

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PARAMETER-FREE VARIANCE REDUCED ZEROTH- ORDER OPTIMIZATION FOR NONCONVEX PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Zeroth-order optimization has become a vital tool for solving black-box learning problems where explicit gradients are unavailable. However, standard zeroth-order methods typically require careful tuning of algorithmic parameters such as the smoothing parameter and step size, which limits their practicality. In this paper, we propose PF-VRZO(Parameter free variance reduced zeroth-order methods), a novel parameter-free variance-reduced zeroth-order optimization framework for nonconvex finite-sum problems. Our method only requires minimal input information—problem dimension d and sample size n —and adaptively adjusts the smoothing and step size parameters during the optimization process. We develop two algorithmic variants based on coordinate-wise and random-direction gradient estimators, respectively. We establish non-asymptotic convergence guarantees showing that PF-VRZO achieves function query complexity of $\tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$ for finding stationary points. Additionally, we conduct experiments on nonconvex phase retrieval and distributional robust optimization to validate the effectiveness of our method. To the best of our knowledge, PF-VRZO is the first parameter-free zeroth-order algorithm that incorporates variance reduction techniques tailored specifically for nonconvex optimization problems.

1 INTRODUCTION

In the paper, we consider solving the following stochastic nonconvex finite-sum optimization problems. $f : \mathbb{R}^d \rightarrow \mathbb{R}$

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \quad (1)$$

where $f(x)$ and each $f_i(x)$ are both smooth and possibly nonconvex functions, which captures the standard empirical risk minimization problems in machine learning.

In many important applications, computing explicit gradients is either computationally expensive or infeasible, and only function evaluations are available. Such applications include black-box adversarial attacks on deep neural networks (DNNs) (Papernot et al., 2017; Chen et al., 2017), reinforcement learning (Malik et al., 2018; Kumar et al., 2020), and fine-tuning large-scale models (Malladi et al., 2023). Zeroth-order optimization has thus emerged as a fundamental research direction (Ghadimi & Lan, 2013; Liu et al., 2018b;a; Ji et al., 2019; Lian et al., 2016; Gu et al., 2018), serving as a prototype framework for a wide range of these gradient-free learning tasks. However, a common drawback of standard zeroth-order methods is the introduction of an additional smoothing parameter μ . As illustrated in Figure 1, improper tuning of this parameter in practice can lead to suboptimal performance, or even cause the algorithm to diverge.

On the other hand, recent years have seen a growing body of work on parameter-free algorithms (Ivgi et al., 2023; Kreisler et al., 2024; Orabona & Tommasi, 2017; Chen et al., 2022; Defazio & Mishchenko, 2023), particularly in the first-order setting. Several studies have demonstrated that such methods can achieve convergence rates comparable to those of parameter-dependent algorithms, even under nonconvex conditions. We define a parameter-free method as one that does not require prior knowledge of problem-specific parameters such as the smoothness constant L , the target accuracy ϵ , or the total number of iterations T . This is particularly important in practical applications, where such information is typically unavailable—for example, it is often unclear how many iterations are needed,

054 or how small the gradient or objective value should be for the model to be considered good enough.
 055 Our expectation for a parameter-free algorithm is that it can be executed with only minimal and
 056 readily available inputs, such as the sample size n and the problem dimension d , and run continuously
 057 until the model reaches a desirable state—such as sufficiently high test accuracy or low generalization
 058 error.

059 Although recent works have achieved satisfactory theoretical progress for first-order algorithms,
 060 research on zeroth-order counterparts remains quite limited. It was not until recently that [Ren &](#)
 061 [Luo \(2025\)](#) proposed the first parameter-free zeroth-order algorithm. Unfortunately, the theoretical
 062 guarantee of this method holds only under the assumption that the objective function $f(x)$ is convex
 063 and defined over a bounded domain. As acknowledged by the authors, extending this result to the
 064 nonconvex setting is nontrivial.

065

066

067 Q1. When zeroth-order optimization meets adaptive methods, how does the error introduced
 068 by inexact gradient estimation accumulate throughout the optimization process, and is such
 069 error controllable? Can we design an adaptive algorithm that keeps this error within an
 070 acceptable range?

071

072

073 A1: Based on our results, after T iterations, the accumulated error is approximately $\mathcal{O}\left[\frac{1}{T}\left(\sum_{t=0}^{T-1} \mu_t^2 + \right.\right.$
 074 $\left.\sum_{t=0}^{T-1} \mu_t\right) + \frac{1}{\sqrt{T}}\left(n^{\frac{5}{4}} \sum_{t=0}^{T-1} \mu_t^2 + n^{\frac{1}{2}} \sqrt{\sum_{t=0}^{T-1} 2\mu_t^2}\right)\right]$. To ensure convergence, it is crucial that con-
 075 dition $\sum_{t=0}^{T-1} \mu_t \leq \mathcal{O}(\sqrt{T})$, $\sum_{t=0}^{T-1} \mu_t^2 \leq \mathcal{O}(1)$ holds; otherwise, the algorithm may diverge. This
 076 observation reveals that the error grows with T . A natural idea, therefore, is to let the smoothing
 077 parameter μ depend on T , which would directly guarantee $\sum_{t=0}^{T-1} \mu_t \leq \mathcal{O}(\sqrt{T})$, $\sum_{t=0}^{T-1} \mu_t^2 \leq \mathcal{O}(1)$.
 078 However, this approach conflicts with our goal of designing a parameter-free algorithm, since the
 079 required number of iterations T is unknown in advance. To overcome this difficulty while preserving
 080 the parameter-free property, we introduce a smart adaptive parameter $\mu_t = \frac{1}{(t+1)\sqrt{nd}}$, which evolves
 081 automatically during the optimization process to enforce $\sum_{t=0}^{T-1} \mu_t \leq \mathcal{O}(\sqrt{T})$, $\sum_{t=0}^{T-1} \mu_t^2 \leq \mathcal{O}(1)$,
 082 without the need for any manually tuned parameters.

083

084

085 Q2: Would the smoothing parameters μ that vary with t , as discussed above, conflict with
 086 the proof techniques of variance reduction methods? Taking the Spider estimator $v^t =$
 087 $\nabla f_{i_t}(x^t) - \nabla f_{i_t}(x^{t-1}) + v^{t-1}$ as an example, can we directly replace the terms $\nabla f_{i_t}(x^t)$
 088 and $\nabla f_{i_t}(x^{t-1})$ in the Spider estimator with the zeroth-order estimators $\bar{\nabla}_{\mu_1} f_{i_t}(x_t)$ and
 089 $\bar{\nabla}_{\mu_2} f_{i_t}(x_{t-1})$? Moreover, can these two zeroth-order estimators be computed directly using
 090 the adaptive smoothing parameter $\mu_1 = \mu_2 = \mu_t = \frac{1}{(t+1)\sqrt{nd}}$?

091

092

093 A2: We found that directly using the smoothing parameters mentioned above in gradient es-
 094 timation within variance-reduced methods does not work. This is because the convergence
 095 proofs for variance reduction often rely on the recursive relation $\mathbb{E}\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 \leq$
 096 $\mathbb{E}\|v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1})\|^2 + (\text{additional terms})$ holding exactly. To ensure this recursive relation,
 097 $\mathbb{E}[\bar{\nabla}_{\mu_1} f_{i_t}(x_t) - \bar{\nabla}_{\mu_2} f_{i_t}(x_{t-1})] = \bar{\nabla}_{\mu_t} f(x_t) - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1})$ is required. Therefore, simply setting
 098 $\mu_1 = \mu_2 = \frac{1}{(t+1)\sqrt{nd}}$ does not suffice; a slight modification is needed, where we set $\mu_1 = \frac{1}{(t+1)\sqrt{nd}}$
 099 and $\mu_2 = \frac{1}{(t)\sqrt{nd}}$.

100

101

102 By addressing the aforementioned challenges, this paper introduces the Parameter-Free Variance-
 103 Reduced Zeroth-Order (PF-VRZO) method, a novel approach that combines the strengths of adaptive
 104 algorithms with variance reduction techniques. Our method eliminates the need for manual parameter
 105 tuning by adaptively adjusting the smoothing parameter and step size during the optimization process.
 106 Specifically, we propose two variants of PF-VRZO: one based on coordinate-wise gradient estimators
 107 and another leveraging random-direction estimators.

108
109 Table 1: Convergence property comparison of the PF-VRZO algorithms for finding an ϵ -stationary
110 point. **C**, **NC**, **S**, and **NS** denote convex, nonconvex, smooth, and non-smooth settings, respectively.
111 **VR** indicates whether the method is compatible with variance reduction techniques. σ denotes an
112 upper bound on the variance of stochastic gradients, and D_x represents the diameter of the domain.
113 The term “complexity” refers to function query complexity. Here, η_t denotes the step size, μ_t the
114 smoothing parameter, c a generic constant, and T the total number of iteration rounds. g_t refers to the
115 zeroth-order gradient estimator, while v_t denotes the SPIDER estimator.*denotes deterministic case

Method	Problem	VR?	Param-free?	Complexity	η_t	μ_t
POEM (Ren & Luo)	C-NS	✗	✓	$\tilde{\mathcal{O}}(de^{-2}D_x)$	$\frac{\max_t \{\ x_t - x_0\ \}}{\sum_{s=0}^t \ g_t\ ^2}$	$\frac{d \max_t \{\ x_t - x_0\ \}}{t+1}$
JAGUAR (Veprikov et al.)	NC-S	✓	✗	$^*\mathcal{O}(d\epsilon^{-2})$	$\frac{1}{dL}$	$\mathcal{O}(\frac{\epsilon}{\sqrt{dL}})$
ZO-SGD (Ghadimi & Lan)	NC-S	✗	✗	$\mathcal{O}(\sigma^2\epsilon^{-4})$	$o(\frac{1}{\sqrt{d}} \min\{\frac{1}{L\sqrt{d}}, \frac{c}{\sigma\sqrt{d}}\})$	$o(\frac{c}{d\sqrt{T}})$
ZO-SPIDER-rand (Fang et al.)	NC-S	✓	✗	$\mathcal{O}(d\sqrt{n}\epsilon^{-2})$	$\min\{\frac{ce}{L\ v_t\ }, \frac{c}{L}\}$	$o(\frac{\epsilon}{L\sqrt{d}})$
ZO-SPIDER-coord (Ji et al.)	NC-S	✓	✗	$\mathcal{O}(d\sqrt{n}\epsilon^{-2})$	$\frac{1}{\sqrt{n}L}$	$\frac{1}{\sqrt{TdL}}$
PF-VRZO-coord (Theorem 1)	NC-S	✓	✓	$\mathcal{O}(d\sqrt{n}\epsilon^{-2})$	$\frac{1}{n^{1/4}\sqrt{(n^{1/2} + \sum_{s=0}^t \ v_s\ ^2)}}$	$\frac{1}{(t+1)\sqrt{nd}}$
PF-VRZO-rand (Theorem 2)	NC-S	✓	✓	$\mathcal{O}(d\sqrt{n}\epsilon^{-2})$	$\frac{1}{n^{1/4}\sqrt{d(n^{1/2} + \sum_{s=0}^t \ v_s\ ^2)}}$	$\frac{1}{(t+1)d\sqrt{n}}$

124 The key contributions of this work are as follows:

125

- 126 **A Parameter-Free Zeroth-Order Framework:** We propose PF-VRZO, the first parameter-
127 free zeroth-order optimization method for nonconvex finite-sum problems. It requires only
128 minimal inputs—sample size n and dimension d , without relying on problem-dependent
129 parameters such as the smoothness constant or iteration count.
- 130 **Variance Reduction with Adaptive Gradient Estimation:** PF-VRZO incorporates vari-
131 ance reduction into both coordinate-wise and random-direction zeroth-order estimators,
132 with adaptive adjustment of smoothing parameters and step sizes, eliminating the need for
133 manual tuning.
- 134 **Theoretical and Empirical Validation:** We provide convergence guarantees showing that
135 PF-VRZO achieves a function query complexity $\tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$. Experiments on nonconvex
136 phase retrieval and distributional robust optimization confirm its comparable performance
137 compared to existing tuned methods.

