (2023)154

analyzed deep learning in math problem-solving,155

highlighting challenges in generalization.156

Despite advancements, LLMs in mathematical157

reasoning remain limited by reliance on dataset-158

driven learning, leading to brittleness and poor159

generalization (Ahn et al., 2024). To address 160

this, reinforcement learning has been employed 161

to enhance verification mechanisms (Wang et al., 162

2024a), while prompt engineering, such as physics- 163

inspired prompting (Ye et al., 2024) and automated 164

chain-of-thought generation (Zhang et al., 2022), 165

has improved reasoning consistency. These find- 166

ings highlight the need for structured reasoning 167

techniques alongside architectural and data im- 168

provements to further advance mathematical ca- 169

pabilities in LLMs. 170

2.2 Mathematical Datasets 171

Mathematical datasets for LLMs can be broadly cat- 172

egorized into numerical reasoning and automated 173

theorem proving (ATP). For numerical reason- 174

ing, PRM800K (Lightman et al., 2024), GSM8K 175

(Cobbe et al., 2021b), and GSM_PLUS (Li et al., 176

2024a) focus on arithmetic problem-solving, re- 177

quiring step-by-step derivations. FormulaReason- 178

ing (Li et al., 2024b) assesses formula-based nu- 179

merical reasoning, while GAOKAO (Zhang et al., 180

2024b) benchmarks LLMs’ ability to solve com- 181

plex mathematical problems in Chinese university 182

entrance exams. For automated theorem proving, 183

MiniF2F (Zheng et al., 2022) compiles problems 184

from formal proof assistants, including Metamath 185

(Yu et al., 2024a), Isabelle (Frieder et al., 2024), 186

and Lean (Han et al., 2022). ProofNet (Azerbayev 187

et al., 2023) spans undergraduate-level mathemat- 188

ics, bridging LLMs with formal proof verification. 189

Additionally, DRAW-1K (Upadhyay and Chang, 190

2017) aids in equation derivation, while Ying et al. 191

(2024); Wu et al. (2024) introduced datasets for 192

Lean, supporting machine-verifiable proof genera- 193

tion. 194

In contrast, our STORM-BORN dataset focuses 195

on challenging mathematical derivations in natural 196

language, demanding complex reasoning and cre- 197

ativity, and is more likely to contain dense, human- 198

like thinking patterns, such as approximations and 199

heuristic cues. 200

3 Overall Pipeline 201

In order to enhance LLMs’ reasoning abilities for 202

mathematical expressions found in research pa- 203

pers, we created STORM-BORN, a dataset that 204

involves advanced mathematical reasoning. This 205

section describes in detail the construction process 206

of STORM-BORN. 207
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Figure 2: Overview of the data generation framework of STORM-BORN, which consists of three main components:
(1) Reasoning-dense Content Filtering selects reasoning-dense arXiv papers through linguistic markers and
complexity criteria to ensure high-quality mathematical derivations. (2) Multi-agent Data Generation orchestrates
specialized agents for LaTeX extraction, query formulation, answer retrieval, and context enrichment, culminating
in refined mathematical problems. (3) Human Expert Selection applies rigorous evaluation criteria to select
the most challenging and well-structured problems, resulting in the final STORM-BORN dataset for advancing
mathematical reasoning capabilities.

3.1 Reasoning-dense Content Filtering208

Distinguishing between basic concept explanations209

and genuinely complex reasoning requires human-210

like cognitive processes. To ensure our dataset211

contains more data and of higher quality, a key as-212

pect lies in the selection of data sources—academic213

papers. Different papers vary in the amount and214

quality of data they provide, with some contain-215

ing extensive mathematical content and detailed216

proofs and derivation processes, while others do217

not. Therefore, the focus should be on papers that218

not only contain a sufficient number of formulas but219

also provide thorough theorem proofs and deriva-220

tion processes. More specifically, we select papers221

based on the following principles.222

Publication Status and Review Score. To en-223

sure data reliability, we prioritize papers from rep-224

utable journals and conferences, which are peer-225

reviewed and meet stringent acceptance criteria.226

We also limit the selection to papers published from227

May 2023 to October 2024 to ensure content fresh-228

ness and reduce the risk of using outdated material.229

Additionally, all selected papers must receive a230

score higher than "weak accept" from reviewers231

on the OpenReview platform, ensuring high data 232

quality. 233

Richness of Mathematical Derivations. We use 234

linguistic markers such as “assume”, “derive”, and 235

“proof” to filter papers that contain detailed deriva- 236

tions and complete sequences of proofs (especially 237

in the appendices). If the target keywords appear 238

more than five times in a paper, we consider it to 239

have a higher likelihood of being our target pa- 240

per. This ensures that the filtered papers contain 241

high-quality mathematical reasoning. 242

3.2 Multi-agent Data Generation 243

We present a six-agent methodology to generate 244

data. This streamlined workflow (see Fig. 2) en- 245

sures that each mathematical expression is accom- 246

panied by a coherent proof or derivation, a self- 247

contained question and human-like step-by-step 248

answer. Subsequently, we will introduce the entire 249

process. To achieve this goal, we repeatedly refined 250

the workflow, distributed tasks across multiple 251

agents, and continuously modified and validated 252

the prompts. This process was tedious and time- 253

consuming, consuming a lot of effort. We spent 254
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200 USD for GPT-o1-Pro and spent about three255

