
Under review as a conference paper at ICLR 2024

RANK-ADAPTIVE SPECTRAL PRUNING OF CONVOLU-
TIONAL LAYERS DURING TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The computing cost and memory demand of deep learning pipelines have grown
fast in recent years and thus a variety of techniques have been developed to reduce
model parameters. The majority of these techniques focus on reducing inference
costs by pruning the network after a pass of full training. A smaller number of
methods addresses the reduction of training costs, mostly based on compressing
the network via low-rank layer factorizations. Despite their efficiency for linear
layers, these methods fail to effectively handle convolutional filters. In this work,
we propose a low-parametric training method that factorizes the convolutions into
tensor Tucker format and adaptively prunes the Tucker ranks of the convolutional
kernel during training. Leveraging fundamental results from geometric integration
theory of differential equations on tensor manifolds, we obtain a robust training
algorithm that provably approximates the full baseline performance and guarantees
loss descent. A variety of experiments against the full model and alternative low-
rank baselines are implemented, showing that the proposed method drastically
reduces the training costs, while achieving high performance, comparable to or
better than the full baseline, outperforming competing low-rank approaches.

1 INTRODUCTION

A main limitation of state-of-the-art neural networks is their memory consumption and computational
costs for inference and, especially, training. Leveraging well-known parameter redundancies (Cheng
et al., 2015; Blalock et al., 2020; Frankle & Carbin, 2019), a large body of research work has been
dedicated to removing redundant information from weights to reduce the memory and computational
footprints. Such efforts include weight sparsification (Guo et al., 2016; Molchanov et al., 2017; He
et al., 2017) and quantization (Wu et al., 2016; Courbariaux et al., 2016). Despite their considerably
reduced resource requirements for inference, these methods struggle to achieve memory reduction
during training. As pointed out in (Frankle & Carbin, 2019), training sparse neural networks from
the start is challenging, and re-training accurate sparse architectures obtained through pruning with
random initialization is commonly impossible. At the same time, as model and data size grow, the
training phase of modern architectures can require several days on several hundreds of GPUs (Baker
et al., 2022). Thus, being able to reduce the resource demand of the training phase while maintaining
model performance is of critical importance.

A successful approach to reduce training parameters is based on low-rank factorizations. Instead of
training full-weight matrices and pruning in a subsequent step, low-rank factorization methods use
only low-rank parameter matrices during the entire training phase (Wang et al., 2021a; Khodak et al.,
2021; Schotthöfer et al., 2022). Low-rank training of feed-forward fully-connected networks can
reduce training costs by more than 90%, while maintaining approximately the same accuracy of the
full model (Schotthöfer et al., 2022; Wang et al., 2021a; Khodak et al., 2021). However, these methods
struggle to efficiently handle convolutional layers. In fact, efficiently compressing convolutional
layers is a major challenge for most pruning and parameter reduction techniques (Cheng et al., 2018;
Mishra et al., 2020). Another main challenge of low-rank training techniques is the dependence of
the training convergence on the conditioning of the weight matrices (Schotthöfer et al., 2022) due
to the high curvature of the low-rank manifold (Koch & Lubich, 2007), which may result in slow
convergence rates and poor performance (Wang et al., 2021a; Khodak et al., 2021; Schotthöfer et al.,
2022; Lebedev et al., 2015).

1



Under review as a conference paper at ICLR 2024

1.1 CONTRIBUTION

In this work, we introduce a novel low-rank training algorithm that directly aims at bridging the
above gaps by efficiently handling convolutional layers. Available low-rank training methods (Wang
et al., 2021a; Khodak et al., 2021; Schotthöfer et al., 2022; Idelbayev & Carreira-Perpinan, 2020;
Yang et al., 2020) often treat convolutional layers by performing a matricization of the convolutional
tensors. However, this procedure is computationally costly and fails to properly capture relevant
low-rank components, resulting in poor compression performance. In this work, we propose a training
algorithm that maintains the tensor structure unchanged and directly trains low-rank components
in Tucker format. The proposed algorithm uses recent advances in low-rank approximation of
differential equations (Ceruti et al., 2022; Ceruti & Lubich, 2022) to adjust the rank of the tensors
while escaping the high-curvature of the low-rank Tucker manifold resulting in two key properties:
rank-adaptivity, as the ranks of the convolutional layers change are automatically chosen during the
epochs to match a desired compression rate, and robustness, as the convergence rate of the method
does not deteriorate when the trained convolutional layers become ill-conditioned. To our knowledge,
this is the first algorithm for training convolutional layers in tensor format which has these two
fundamental properties. We provide a thorough rigorous analysis of the algorithm proving both the
two properties above and showing that the computed low-rank Tucker network well-approximates the
ideal full model. The theoretical findings are validated by an extensive experimental evaluation on
different architectures and datasets, showing that the proposed method yields remarkable training
compression rates (e.g. more than 95% for VGG16 on CIFAR10), while achieving comparable or even
better accuracy performance than the full baseline and alternative low-rank factorization strategies.