2 PRELIMINARIES

141 **Remark 1.** By “param-free,” we mean that the method does not require any tunable hyperparam-
142 eters—no manual adjustment is needed. The algorithm only depends on the dataset size n and the
143 model dimension d , both of which are inherent to the problem setup and readily available before
144 running the optimization.

145 **Notation** Throughout the paper, $\|\cdot\|$ denotes the Euclidean norm for vectors, $\tilde{\mathcal{O}}$ hide the logarithmic
146 factors, and $\langle \cdot, \cdot \rangle$ denotes the inner product. We denote by d the dimension of the problem, and by n
147 the number of functions in the optimization problem. We use $f_i(x)$ to denote the i -th sample function
148 of $f(x)$.

149 **Definition 1** (Smoothness). A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is L -smooth if there exists $L > 0$ such that for
150 all $x, y \in \mathbb{R}^d$:

$$151 \quad f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$$

152 **Assumption 1** (Lipschitz Gradient). Each function $f_i : \mathbb{R}^d \rightarrow \mathbb{R}$ is L -smooth such that

$$153 \quad \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|.$$

154 **Assumption 2** (Boundedness). Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be bounded from below by a finite constant f^* , i.e.,

$$155 \quad f(x_0) - f^* \leq \Delta.$$

156 for the initial solution x_0 .

162 **3 PROPOSED PARAMETER FREE VARIANCE REDUCED ZEROOTH-ORDER**
 163 **METHODS**
 164

165 PF-VRZO(coord) method integrates variance reduction with zeroth-order gradient estimation in a
 166 parameter-free manner. This adaptive structure ensures stable updates and effective convergence,
 167 even in nonconvex settings.

168 To set the stage for our proposed PF-VRZO algorithm, we first review the fundamentals of zeroth-
 169 order optimization, followed by a summary of the main techniques introduced in this paper.

171 **3.1 ZEROOTH-ORDER GRADIENT ESTIMATORS**
 172

173 When the gradient of $f(x)$ is not directly obtainable, it is often estimated via coordinate-wise methods
 174 or Gaussian smoothing (Duchi et al., 2015; Gasnikov et al., 2023; Kornowski & Shamir, 2024; Lin
 175 et al., 2022). In what follows, we first describe the coordinate-wise estimator:

$$176 \quad \bar{\nabla}_\mu f(x) := \sum_{\ell=1}^d \frac{1}{\mu} [f(x + \mu \mathbf{e}_\ell) - f(x)] \mathbf{e}_\ell, \quad (\text{Coord estimator})$$

179 where \mathbf{e}_ℓ is a standard basis vector with 1 at its ℓ^{th} coordinate, and 0s elsewhere. The error of the
 180 coordinate-wise gradient estimator is upper bounded as follows, and it approaches zero as $\mu \rightarrow 0$
 181 (Gao et al., 2018).

182 Besides the coordinate-wise estimator, the random-direction estimator is another widely used zeroth-
 183 order method, before introduce random-direction estimator, we first introduce smoothing function
 184 $f_\mu(x) := \mathbb{E}_{\{w \sim U_b\}}[f(x + \mu w)]$, where U_b is a uniform distribution over the unit Euclidean ball,
 185 following Gao et al. (2018), its gradient can be expressed as $\nabla f_\mu(x) := \mathbb{E}_{\{\rho \sim U_{S_p}\}} \left[\frac{n}{\mu} f(x + \mu \rho) \rho \right]$.
 186 Here U_{S_p} is a uniform distribution over the unit Euclidean sphere, and $\rho \in \mathbb{R}^d$ is a random vector
 187 sampled from unit Euclidean sphere U_{S_p} . Now we can define zeroth-order random-direction estimator
 188 $\hat{\nabla} f(x)$ as follows, which is an unbiased estimator of $\nabla f_\mu(x)$:

$$189 \quad \hat{\nabla}_\mu f(x) := \frac{d}{\mu} [f(x + \mu \rho) - f(x)] \rho. \quad (\text{Random-direction estimator})$$

190 Random-direction estimator is an unbiased estimate of the gradient of the smoothing function , i.e,
 191 $\mathbb{E}[\hat{\nabla}_\mu f(x)] = \nabla f_\mu(x)$.

192 Both of the aforementioned zeroth-order estimators rely on a fixed smoothing parameter μ , whose
 193 improper tuning may lead to substantially degraded performance, ranging from slow convergence to
 194 divergence (Figure 1). To overcome this limitation, we develop a framework that integrates three key
 195 components: variance reduction, adaptive stepsize, and adaptive smoothing parameter. The latter two,
 196 in particular, set our method apart from existing approaches and enable new convergence guarantees.

200 **3.2 VARIANCE REDUCTION TECHNIQUE**
 201

202 As a celebrated technique in stochastic optimization, variance reduction has been instrumental in the
 203 development of algorithms with significantly reduced theoretical complexity, SPIDER(Fang et al.,
 204 2018) is a variance reduction-typed method with optimal complexity guarantee, which uses large
 205 batch and small batch alternately to estimate stochastic gradients in a recursive way as follows:

$$206 \quad v_t = \nabla f_B(x^t) - \nabla f_B(x^{t-1}) + v^{t-1}, \quad (\text{SPIDER})$$

207 with clipped step size $\eta_t = \min\{c_1, \frac{c_2 \epsilon}{\|v_t\|}\}$, where c_1, c_2 are some constants, and $\nabla f_B(x) =$
 208 $\frac{1}{|B|} \sum_{\xi \in B} \nabla f(x)$ with a small batch size B .

210 **3.3 ADAPTIVE STEPSIZE**
 211

212 The step size γ_t in PF-VRZO is chosen in a parameter-free and adaptive manner. Specifically, it is set
 213 as:

$$214 \quad \gamma_t = \frac{1}{n^{1/4} c \sqrt{n^{1/2} + \sum_{s=0}^t \|v_s\|^2}},$$

We set $c = 1$ when using the coordinate-wise estimator and $c = \sqrt{d}$ when using the random-direction estimator. This design avoids reliance on unknown constants such as the Lipschitz constant or desired accuracy. By incorporating the accumulated gradient norms, the step size automatically decays, which helps balance exploration and convergence.

3.4 ADAPTIVE SMOOTHING PARAMETER

In PF-VRZO, the smoothing parameter μ_t plays a critical role in estimating gradients via zeroth-order information. Unlike traditional methods that fix μ based on prior knowledge of the target accuracy ϵ or total iterations T , PF-VRZO adaptively sets:

$$\mu_t = \frac{1}{(t+1)\sqrt{nd}} (\text{Coord}), \quad \mu_t = \frac{1}{(t+1)d\sqrt{n}} (\text{Random})$$

which decreases over time. This schedule ensures that early iterations benefit from smoother approximations for stability, while later iterations use finer estimates for improved accuracy. The adaptive design of μ_t eliminates the need for manual tuning and allows the algorithm to adjust automatically throughout the optimization process.

3.5 PARAMETER-FREE VARIANCE REDUCED ZEROOTH-ORDER METHOD(COORDWISE)

Algorithm 1 PF-VRZO(coord)

```

237 Set  $c = 1$  for coordwise estimator,  $\mu_{-1} = \mu_0$ .
238 for  $t = 0$  to  $T-1$  do
239     Compute  $\mu_t = \frac{1}{(t+1)\sqrt{nd}}$ 
240     if  $t \bmod n = 0$  then
241          $v_t = \bar{\nabla}_{\mu_t} f(x_t)$  {Full zeroth-order gradient computation}
242     else
243         Uniformly sample  $i_t \in \{1, \dots, n\}$ 
244         Compute  $\bar{\nabla}_{\mu_t} f_{i_t}(x_t)$  with  $\mu_t$  and  $\bar{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1})$  with  $\mu_{t-1}$  .
245          $v_t = \bar{\nabla}_{\mu_t} f_{i_t}(x_t) - \bar{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1}) + v_{t-1}$ 
246     end if
247      $\gamma_t = \frac{1}{n^{1/4} c \sqrt{(n^{1/2} + \sum_{s=0}^t \|v_s\|^2)}}$ 
248      $x_{t+1} = x_t - \gamma_t v_t$ 
249 end for

```

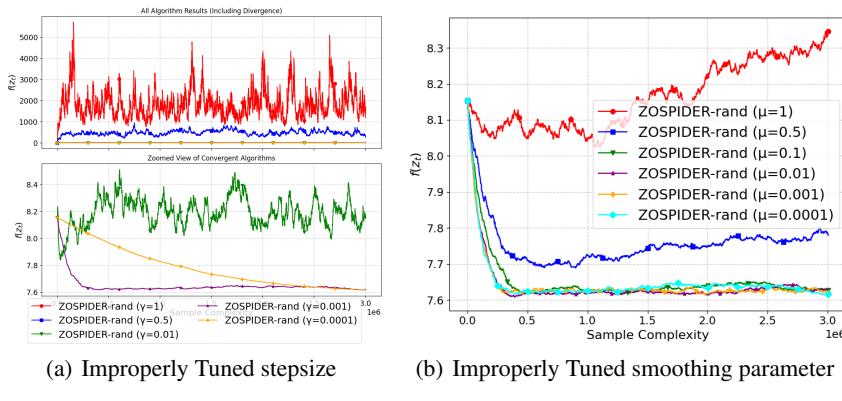
Explanation of Algorithm 1: For the constant c , we set $c = 1$ in this algorithm (which uses the coord estimator) and $c = \sqrt{d}$ in the algorithm with the rand estimator. At each iteration, the algorithm adaptively adjusts the smoothing parameter $\mu_t = 1/(t+1)\sqrt{nd}$, allowing finer gradient estimates as optimization progresses. Every n iterations, a full zeroth-order gradient is computed as mentioned in [Coord estimator](#). For the remaining steps, a variance-reduced estimator v_t is constructed by combining the current and previous stochastic gradient estimates with v_{t-1} . The step size γ_t is also adaptively computed based on the historical norm of the gradient estimates, eliminating the need for manual tuning.

To establish the convergence of our method, we divide the analysis into three parts.

$$\frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \leq \frac{1}{T} \underbrace{\left[\sum_{t=0}^{T-1} \mathbb{E}[\|v_t\|] \right]}_{\text{part I}} + \underbrace{\left[\sum_{t=0}^{T-1} \mathbb{E}[\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|] \right]}_{\text{part II}} + \underbrace{\left[\sum_{t=0}^{T-1} \|\bar{\nabla}_{\mu_t} f(x_t) - \nabla f(x_t)\| \right]}_{\text{part III}}.$$

For each of these parts, we now present the corresponding lemmas (the detailed proofs can be found in [Appendix C](#)). Let $\delta_t := \frac{\sqrt{d}L\mu_t}{2}$ denote the error coefficient of the zeroth-order estimator. Then, we can derive the following results for Algorithm 1. First, we introduce a preliminary bound that will be repeatedly used in the subsequent analysis. [The following lemma provides a bound that is frequently](#)

270
271
272
273
274
275
276
277
278
279
280
281
282



283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 1: This figure demonstrates the detrimental effects of improper parameter tuning on the optimization process through two subfigures. In (a), an improperly tuned stepsize leads to phenomena such as erratic fluctuations (e.g., the red curve in the upper subplot of (a)) and even non-convergence, while properly tuned stepsizes enable stable convergence (lower subplot of (a)). In (b), an improperly tuned smoothing parameter (e.g., $\mu = 1$ in the red curve) causes the optimization process to fail to converge, whereas appropriately tuned values (e.g., $\mu = 0.0001$) allow for effective convergence. Collectively, these results indicate that improperly tuned parameters can severely impair the optimization process, and in severe cases, even lead to non-convergence.

used in the proof. Although it may seem somewhat large, there is no need to worry because it will appear in logarithmic form in the proof.

Lemma 1. *Under assumptions 1 and 2, we have*

$$\sum_{t=0}^{T-1} \|v_t\|^2 \leq \Phi(T) + 1.$$

where $\Phi(T) := \frac{4TL^2n^{1.5}}{c^2} + (32n^2 + 6) \sum_{t=0}^{T-1} \delta_t^2 + \frac{6L^2T}{nc^2} + 6T \|\nabla f(x_0)\|^2 - 1$.