weeks on prompts engineering. Appendix A con-256

tains further details. This multi-agent framework257

aims to generate high-quality mathmatical data by258

systematically extract expressions, pose meaning-259

ful questions, retrieve and refine answers, gather260

requisite background information, and present the261

self-contained results, ultimately providing more262

transparent insight into mathematical derivations263

and proofs. In each step, all mathematical symbols264

and expressions are converted to latex format.265

Why not single-agent? We initially experi-266

mented with a single-agent approach for data gen-267

eration, but the results were poor. The task is inher-268

ently complex and involves multiple steps. Using269

a single LLM leads to excessively long prompts270

with numerous critical points, making it difficult271

for the model to follow the instructions effectively.272

By employing a multi-agent system, we can de-273

compose the task into smaller, more manageable274

components, allowing each LLM agent to focus on275

a specific step or key point, which improves the re-276

sults. Additionally, this modular approach provides277

greater flexibility, making it easier to modify, refine,278

or integrate new modules for further improvements.279

In practice, the multi-agent system significantly280

enhances both the efficiency and quality of data281

generation.282

Math Expression Extractor Agent We utilize283

lightweight multi-modal LLMs with extensive284

prompts for accurate LaTeX formula extraction,285

avoiding the limitations of traditional OCR tech-286

niques (He et al., 2024). It uses a multi-modal large287

language model (MLLM) that can recognize math-288

ematical expressions in text. After collecting these289

expressions, the original paper and the extracted ex-290

pressions are forwarded to the Query Draft Agent.291

Query Draft Agent We employ the GPT-o1-Pro292

LLM as our Query Draft Agent, leveraging a well-293

structured and effective long prompt exceeding 1k294

tokens. It receives the entire paper rather than295

the chunked paper, which ensure it could compre-296

hensively understand the entire paper. For each297

expression extracted from the Math Expression Ex-298

tractor Agent, it generates at least one query, focus-299

ing on the theorem or formula derivation problems.300

We also added few-shots to enhance the output301

format stability. The details of its prompt is in302

Appendix A.2.303

Answer Retriever Agent The Answer Retriever 304

takes the entire paper, a given expression, and its 305

corresponding query as input. The Answer Re- 306

triever Agent searches the paper for relevant con- 307

tent that can answer the query. Once relevant con- 308

tent is found, it extracts the entire answer directly 309

from the paper rather than make a proof itself to 310

avoid hallucination. Similar to Query Draft Agent, 311

practice has proved that the task of this agent is 312

also difficult and requires a more powerful LLM 313

(e.g. GPT-o1-Pro). The effective prompt we finally 314

get is also relatively long with nearly 500 tokens. 315

The details of this prompt is in Appendix A.3. 316

Context Collector Agent Although Query Draft 317

Agent and Answer Retriever Agent could gener- 318

ate high-quality query and answer, there still re- 319

mains the possibility that they lack full informa- 320

tion to make them self-contained, which means we 321

could give the proof based on the query and check 322

whether the proof is same as the answer retrieved 323

from the original resource. The Context Collector 324

captures these information and stores them as ev- 325

idence for the target self-contained question and 326

answer. 327

Question Refiner Agent The goal of this agent 328

is to incorporate the information from the evidence 329

into the query and answer, thereby generating self- 330

contained question that can be answered indepen- 331

dently without reading original resource. 332

Answer Filter Agent Since our goal is to fo- 333

cus on mathematical reasoning, the Answer Filter 334

Agent filters out any irrelevant content after receiv- 335

ing the data processed by Question Refiner Agent, 336

retaining only the essential information needed to 337

understand how the expression is derived or proven. 338

By filtering out unnecessary data, the subsequent 339

modules can significantly reduce redundant work- 340

load and generates the self-contained question and 341

answer. 342

3.3 Human Expert Selection 343

Through Multi-agent Data Generation, we obtained 344

2k samples. We could directly train on our 2k 345

samples, however, our goal is to extract the most 346

challenging and high-quality dataset. To achieve 347

this, we employ an expert mathematicians group 348

to conduct a rigorous selection process, ultimately 349

arriving at a refined set of 100 samples. We sent 350

the self-contained question and answer generated 351

in (Sec. 3.2) to human experts who are familiar 352

5



with the reasoning-dense paper samples for selec-353

tion. Human experts conducted strict audits on354

data quality, retained data that meets the standards,355

eliminated data that has no research value, and356

manually modified and optimized data that is not357

of borderline quality but can be improved. Each358

paper was processed by experts for about 30 sam-359

ples of question and answer, and the processing360

of a single paper took about 15 minutes. Through361

iterative expert feedback and revision, we refined362

the dataset, ensuring that each sample meets the363