1.2 RELATED WORK

Related work on network compression methods differs structurally by the mathematical object of
consideration, i.e. matrix- or tensor-valued parameter structures, as well as the type of parameter
reduction. Weight pruning (Han et al., 2015; Narang et al., 2017; Ullrich et al., 2017; Molchanov
et al., 2017; Wang et al., 2021b) enables parameter reduction by enforcing sparsity, i.e. zero-
valued weights, whereas low-rank compression imposes parameter reduction by factorization of
weight matrices (Idelbayev & Carreira-Perpinan, 2020; Li et al., 2019; Wang et al., 2021a) and
tensors (Lebedev et al., 2015; Song et al., 2020; Astrid & Lee, 2017; Phan et al., 2020; Kossaifi
et al., 2019; Kim et al., 2016; Kossaifi et al., 2019; Stoudenmire & Schwab, 2016). On top of
approaches that transform tensor layers into compressed matrices (Schotthöfer et al., 2022; Idelbayev
& Carreira-Perpinan, 2020; Li et al., 2019; Wang et al., 2021a), different tensor decompositions have
been used to compress convolutional layers. Such approaches include CP decomposition (Lebedev
et al., 2015; Song et al., 2020; Astrid & Lee, 2017; Phan et al., 2020), Tucker (Kossaifi et al., 2019;
Kim et al., 2016), tensor trains (Kossaifi et al., 2019; Stoudenmire & Schwab, 2016) or a combination
of these (Gabor & Zdunek, 2023). Other methods consider only the floating point representation of
the weights, e.g. (Vanhoucke et al., 2011; Gong et al., 2015; Gupta et al., 2015; Courbariaux et al.,
2015; Venkatesh et al., 2017), or a combination of the above (Liu et al., 2015). From the algorithmic
point of view, related work can be categorized into methods that compress networks entirely in a
postprocessing step after full-scale training (Nagel et al., 2019; Mariet & Sra, 2016; Lebedev et al.,
2015; Kim et al., 2016; Gabor & Zdunek, 2023; Astrid & Lee, 2017), iterative methods where
networks are pre-trained and subsequently compressed and fine-tuned (Han et al., 2015; Idelbayev &
Carreira-Perpinan, 2020; Wang et al., 2021a), and methods that directly compress networks during
training (Schotthöfer et al., 2022; Narang et al., 2017). As no full-scale training is needed, the latter
approach offers the highest potential reduction of the overall computational footprint.

Only a few of these methods propose strategies for dynamically choosing the compression format
during training or fine-tuning, e.g. by finding the ranks via alternating, constraint optimization in
discrete (Li & Shi, 2018) and discrete-continuous fashions (Idelbayev & Carreira-Perpinan, 2020).
However, both these approaches require knowledge of the full weights during training and overall are
more computationally demanding than standard training. In (Schotthöfer et al., 2022), a rank-adaptive
evolution of the gradient flow on a low-rank manifold was proposed to train and compress networks
without the usage of the full-weight representation, however only for matrix-valued layers. The
development of rank-adaptive training methods for tensor-valued layers poses non-trivial challenges
that may prevent loss descent and performance of the compressed net. For example, numerical

2



Under review as a conference paper at ICLR 2024

instabilities arising from the CP decomposition during training have been observed in (Lebedev et al.,
2015), and in (Phan et al., 2020).

2 LOW-RANK TUCKER REPRESENTATION OF CONVOLUTIONAL LAYERS

Neural networks’ convolutional filters are the backbone of many groundbreaking machine learning
architectures. These layers are defined by a convolutional kernel which consists of a four-mode
tensor W ∈ Rn1×n2×n3×n4 , where n1 is the number of output channels, n2 is the number of input
channels and (n3, n4) are the spatial dimensions of the filter. A kernel represents n1 convolutional
filters of shape n2 × n3 × n4, which are applied to the input embedding tensor Z ∈ RN×n2×N1×N2 ,
where N is the batch size and (N1, N2) are the spatial dimensions of the embedding’s channel. The
convolution operation W ∗ Z is then defined as

(W ∗ Z)(i1, i2, i3, i4) =

n2∑
j2=1

n3∑
j3=1

n4∑
j4=1

W (i2, j2, j3, j4)Z(i1, j2, i3 − j3, i4 − j4) . (1)

Convolutions are linear operations on tensor blocks. To enable the use of matrix techniques, a
standard approach to handle convolutional layers is via a matricization step, in which the tensor W
is reshaped into a matrix W̃ ∈ Rn1×n2n3n4 and the input embedding Z into a third-order tensor
Z̃ ∈ RN×n2n3n4×L obtained by stacking L blocks of the vectorized version of Z following the
sliding patterns of the kernel. Such a matrix representation allows, in particular, to compress the
convolution using a low-rank matrix factorization, an approach that is widely adopted by the recent
literature (Schotthöfer et al., 2022; Idelbayev & Carreira-Perpinan, 2020; Yang et al., 2020; Wang
et al., 2021a; Khodak et al., 2021). However, this matricization operation is too restrictive as a
representation as it destroys the structure of the convolutional kernel and does not allow capturing
compressible modes in the higher-order sense. For this reason, most available low-rank pruning
techniques have struggled to reduce the memory footprint of convolutional layers by using a low-rank
approximation of W̃ , see e.g. (Schotthöfer et al., 2022; Li et al., 2019; Khodak et al., 2021). On the
other hand, it is well-known that low-rank decompositions based on higher-order tensor ranks can
provide much better representations of compressed convolutional layers (Stoudenmire & Schwab,
2016; Song et al., 2020; Gabor & Zdunek, 2023; Li et al., 2019; Kossaifi et al., 2019).

In this paper, we use the Tucker decomposition to represent low-rank convolutional layers in tensor
format. This representation maintains the convolutional structure and represents the rank of each
mode in the filter individually. Moreover, the Tucker format forms a smooth Riemannian manifold.
Exploiting this geometric property we design an algorithm that trains using only the low-rank factors,
while simultaneously adjusting the Tucker ranks. Below we review the Tucker representation of a
convolutional layer and we present the new training algorithm next.