Next, we provide an upper bound for each part separately. To facilitate the analysis, we transform the problem of the average gradient into two components: the gradient estimator v_t (Part I) and the average of gradient estimation errors. The estimation error can be further decomposed into two parts: one is the error incurred by v_t estimating the zeroth-order estimator $\bar{\nabla}_{\mu_t} f(x_t)$ (Part II), and the other is the error arising from replacing the true gradient $\nabla f(x_t)$ with the zeroth-order estimator (Part III). The following lemma aims to provide an upper bound for the SPIDER estimator v_t . Due to the complexity of this problem, we split the analysis into two lemmas.

Lemma 2 (Part I(1)). *Under assumptions 1 and 2, we have*

$$\mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t\| \right] \leq n^{1/4} \sqrt{T} \left(2\Delta c + 2c \sum_{t=0}^{T-1} \gamma_t \delta_t^2 + 1 + \frac{L}{c} \log(\Phi(T)) + c \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 \right] \right).$$

The following lemma provides an upper bound for the last term in Part I(1).

Lemma 3 (Part I(2)). *Under assumptions 1 and 2, we have*

$$\mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 \right] \leq \frac{2L^2}{c^3} \log(\Phi(T)) + \sum_{t=0}^{T-1} 16n \gamma_t \delta_t^2.$$

For the error incurred by the estimator v_t in estimating the zeroth-order estimator $\bar{\nabla}_{\mu_t} f(x_t)$, we present the following lemma:

Lemma 4 (Part II). *Under assumptions 1 and 2, we have*

$$\frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\| \right] \leq \frac{Ln^{1/4}}{c\sqrt{T}} \log(\Phi(T)) + \frac{1}{\sqrt{T}} \sqrt{8n \sum_{t=0}^{T-1} \delta_t^2}.$$

324 Based on the properties of the coordinate-wise zeroth-order estimator, we can directly give the upper
 325 bound for Part III as follows.

326 **Lemma 5** (Part III). *Under assumptions 1 and 2, we have $\frac{1}{T} \sum_{t=0}^{T-1} \|\bar{\nabla}_{\mu_t} f(x_t) - \nabla_{\mu_t} f(x_t)\| \leq$
 327 $\frac{1}{T} \sum_{t=0}^{T-1} \delta_t$.*

329 **Theorem 1** (Converge result of PF-VRZO(coord)). *Under assumptions 1, 2, we can derive the
 330 following result for Algorithm 1:*

$$\begin{aligned} 331 \quad & \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \\ 332 \quad & \leq \frac{n^{1/4}}{\sqrt{T}} \left(2\Delta \cdot c + 1 + \left(\frac{L}{c} + \frac{L^2}{c^2} \right) \log(\Phi(T)) + \frac{L^2 \pi^2}{24n^{1/4}} + \sqrt{\frac{\pi^2}{24}} \frac{L}{n^{1/4}} + \frac{L^2 \pi^2}{12} + \frac{L}{2} \right) \\ 333 \end{aligned}$$

337 By setting $c = 1$, we can find stationary points of $f(x)$ with $T = \tilde{\mathcal{O}}(\sqrt{n}\epsilon^{-2})$.

$$\begin{aligned} 339 \quad & \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \leq \underbrace{\frac{1}{T} \left[\sum_{t=0}^{T-1} \mathbb{E}[\|v_t\|] \right]}_{\text{part I}} + \underbrace{\sum_{t=0}^{T-1} \mathbb{E}[\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|]}_{\text{part II}} + \underbrace{\sum_{t=0}^{T-1} \|\bar{\nabla}_{\mu_t} f(x_t) - \nabla f(x_t)\|}_{\text{part III}} \\ 340 \quad & \leq \frac{n^{1/4}}{\sqrt{T}} \left(2\Delta \cdot c + 1 + \left(\frac{L}{cn^{3/4}} + \frac{L^2}{c^2} \right) \log(\Phi(T)) \right) \\ 341 \quad & + \frac{1}{T} (2c \sum_{t=0}^{T-1} \gamma_t \delta_t^2 + \sum_{t=0}^{T-1} \delta_t) + \frac{1}{\sqrt{T}} \left(n^{\frac{5}{4}} \sum_{t=0}^{T-1} c \gamma_t \delta_t^2 + n^{\frac{1}{2}} \sqrt{\sum_{t=0}^{T-1} 2\delta_t^2} \right). \\ 342 \end{aligned}$$

343 Take $\delta_t = \frac{L}{2\sqrt{n(t+1)}}$ i.e. $(\mu_t = \frac{1}{\sqrt{nd}}(t+1))$ then we can give an upper bound of $\sum_{t=0}^{T-1} \delta_t^2$ and $\sum_{t=0}^{T-1} \delta_t$
 344 as follows:

$$\sum_{t=0}^{T-1} \delta_t \leq \frac{L \ln T}{2\sqrt{n}}, \quad \sum_{t=0}^{T-1} \delta_t^2 \leq \frac{L^2 \pi^2}{24n}.$$

354 With some calculations, we can obtain the final result.

355 **Remark 2** (Discussion on the complexity). *Each coordwise estimator zeroth-order gradient estimation requires $\mathcal{O}(d)$ function evaluations. And since SPIDER consumes, on average, $\mathcal{O}(1+n/n)$ zeroth-order estimators per iteration, multiplying this by the total number of iterations $T = \tilde{\mathcal{O}}(\sqrt{n}\epsilon^{-2})$ yields a total function query complexity of #Function = $\tilde{\mathcal{O}}(d(1 + \frac{n}{n})T) = \tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$.*

360 3.6 PROPOSED PARAMETER-FREE VARIANCE REDUCED ZEROTH-ORDER 361 METHOD(RANDOM-DIRECTION ESTIMATOR)

363 In contrast to the coordinate-wise approach, which requires $\mathcal{O}(d)$ function evaluations per random
 364 estimator, the random method only incurs $\mathcal{O}(1)$ function evaluations per iteration. Nevertheless, it
 365 often requires d times more iterations to achieve comparable accuracy. Therefore, the choice between
 366 the two methods can be made according to the practitioner's computational budget and application
 367 requirements. The analysis of the random-direction method follows essentially the same structure as
 368 that of the coordinate-wise method, although the final results differ slightly.

$$\begin{aligned} 369 \quad & \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \leq \underbrace{\frac{1}{T} \left[\sum_{t=0}^{T-1} \mathbb{E}[\|v_t\|] \right]}_{\text{part I}} + \underbrace{\sum_{t=0}^{T-1} \mathbb{E}[\|v_t - \nabla f_{\mu_t}(x_t)\|]}_{\text{part II}} + \underbrace{\sum_{t=0}^{T-1} \|\nabla f_{\mu_t}(x_t) - \nabla f(x_t)\|}_{\text{part III}} \\ 370 \end{aligned}$$

373 The proof of this part follows a similar argument as the coordinate estimator case and is therefore
 374 omitted. The complete proof can be found in Appendix D.

376 **Remark 3** (Proof Differences between the Random-direction and Coord Methods). *In the coordinate-
 377 wise method, we provide a bound $\mathcal{O}(\|x_t - x_{t-1}\|^2) + \mathcal{O}(\mu_t^2 + \mu_{t-1}^2)$ for the quantity $\|\bar{\nabla}_{\mu_t} f_{i_t}(x_t) -$
 $\bar{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1})\|^2$. Although an estimation error exists, the smoothness of the coordinate estimator*

Algorithm 2 PF-VRZO(Random-direction)

378 Set $c = \sqrt{d}$ for random-direction estimator and $\mu_{-1} = \mu_0$.
 379
 380 **for** $t = 0$ **to** $T-1$ **do**
 381 Compute smoothing parameter $\mu_t = \frac{1}{(t+1)d\sqrt{n}}$, smoothing vector $\rho_t \sim U_B$.
 382 **if** $t \bmod n = 0$ **then**
 383 $v_t = \hat{\nabla}_{\mu_t} f(x_t)$ {Full zeroth-order gradient computation}
 384 **else**
 385 Sample $i_t \in \{1, \dots, n\}$ uniformly at random
 386 Compute $\hat{\nabla}_{\mu_t} f_{i_t}(x_t)$ with parameter μ_t and rand vector ρ_t , $\hat{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1})$ with different
 387 parameter μ_{t-1} and the same rand vector ρ_t .
 388 $v_t = \hat{\nabla}_{\mu_t} f_{i_t}(x_t) - \hat{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1}) + v_{t-1}$
 389 **end if**
 390 $\gamma_t = \frac{1}{n^{1/4}c\sqrt{(n^{1/2} + \sum_{s=0}^t \|v_s\|^2)}}$
 391 $x_{t+1} = x_t - \gamma_t v_t$
 392 **end for**
 393
 394

395 **Explanation of Algorithm 2** Algorithm 2 shares an overall structure with Algorithm 1, with
 396 key differences as follows: 1.The zeroth-order estimator employs a random-direction estimator as
 397 mentioned in [Random-direction estimator](#), where random numbers distributed on the unit sphere
 398 are generated by first sampling from a d -dimensional Gaussian distribution and then normalizing
 399 the sample. 2.We set $c = \sqrt{d}$ and use a smoothing parameter $\mu_t = \frac{1}{(t+1)d\sqrt{n}}$, introducing constant
 400 differences (involving \sqrt{d}) compared to the coordinate-wise variant ,where $c = 1$ and $\mu_t = \frac{1}{(t+1)\sqrt{dn}}$

402
 403 *remains roughly of the same order as that of $f(x)$. In contrast, for the random-direction method,*
 404 *we obtain the estimate $\|\hat{\nabla}_{\mu_t} f(x_t) - \hat{\nabla}_{\mu_{t-1}} f(x_{t-1})\|^2 \leq \mathcal{O}(\mu_t^2 + \mu_{t-1}^2) + \mathcal{O}(d\|x_t - x_{t-1}\|^2)$, which*
 405 *suggests—albeit informally—that the smoothness of the random estimator is approximately d times*
 406 *larger than that of $f(x)$. This distinction is reflected in the conclusions of various parts of the*
 407 *analysis, and, in particular, it necessitates choosing $c = \sqrt{d}, \mu_t = \frac{1}{(t+1)d\sqrt{n}}$ in the proof of the*
 408 *theorem (whereas $c = 1, \mu_t = \frac{1}{(t+1)\sqrt{dn}}$ suffices in the coordinate-wise case). As a result, the number*
 409 *of iterations required by the random-direction method is d times larger than that of the coord method.*

410 **Theorem 2** (Converge result of PF-VRZO(random-direction)). *Under assumptions 1, 2, we can derive*
 411 *the following result for Algorithm 2:*

$$\begin{aligned} & \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \\ & \leq \frac{n^{1/4}}{\sqrt{T}} \left(\Delta \cdot c + 1 + \left(\frac{L\sqrt{d}}{cn^{3/4}} + \frac{L^2 d}{c^2} \right) \log(\phi(T)) + \frac{L^2 \pi^2}{24n^{1/4}} + \frac{L}{n^{1/4}} \sqrt{\frac{\pi^2}{24}} + \frac{L^2 \pi^2}{12} + \frac{L}{2} \right) \end{aligned}$$

412 By setting $c = \sqrt{d}, \mu_t = \frac{1}{d\sqrt{n}}(t+1)$, we can find stationary points of $f(x)$ with $T = \tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$.

413 **Remark 4** (Discussion on the complexity). *Each Random-direction zeroth-order gradient estimation*
 414 *requires $\mathcal{O}(1)$ function evaluations. And since SPIDER consumes, on average, $\mathcal{O}(1 + n/n)$ zeroth-*
 415 *order estimators per iteration, multiplying this by the total number of iterations $T = \tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$*
 416 *yields a total function query complexity of $\#Function = \tilde{\mathcal{O}}\left((1 + \frac{n}{n})T\right) = \tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$.*

4 EXPERIMENTS

426 We conduct two experiments to evaluate the effectiveness of our method: the first focuses on Phase
 427 Retrieval, as shown in Figures 2(a) and 2(b), while the second examines Distributional Robust
 428 Optimization (DRO), presented in Figures ?? and ???. To validate the performance of our algorithm,
 429 we compare it with ZO-SPIDER([Ji et al., 2019](#)) and ZO-SGD ([Ghadimi & Lan, 2013](#)), both of which
 430 rely on manually tuned hyperparameters to ensure convergence, in contrast to our parameter-free

approach. We measure computational cost using both sample complexity and time. Here, sample complexity refers to the total number of function value evaluations. Due to space limitations, we defer the detailed descriptions of the hyperparameter settings to Appendix E. All experiments are conducted on a single NVIDIA RTX 3090 GPU.