high-quality standards set by our guiding princi-364

ples. This expert-driven process was critical to365

ensuring that the dataset reflects complex human-366

like mathematical reasoning, resulting in the final367

STORM-BORN dataset. This process was guided368

by the following five core principles: Reasoning369

Density, Problem Clarity, Derivation Correctness,370

Reasoning Density, and Evidence Quality.371

(Q1) Reasoning Type: Does the problem de-372

mand creative insight and complex reasoning? Ini-373

tially, mathematicians determine whether the prob-374

lem involves genuinely complex reasoning like de-375

riving or proving a formula, as opposed to simple376

explanation or definition.377

(Q2) Problem Clarity: Is the problem clear,378

well-defined, and solvable with the existing infor-379

mation? This step evaluates the explicitness of the380

problem’s goal and conditions. Ambiguities or in-381

complete queries, where critical context is missing,382

are flagged for refinement. Human expert interven-383

tion is crucial here, as mathematical clarity often384

requires subjective interpretation, especially when385

key information is implied or subtly conveyed.386

(Q3) Derivation Correctness: Are all deriva-387

tion steps logically valid, error-free, and complete?388

Mathematicians carefully review each derivation389

step for correctness, ensuring that all logical transi-390

tions are accurate and coherent. This stage presents391

a significant challenge, as identifying logical er-392

rors or omissions often requires a deep theoretical393

understanding and specialized expertise.394

(Q4) Reasoning Density: Does the reasoning395

process include sufficient logical steps, exhibit396

heuristic reasoning cues, and demonstrate trial-397

and-error similar to human problem-solving? This398

requires human expertise to assess whether the rea-399

soning is sufficiently dense, complete, and heuristic.400

Mathematicians identify patterns in the reasoning401

that reflect human-like trial-and-error approaches.402

Missing or incomplete justifications are flagged for 403

further revision. 404

(Q5) Evidence Quality: Are external references, 405

if provided, accurate and relevant? The final chal- 406

lenge assesses whether the references used to sub- 407

stantiate derivations are both accurate and relevant. 408

Human expertise is essential for ensuring the ap- 409

propriateness and correctness of these references, 410

as the task often involves subjective interpretation 411

of their relevance to the derivation. 412

4 Experiments 413

4.1 Case Study 414

In this preliminary case study, we compared three 415

different types of datasets (see Fig. 1): (I) Numeri- 416

cal reasoning datasets such as PRM-800K, which 417

mainly examine numerical calculations, but may 418

be too simple for advanced language models. For 419

example, it can be solved like the expected value 420

of a coin toss, which first calculates the probability 421

of heads and tails, then calculate the payoff. (II) 422

Formal proof datasets such as Minif2F, which use 423

formal languages such as Lean to describe prob- 424

lems. Although rigorous, they are not easy to under- 425

stand intuitively and are not easy to associate with 426

real-world scenarios. Moreover, the answer exam- 427

ples can be solved with only one ring. (III) Our 428

proposed STORM-BORN dataset focuses more 429

on human-like reasoning processes and requires 430

deeper understanding, flexible thinking, and com- 431

plex reasoning. It is not only more challenging than 432

(I), but also more interpretable and general than (II). 433

In our example, the system in the DPO (Rafailov 434

et al., 2023) paper, the system captures the deriva- 435

tion of important formulas and extracts the com- 436

plete details of the derivation from the appendix of 437

the paper, demonstrating the effectiveness of our 438

method in scenarios of complex research. 439

4.2 Human Evaluation 440

Since our data mainly contains difficult mathemat- 441

ical proofs and derivation processes, rather than 442

numerical data, it is difficult to directly evaluate the 443

correctness. Existing similarity evaluation methods 444

and LLMs also have difficulty in ensuring the accu- 445

racy of the evaluation (Fig. 3). So for experimental 446

results on our dataset, we rely on human evaluation 447

(following Q3, Q4 in Sec. 3.3). 448

Based on the above human evaluation criteria. 449

We systematically evaluated six leading language 450
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Figure 3: Performance of leading language models on STORM-BORN based on a human expert evaluation. All
models show consistently poor performance, with even the best models solving less than 5% of problems. When
re-evaluating problems that were solved at least once by any model, GPT-o1-Pro demonstrated the strongest
performance across repeated trials.

Model GSM8K GSM_PLUS MATH

Tiny-Llama-1.1B-chat 1.36% 1.18% 1.20%
Tiny-Llama-1.1B-chat (Ours) 2.05% (↑ 0.69) 1.29% (↑ 0.11) 4.00% (↑ 2.80)

Tiny-Llama-1.1B-chat (GSM8K) 8.79% 4.52% 2.80%
Tiny-Llama-1.1B-chat (GSM8K + Ours) 9.55% (↑ 0.76) 4.79% (↑ 0.27) 4.80% (↑ 2.00)

Tiny-Llama-1.1B-chat (MiniF2F) 1.67% 1.42% 3.20%
Tiny-Llama-1.1B-chat (MiniF2F + Ours) 1.59% (↓ 0.08) 1.41% (↓ 0.01) 3.80% (↑ 0.60)

Llama2-7B-hf 7.96% 2.80% 1.60%
Llama2-7B-hf (Ours) 8.80% (↑ 0.84) 4.85% (↑ 2.05) 2.60% (↑ 1.00)

Table 1: Experimental Results of 1.1B and 7B LLMs on GSM8K, GSM8K_PLUS, and MATH. (·) means finetuned
dataset (e.g. GSM8k, MiniF2F, Our STORM-BORN), “+” denotes data combination. The best results are highlighted
in bold.