2.1 TUCKER REPRESENTATION OF A CONVOLUTIONAL FILTER

For a tensor W we write Mati(W ) to denote the matrix obtained by unfolding W along its i-th
mode. The tuple ρ = (r1, r2, . . . , rd) is called Tucker rank of W if ri = rank(Mati(W )). Every
fourth-order tensor W with Tucker rank ρ = (r1, . . . , r4) can be written in Tucker form (or Tucker
decomposition) W = C ×1 U1 ×2 U2 ×3 U3 ×4 U4 = C ×4

i=1 Ui, entrywise defined as

W (i1, i2, i3, i4) =

r1∑
α1=1

· · ·
r4∑

α4=1

C(α1, α2, α3, α4)U1(i1, α1)U2(i2, α2)U3(i3, α3)U4(i4, α4), (2)

where C ∈ Rr1×···×r4 is a core tensor of full Tucker rank ρ = (r1, . . . , r4) and the Ui ∈ Rni×ri

are matrices with orthonormal columns. Note that in terms of the i-th unfolding, equation 2 reads
Mati(W ) = UiSiV

⊤
i with Si = Mati(C) and Vi = ⊗j ̸=iUj , i.e. the usual matrix decomposition.

Using this decomposition, the convolution with kernel W can be written completely in terms of the
factors Ui and the core C. In fact, if we let

A(α2, α3, α4, i1, i3, i4) =
∑

j2,j3,j4

U2(j2, α2)U3(j3, α3)U4(j4, α4)Z(i1, j2, i3 − j3, i4 − j4)

3



Under review as a conference paper at ICLR 2024

where A = (U2 ⊗ U3 ⊗ U4) ∗ Z is the convolution with the factorized kernel (U2 ⊗ U3 ⊗ U4), then

(W ∗ Z)(i1, i2, i3, i4) =
∑

α1,...,α4

C(α1, α2, α3, α4)A(α2, α3, α4, i1, i3, i4)U1(i2, α1),

which we can compactly write as

W ∗ Z = C ×2,3,4 [(U2 ⊗ U3 ⊗ U4) ∗ Z]×1 U1 .

From this representation, we immediately see that if W is represented in Tucker format, then the cost
of storing W and of performing the convolution operation W ∗Z is O(r1r2r3r4+n1r1+n2r2+n3r3+
n4r4), as opposed to the O(n1n2n3n4) cost required by the standard full representation. Clearly,
when ni ≫ ri, for example ni > 1.5ri, the latter is much larger than the former. As an example, for
Alexnet trained on Cifar10 the third convolutional layer has Tucker ranks [r1, . . . , r4] = [76, 76, 3, 3]
(with [n1, . . . , n4] = [256, 256, 3, 3]). Thus, we have that the memory complexity of the compressed
Tucker format is 5.2×104 versus 5.89×105 elements to be stored, i.e., compression of approximately
91.3% on that layer (Appendix A in the supplementary material and Section 4.2).

3 DYNAMICAL LOW-RANK TRAINING OF CONVOLUTIONS IN TUCKER FORMAT

For ρ = (r1, r2, r3, r4), the setMρ = {W : rank(Mati(W )) = ri, i = 1, . . . , 4} is a manifold
with the following tangent space at any point W = C ×4

i=1 Ui ∈Mρ (Koch & Lubich, 2010)

TWMρ =
{
δC

4
×
i=1

Ui +
4∑

j=1

C ×j δUj ×
k ̸=j

Uk : δC ∈ Rr1×···×r4 , δUj ∈ TUj
Sj

}
(3)

where Sj is the Stiefel manifold of real ni × ri matrices with orthonormal columns. To design a
strategy that computes convolutional filters withinMρ using only the low-rank Tucker factors C
and {Ui}i, we formulate the training problem as a continuous-time gradient flow projected onto
the tangent space equation 3. As shown in Section 3.2, the continuous formulation will allow us
to derive a modified backpropagation pass which uses only the individual small factors C, {Ui}i
and that does not suffer from a slow convergence rate due to potential ill-conditioned tensor modes
(see also Section 4.3). Moreover, it will allow us to prove a global approximation result showing
convergence towards a “low-Tucker-rank winning ticket”: a subnetwork formed of convolutional
layers with a low Tucker rank that well-approximates the original full model.

Let f be a convolutional neural network and let W be a convolutional kernel tensor within f . Consider
the problem of minimizing the loss function L with respect to just W , while maintaining the other
parameters fixed. This problem can be equivalently formulated as the differential equation

Ẇ (t) = −∇WL(W (t)) (4)

where, for simplicity, we write the loss as a function of only W and where “dot” denotes the time
derivative. When t→∞, the solution of equation 4 approaches the desired minimizer. Now, suppose
we parametrize each convolutional layer in a time-dependent Tucker form W (t) = C(t)×4

i=1 Ui(t).
Using standard derivations from dynamical model order reduction literature (Koch & Lubich, 2010),
we derive below the equations for the individual factors C(t) and Ui(t).

To this end, notice that by definition, if W (t) ∈Mρ, then Ẇ (t) ∈ TW (t)Mρ, the tangent space of
Mρ at W (t). Thus, when W (t) ∈Mρ, equation 4 boils down to (Koch & Lubich, 2010)

Ẇ (t) = −P (W (t))∇WL(W (t)) (5)

where P (W ) denotes the orthogonal projection onto TWMρ. Note that, for a fixed point W ∈Mρ,
P (W ) is a linear map defined in terms of the optimization problem

P (W ) [−∇WL(W )] = argmin
δW∈TWMρ

∥δW +∇WL(W )∥ , (6)

where here and henceforth ∥ · ∥ denotes the Frobenius norm. Since ∥ · ∥ is induced by the inner
product ⟨W,Y ⟩ =

∑
i1,...,i4

W (i1, . . . , i4)Y (i1, . . . , i4), the projection in equation 6 can be derived
by imposing orthogonality with any element of the tangent space. This means that it is possible to

4



Under review as a conference paper at ICLR 2024

derive the ODEs for the projected dynamics by imposing a time-dependent Galerkin condition on the
tangent space ofMρ, i.e. by imposing the following

⟨Ẇ (t) +∇WL(W (t)), δW ⟩ = 0, ∀ δW ∈ TW (t)Mρ .