4.1 APPLICATION TO NONCONVEX PHASE RETRIEVAL

Phase retrieval is a well-known nonconvex problem in machine learning and signal processing (Miao et al., 1999). Let $x \in \mathbb{R}^d$ represent the true underlying object, and assume we collect m intensity measurements, given by $y_r = |\mathbf{a}_r^\top x|^2$ for $r = 1, 2, \dots, m$, where $\mathbf{a}_r \in \mathbb{R}^d$. The challenge in phase retrieval lies in recovering the signal by solving the associated nonconvex optimization problem:

$$\min_{z \in \mathbb{R}^d} f(z) := \frac{1}{2m} \sum_{r=1}^m (y_r - |\mathbf{a}_r^\top z|^2)^2. \quad (2)$$

We assess the effectiveness of our algorithms on the nonconvex phase retrieval task defined in (2). As illustrated in Figures 2(a) and 2(b), the proposed PF-VRZO algorithm demonstrates robust performance, notably without requiring manual tuning of algorithmic parameters.

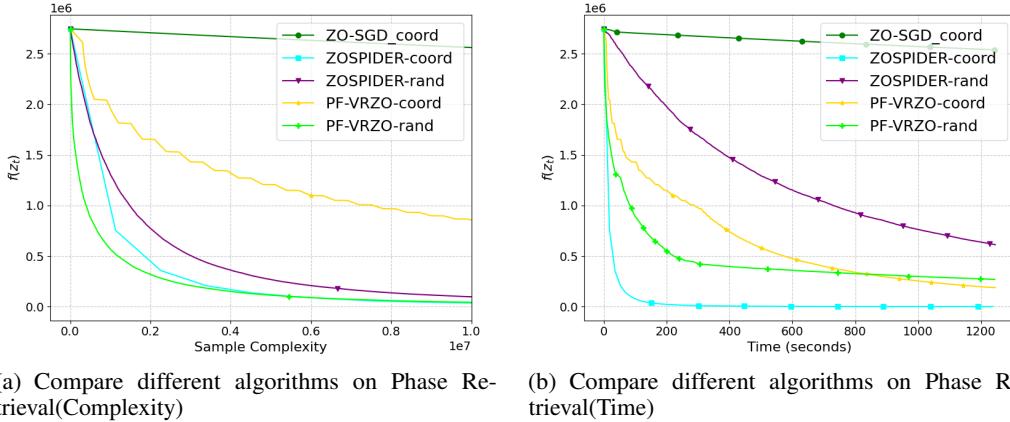


Figure 2: This figure compares the performance of different algorithms on Phase Retrieval through two subfigures. In (a), we evaluate the sample complexity of algorithms including PF-VRZO-coord, PF-VRZO-rand, ZO-SGD-coord, ZOSPIDER-coord, and ZOSPIDER-rand. In (b), we assess their time efficiency. Notably, the proposed PF-VRZO method, even without parameter tuning, demonstrates competitive performance when compared to other algorithms that undergo multiple parameter adjustments, indicating its robustness and effectiveness in Phase Retrieval tasks.

4.2 APPLICATION TO DISTRIBUTIONAL ROBUST OPTIMIZATION

Distributional Robust Optimization (DRO) is a widely used framework for training robust models, Under mild conditions, it aims to solve the following problem:

$$\min_{x \in \mathcal{X}, \eta \in \mathbb{R}} L(x, \eta) := \lambda \mathbb{E}_{\xi \sim P} \psi^* \left(\frac{\ell_\xi(x) - \eta}{\lambda} \right) + \eta \quad (3)$$

We consider the nonconvex DRO problem (3) on three real-world datasets. The Life Expectancy dataset contains 2,413 samples with 20 associated features. The Communities and Crime dataset consists of 1,994 samples and 122 predictive features. The Arcene dataset includes 200 samples with 10,000 high-dimensional features, making it a challenging benchmark for robust optimization. After standard preprocessing steps, including missing value imputation and variable standardization, we retain 70% samples for training, where each input $x_i \in \mathbb{R}^{34}$ and corresponding target $y_i \in \mathbb{R}$. We set the regularization parameter to $\lambda = 0.01$, and adopt the χ^2 -divergence, with the convex conjugate

486 given by $\psi^*(t) = \frac{1}{4}(t+2)^2 - 1$. The regularized loss function is defined as:
 487

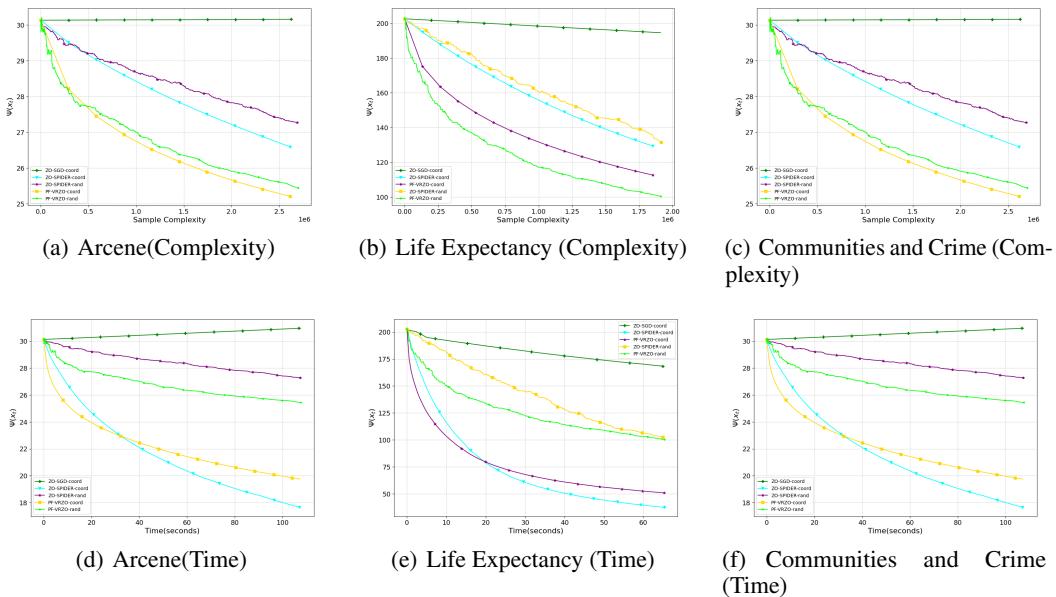
$$488 \quad \ell_\xi(w) = \frac{1}{2}(y_\xi - x_\xi^\top w)^2 + 0.1 \sum_{j=1}^{34} \ln(1 + |w^{(j)}|).$$

$$489$$

$$490$$

491 We initialize $w_0 \in \mathbb{R}^{34}$ from a Gaussian distribution and set the initial step size $\eta_0 = 0.1$.
 492

493 Based on the experimental results shown in Figures 3, we observe that the proposed PF-VRZO
 494 method exhibits a brief oscillation in the objective value at the beginning, likely due to insufficient
 495 accumulated gradient information. However, the method quickly resumes descent and ultimately
 496 achieves strong performance without the need for any parameter tuning.
 497



517 Figure 3: This figure evaluates the performance of different algorithms on Distributionally Robust
 518 Optimization (DRO) tasks across three datasets (Arcene, Life Expectancy, Communities and Crime),
 519 with results split into two metrics: Sample Complexity (subfigures (a)-(c)): Measures the number
 520 of samples required for algorithms to converge. Time Efficiency (subfigures (d)-(f)): Measures
 521 the runtime (in seconds) for algorithms to converge. Across all datasets and metrics, the proposed
 522 methods (e.g., PF-VRZO variants) demonstrate competitive or superior performance—consistently
 523 achieving faster convergence. This further validates the effectiveness of the parameter-free design of
 524 PF-VRZO in practical DRO scenarios.
 525

5 CONCLUSION

529 In this paper, we propose a parameter-free variance-reduced zeroth-order method (PF-VRZO) for
 530 nonconvex optimization. Our method is based on the SPIDER framework and employs a coordinate-
 531 wise or random-direction zeroth-order gradient estimator. We establish the convergence of our
 532 method, demonstrating that it achieves a sample complexity of $\tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$ for finding stationary
 533 points of nonconvex functions. Additionally, we conduct experiments on nonconvex phase retrieval
 534 and distributionally robust optimization to validate the effectiveness of our method. An interesting
 535 future direction is to investigate whether the logarithmic, L -dependent, and Δ -dependent terms
 536 in the complexity bounds are optimal. (Carmon & Hinder, 2024) shows that under the convex-
 537 but-nonsmooth (C-NS) setting, any adaptive algorithm necessarily suffers from worse complexity.
 538 However, it remains unclear whether a similar conclusion holds under the nonconvex-smooth (NC-S)
 539 setting.

540 **6 ETHICS STATEMENT**
 541

542 Our study focuses on developing a novel optimization algorithm and does not involve human subjects,
 543 animal experimentation, or the use of sensitive personal data. All experiments are conducted on
 544 publicly available datasets that are commonly used within the academic community. We adhere to the
 545 ICLR Code of Ethics, and our work introduces no new privacy or ethical risks beyond those inherent
 546 in standard academic research on optimization methods.

548 **7 REPRODUCIBILITY STATEMENT**
 549

550 We have made every effort to ensure the reproducibility of our results. The paper provides detailed
 551 specifications for our proposed algorithm, PF-VRZO, including its variants and their theoretical foun-
 552 dations. We have meticulously described our experimental setup, including the specific nonconvex
 553 problems we studied, the parameters used for all compared algorithms (e.g., learning rates and batch
 554 sizes for ZO-SGD, PF-VRZO, ZO-SPIDER), and the hardware used.

556 **REFERENCES**
 557

558 Amit Attia and Tomer Koren. How free is parameter-free stochastic optimization? In *Forty-first*
 559 *International Conference on Machine Learning*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=6L4K5jmSJq)
 560 [forum?id=6L4K5jmSJq](https://openreview.net/forum?id=6L4K5jmSJq).

561 Yair Carmon and Oliver Hinder. The price of adaptivity in stochastic convex optimization. In Shipra
 562 Agrawal and Aaron Roth (eds.), *Proceedings of Thirty Seventh Conference on Learning Theory*,
 563 volume 247 of *Proceedings of Machine Learning Research*, pp. 772–774. PMLR, 30 Jun–03 Jul
 564 2024. URL <https://proceedings.mlr.press/v247/carmon24a.html>.

565 Keyi Chen, John Langford, and Francesco Orabona. Better parameter-free stochastic optimization
 566 with ode updates for coin-betting. *Proceedings of the AAAI Conference on Artificial Intelligence*,
 567 36(6):6239–6247, Jun. 2022. doi: 10.1609/aaai.v36i6.20573. URL <https://ojs.aaai.org/index.php/AAAI/article/view/20573>.

568 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
 569 optimization based black-box attacks to deep neural networks without training substitute models.
 570 *Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security*, 2017. URL
 571 <https://api.semanticscholar.org/CorpusID:2179389>.

572 Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation.
 573 *ArXiv*, abs/2301.07733, 2023. URL <https://api.semanticscholar.org/CorpusID:255999725>.

574 John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
 575 and stochastic optimization. *J. Mach. Learn. Res.*, 12:2121–2159, 2011. URL <https://api.semanticscholar.org/CorpusID:538820>.

576 John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for
 577 zero-order convex optimization: The power of two function evaluations. *IEEE Transactions on*
 578 *Information Theory*, 61(5):2788–2806, 2015. doi: 10.1109/TIT.2015.2409256.

579 Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
 580 convex optimization via stochastic path-integrated differential estimator. In S. Bengio,
 581 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-
 582 vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 583 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf.