models on our dataset - GPT-o1-Pro, GPT-o1, GPT-451

o1-Preview, GPT-4o, and DeepSeek-R1. Exper-452

imental results show that GPT-o1-Pro has an ac-453

curacy rate of 5% on the test data, which is the454

best performance among all the tested models (see455

Fig. 3). Compared to other datasets (e.g. MMLU,456

Omni-MATH), which are almost solved, obviously,457

even the most advanced models still have limited458

performance on our dataset, which further high-459

lights the challenge of this dataset and the complex-460

ity of mathematical reasoning tasks.461

4.3 Data Quality By Downstream Application462

To evaluate the impact of STROM-BORN on en-463

hancing mathematical reasoning abilities, we per-464

form full fine-tuning on Tiny-Llama-1.1B-chat465

(Zhang et al., 2024a) and Llama-2-7B (Touvron466

et al., 2023) and evaluate them on the GSM8K467

(Cobbe et al., 2021b), GSM-Plus (Li et al., 2024a), 468

and MATH (Hendrycks et al., 2021) datasets. 469

Experimental results indicate that STROM- 470

BORN improves model performance across multi- 471

ple mathematical reasoning benchmarks. To quan- 472

tify its impact, we first fine-tune models using only 473

the 73 training samples from STROM-BORN and 474

evaluate them on benchmarks. The results show 475

that fine-tuning solely on STROM-BORN leads 476

to an accuracy improvement of 2.80 percentage 477

points on MATH for Tiny-Llama-1.1B-chat and 478

1.00 percentage point for Llama-2-7B. These find- 479

ings suggest that STROM-BORN enhances multi- 480

step logical reasoning capabilities, particularly in 481

complex problem-solving scenarios. 482

To ensure alignment between the training and 483

testing data distributions, we randomly insert 73 484

STROM-BORN training samples into the GSM8K 485
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training split and evaluate the models on GSM8K,486

GSM-Plus and MATH. The results indicate that487

this strategy yields a 0.76 percentage point im-488

provement on GSM8K and a 2.00 percentage point489

improvement on MATH, further demonstrating that490

STROM-BORN contributes positively when inte-491

grated into larger training corpora.492

Furthermore, the learnability of STROM-BORN493

is compared with that of the MiniF2F (Zheng et al.,494

2022) dataset, which primarily consists of formal495

mathematical proofs. Fine-tuning Tiny-Llama-496

1.1B-chat exclusively on MiniF2F results in lower497

accuracy on GSM8K and MATH compared to fine-498

tuning on STROM-BORN, with performance dif-499

ferences of 0.38 and 0.80 percentage points, respec-500

tively. Even when jointly trained with MiniF2F, the501

model’s accuracy on MATH remains largely depen-502

dent on the contribution of STROM-BORN, yield-503

ing a 0.20 percentage point improvement. These504

results suggest that STROM-BORN is more learn-505

able and better aligns with the reasoning patterns of506

language models, making it a more effective fine-507

tuning dataset for mathematical problem-solving508

tasks.509

5 Conclusion510

In conclusion, we present STORM-BORN, a novel511

dataset designed to address the limitations of ex-512

isting mathematical derivation datasets. Curated513

from recent top-tier academic papers via the arXiv514

repository, STORM-BORN is both nuanced and515

scalable, while avoiding data contamination. Un-516

like isolated steps, we capture full derivations to517

preserve logical flow and encourage deep theoret-518

ical reasoning. Using a human-in-loop and multi-519

agent LLM framework STORM, we generate prob-520

lems requiring at least three reasoning steps, en-521

suring complexity and creativity. Expert evalu-522

ations ensure reliable annotations. Empirical re-523

sults highlight the dataset’s challenge, with ad-524

vanced LLMs like GPT-o1-Pro solving fewer than525

5% of the problems, compared to 95% accuracy526

on GSM8K. Additionally, STORM-BORN demon-527

strates strong generalization capabilities, offering a528

high-difficulty evaluation benchmark for AI’s ap-529

proach to mathematician-level reasoning.530

Limitations531

This study addresses an important gap in the field,532

but it also faces certain limitations. Specifically,533

the automated evaluation of data quality remains534

challenging, as our focus on complex mathematical 535

derivations rather than numerical computing makes 536

quality assessment difficult (a problem also noted 537

by Glazer et al. (2024)). Currently, we rely pri- 538

marily on a carefully designed multi-agent curation 539

pipeline and manual inspection by mathematicians. 540

However, with the rapid advancement and scaling 541

of LLMs, we believe that in the future, LLMs can 542

be fully employed to automate this process, itera- 543

tively improving and optimizing it. 544

Ethics Statement 545

The dataset construction process in this study 546

strictly adheres to ethical guidelines and fully com- 547

plies with relevant legal regulations. We obtain 548

publicly accessible, high-quality academic papers 549

from ArXiv and utilize a combination of multi- 550

modal models and human evaluation feedback for 551

data processing and optimization, ensuring data 552

quality and reliability before generating the final 553

dataset. The entire data collection and process- 554

ing workflow is transparent and traceable, with all 555

papers sourced from legal and publicly available 556

channels, guaranteeing compliance and traceability 557

of data. The dataset constructed in this study is 558

intended solely for academic research and experi- 559

mental purposes, with no involvement in commer- 560

cial applications or risk of sensitive information 561

leakage. 562
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A Workload and Prompts 773