Using the representation in equation 3 combined with the standard gauge conditions U⊤
i δUi = 0,

∀δUi ∈ TUiSi, for the Stiefel manifold Si, we obtain that the projected gradient flow in equation 5
coincides with the coupled matrix-tensor system of ODEs{

U̇i = −(I − UiU
⊤
i )Mati

(
∇WL(W )×j ̸=i U

⊤
j

)
Mati(C)† , i = 1, . . . , 4

Ċ = −∇WL(W )×4
j=1 U

⊤
j .

(7)

where † denotes the pseudoinverse and where we omitted the dependence on t for brevity. Even
though equation 7 describes the dynamics of the individual factors, the equations for each factor are
not fully decoupled. In fact, a direct integration of equation 7 would still require taping the gradients
∇WL with respect to the full convolutional kernel W . Moreover, the presence of the pseudoinverse
of the matrices Mati(C)† adds a stiffness term to the differential equation, making its numerical
integration unstable. The presence of this stiff term is actually due to the intrinsic high-curvature of
the manifoldMρ and is well understood in the dynamic model order reduction community (Koch &
Lubich, 2007; Lubich & Oseledets, 2014; Kieri et al., 2016; Lubich et al., 2018; Ceruti & Lubich,
2022; Ceruti et al., 2022). As observed in (Schotthöfer et al., 2022), an analogous term arises when
looking at low-rank matrix parameterizations, and it is responsible for the issue of slow convergence
of low-rank matrix training methods which is observed in (Wang et al., 2021a; Khodak et al., 2021;
Schotthöfer et al., 2022).

To overcome these issues, we make the following key change of variable. Let Mati(C)⊤ = QiS
⊤
i be

the QR decomposition of Mati(C)⊤. Note that Si is a small square invertible matrix of size ri × ri.
Then, the matrix Ki = UiSi has the same size as Ui and spans the same vector space. However, the
following key result holds for Ki.
Theorem 1. Let W = C ×4

i=1 Ui ∈Mρ be such that equation 6 holds. Let Mati(C)⊤ = QiS
⊤
i be

the QR decomposition of Mati(C)⊤ and let Ki = UiSi. Then,

K̇i = −∇Ki
L
(
Teni(Q

⊤
i )×j ̸=i Uj ×i Ki

)
and Ċ = −∇CL(C ×4

j=1 Uj) (8)

where Teni denotes “tensorization along mode i”, i.e. the inverse reshaping operation of Mati.

The proof is provided in Appendix B in the supplementary material. The theorem above allows us
to simplify equation 7 obtaining a gradient flow that only depends on the small matrices Ki and
the small core tensor C. Moreover, it allows us to get rid of the stiffness term, as no inversion is
now involved in the differential equations. We would like to underline the importance of the careful
construction of Ki to arrive at this Theorem, as unlike a naive extension of (Schotthöfer et al., 2022)
to Tucker tensors, our construction does not require computational costs of O(niΠj ̸=ir

2
j ) which

would render the resulting training method impractical.

Based on Theorem 1, we formulate in the next section the proposed modified training step for
convolutional layers. Notably, by a key basis-augmentation step, we will equip the algorithm with a
rank-adjustment step that learns the Tucker rank of the convolutions during training, while maintaining
guarantees of descent and approximation of the full convolutional kernel, as shown by the theoretical
analysis in Section 3.2.

3.1 RANK-ADAPTIVE ALGORITHM AND IMPLEMENTATION DETAILS

The training algorithm for convolutional layers in Tucker format is presented in Algorithm 1. Each
time we back-propagate through a convolutional layer W = C ×4

i=1 Ui, we form the new variable
Ki = UiSi as in Theorem 1, we integrate the ODE in equation 9 from Ki(0) = Ki to Ki(λ), λ > 0,
and then update the factors Ui by forming an orthonormal basis of the range of Ki(λ). In practice, we
implement the orthonormalization step via the QR factorization, while we perform the integration of
the gradient flow via stochastic gradient descent with momentum and learning rate λ, which coincides
with a stable two-step linear multistep integration method (Scieur et al., 2017). Once all the factors
Ui are updated, we back-propagate the core term by integrating the equation for C in equation 9,
using the same approach.

5



Under review as a conference paper at ICLR 2024

Algorithm 1: TDLRT: Dynamical Low-Rank Training of convolutions in Tucker format.
Input :Convolutional filter W ∼ n1 × n2 × n3 × n4;

Initial low-rank factors C ∼ r1 × · · · × r4; Ui ∼ ni × ri;
adaptive: Boolean flag that decides whether or not to dynamically update the ranks;
τ : singular value threshold for the adaptive procedure.