584 Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm:
 585 An iteration complexity perspective. *Journal of Scientific Computing*, 76(1):327–363, Jul 2018.
 586 ISSN 1573-7691. doi: 10.1007/s10915-017-0621-6. URL <https://doi.org/10.1007/s10915-017-0621-6>.

594 Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov,
 595 Aleksandr Beznosikov, Martin Takáč, Pavel Dvurechensky, and Bin Gu. The power of first-order
 596 smooth optimization for black-box non-smooth problems, 2023. URL <https://arxiv.org/abs/2201.12289>.

597

598 Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
 599 stochastic programming, 2013. URL <https://arxiv.org/abs/1309.5549>.

600

601 Bin Gu, Zhouyuan Huo, Cheng Deng, and Heng Huang. Faster derivative-free stochastic algorithm
 602 for shared memory machines. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the*
 603 *35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine*
 604 *Learning Research*, pp. 1812–1821. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/gu18a.html>.

605

606 Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
 607 step size schedule. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
 608 Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML*
 609 *2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning*
 610 *Research*, pp. 14465–14499. PMLR, 2023. URL <https://proceedings.mlr.press/v202/ivgi23a.html>.

611

612 Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
 613 and analysis for nonconvex optimization. In *International Conference on Machine Learning*, 2019.
 614 URL <https://api.semanticscholar.org/CorpusID:174800372>.

615

616 Wei Jiang, Sifan Yang, Yibo Wang, and Lijun Zhang. Adaptive variance reduction for
 617 stochastic optimization under weaker assumptions. In A. Globerson, L. Mackey, D. Bel-
 618 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 619 formation Processing Systems*, volume 37, pp. 22047–22080. Curran Associates, Inc.,
 620 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/272efd3a6091ceefcbc79f1f3a6fdb4-Paper-Conference.pdf.

621

622 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
 623 ance reduction. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
 624 berger (eds.), *Advances in Neural Information Processing Systems*, volume 26. Curran Asso-
 625 ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf.

626

627 Ali Kavis, EFSTRATIOS PANTELEIMON SKOULAKIS, Kimon Antonakopoulos, Leello Tadesse
 628 Dadi, and Volkan Cevher. Adaptive stochastic variance reduction for non-convex finite-sum
 629 minimization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 630 *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=k98U0cb0Ig>.

631

632 Ahmed Khaled and Chi Jin. Tuning-free stochastic optimization. In *Forty-first International*
 633 *Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=A6fmX9QCEa>.

634

635 Guy Kornowski and Ohad Shamir. An algorithm with optimal dimension-dependence for zero-order
 636 nonsmooth nonconvex stochastic optimization. *J. Mach. Learn. Res.*, 25:122:1–122:14, 2024. URL
 637 <https://jmlr.org/papers/v25/23-1159.html>.

638

639 Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
 640 optimization. In Shipra Agrawal and Aaron Roth (eds.), *Proceedings of Thirty Seventh Conference*
 641 *on Learning Theory*, volume 247 of *Proceedings of Machine Learning Research*, pp. 3257–
 642 3324. PMLR, 30 Jun–03 Jul 2024. URL <https://proceedings.mlr.press/v247/kreisler24a.html>.

643

644 Harshit Kumar, Dionysios S. Kalogerias, George Pappas, and Alejandro Ribeiro. Zeroth-
 645 order deterministic policy gradient. *ArXiv*, abs/2006.07314, 2020. URL <https://api.semanticscholar.org/CorpusID:219636207>.

646

648 Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive
 649 linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-order
 650 to first-order. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
 651 *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc.,
 652 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/db1915052d15f7815c8b88e879465ale-Paper.pdf.

653

654 Tianyi Lin, Zeyu Zheng, and Michael Jordan. Gradient-free methods for deterministic
 655 and stochastic nonsmooth nonconvex optimization. In S. Koyejo, S. Mohamed,
 656 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information
 657 Processing Systems*, volume 35, pp. 26160–26175. Curran Associates, Inc.,
 658 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/a78f142aecd481e68c75276756e0a0d91-Paper-Conference.pdf.

659

660 L. Liu, Minhao Cheng, Cho-Jui Hsieh, and Dacheng Tao. Stochastic zeroth-order optimiza-
 661 tion via variance reduction method. *ArXiv*, abs/1805.11811, 2018a. URL <https://api.semanticscholar.org/CorpusID:44117287>.

662

663 Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini.
 664 Zeroth-order stochastic variance reduction for nonconvex optimization. In S. Bengio,
 665 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-
 666 vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 667 2018b. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/ba9a56ce0a9bfa26e8ed9e10b2cc8f46-Paper.pdf.

668

669 Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, and Martin J.
 670 Wainwright. Derivative-free methods for policy optimization: Guarantees for linear quadratic
 671 systems. *ArXiv*, abs/1812.08305, 2018. URL <https://api.semanticscholar.org/CorpusID:56517260>.

672

673 Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen,
 674 and Sanjeev Arora. Fine-tuning language models with just forward passes. In A. Oh,
 675 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-
 676 ral Information Processing Systems*, volume 36, pp. 53038–53075. Curran Associates, Inc.,
 677 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a627810151be4d13f907ac898ff7e948-Paper-Conference.pdf.

678

679 H. B. McMahan and Matthew J. Streeter. Adaptive bound optimization for online convex optimization.
 680 *ArXiv*, abs/1002.4908, 2010. URL <https://api.semanticscholar.org/CorpusID:13318811>.

681

682 Jianwei Miao, Pambos Charalambous, Janos Kirz, and David Sayre. Extending the methodology of
 683 x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. *Nature*,
 684 400(6742):342–344, Jul 1999. ISSN 1476-4687. doi: 10.1038/22498. URL <https://doi.org/10.1038/22498>.

685

686 Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
 687 coin betting. In *Neural Information Processing Systems*, 2017. URL <https://api.semanticscholar.org/CorpusID:6762437>.

688

689 Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
 690 Swami. Practical black-box attacks against machine learning. In *Proceedings of the 2017 ACM
 691 on Asia Conference on Computer and Communications Security*, ASIA CCS ’17, pp. 506–519,
 692 New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349444. doi:
 693 10.1145/3052973.3053009. URL <https://doi.org/10.1145/3052973.3053009>.

694

695 Kunjie Ren and Luo Luo. A parameter-free and near-optimal zeroth-order algorithm for stochastic
 696 convex optimization. In *Forty-second International Conference on Machine Learning*, 2025. URL
 697 <https://openreview.net/forum?id=JVouJNs8Vr>.

698

699 Andrey Veprikov, Alexander Bogdanov, Vladislav Mikhailovich Minashkin, and Aleksandr
 700 Beznosikov. New aspects of black box conditional gradient: Variance reduction and one
 701 point feedback. In *International Conference on Computational Optimization*, 2024. URL
 702 <https://openreview.net/forum?id=xSwFzrDMVK>.

702	CONTENTS	
703		
704		
705	1 Introduction	1
706		
707	2 Preliminaries	3
708		
709	3 Proposed parameter free variance reduced zeroth-order methods	4
710		
711	3.1 Zeroth-order gradient estimators	4
712	3.2 Variance reduction technique	4
713	3.3 Adaptive stepsize	4
714	3.4 Adaptive smoothing parameter	5
715	3.5 Parameter-Free Variance Reduced Zeroth-Order method(coordwise)	5
716	3.6 Proposed Parameter-Free Variance Reduced Zeroth-Order method(random-direction estimator)	7
717		
718		
719		
720		
721	4 Experiments	8
722		
723	4.1 Application to Nonconvex Phase Retrieval	9
724	4.2 Application to Distributional robust optimization	9
725		
726		
727	5 Conclusion	10
728		
729	6 ETHICS STATEMENT	11
730		
731	7 REPRODUCIBILITY STATEMENT	11
732		
733		
734	A Related work	15
735		
736	A.1 Zeroth-order optimization	15
737	A.2 Parameter-free optimization	15
738		
739	B Useful facts	15
740		
741	C Parameter free variance reduced zeroth-order method(coord)	17
742		
743	C.1 Part I	18
744	C.2 Part II	21
745	C.3 Part III	21
746	C.4 Final proof for coordinate estimator	22
747		
748		
749		
750	D Parameter free variance reduced zeroth-order method(random-direction estimator)	23
751		
752	D.1 Part I	25
753	D.2 Part II	28
754	D.3 Part III	29
755	D.4 Final proof for the random-direction estimator	29

756	E Hyperparameters Details	29
757	E.1 Phase Retrieval	29
758	E.2 DRO	30
759	E.3 A small experiment to verify the effectiveness of the adaptive smoothing parameter	30
760		
761		
762		

763 A RELATED WORK

764 A.1 ZEROTH-ORDER OPTIMIZATION

767 The ZO-SGD method was first introduced by (Ghadimi & Lan, 2013), serving as a foundational
 768 approach in zeroth-order stochastic optimization. To enhance its efficiency, several follow-up
 769 works (Liu et al., 2018a) proposed accelerated variants, collectively referred to as ZO-SVRG,
 770 which incorporate the SVRG framework (Johnson & Zhang, 2013). In addition, to further reduce
 771 the function query complexity, ZO-SPIDER-Coord (Ji et al., 2019) were developed based on the
 772 stochastic path-integrated differential estimator.

773 A.2 PARAMETER-FREE OPTIMIZATION

775 Recent advances in the nonconvex and smooth setting have drawn inspiration from AdaGrad, as
 776 introduced in the concurrent seminal works (Duchi et al., 2011; McMahan & Streeter, 2010). Building
 777 on this foundation, (Kavis et al., 2022) were the first to develop a parameter-free algorithm that remains
 778 compatible with variance reduction techniques. This was later improved by (Jiang et al., 2024),
 779 who proposed ADA-STORM, reducing the overall complexity by a logarithmic factor. Moreover, a
 780 series of follow-up studies (Ivgi et al., 2023; Kreisler et al., 2024; Orabona & Tommasi, 2017; Chen
 781 et al., 2022; Defazio & Mishchenko, 2023) have explored parameter-free methods in various problem
 782 settings, and other works have investigated the fundamental lower bounds of such algorithms (Khaled
 783 & Jin, 2024; Attia & Koren, 2024; Carmon & Hinder, 2024).

785 B USEFUL FACTS

787 **Lemma B.1** (Jensen’s inequality). *For convex function $f(x)$ we have*

$$788 f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)],$$

790 two extended versions of Jensen’s inequality are

$$792 \|\mathbb{E}[x]\| \leq \mathbb{E}[\|x\|], \text{ for } x \in \mathbb{R}^d$$

$$793 \left\| \sum_{i=1}^k a_i \right\|^2 \leq k \sum_{i=1}^k \|a_i\|^2, \text{ for } a_i \in \mathbb{R}^d.$$

796 **Lemma B.2** (Young’s inequality). *For any vectors $a, b \in \mathbb{R}^d$, and $\zeta \geq 0$, the following inequality
 797 holds:*

$$798 \|a\|^2 \leq (1 + \zeta) \|a - b\|^2 + (1 + \zeta^{-1}) \|b\|^2,$$

800 an extended version of Young’s inequality is

$$801 \langle a, b \rangle \leq \frac{\|a\|^2}{2\zeta} + \frac{\zeta \|b\|^2}{2}.$$

804 **Lemma B.3** (variance decomposition). *For random vector $x \in \mathbb{R}^d$ and any $y \in \mathbb{R}^d$, the variance of
 805 x can be decomposed as*

$$807 \mathbb{E} [\|x - \mathbb{E}[x]\|^2] = \mathbb{E} [\|x - y\|^2] - \mathbb{E} [\|\mathbb{E}[x] - y\|^2],$$

808 which implies

$$809 \mathbb{E} [\|x - \mathbb{E}[x]\|^2] \leq \mathbb{E} [\|x\|^2].$$

810 **Lemma B.4.** For random variable X, Y , if X, Y are independent, and $\mathbb{E}[X] = 0$ or $\mathbb{E}[Y] = 0$, we have
 811

$$812 \mathbb{E}[\|X - Y\|^2] = \mathbb{E}[\|X\|^2] + \mathbb{E}[\|Y\|^2].$$

814 *Proof.*
 815

$$816 \mathbb{E}[\|X - Y\|^2] = \mathbb{E}[\|X\|^2 + \|Y\|^2 + 2\mathbb{E}\langle X, Y \rangle] = \mathbb{E}[\|X\|^2] + \mathbb{E}[\|Y\|^2].$$