We invested a lot of work, energy, and time in this research. Our goal is to generate high-quality formula 774

derivation and question-answering. At first glance, this seems to be a simple task, but in fact it involves 775

extremely complex and extensive workload. Initially, we explored various technical solutions, such 776

as optical character recognition (OCR), but when using OCR for formula recognition and extraction, 777

we often encountered incomplete positioning (only part of the formula was framed out), resulting in 778

inaccurate formula extraction. After repeated comparisons and experiments, we finally chose the method 779

of multi-agent large language model (LLM) collaboration, which has consumed some time and energy. 780

The biggest challenge appeared in the prompt design and optimization stage. Practice has shown that 781

LLM will encounter a series of problems, such as identifying key data in long texts, following instructions, 782

and producing stable output. To solve these difficulties, we continuously refined the overall workflow and 783

assigned complex tasks to multiple appropriate numbers of agents (see Fig. 2) for collaborative execution. 784

At the same time, the prompts of each agent were modified, iterated, and verified for multiple rounds. 785

This process is tedious and time-consuming, and consumes a lot of energy. 786

Regarding manual evaluation and feedback, each paper required individuals with relevant academic 787

background to read, assess, and provide feedback on the generated data, which increases labor and time 788

costs. 789

For resource costs and time costs, please see Appendix B. 790

Thanks to this painstaking and systematic workflow, we were finally able to obtain high-quality 791

question-answering data. We will introduce our prompts below, hoping to provide further insight into 792

the complexity of this study, the extensive workload involved, and our efforts to overcome a variety of 793

challenges. 794

A.1 Math Expression Extractor Agent 795

We encountered many problems in the process, such as: the set of extracted mathematical expressions 796

omitted important items, contained unnecessary items and repeated items; the output latex format did not 797

meet the requirements. To solve these problems, we added new rules to the prompt and repeatedly verified 798

the effect in practice, and iterated continuously. Through repeated iterations in practice, these problems 799

were solved, which enables the MLLM to follow the instructions to extract all important mathematical 800

expressions (formulas, theorems, lemmas, etc.), ignore unimportant mathematical expressions (such 801

as intermediate expressions that appear in the derivation process, mathematical content inserted in the 802

paragraph), and ensure that the output expression is in the correct format. 803

Prompt of Math Expression Extractor

"""Read the paper, then:

1. Formula Recognition:
- Identify all mathematical formulas, theorems, lemmas, and corollaries in

the paper. Especially Numbered formulas.Retain the formula's number (if
any).

- For formulas without explicit labels (i.e., those not labeled as "theorem,
" "lemma, " or "corollary"), classify them as "formula."

- Required types of formulas to recognize:
- Numbered formulas.
- Formulas that appear on separate lines (for example, occupying a line
or multiple lines by themselves in the paper).

- Ignore:
- Formulas that appear in the middle of a paragraph without separate
lines or numbers.

- Make sure there are no duplicates in the results (duplicates refer to
formulas that are exactly the same after conversion to LaTeX. If the same
formula appears in the paper under different numbers, treat them as the
same formula).

804

11



2. LaTeX Conversion (Convert the formulas identified in step 1 into LaTeX
format strings):

- Symbols: Convert mathematical symbols accurately.
- Subscripts and superscripts: Convert subscripts and superscripts correctly.
- Uppercase and lowercase: Preserve the original variable and constant casing.
- Formula structure: Keep the entire structure of the formula intact.
- Formula numbering: Retain the formula's number (if any).
- Italics: For italicized variables in the text, wrap them with \textit{} in

LaTeX.
- Math environment: Use `$ . . . $` for inline formulas and `$$ . . . $$` for block

(display) formulas.
- Additional conditions: Check whether the paper includes definitions or

explanations immediately following the formula (for example, "where X is
. . .") and incorporate them if present.

3. JSONL Output:
- Output all converted LaTeX strings in multi-line JSONL format so they can

be parsed line by line.
- Each line should be a JSON object whose key is the type of the formula

("formula", "lemma", "theorem", "corollary", etc.) and whose value is the
LaTeX string obtained from step 2.

- Be sure to follow the requirements in step 2!

Ensure the formulas are exactly the same as in the original text!"""

805

A.2 Query Draft Agent806

The more difficult task also leads to more problems encountered in the process, such as the generated807

questions are too rigid, the questions lack prerequisites, and only the formula reference number is output808

without the original formula which emphasizes the need of Context Collector Agent and Question Refiner809

Agent.810

Prompt of Query Draft

"""I will provide you with a dataset extracted from this paper, in JSONL
format. Each entry is a dictionary whose keys are "formula, " "lemma, "
"theorem, " etc., representing the category of the mathematical
expression, and whose values contain a mathematical expression in LaTeX
format, extracted from the paper.

Carefully read and understand the paper's content, especially the parts
related to each formula in the JSONL. For each formula, please complete
the following steps:

---

Step 1:
Locate where the formula is first defined or fully derived in the paper, and

use the relevant context to extract all the direct necessary conditions
for deriving or proving that formula. These preconditions include, but
are not limited to:

1. Which other formulas this formula is derived from or depends on. For each
such formula, record its full content (in LaTeX format), its numbering
(if any), and its name (if any).