1 for each mode i do
2 QiS

⊤
i ← QR decomposition of Mati(C)⊤

3 Ki ← UiSi

4 Ki ← descent step; direction∇Ki
L(Teni(Q⊤

i )×j ̸=i Uj ×i Ki); starting point Ki

5 if adaptive then /* Basis augmentation step */
6 Ki ← [Ki | Ui]

7 U new
i ← orthonormal basis for the range of Ki

8 C̃ ← C ×4
i=1 (U

new
i )⊤Ui

9 C ← descent step; direction∇CL
(
C̃ ×4

i=1 U
new
i

)
; starting point C̃

10 if adaptive then /* Rank adjustment step */
11 (C,U1, . . . , U4)← Tucker decomposition of C up to relative error τ
12 Ui ← U new

i Ui , for i = 1, . . . , 4
13 else
14 Ui ← U new

i , for i = 1, . . . , 4

An important feature of the proposed back-propagation step is that the Tucker rank of the new kernel
can be adaptively learned with a key basis-augmentation trick: each time we backprop Ki ∈ Rni×ri ,
we form an augmented basis K̃i by appending the previous Ui to the new Ki(λ), K̃i = [Ki|Ui]. We
compute an orthonomal basis U new

i ∈ Rni×2ri for K̃i and we form the augmented 2r1 × · · · × 2r4
core C̃ = C×4

i=1 (U
new
i )⊤Ui. We then backpropagate the core C integrating equation 9 starting from

C(0) = C̃. Finally, we perform a rank adjustment step by computing the best Tucker approximation
of C̃ to a relative tolerance τ > 0. This step corresponds to solving the following optimization
(rounding) task:

Find Ĉ ∈M≤2ρ of smallest rank ρ′ = (r′1, . . . , r
′
4) such that ∥C̃ − Ĉ∥ ≤ τ∥C̃∥

where ρ = (r1, . . . , r4) andM≤2ρ denotes the set of tensors with component-wise Tucker rank lower
than 2ρ. In practice, this is done by unfolding the tensor along each mode and computing a truncated
SVD of the resulting matrix, as implemented in the tntorch library (Usvyatsov et al., 2022). The
tensor Ĉ ∈ Mρ′ is then further decomposed in its Tucker decomposition yielding a factorization
Ĉ = C ′ ×4

i=1 U
′
i ∈Mρ′ . The parameter τ is responsible for the compression rate of the method, as

larger values of τ yield smaller Tucker ranks and thus higher parameter reduction. To conclude, the
computed U ′

i ∈ R2ri×r′i with r′i ≤ 2ri are then pulled back to the initial dimension of the filter by
setting Ui = U new

i U ′
i ∈ Rni×r′i , and the new core tensor C is then assigned C ′. performance

3.2 ANALYSIS OF LOSS DESCENT AND SEARCH OF WINNING TICKETS

In this section, we present our main theoretical results. First, we show that the back-propagation step
in Algorithm 1 guarantees descent of the training loss, provided the compression tolerance is not too
large. Second, we show that the convolutional filter in compressed Tucker format computed via the
rank-adaptive back-propagation step in Algorithm 1 well-approximates the full filter that one would
obtain by standard training, provided the gradient flow of the loss is, at each step, approximately
low-rank. For smooth losses L, the latter requirement can be interpreted as assuming the existence
of a winning ticket of low Tucker rank, i.e. a subnetwork whose convolutions have small Tucker
rank and that well-approximates the performance of the large initial net. In this sense, our second
result shows that, if a low-Tucker-rank winning ticket exists, then the proposed Tucker-tensor flow
equation 9 approaches it. This result provides the Tucker-tensor analogue of the approximation
theorem presented in (Schotthöfer et al., 2022) for layers in matrix format and, while the two results
are alike, we emphasize that the proof techniques differ significantly. One of the core differences

6



Under review as a conference paper at ICLR 2024

results from the construction of the Ki terms which, unlike a straightforward extension of (Schotthöfer
et al., 2022) to Tucker format, are designed via a carefully chosen factorization of the core tensor to
extract the matrices Qi from Ki and to avoid a prohibitive computational cost of O(ni

∏
j ̸=i r

2
j ). For

the sake of brevity, some statements here are formulated informally and all proofs and details are
deferred to Appendix C in the supplementary material.

Suppose that for each convolution W , the gradient∇WL, as a function of W , is locally bounded and
Lipschitz, i.e. ∥∇WL(Y )∥ ≤ L1 and ∥∇WL(Y1)−∇WL(Y2)∥ ≤ L2∥Y1 − Y2∥ around W . Then,
Theorem 2. Let W (λ) = C ×4

j=1 Uj be the Tucker low-rank tensor obtained after one training
iteration using Algorithm 1 and let W (0) be the previous point. Assuming the one-step integration
from 0 to λ is done exactly, it holds LW (W (λ)) ≤ LW (W (0)) − αλ + βτ , where α, β > 0 are
constants independent of λ and τ , and where LW denotes the loss as a function of only W .
Theorem 3. For an integer k, let t = kλ, and let W (t) be the full convolutional kernel, solution of
equation 4 at time t. Let C(t), {Ui(t)}i be the Tucker core and factors computed after k training
steps with Algorithm 1, where the one-step integration from 0 to λ is done exactly. Finally, assume
that for any Y in a neighborhood of W (t), the gradient flow −∇LW (Y ) is “ε-close” to TYMρ.
Then,

∥W (t)− C(t)×4
j=1 Uj(t)∥ ≤ c1ε+ c2λ+ c3τ/λ

where the constants c1, c2 and c3 depend only on L1 and L2.

In particular, both bounds in the above theorems do not depend on the higher-order singular values of
the exact nor the approximate solution, which shows that the method does not suffer instability and
slow convergence rate due to potential ill-conditioning (small higher-order singular values). Note
that this result is crucial for efficient training on the low-rank manifold and is not shared by direct
gradient descent training approaches as we will numerically demonstrate in the following section.