□

820 **Lemma B.5.** For i.i.d. $x_1, x_2, x_3 \dots x_n$, if $\mathbb{E}[x_i] = x$, $\mathbb{E}[\|x_i - x\|^2] \leq \sigma^2$, we have
 821

$$822 \mathbb{E} \left[\left\| \frac{1}{b} \sum_{i=1}^b x_i - x \right\|^2 \right] \leq \frac{\mathbb{E}[\|x_i\|^2]}{b}.$$

826 *Proof.*
 827

$$828 \begin{aligned} \mathbb{E} \left[\left\| \frac{1}{b} \sum_{i=1}^b x_i - x \right\|^2 \right] \\ 829 &= \frac{1}{b^2} \mathbb{E} \left[\left\| \sum_{i=1}^b (x_i - x) \right\|^2 \right] \\ 830 &= \frac{1}{b^2} \sum_{i=1}^b \mathbb{E}[\|x_i - x\|^2] \\ 831 &= \frac{1}{b} \mathbb{E}[\|x_i - x\|^2] \leq \frac{\mathbb{E}[\|x_i\|^2]}{b}, \end{aligned}$$

832 where the second inequality holds because $\|a + b\|^2 = \|a\|^2 + \|b\|^2 + 2\langle a, b \rangle$, and $\mathbb{E}[\langle x_i - x, x_j - x \rangle] = 0 (j \neq i)$ for iid random variable x_i .
 833 □

834 **Lemma B.6** (Sum of Square Roots Inequality). Let $\alpha_1, \dots, \alpha_T$ be a sequence of non-negative real
 835 numbers ($\alpha_t \geq 0$ for all t). Then:

$$836 \sqrt{\sum_{t=1}^T \alpha_t} \leq \sum_{t=1}^T \frac{\alpha_t}{\sqrt{\sum_{s=1}^t \alpha_s}}.$$

837 **Lemma B.7** (Logarithmic Sum Bound). For any sequence of non-negative real numbers a_1, \dots, a_T
 838 with $a_1 \geq 1$, we have:

$$839 \sum_{\ell=1}^T \frac{a_\ell}{1 + \sum_{i=1}^\ell a_i} \leq \log \left(\sum_{i=1}^T a_i + 1 \right)$$

840 **Lemma B.8** (Sum of $\frac{1}{i}$ and $\frac{1}{i^2}$).
 841

$$842 \sum_{i=1}^{T-1} \frac{1}{i} \leq \log(T).$$

$$843 \sum_{i=1}^{\infty} \frac{1}{i^2} \leq \frac{\pi^2}{6}.$$

864 C PARAMETER FREE VARIANCE REDUCED ZEROOTH-ORDER METHOD(COORD)
865
866867 **Algorithm 3** PF-VRZO(coord)

868 Set $c = 1$ for coordwise estimator, $\mu_{-1} = \mu_0$.
869 **for** $t = 0$ **to** $T-1$ **do**
870 Compute $\mu_t = \frac{1}{(t+1)\sqrt{nd}}$
871 **if** $t \bmod n = 0$ **then**
872 $v_t = \bar{\nabla}_{\mu_t} f(x_t)$ {Full zeroth-order gradient computation}
873 **else**
874 Uniformly sample $i_t \in \{1, \dots, n\}$
875 Compute $\bar{\nabla}_{\mu_t} f_{i_t}(x_t)$ with μ_t and $\bar{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1})$ with μ_{t-1} .
876 $v_t = \bar{\nabla}_{\mu_t} f_{i_t}(x_t) - \bar{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1}) + v_{t-1}$
877 **end if**
878 $\gamma_t = \frac{1}{n^{1/4}c\sqrt{(n^{1/2} + \sum_{s=0}^t \|v_s\|^2)}}$
879 $x_{t+1} = x_t - \gamma_t v_t$
880 **end for**
881
882
883
884

885 Table 2: Meaning of Symbols
886

Symbol	Meaning
γ_t	stepsize $\frac{1}{(n^{1/4}c\sqrt{n^{1/2} + \sum_{s=0}^t \ v_s\ ^2})}$.
μ_t	Smoothing parameter at iteration t .
v_t	Spider estimator.
$\bar{\nabla}_{\mu} f(x_t)$	zeroth-order estimator(coord) .
δ_t	$\sqrt{d}L\mu_t/2$, the estimation error with respect to $\bar{\nabla}f_{\mu}$.

897 To establish the convergence of our method, we divide the analysis into three parts.
898

899
900
$$\frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \leq \underbrace{\frac{1}{T} \left[\sum_{t=0}^{T-1} \mathbb{E}[\|v_t\|] \right]}_{\text{part I}} + \underbrace{\sum_{t=0}^{T-1} \mathbb{E}[\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|]}_{\text{part II}} + \underbrace{\sum_{t=0}^{T-1} \|\bar{\nabla}_{\mu_t} f(x_t) - \nabla f(x_t)\|}_{\text{part III}}.$$
901
902
903
904

905 **Lemma C.1** ((Gao et al., 2018)). For L -smooth function $f(x)$, its gradient $\nabla f(x)$ and its coord
906 zeroth-order estimator $\bar{\nabla}_{\mu} f(x)$, we have
907

908
$$\|\bar{\nabla}_{\mu} f(x) - \nabla f(x)\|^2 \leq \delta_t^2.$$

909

910 where $\delta_t := \sqrt{d}L\mu_t/2$, and μ_t is the smoothing parameter at iteration t .
911912 **Lemma C.2.** Under assumptions 1 and 2, we can derive the following result for Algorithm 1:
913

914
$$\sum_{t=0}^{T-1} \|v_t\|^2 \leq \Phi(T) + 1.$$

915

916 where $\frac{4TL^2n^{1.5}}{c^2} + (32n^2 + 6) \sum_{t=0}^{T-1} \delta_t^2 + \frac{6L^2T}{nc^2} + 6T \|\nabla f(x_0)\|^2 - 1$. Here the notation $\Phi(T)$ is
917 introduced only for brevity, and will be repeatedly used in the subsequent analysis.

918 *Proof.*

$$\begin{aligned}
\|v_t\|^2 &= \left\| \sum_{s=t-t \bmod n+1}^t (\bar{\nabla}_{\mu_s} f_{i_s}(x_s) - \bar{\nabla}_{\mu_{s-1}} f_{i_s}(x_{s-1})) + \bar{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\
&\leq 2 \cdot \left\| \sum_{s=t-t \bmod n+1}^t \bar{\nabla}_{\mu_s} f_{i_s}(x_s) - \bar{\nabla}_{\mu_{s-1}} f_{i_s}(x_{s-1}) \right\|^2 + 2 \cdot \left\| \bar{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\
&\leq 2n \cdot \sum_{s=t-t \bmod n+1}^t \left\| \bar{\nabla}_{\mu_s} f_{i_s}(x_s) - \bar{\nabla}_{\mu_{s-1}} f_{i_s}(x_{s-1}) \right\|^2 + 2 \cdot \left\| \bar{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\
&\stackrel{\text{lem C.1}}{\leq} 2n \cdot \sum_{s=t-t \bmod n+1}^t 2L^2 (x_s - x_{s-1})^2 + 8(\delta_s^2 + \delta_{s-1}^2) + 2 \cdot \left\| \bar{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\
&\leq \frac{4L^2 n^{1.5}}{c^2} + 16n \sum_{s=t-t \bmod n+1}^t (\delta_s^2 + \delta_{s-1}^2) + 2 \cdot \left\| \bar{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2,
\end{aligned}$$

935 in last inequality we use $\|x_s - x_{s-1}\| = \frac{1}{n^{1/4}c} * \underbrace{\left\| \frac{v_t}{\sqrt{\left(n^{1/2} + \sum_{s=0}^t \|v_s\|^2\right)}} \right\|}_{\leq 1} \leq \frac{1}{n^{1/4}c}$. then we

939 bound $\bar{\nabla}_{\mu_t} f(x)$ below:

$$\begin{aligned}
\|\bar{\nabla}_{\mu_t} f(x_t)\| &\leq \|\bar{\nabla}_{\mu_t} f(x_t) - \nabla f(x_t)\| + \|\nabla f(x_t)\| \\
&\leq \delta_t + \|\nabla f(x_t) - \nabla f(x_0)\| + \|\nabla f(x_0)\| \\
&\leq L \|x_t - x_0\| + \delta_t + \|\nabla f(x_0)\| \\
&\leq L \sum_{i=1}^t \|x_i - x_{i-1}\| + \delta_t + \|\nabla f(x_0)\| \\
&\leq \left(\frac{L}{c\sqrt{n}} \right) + \delta_t + \|\nabla f(x_0)\|.
\end{aligned}$$

940 Combining the above results we obtain (Without loss of generality, we set $\delta_{-1} = \delta_0$):

$$\begin{aligned}
\sum_{t=0}^{T-1} \|v_t\|^2 &\leq \sum_{t=0}^{T-1} \left(\frac{4L^2 n^{1.5}}{c^2} + 16n \sum_{s=t-t \bmod n+1}^t (\delta_s^2 + \delta_{s-1}^2) + 2 \cdot \left\| \bar{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \right) \\
&\leq \frac{4TL^2 n^{1.5}}{c^2} + 16n \sum_{t=0}^{T-1} \sum_{s=t-t \bmod n+1}^t (\delta_s^2 + \delta_{s-1}^2) + 2 \sum_{t=0}^{T-1} \left\| \bar{\nabla}_{\mu_t} f(x_t) \right\|^2 \\
&\leq \frac{4TL^2 n^{1.5}}{c^2} + 32n^2 \sum_{t=0}^{T-1} \delta_t^2 + 2 \sum_{t=0}^{T-1} \left(\left(\frac{L}{c\sqrt{n}} \right) + \delta_t + \|\nabla f(x_0)\| \right)^2 \\
&\leq \frac{4TL^2 n^{1.5}}{c^2} + (32n^2 + 6) \sum_{t=0}^{T-1} \delta_t^2 + \frac{6L^2 T}{nc^2} + 6T \|\nabla f(x_0)\|^2.
\end{aligned}$$

943 Since this equation will be used repeatedly, we define $\Phi(T) := \frac{4TL^2 n^{1.5}}{c^2} + (32n^2 + 6) \sum_{t=0}^{T-1} \delta_t^2 +$
944 $\frac{6L^2 T}{nc^2} + 6T \|\nabla f(x_0)\|^2 - 1$ to simplify the resulting expressions. \square

946 C.1 PART I

948 **Lemma C.3** (part I(1)). *Under assumptions 1 and 2, we can derive the following result for Algorithm 949 1:*

$$\mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t\| \right] \leq n^{1/4} \sqrt{T} \left(2\Delta c + 2c \sum_{t=0}^{T-1} \gamma_t \delta_t^2 + 1 + \frac{L}{c} \log(\Phi(T)) + c \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \|\bar{\nabla}_{\mu_t} f(x_t) - v_t\|^2 \right] \right).$$

972 *Proof.*

$$\begin{aligned}
 974 \quad \mathbb{E}[f(x_{t+1}) \mid \mathcal{F}_t] &\leq \mathbb{E}\left[f(x_t) + \nabla f(x_t)^T(x_{t+1} - x_t) + \frac{L}{2}\|x_t - x_{t+1}\|^2 \mid \mathcal{F}_t\right] \\
 975 \\
 976 \quad &= \mathbb{E}\left[f(x_t) - \gamma_t v_t^T \nabla f(x_t) + \frac{L}{2}\gamma_t^2\|v_t\|^2 \mid \mathcal{F}_t\right] \\
 977 \\
 978 \quad &\leq \mathbb{E}\left[f(x_t) + \frac{\gamma_t}{2}\|v_t - \nabla f(x_t)\|^2 - \frac{\gamma_t}{2}(1 - L\gamma_t)\|v_t\|^2 \mid \mathcal{F}_t\right] \\
 979 \\
 980 \quad &\stackrel{\text{lem C.1}}{\leq} \mathbb{E}\left[f(x_t) + \gamma_t\delta_t^2 + \gamma_t\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 - \frac{\gamma_t}{2}(1 - L\gamma_t)\|v_t\|^2 \mid \mathcal{F}_t\right], \\
 981 \\
 982 \end{aligned}$$

thus we obtain:

$$984 \quad \mathbb{E}[\gamma_t \cdot \|v_t\|^2] \leq 2\mathbb{E}[f(x_t) - f(x_{t+1})] + 2\gamma_t\delta_t^2 + \mathbb{E}[L\gamma_t^2 \cdot \|v_t\|^2] + 2 \cdot \mathbb{E}[\gamma_t \cdot \|\bar{\nabla}_{\mu_t} f(x_t) - v_t\|^2].$$