2. Relevant problem settings.
3. The specific meaning of symbols or variables involved in the formula.

---

Step 2:
Based on the extracted preconditions, generate a complete question that

clearly asks how to derive or prove the formula. The question should
include:
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1. The formula itself: Present the full content of this formula (in LaTeX
format). Do not only reference its number.

2. The preconditions: Explicitly integrate the preconditions extracted from
the paper into the question. List out the full contents of all the
formulas it depends on and reference them by their respective numbers or
names. Do not produce a question such as "What are the preconditions?"

The form of the question must meet the following requirements:

- If a formula is derived from one or more other formulas, you must
explicitly list the full content (in LaTeX) of these preceding formulas
and reference them by their numbers or names, and explain how the current
formula is derived from them. For example, if the paper contains Formula
3 (content: X) and Formula 4 (content: Y), and Formula 4 is derived from
Formula 3, then the generated question should be:

"Based on Formula 3: X, how can we derive Formula 4: Y?"

- If the formula is a theorem, lemma, or corollary, please generate a
question asking how to prove it, for example:

"How can we prove Lemma 1: X is true?"

Note: The question must be structured and logical, clearly showing the
derivation or proof process of the formula and explicitly reflecting the
dependency between formulas while fully presenting all related formulas.

---

Step 3:
Match each formula with its corresponding question and output the result in

multi-line JSONL format.

Each data entry should be a dictionary containing the following two key-value
pairs:

1. Formula type:
- The key is "formula, " "lemma, " "theorem, " etc.
- The value is the LaTeX content of the formula.
2. Generated question:
- The key is "query."
- The value is the complete question generated according to Step 1 and Step 2.

---

Important Notes:
1. Format Requirements:
- Ensure the output is in JSONL format, with each line corresponding to one

data entry.
2. Formula Accuracy:
- If the question contains mathematical expressions, convert them into LaTeX

format. Make sure they align with the original mathematical meaning.
Minor formatting differences can be ignored.

3. LaTeX Conversion (Converts the mathematical expressions contained in the
problem to strings in LaTeX format):

- Symbols: Convert mathematical symbols accurately.
- Subscripts and superscripts: Convert subscripts and superscripts correctly.
- Uppercase and lowercase: Preserve the original variable and constant casing.
- Formula structure: Keep the entire structure of the formula intact.
- Formula numbering: Retain the formula's number (if any).
- Italics: For italicized variables in the text, wrap them with \textit{} in

LaTeX.
- Math environment: Use `$ . . . $` for inline formulas and `$$ . . . $$` for block

(display) formulas.
4. Completeness of Preconditions:
- The question content must include all direct necessary conditions.

Particularly, indicate which other formulas the current formula is
derived from or depends on, and clearly specify the entire content,
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numbering, or name of those referenced formulas. Do not produce questions
such as "What are the preconditions?"

---

Examples:
Here are some example questions and their corresponding output formats for

reference:

- Suppose the paper contains the following formula:
{"lemma": "Lemma 1. The function $f (x)$ is continuous."}
The generated question might be:
{"query":"How can we prove Lemma 1: The function $f (x)$ is continuous. is

true?"}

- Suppose the paper contains the following formula:
{"formula": "y = mx + b"}
and it is explained that this formula is derived from y = f (x) and f (x) =

mx + b. Then the generated question might be:
{"query":"Based on the formulas: $y = f (x)$ and $f (x) = mx + b$, how can we

derive the formula: $y = mx + b$?"}

- Suppose the paper contains the following formula:
{"formula": "$$\\pi_r (y | x) = \\frac{1}{Z (x)} \\pi_{ref}(y | x) \\exp

(\\frac{1}{\\beta} r (x, y))$$"}
and it is explained that this formula is derived from Formula 3, $KL (\\pi_r

(y|x) || \\pi_{ref}(y|x)) \\leq \\epsilon$. Then the generated question
should be:

{"query":"Based on Formula 3: $KL (\\pi_r (y|x) || \\pi_{ref}(y|x)) \\leq
\\epsilon$, how can we derive Formula: $\\pi_r (y | x) = \\frac{1}{Z (x)}
\\pi_{ref}(y | x) \\exp (\\frac{1}{\\beta} r (x, y))$?"}

The dataset is as follows:\n

813

A.3 Answer Retriever Agent814

In order to solve the problems encountered in the process, such as: the answer is not extracted from the815

original text but the large model generates the answer itself, the answer retrieved in this agent may816

lack the important complete proof process in the appendix, or is a summary of the answer in the original817

text, the effective prompt we finally get is also relatively long with nearly 500 tokens.818

Prompt of Answer Retriever

"""I will provide a JSONL-format dataset extracted from this paper. Each
piece of data in the dataset is a dictionary containing two main
key-value pairs:

1. **Formula-related keys ("formula", "lemma", "theorem", etc.)** indicating
the type of mathematical expression; the value is the LaTeX-formatted
mathematical expression extracted from the paper.

2. **query**, whose value is a question generated by a large model based on
the paper and the mathematical expression.

Please process this dataset according to the following steps and requirements.

---

### Step One:
For the "expression" and "query" in each piece of data, determine whether the

answer to that question can be found in the paper. The specific steps are
as follows:

1. **Find the first occurrence**
- Locate where the expression first appears in the paper and check the
surrounding context for relevant clues.
- If there are any references or citations, follow those as well.
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2. **Check the appendix and other sections**
- Search the paper's appendix or other relevant chapters to see if the
proof or derivation steps for that expression are provided. This may well
be the answer to the question.