4 EXPERIMENTS

In the following, we conduct a series of experiments to evaluate the performance of the proposed
method as compared to both full and low-rank baselines. The full baseline is the network trained
via standard implementation. We then consider two low-rank baselines in tensor format: Canonic-
Polyadic factorization, as done in e.g. (Lebedev et al., 2015; Song et al., 2020; Astrid & Lee, 2017;
Phan et al., 2020); Tucker factorization, as in e.g. (Kossaifi et al., 2019; Kim et al., 2016). Further,
we compare with low-rank training in matrix format, implemented after reshaping the convolutions,
as done in e.g. (Idelbayev & Carreira-Perpinan, 2020; Li et al., 2019; Wang et al., 2021a; Khodak
et al., 2021). All the methods above train each of the low-rank factors in the decomposition by
implementing one pass of forward and backward propagation on each of the factors individually
(and simultaneously) in a block-coordinate fashion. Additionally, we compare with the matrix DLRT
algorithm, where the standard forward and backward passes are endowed with a rank-adaptive QR
projection step, similar to the proposed Algorithm 1. In terms of pruning techniques based on
sparsification, we compare with methods from two of the most popular strategies: iterative magnitude
pruning (IMP) (Frankle & Carbin, 2019), and single-shot pruning at initialization, single-shot network
pruning (SNIP) (Lee et al., 2019) and Gradient Signal Preservation (GraSP) (Wang et al., 2020).
All the experiments are conducted using PyTorch and a single Nvidia RTX 3090 GPU. The code is
available in the supplementary material.

4.1 COMPRESSION PERFORMANCE

The compression performance of TDLRT is evaluated on CIFAR10. For this dataset, the typical
data augmentation procedure is employed: a composition of standardization, random cropping and a
random horizontal flip of images is performed on training images. All methods are trained using a
batch size of 128 for 70 epochs each, as done in (Wang et al., 2021a; Khodak et al., 2021). All the
baseline methods are trained with the SGD optimizer; the starting learning rate of 0.05 is reduced by
a factor of 10 on plateaus and momentum is chosen as 0.1 for all layers. The rank r̂ of each tensor
mode for the fixed-rank baseline methods is determined by a parameter κ, i.e. we set r̂ = κrmax. The
proposed TDLRT method employs Algorithm 1, where SGD is used for the descent steps at lines 4
and 9, with momentum and learning rate as above. Dynamic compression during training is governed
by the singular value threshold τ , see Section 3.1.

7



Under review as a conference paper at ICLR 2024

60 65 70 75 80 85 90 95 100
compression rate[%]

55

60

65

70

75

80

85

te
st

 a
cc

ur
ac

y[
%

]

Baseline
TDLRT
Matrix
Tucker
CP

(a) Alexnet Cifar10

60 65 70 75 80 85 90 95 100
compression rate [%]

65

70

75

80

85

90

te
st

 a
cc

ur
ac

y 
[%

]

baseline
TDLRT
Matrix
Tucker
CP

(b) VGG16 Cifar10

60 65 70 75 80 85 90 95 100
compression rate[%]

89

90

91

92

93

94

te
st

 a
cc

ur
ac

y[
%

]

Baseline
TDLRT
Matrix
Tucker
CP

(c) ResNet18 Cifar10

Figure 1: Comparison of compression performance for different models against the full baseline.
Mean accuracy of 20 weight initializations is displayed. TDLRT achieves higher compression rates
at higher accuracy with lower variance between initializations.

Table 1: Comparison of the best-performing compression rates for different methods on the CIFAR10
benchmark with Alexnet, VGG16, and ResNet18. TDLRT outperforms the factorization-based as
well as the pruning-based baselines in terms of accuracy and compression rate.

VGG16 Alexnet ResNet18

test acc. [%] c.r. [%] test acc. [%] c.r. [%] test acc. [%] c.r. [%]

Baseline 89.43 0.0 85.46 0.0 94.33 0.0

L
ow

-r
an

k TDLRT 89.59 95.34 82.39 83.12 92.72 78.73
Matrix DLRT 89.13 83.22 73.57 71.57 80.98 56.85
Tucker-factorized 83.74 61.34 70.3 69.74 91.11 74.19
Matrix-factorized 79.96 87.20 77.07 68.20 92.07 77.49
CP-factorized 83.68 78.85 76.14 71.46 91.87 69.95

Pr
un

in
g SNIP 89.58 56.23 − − 89.5 78.5

IMP 87.21 58.54 − − 90.5 82.50
GraSP 88.5 77.3 − − 89.4 77.9

Figure 1 shows the mean accuracy of TDLRT as compared to competing factorization baselines.
TDLRT achieves higher compression rates at higher accuracy with lower variance between weight
initializations than the competing methods. In the case of the VGG16 benchmark, TDLRT is able
to maintain baseline accuracy for compression rates over 90% and exceeds the baseline on average
for τ = 0.03, i.e. 95.3% compression. Alexnet has 16.8% of the parameters of VGG16, thus
compression is naturally harder to achieve. Yet, TDLRT outperforms the baseline methods and
remains close to the full network performance. Similar behaviour is observed also on ResNet18.