985 By summing from $t = 0$ to $T - 1$ we get:

$$987 \quad \sum_{t=0}^{T-1} \mathbb{E}[\gamma_t \cdot \|v_t\|^2] \leq 2\Delta + 2 \sum_{t=0}^{T-1} \gamma_t\delta_t^2 + \mathbb{E}\left[\sum_{t=0}^{T-1} L\gamma_t^2 \cdot \|v_t\|^2\right] + \mathbb{E}\left[\sum_{t=0}^{T-1} 2\gamma_t \cdot \|\bar{\nabla}_{\mu_t} f(x_t) - v_t\|^2\right].$$

990 Recall that $\gamma_t = n^{-1/4}c^{-1} \left(n^{1/2} + \sum_{s=0}^t \|v_s\|^2\right)^{-1/2}$ and Lemma B.7 we obtain:

$$\begin{aligned}
 994 \quad \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t\|^2\right] &\leq 2\Delta + 2 \sum_{t=0}^{T-1} \gamma_t\delta_t^2 + \frac{L}{c^2\sqrt{n}} \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} \frac{\|v_t\|^2}{\sqrt{n} + \sum_{s=0}^t \|v_s\|^2}\right] \\
 995 \\
 996 \quad &\quad + 2\mathbb{E}\left[\sum_{t=0}^{T-1} \gamma_t \cdot \|\bar{\nabla}_{\mu_t} f(x_t) - v_t\|^2\right] \\
 997 \\
 998 \quad &\leq 2\Delta + 2 \sum_{t=0}^{T-1} \gamma_t\delta_t^2 + \frac{L}{c^2\sqrt{n}} \log(\Phi(T)) + 2\mathbb{E}\left[\sum_{t=0}^{T-1} \gamma_t \cdot \|\bar{\nabla}_{\mu_t} f(x_t) - v_t\|^2\right]. \\
 999 \\
 1000 \\
 1001 \\
 1002 \end{aligned}$$

1003 Lower bounding the right-hand side:

$$\begin{aligned}
 1005 \quad \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t\|^2\right] &\geq \mathbb{E}\left[\frac{\sum_{t=0}^{T-1} \|v_t\|^2}{n^{1/4}c\sqrt{n^{1/2} + \sum_{t=0}^{T-1} \|v_t\|^2}}\right] \\
 1006 \\
 1007 \quad &\geq \frac{1}{c} \cdot \mathbb{E}\left[\frac{\sum_{t=0}^{T-1} \|v_t\|^2/\sqrt{n}}{\sqrt{1 + \sum_{t=0}^{T-1} \|v_t\|^2/\sqrt{n}}}\right] \\
 1008 \\
 1009 \quad &\geq \frac{1}{c} \cdot (\mathbb{E}\left[\sqrt{\sum_{t=0}^{T-1} \|v_t\|^2/\sqrt{n}}\right] - 1) \\
 1010 \\
 1011 \quad &\geq \frac{1}{cn^{1/4}\sqrt{T}} \mathbb{E}\left[\sum_{t=0}^{T-1} \|v_t\|\right] - \frac{1}{c}. \\
 1012 \\
 1013 \\
 1014 \\
 1015 \\
 1016 \\
 1017 \\
 1018 \\
 1019 \end{aligned}$$

1020 Combining all results:

$$1022 \quad \mathbb{E}\left[\sum_{t=0}^{T-1} \|v_t\|\right] \leq n^{1/4}\sqrt{T} \left(2\Delta c + 2c \sum_{t=0}^{T-1} \gamma_t\delta_t^2 + 1 + \frac{L}{c\sqrt{n}} \log(\Phi(T)) + c \cdot \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma_t \cdot \|\bar{\nabla}_{\mu_t} f(x_t) - v_t\|^2\right]\right).$$

1023 \square

1026 **Lemma C.4** (part I(2)). *Under assumptions 1 and 2, we can derive the following result for Algorithm*
 1027 *I:*

$$1028 \quad \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 \right] \leq \frac{2L^2}{c^3} \log(\Phi(T)) + \sum_{t=0}^{T-1} 16n\gamma_t\delta_t^2.$$

1031 *Proof.* Let \mathcal{F}_t be the sigma-algebra generated by $\{i_0, \dots, i_t\}$ and x_0 . From the definition of γ_t , it
 1032 follows that $\gamma_t \leq \gamma_{t-1}$; this condition is imposed to resolve measurability concerns. Consequently,

$$1034 \quad \mathbb{E} [\gamma_t \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 | \mathcal{F}_{t-1}] \leq \mathbb{E} [\gamma_{t-1} \cdot \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 | \mathcal{F}_{t-1}].$$

1035 Hence, our analysis can be reduced to studying $\mathbb{E} [\gamma_{t-1} \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 | \mathcal{F}_{t-1}]$.

$$\begin{aligned} 1037 \quad & \mathbb{E} [\gamma_{t-1} \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 | \mathcal{F}_{t-1}] \\ 1038 \quad &= \gamma_{t-1} \mathbb{E} [\| \bar{\nabla}_{\mu_t} f_i(x_t) - \bar{\nabla}_{\mu_{t-1}} f_i(x_{t-1}) - \bar{\nabla}_{\mu_t} f(x_t) + \bar{\nabla}_{\mu_{t-1}} f(x_{t-1}) + (v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1})) \|^2 | \mathcal{F}_{t-1}] \\ 1039 \quad &= \gamma_{t-1} \mathbb{E} [\| \bar{\nabla}_{\mu_t} f_i(x_t) - \bar{\nabla}_{\mu_{t-1}} f_i(x_{t-1}) - \bar{\nabla}_{\mu_t} f(x_t) + \bar{\nabla}_{\mu_{t-1}} f(x_{t-1}) \|^2 | \mathcal{F}_{t-1}] \\ 1040 \quad & \quad + \gamma_{t-1} \mathbb{E} [\| v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1}) \|^2 | \mathcal{F}_{t-1}] \\ 1041 \quad &= \gamma_{t-1} \mathbb{E} [\| \bar{\nabla}_{\mu_t} f_i(x_t) - \bar{\nabla}_{\mu_{t-1}} f_i(x_{t-1}) \|^2 | \mathcal{F}_{t-1}] + \gamma_{t-1} \mathbb{E} [\| v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1}) \|^2 | \mathcal{F}_{t-1}] \\ 1042 \quad &\leq 2L^2 \gamma_{t-1} \mathbb{E} [\|x_t - x_{t-1}\|^2 | \mathcal{F}_{t-1}] + \gamma_{t-1} \mathbb{E} [\|v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1})\|^2 | \mathcal{F}_{t-1}] + 4\gamma_{t-1}(\delta_t^2 + \delta_{t-1}^2) \\ 1043 \quad &= 2L^2 \gamma_{t-1}^3 \mathbb{E} [\|v_{t-1}\|^2 | \mathcal{F}_{t-1}] + \gamma_{t-1} \mathbb{E} [\|v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1})\|^2 | \mathcal{F}_{t-1}] + 4\gamma_{t-1}(\delta_t^2 + \delta_{t-1}^2). \end{aligned}$$

1046 We obtain the following by first conditioning on all randomness up to round t , and then taking the
 1047 total expectation:

$$1049 \quad \mathbb{E} [\gamma_t \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2] \leq 2L^2 \mathbb{E} [\gamma_{t-1}^3 \|v_{t-1}\|^2] + \mathbb{E} [\gamma_{t-1} \|v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1})\|^2 + 4\gamma_{t-1}(\delta_t^2 + \delta_{t-1}^2)].$$

1051 Since $\mathbb{E} [\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|] = 0$ whenever $t \bmod n = 0$, it follows that

$$1053 \quad \mathbb{E} [\gamma_t \cdot \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2] \leq 2\mathbb{E} \left[\sum_{s=t-t \bmod n}^{t-1} L^2 \gamma_s^3 \|v_s\|^2 + 4\gamma_s(\delta_s^2 + \delta_{s-1}^2) \right],$$

1055 which leads to:

$$1056 \quad \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 \right] \leq 2\mathbb{E} \left[\sum_{t=0}^{T-1} L^2 n \gamma_t^3 \|v_t\|^2 + 8n\gamma_t\delta_t^2 \right],$$

1059 observe that the first term can be bounded by the following terms:

$$\begin{aligned} 1061 \quad & \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t^3 \|v_t\|^2 \right] \\ 1062 \quad &= \frac{1}{c^3} \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{1}{n^{1/2} + \sum_{s=0}^t \|v_s\|^2} \cdot \frac{\|v_t\|^2}{n^{1/2} + \sum_{s=0}^t \|v_s\|^2} \right] \\ 1063 \quad &\leq \frac{1}{c^3 n} \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{1}{n^{3/4} \sqrt{n^{1/2}}} \cdot \frac{\|v_t\|^2}{n^{1/2} + \sum_{s=0}^t \|v_s\|^2} \right] \\ 1064 \quad &\leq \frac{1}{c^3 n} \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{\|v_t\|^2}{1 + \sum_{s=0}^t \|v_s\|^2} \right] \\ 1065 \quad &\leq \frac{1}{c^3 n} \log(\Phi(T)), \end{aligned}$$

1074 where the fourth inequality follows by Lemma B.7 and Lemma C.2.

1075 Finally we obtain

$$1077 \quad \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2 \right] \leq \frac{2L^2}{c^3} \log(\Phi(T)) + \sum_{t=0}^{T-1} 16n\gamma_t\delta_t^2.$$

1079 \square

1080

C.2 PART II

1081

1082

Lemma C.5. *Under assumptions 1 and 2, we can derive the following result for Algorithm 1:*

1083

1084

1085

1086

1087

1088

Proof.