3. **Confirm feasibility**
- If the paper does not include any relevant content addressing the
question, you may skip this expression and proceed to the next one.
- If the paper does indeed contain content that can answer the question,
extract the relevant content from the original text.

When extracting the answer, please note the following requirements:
- **Completeness**: The extracted answers should cover all the relevant steps

needed to solve the problem in the paper.
- **Consistency**: Include only content from the original text in the answer

(you may make minimal necessary edits for coherence, but do not change
the original meaning). Avoid adding extra content or descriptions not
found in the original text.

- **Citation handling**: If the answer cites other formulas or theorems from
the paper, also include their original content in the derivation or proof
process, rather than leaving only references or labels.

- **LaTeX conversion**: Ensure all mathematical expressions are converted to
the same LaTeX format as in the original text, including:

- Accuracy of symbols, subscripts, superscripts, and capitalization.
- Preserving the original structure and numbering (if any).
- Using \textit{} for italicized variables.
- Using $. . .$ for inline math expressions and $$. . .$$ for display math
expressions.

---

### Step Two:
Match the answers extracted in Step One with the corresponding entries in the

dataset, and add a new key-value pair to form a new data record. The
specific requirements are:

- For each original data entry, add a new key called `whole_label`, whose
value is the LaTeX-formatted answer content extracted from the paper.

- Output format must be **multi-line JSONL**, one piece of data per line:
1. The original two key-value pairs remain unchanged and must not be
modified.

2. Add the `whole_label` key as the third key-value pair.

---

### Output Requirements:
1. **Multi-line JSONL format**: One data entry per line.
2. **Accuracy of content**: Formulas must match the original text of the

paper exactly, with correct symbols, subscripts, superscripts, and
capitalization.

3. ** Content consistency ** : Only retain the original content in the answer
(you can make a small amount of necessary cohesive editing, but do not
change the original meaning), and try to avoid adding additional content
or descriptions that do not appear in the original.

---

### Note:
- Please strictly follow the above requirements to avoid omitting any key

content.
- Ensure there are no errors or incomplete parts in the output text.

---

Below is the dataset:
"""
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B Resource and Time Costs821

At the outset, it is important to highlight the considerable workload entailed in our approach, with the822

associated resource and time costs reflecting the extensive efforts required for its implementation.823

B.1 Resource Costs824

To support the multi-agent system, we subscribed to GPT-o1-Pro for a one-month period at an approximate825

cost of 200 USD. For simpler tasks, such as Math Expression Extraction and Answer Filtering, we utilize826

free LLMs as agents. For more complex tasks, such as Query Generation and Answer Retrieval, we rely827

on the paid GPT-o1-Pro model to ensure enhanced performance and accuracy. An illustrative example is828

provided below. After the Math Expression Extraction step, using GPT-o1-Pro for both Query Generation829

and Answer Retrieval yielded the results shown in Appendix B.1.1. In contrast, using the gemini-2.0-flash-830

exp model for the same tasks resulted in Appendix B.1.2. Furthermore, when using the query generated by831

GPT-o1-Pro and applying gemini-2.0-flash-exp for Answer Retrieval, the result was Appendix B.1.3. This832

comparison clearly illustrates the necessity of using more powerful models like GPT-o1-Pro for complex833

tasks.834

B.1.1 GPT-o1-Pro Results835

Here we provide the results of GPT-o1-Pro as follows:836

GPT-o1-Pro as Query Draft and Answer Retriever.

formula:

"$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{1}{\\beta} r (x, y)), $$(4)"

query:

"Based on Formula (3): $$\\max _{\\pi_{\\theta}} \\mathbb{E}_{x \\sim D, y
\\sim \\pi_{\\theta}(y|x)}[r_{\\phi}(x, y)]-\\beta D_{K
L}[\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)], $$ which enforces a
KL-constrained reward maximization, how can we derive Formula (4): $$
\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp\\Bigl
(\\tfrac{1}{\\beta} r (x, y)\\Bigr), $$ where $Z (x)$ is the partition
function ensuring $\\pi_{r}$ is a valid probability distribution?"

answer:

"In the paper's Appendix A.1 (pp. 15-16), ``Deriving the Optimum of the
KL-Constrained Reward Maximization Objective, '' the authors
write:\n\n``[We] optimize the following objective:\n$$\\max_{\\pi}\\,
\\mathbb{E}_{x\\sim D, y\\sim\\pi (y\\mid x)}\\bigl[r (x, y)\\bigr]\\;
-\\; \\beta\\, D_{\\mathrm{KL}}\\bigl[\\pi (y\\mid x)\\, \\|\\,
\\pi_{\\mathrm{ref}}(y\\mid x)\\bigr].$$\n\n. . . We now
have:\n$$\\max_{\\pi}\\, \\mathbb{E}_{x\\sim D, y\\sim \\pi (y\\mid
x)}\\bigl[r (x, y)\\; -\\; \\log\\frac{\\pi (y\\mid
x)}{\\pi_{\\mathrm{ref}}(y\\mid x)}\\bigr]\\; =\\; \\max_{\\pi}\\,
\\mathbb{E}_{x\\sim D, y\\sim \\pi (y\\mid x)} \\bigl[\\, r (x, y)\\;
-\\; \\log\\pi (y\\mid x)\\; +\\; \\log\\pi_{\\mathrm{ref}}(y\\mid
x)\\bigr].$$\n\nSince $Z (x)$ does not depend on $\\pi$, the minimum is
achieved by the policy that minimizes the first KL term. Gibbs'
inequality tells us that the KL-divergence is minimized at 0 if and only
if the two distributions are identical. Hence we have the optimal
solution:\n$$\\pi^{*}(y\\mid x)\\; =\\; \\frac{1}{Z (x)}\\,
\\pi_{\\mathrm{ref}}(y\\mid x)\\; \\exp\\Bigl (\\tfrac{1}{\\beta}\\, r
(x, y)\\Bigr), $$\nfor all $x\\in\\mathcal{D}$. This completes the
derivation.''\n\n\\(\\textit{Here, }\\; Z (x)=\\sum_{y}\\,
\\pi_{\\mathrm{ref}}(y\\mid x)\\exp\\bigl (\\tfrac{1}{\\beta}r (x,
y)\\bigr)\\; \\textit{ensures}\\; \\pi^{*}(y\\mid x)\\; \\textit{is a
valid probability distribution.}\\)\n\nevidence: Appendix A.1, pp. 15-16
of the paper"}
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B.1.2 Gemini-2.0-Flash-Exp Results 838

Here we provide the results of Gemini-2.0-Flash-Exp as follows: 839

Gemini-2.0-Flash-Exp as Query Draft and Answer Retriever, using the same formula as Ap-
pendix B.1.1. It is evident that compared to Appendix B.1.1, the query generated by gemini-2.0-
flash-exp did not fully display the formula conditions (formula 4 in Fig. 1), and the derivation
process was overly general rather than a detailed step-by-step derivation.

formula:

"$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{1}{\\beta} r (x, y)), $$(4)"

query:

"Given the RL objective in Formula (3):$$\\max _{\\pi_{\\theta}}
\\mathbb{E}_{x \\sim D, y \\sim \\pi_{\\theta}(y|x)}[r_{\\phi}(x,
y)]-\\beta D_{K L}[\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)], $$ how
can we express the optimal solution $\\pi_{r}(y | x)$ to the
KL-constrained reward maximization objective, where $Z (x)$ is the
partition function?"

answer:

"Following prior work [31, 30, 19, 15], it is straightforward to show that
the optimal solution to the KL-constrained reward maximization objective
in Eq. 3 takes the form:\n$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e
f}(y | x) \\exp (\\frac{1}{\\beta} r (x, y)), $$(4)\nwhere $$Z (x) =
\\sum_{y} \\pi_{r e f}(y | x) \\exp (\\frac{1}{\\beta} r (x, y)), $$ is
the partition function. See Appendix A.1 for a complete derivation."

840

B.1.3 Gemini-2.0-Flash-Exp Results 841

Here we provide the results of Gemini-2.0-Flash-Exp as follows: 842

Gemini-2.0-Flash-Exp as Answer Retriever, using the same formula and query as Appendix B.1.1.
It is evident that the result was less comprehensive and detailed than Appendix B.1.1.

formula:

"$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{1}{\\beta} r (x, y)), $$(4)"

query:

"Based on Formula (3): $$\\max _{\\pi_{\\theta}} \\mathbb{E}_{x \\sim D, y
\\sim \\pi_{\\theta}(y|x)}[r_{\\phi}(x, y)]-\\beta D_{K
L}[\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)], $$ which enforces a
KL-constrained reward maximization, how can we derive Formula (4): $$
\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp\\Bigl
(\\tfrac{1}{\\beta} r (x, y)\\Bigr), $$ where $Z (x)$ is the partition
function ensuring $\\pi_{r}$ is a valid probability distribution?"

answer:

"Following prior work [31, 30, 19, 15], it is straightforward to show that
the optimal solution to the KL-constrained reward maximization objective
in Eq. 3 takes the form:\n$$\\pi_{r}(y | x)=\\frac{1}{Z (x)}
\\pi_{\\textit{ref}}(y | x) \\exp (\\frac{1}{\\beta} r (x, y)), $$
(4)\nwhere $Z (x)=\\sum_{y} \\pi_{\\textit{ref}}(y | x) \\exp
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(\\frac{1}{\\beta} r (x, y))$ is the partition function. evidence:
Section A.1, Appendix"

844

B.2 Time Costs845

On average, the processing time for each paper using the multi-agent system is approximately 20 minutes,846

with variability depending on the paper’s length and the number of formulas. When utilizing GPT-o1-Pro847

for more challenging tasks, the processing time can be significantly longer. Moreover, output failures848

may occur, requiring multiple retries—sometimes two or even three times—leading to substantial time849

costs. Additionally, issues such as the “dumbing down” of LLMs during intensive tasks can further hinder850

experimental progress, creating delays in task completion. This represents a significant source of time851

cost, as repeated attempts are necessary to recover from failures and ensure valid results. In addition, there852

is no API for GPT-o1-Pro, so we have to use the web version. And the model can not receive pdf files, so853

we can only convert the paper into page screenshots and gradually upload, which increases the labor costs854

and time costs.855
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