Table 1 shows a comparison of the best-performing compression between all the factorization-based
and pruning-based baseline methods as well as TDLRT in the CIFAR10 benchmark for Alexnet,
ResNet18, and VGG16. In the proposed evaluation, TDLRT is on par or outperforms all the
alternatives, including pruning based on sparsity (implemented without warmup for the sake of a fair
comparison) as well as the matrix-valued DLRT, due to the higher flexibility of the Tucker format,
where compression along each tensor mode individually is possible. The compression rate (c.r.) is
computed as 1− c/f , where c is the number of parameters in the compressed model after training
and f is the number of parameters of the full model. While this is the compression rate after training,
we emphasize that methods based on factorizations yield an analogous compression rate during the
entire training process. We also remark that no DLRT version of CP decomposition is shown as CP is
not suited for dynamical low-rank training due to its lack of a manifold structure.

4.2 COMPUTATIONAL PERFORMANCE

The computational performance in inference and training of convolutional layers in Tucker decompo-
sition is dependent on their current tensor ranks, see Section 2.1. We evaluate the inference time of
120K RGB images and memory footprint of VGG and AlexNet in Tucker factorization as used in

8



Under review as a conference paper at ICLR 2024

105 106 107

convolution paramters

101

102

in
fe

re
nc

e 
tim

e 
[s

]

c.r. 62.3%
c.r. 83.5%

c.r. 96.5%

c.r. 63.6%

c.r. 84.3%

c.r. 96.7% Alexnet

VGG16Alexnet - TDLRT
VGG16 - TDLRT
baseline

0 200 400 600 800
optimization step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

TDLRT
Tucker
CP

Figure 2: Left panel: Computational footprint of low-rank convolutions. TDLRT surpasses the
baseline performance for meaningful compression rates. Right panel: Convergence behavior of
Lenet5 on MNIST dataset in the case of an initial overestimation of the rank, with exponentially
decaying singular values. Mean and standard deviation (shaded area) over 10 random initializations.

Algorithm 1 and compare them to the non-factorized baseline models in Figure 2. As a result, for
realistic compression rates, see also Figure 1, the computational footprint of TDLRT is significantly
lower than the corresponding baseline model.

4.3 ROBUSTNESS OF THE OPTIMIZATION

To further highlight the advantages of Algorithm 1 as compared to standard simultaneous gradient
descent on the factors of the decomposition, we show in Figure 2 the accuracy history of LeNet5
on MNIST using TDLRT as compared to standard training on Tucker and CP decompositions. In
the case of TDLRT, an optimization step denotes the evaluation of Algorithm 1 for all convolutional
layers for one batch of training data, while for the other methods, we refer to a standard SGD batch
update for all factors of the tensor decompositions of all layers. All linear layers of the network are
trained with a traditional gradient descent update and are not compressed. In this experiment, we
initialize the network weights to simulate a scenario where the rank is overestimated. To this end,
we employ spectral initialization with singular values decaying exponentially with powers of ten.
Integrating the low-rank gradient flow with the TDLRT Algorithm 1, leads to faster and more robust
convergence rates of the network training process.

5 DISCUSSION AND LIMITATIONS

This work introduces an algorithm that adaptively reduces the Tucker rank of convolutional layers
during training, reducing computational and memory costs. The method is supported by rigorous
proofs of approximation to the full baseline and loss descent. Several tests validate the provided
theoretical results and show faster and more robust convergence compared to baseline approaches,
alongside better performance. Further, TDLRT adaptively learns the Tucker ranks without the need
for matricization, increasing the approximation expressivity of the low-rank network.

Alongside several advantages and proven properties, TDLRT and tensor factorization methods for
convolutional layers in general face several challenges. First, we notice that while providing a
reduction in cost and memory corresponding to model parameters and optimizer, TDLRT does not
aim at reducing activation costs, in the terminology of (Sohoni et al., 2019). Second, we notice
that an efficient compression requires an appropriate strategy to choose the tolerance parameter τ
combined with a computationally efficient tensor rounding algorithm at line 11 of Algorithm 1. Even
if tntorch provides an efficient approach, the application of alternative techniques based on, e.g.,
randomization, may lead to a boost in computational performance. Finally, we remark that TDLRT
relies on the assumption that well-performing low-rank Tucker sub-nets exist in the reference network.
While we observe this empirically, further investigations are required to provide theoretical evidence
in support of this assumption, similar to what is done in the case of fully-connected linear layers in
e.g. deep linear networks (Arora et al., 2019; Bah et al., 2022).

9



Under review as a conference paper at ICLR 2024

REFERENCES

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Marcella Astrid and Seung-Ik Lee. Cp-decomposition with tensor power method for convolutional
neural networks compression. In 2017 IEEE International Conference on Big Data and Smart
Computing (BigComp), pp. 115–118, 2017. doi: 10.1109/BIGCOMP.2017.7881725.

Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael Westdickenberg. Learning deep linear
neural networks: Riemannian gradient flows and convergence to global minimizers. Information
and Inference: A Journal of the IMA, 11(1):307–353, 2022.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Gianluca Ceruti and Christian Lubich. An unconventional robust integrator for dynamical low-rank
approximation. BIT Numerical Mathematics, 62(1):23–44, 2022.

Gianluca Ceruti, Christian Lubich, and Hanna Walach. Time integration of tree tensor networks.
SIAM Journal on Numerical Analysis, 59(1):289–313, 2021.

Gianluca Ceruti, Jonas Kusch, and Christian Lubich. A rank-adaptive robust integrator for dynamical
low-rank approximation. BIT Numerical Mathematics, pp. 1–26, 2022.

Gianluca Ceruti, Christian Lubich, and Dominik Sulz. Rank-adaptive time integration of tree tensor
networks. SIAM Journal on Numerical Analysis, 61(1):194–222, 2023.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An
exploration of parameter redundancy in deep networks with circulant projections. In Proceedings
of the IEEE international conference on computer vision, pp. 2857–2865, 2015.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35
(1):126–136, 2018. doi: 10.1109/MSP.2017.2765695.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with
low precision multiplications. In Workshop contribution at International Conference on Learning
Representations, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv:1602.02830, 2016.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Mateusz Gabor and Rafał Zdunek. Compressing convolutional neural networks with hierarchical
tucker-2 decomposition. Applied Soft Computing, 132:109856, 2023. ISSN 1568-4946. doi:
https://doi.org/10.1016/j.asoc.2022.109856. URL https://www.sciencedirect.com/
science/article/pii/S156849462200905X.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. In International Conference on Learning Representations
(ICLR), 2015.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016.

10

https://www.sciencedirect.com/science/article/pii/S156849462200905X
https://www.sciencedirect.com/science/article/pii/S156849462200905X


Under review as a conference paper at ICLR 2024

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Yerlan Idelbayev and Miguel A. Carreira-Perpinan. Low-rank compression of neural nets: Learning
the rank of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and regularization
of factorized neural layers. In International Conference on Learning Representations, 2021.

Emil Kieri, Christian Lubich, and Hanna Walach. Discretized dynamical low-rank approximation in
the presence of small singular values. SIAM Journal on Numerical Analysis, 54(2):1020–1038,
2016.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. In
International Conference on Learning Representations (ICLR), 2016.

Othmar Koch and Christian Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix
Analysis and Applications, 29(2):434–454, 2007.

Othmar Koch and Christian Lubich. Dynamical tensor approximation. SIAM, 31, 2010. doi: https://doi.
org/10.1137/09076578. URL https://epubs.siam.org/doi/10.1137/09076578X.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. T-net: Parametrizing fully
convolutional nets with a single high-order tensor. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 7822–7831, 2019.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-
up convolutional neural networks using fine-tuned CP-decomposition. In International Conference
on Learning Representations (ICLR), 2015.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning
based on connection sensitivity, 2019.

Chong Li and C. J. Richard Shi. Constrained optimization based low-rank approximation of deep
neural networks. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

Christian Lubich. Time integration in the multiconfiguration time-dependent hartree method of
molecular quantum dynamics. Applied Mathematics Research eXpress, 2015(2):311–328, 2015.

Christian Lubich and Ivan V Oseledets. A projector-splitting integrator for dynamical low-rank
approximation. BIT Numerical Mathematics, 54(1):171–188, 2014.

Christian Lubich, Bart Vandereycken, and Hanna Walach. Time integration of rank-constrained
tucker tensors. SIAM Journal on Numerical Analysis, 56(3):1273–1290, 2018.

11

https://epubs.siam.org/doi/10.1137/09076578X


Under review as a conference paper at ICLR 2024

Zelda Mariet and Suvrit Sra. Diversity networks: Neural network compression using determinantal
point processes. In International Conference on Learning Representations (ICLR), 2016.

Rahul Mishra, Hari Prabhat Gupta, and Tanima Dutta. A survey on deep neural network compression:
Challenges, overview, and solutions. arxiv:2010.03954, 2020.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In International Conference on Learning Representations, 2017.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1325–1334, 2019.

Sharan Narang, Greg Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in recurrent
neural networks. In International Conference on Learning Representations (ICLR), 2017.

A. Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr Tichavský,
Valeriy Glukhov, I. Oseledets, and Andrzej Cichocki. Stable low-rank tensor decomposition for
compression of convolutional neural network. In European Conference on Computer Vision, 2020.

Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, and Francesco
Tudisco. Low-rank lottery tickets: finding efficient low-rank neural networks via ma-
trix differential equations. In Advances in Neural Information Processing Systems,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf.

Damien Scieur, Vincent Roulet, Francis Bach, and Alexandre d’Aspremont. Integration methods
and accelerated optimization algorithms. In Advances In Neural Information Processing Systems,
2017.

Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and Christopher
Ré. Low-memory neural network training: A technical report. arXiv:1904.10631, 2019.

Dechun Song, Peiyong Zhang, and Feiteng Li. Speeding up deep convolutional neural networks
based on tucker-cp decomposition. In Proceedings of the 2020 5th International Conference on
Machine Learning Technologies, ICMLT 2020, pp. 56–61, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450377645. doi: 10.1145/3409073.3409094. URL
https://doi.org/10.1145/3409073.3409094.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor net-
works. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
In International Conference on Learning Representations (ICLR), 2017.

Mikhail Usvyatsov, Rafael Ballester-Ripoll, and Konrad Schindler. tntorch: Tensor network learning
with pytorch, 2022.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural networks on
cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. Accelerating deep convolutional networks
using low-precision and sparsity. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2861–2865. IEEE, 2017.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021a.

12

https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
https://doi.org/10.1145/3409073.3409094
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf


Under review as a conference paper at ICLR 2024

Zi Wang, Chengcheng Li, and Xiangyang Wang. Convolutional neural network pruning with structural
redundancy reduction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14913–14922, 2021b.

Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations II, volume 375. Springer
Berlin Heidelberg New York, 1996.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4820–4828, 2016.

Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel Hu, Ang Li, Hai Li, and Yiran Chen.
Learning low-rank deep neural networks via singular vector orthogonality regularization and
singular value sparsification. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp. 678–679, 2020.

13


	Introduction
	Contribution
	Related work

	Low-rank Tucker representation of convolutional layers
	Tucker representation of a convolutional filter

	Dynamical low-rank training of convolutions in Tucker format
	Rank-adaptive Algorithm and implementation details
	Analysis of loss descent and search of winning tickets

	Experiments
	Compression Performance
	Computational Performance
	Robustness of the Optimization

	Discussion and limitations