1089

1090

1091

1092

1093

1094

the final inequality holds since $\left\| \sum_{t=0}^{T-1} a_t \right\|^2$ can be bounded by $T \cdot \sum_{t=0}^{T-1} \|a_t\|^2$ using Jensen's inequality. By an argument entirely analogous to that of Lemma C.4, we can establish the same result for the estimator $v_t = \bar{\nabla}_{\mu_t} f_{i_t}(x_t) - \bar{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1}) + v_{t-1}$:

1095

1096

1097

1098

1099

1100

1101

1102

1103

$$\begin{aligned} \mathbb{E} [\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2] &\leq 4(\delta_t^2 + \delta_{t-1}^2) + 2L^2 \mathbb{E} [\|x_t - x_{t-1}\|^2] + \mathbb{E} [\|v_{t-1} - \bar{\nabla}_{\mu_{t-1}} f(x_{t-1})\|^2] \\ &\leq L^2 \mathbb{E} [\gamma_{t-1}^2 \|v_{t-1}\|^2] + \mathbb{E} [\|v_{t-1} - \bar{\nabla} f(x_{t-1})\|^2] + 4(\delta_t^2 + \delta_{t-1}^2) \\ &= \sum_{\tau=t-(t \bmod n)+1}^{t-1} L^2 \mathbb{E} [\gamma_{\tau}^2 \|v_{\tau}\|^2] + 4(\delta_t^2 + \delta_{t-1}^2), \end{aligned}$$

1104

by a telescoping summation over t we get that

1105

1106

1107

1108

$$\sum_{t=0}^{T-1} \mathbb{E} [\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2] \leq L^2 n \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t^2 \|v_t\|^2 \right] + 8n \sum_{t=0}^{T-1} \delta_t^2.$$

1109

1110

Now as discussed in Lemma C.4, using the step-size selection γ_t we obatain:

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

$$\begin{aligned} \sum_{t=0}^{T-1} \mathbb{E} [\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|^2] &\leq L^2 n \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t^2 \|v_t\|^2 \right] + 8n \sum_{t=0}^{T-1} 2\delta_t^2 \\ &= \frac{L^2 \sqrt{n}}{c^2} \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{\|v_t\|^2}{\sqrt{n} + \sum_{s=0}^t \|\bar{\nabla}_s\|^2} \right] + 8n \sum_{t=0}^{T-1} \delta_t^2 \\ &\leq \frac{L^2 \sqrt{n}}{c^2} \log(\Phi(T)) + 8n \sum_{t=0}^{T-1} \delta_t^2 \\ &\leq \frac{L^2 \sqrt{n}}{c^2} \log(\Phi(T)) + 8n \sum_{t=0}^{T-1} 2\delta_t^2, \end{aligned}$$

1124

1125

where lstonequality follows by Lemma B.6 and Lemma C.2. Putting everything together we get

1126

1127

1128

1129

1130

1131

1132

C.3 PART III

1133

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x_t) - \bar{\nabla}_{\mu_t} f(x_t)\| \leq \frac{1}{T} \sum_{t=0}^{T-1} \delta_t.$$

□

1134 C.4 FINAL PROOF FOR COORDINATE ESTIMATOR
11351136 **Theorem C.1.** *Under assumptions 1 and 2, based on the previous lemmas C.3, C.4, C.5, we can*
1137 *derive the following result for Algorithm 1:*

1139
$$1140 \mathbb{E}\left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\|\right] \leq \frac{n^{1/4}}{\sqrt{T}} \left(2\Delta \cdot c + 1 + \left(\frac{L}{c} + \frac{L^2}{c^2}\right) \log(\Phi(T)) + \frac{L^2\pi^2}{24n^{1/4}} + \sqrt{\frac{\pi^2}{24}} \frac{L}{n^{1/4}} + \frac{L^2\pi^2}{12} + \frac{L}{2} \right)$$

1142

1143 setting $c = 1$, we obtain $T = \tilde{\mathcal{O}}(\sqrt{n}\epsilon^{-2})$, where the $\tilde{\mathcal{O}}$ notation hides logarithmic factors.
11441145
1146 *Proof.*
1147

1148
$$1149 \mathbb{E}\left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\|\right] \leq \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|v_t\|] + \sum_{t=0}^{T-1} \mathbb{E}[\|v_t - \bar{\nabla}_{\mu_t} f(x_t)\|] + \|\bar{\nabla}_{\mu_t} f(x_t) - \nabla f(x_t)\|$$

1150
$$1151 \leq \frac{n^{1/4}}{\sqrt{T}} \left(2\Delta \cdot c + 1 + \left(\frac{L}{cn^{3/4}} + \frac{L^2}{c^2}\right) \log(\Phi(T)) \right)$$

1152
$$1153 + \frac{1}{T} (2c \sum_{t=0}^{T-1} \gamma_t \delta_t^2 + \sum_{t=0}^{T-1} \delta_t) + \frac{1}{\sqrt{T}} \left(n^{\frac{5}{4}} \sum_{t=0}^{T-1} c \gamma_t \delta_t^2 + n^{\frac{1}{2}} \sqrt{\sum_{t=0}^{T-1} 2\delta_t^2} \right).$$

1154

1155 Due to the fact that $\gamma_t \leq \frac{1}{cn^{1/4}}$ we obtain:
1156

1157
$$1158 \mathbb{E}\left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\|\right] \leq \frac{n^{1/4}}{\sqrt{T}} \left(2\Delta \cdot c + 1 + \left(\frac{L}{cn^{3/4}} + \frac{L^2}{c^2}\right) \log(\Phi(T)) \right)$$

1159
$$1160 + \frac{1}{T} (2 \sum_{t=0}^{T-1} \frac{1}{n^{1/4}} \delta_t^2 + \sum_{t=0}^{T-1} \delta_t) + \frac{1}{\sqrt{T}} \left(n \sum_{t=0}^{T-1} \delta_t^2 + n^{\frac{1}{2}} \sqrt{\sum_{t=0}^{T-1} 2\delta_t^2} \right).$$

1161

1162 Take $\delta_t = \frac{L}{2\sqrt{n(t+1)}}$ i.e. $(\mu_t = \frac{1}{\sqrt{nd}}(t+1))$ then :
1163

1164
$$1165 \sum_{t=0}^{T-1} \delta_t \leq \frac{L \ln T}{\sqrt{n}}.$$

1166

1167
$$1168 \sum_{t=0}^{T-1} \delta_t^2 < \frac{L^2 \pi^2}{24n}.$$

1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
27

D PARAMETER FREE VARIANCE REDUCED ZEROTH-ORDER METHOD (RANDOM-DIRECTION ESTIMATOR)

Algorithm 4 PF-VRZO(Random-direction)

```

1193 Set  $c = \sqrt{d}$  for random-direction estimator and  $\mu_{-1} = \mu_0$ .
1194 for  $t = 0$  to  $T-1$  do
1195   Compute smoothing parameter  $\mu_t = \frac{1}{(t+1)d\sqrt{n}}$ , smoothing vector  $\rho_t \sim U_B$ .
1196   if  $t \bmod n = 0$  then
1197      $v_t = \hat{\nabla}_{\mu_t} f(x_t)$  {Full zeroth-order gradient computation}
1198   else
1199     Sample  $i_t \in \{1, \dots, n\}$  uniformly at random
1200     Compute  $\hat{\nabla}_{\mu_t} f_{i_t}(x_t)$  with parameter  $\mu_t$  and rand vector  $\rho_t$ ,  $\hat{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1})$  with different
1201     parameter  $\mu_{t-1}$  and the same rand vector  $\rho_t$ .
1202      $v_t = \hat{\nabla}_{\mu_t} f_{i_t}(x_t) - \hat{\nabla}_{\mu_{t-1}} f_{i_t}(x_{t-1}) + v_{t-1}$ 
1203   end if
1204    $\gamma_t = \frac{1}{n^{1/4}c\sqrt{(n^{1/2} + \sum_{s=0}^t \|v_s\|^2)}}$ 
1205    $x_{t+1} = x_t - \gamma_t v_t$ 
1206 end for

```

Table 3: Meaning of Symbols

Symbol	Meaning
γ_t	stepsize $\frac{1}{(n^{1/4}c\sqrt{n^{1/2} + \sum_{s=0}^t \ v_s\ ^2})}.$
μ_t	Smoothing parameter at iteration t .
ρ_t	Smoothing vector at iteration t .
v_t	Spider operator.
$\nabla_{\mu_t} f(x_t)$	zeroth-order estimator(rand) using smoothing parameter μ_t and ρ_t .
$\hat{\nabla} f_\mu(\cdot)$	expecation of zeroth-order estimator(rand).
Δ_t	$Ld\mu_t/2$, the estimation error with respect to $\nabla f_\mu(\cdot)$.

Following a similar approach as with the coordinate operator, we analyze the convergence of the gradient of $f(x)$ by dividing it into three parts.

$$\frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \leq \underbrace{\frac{1}{T} \left[\sum_{t=0}^{T-1} \mathbb{E}[\|v_t\|] \right]}_{\text{part I}} + \underbrace{\sum_{t=0}^{T-1} \mathbb{E}[\|v_t - \nabla f_{\mu_t}(x)\|]}_{\text{part II}} + \underbrace{\sum_{t=0}^{T-1} \|\nabla f_{\mu_t}(x) - \nabla f(x_t)\|}_{\text{part III}}.$$

Lemma D.1 ([\(Ji et al., 2019\)](#)). Let $f_\mu(x) = \mathbb{E}_{w \sim U_B}[f(x + \mu w)]$ be a smooth approximation of $f(x)$, where U_B is the uniform distribution over the d -dimensional unit Euclidean ball B , and $\rho \in \mathbb{R}^d$ is a random vector sampled from unit Euclidean sphere U_{S_n} . Then we have

1. $|f_\mu(x) - f(x)| \leq \frac{\mu^2 L}{2}$ and $\|\nabla f_\mu(x) - \nabla f(x)\| \leq \frac{\mu L d}{2}$ for any $x \in \mathbb{R}^d$.
2. $\mathbb{E}\|\hat{\nabla}_\mu f_i(x_1) - \hat{\nabla}_\mu f_i(x_2)\|^2 \leq 3dL^2\|x_1 - x_2\|^2 + \frac{3L^2d^2\mu^2}{2}$ for any i and any $x_1, x_2 \in \mathbb{R}^d$.
3. $\mathbb{E}_{\rho \sim U_{S_p}} \left[\|\hat{\nabla} f(x)\|^2 \right] \leq 2d\|\nabla f(x)\|^2 + \frac{L^2\mu^2d^2}{2}$.

1242 **Lemma D.2.** For random-direction estimator $\hat{\nabla}_{\mu_t} f_i(x_t) = \frac{d}{\mu_t} [f(x_t + \mu_t \rho_t) - f(x_t)] \rho_t$, $\hat{\nabla}_{\mu_{t-1}} f_i(x_{t-1}) = \frac{d}{\mu_{t-1}} [f(x + \mu_{t-1} \rho_t) - f(x_{t-1})] \rho_t$, where both estimators use the
 1243 same random direction ρ_t sampled from unit Euclidean sphere U_{S_p} but different smoothing parameters
 1244 μ_t and μ_{t-1} , we have:
 1245

$$1246 \quad \|\hat{\nabla}_{\mu_t} f(x_t) - \hat{\nabla}_{\mu_{t-1}} f(x_{t-1})\|^2 \leq \frac{3}{2} (\Delta_t^2 + \Delta_{t-1}^2) + 3dL^2 \|x_t - x_{t-1}\|^2.$$

1247 *Proof.*

$$\begin{aligned} 1248 \quad & \mathbb{E} [\|\hat{\nabla}_{\mu_t} f(x_t) - \hat{\nabla}_{\mu_{t-1}} f(x_t)\|^2] \\ 1249 \quad &= d^2 \mathbb{E} \left[\left\| \frac{\rho_t}{\mu_t} \left[f(x_t + \mu_t \rho_t) - f(x_t) - \langle \nabla f(x_t), \rho_t \rangle \right] \rho_t - \frac{\rho_t}{\mu_{t-1}} \left[f(x_{t-1} + \mu_{t-1} \rho_t) - f(x_{t-1}) - \langle \nabla f(x_{t-1}), \rho_t \rangle \right] \rho_t \right. \right. \\ 1250 \quad & \quad \left. \left. + \left(\langle \nabla f(x_t), \rho_t \rangle - \langle \nabla f(x_{t-1}), \rho_t \rangle \right) \rho_t \right\|^2 \right] \\ 1251 \quad & \leq d^2 \left(\frac{3L^2}{2} (\mu_t^2 + \mu_{t-1}^2) + \mathbb{E} [3\|\langle \nabla f(x_t), \rho_t \rangle - \langle \nabla f(x_{t-1}), \rho_t \rangle\|^2] \right) \\ 1252 \quad & = d^2 \left(\frac{3L^2}{2} (\mu_t^2 + \mu_{t-1}^2) + \mathbb{E} [3\|\langle \nabla f(x_{t-1}) - \nabla f(x_t), \rho_t \rangle\|^2] \right) \quad (\|\rho_t\|^2 = 1) \\ 1253 \quad & \leq d^2 \left(\frac{3L^2}{2} (\mu_t^2 + \mu_{t-1}^2) + \mathbb{E} \left[\frac{3}{d} \|\nabla f(x_{t-1}) - \nabla f(x_t)\|^2 \right] \right) \quad (\mathbb{E}[\rho_t \rho_t^T] = \frac{1}{d} I_d \text{ (Ji et al., 2019)}) \\ 1254 \quad & \leq \frac{3}{2} (\Delta_t^2 + \Delta_{t-1}^2) + 3dL^2 \|x_t - x_{t-1}\|^2. \\ 1255 \quad & \end{aligned}$$

□

1256 **Lemma D.3.** Under assumptions 1 and 2, we can derive the following result for Algorithm 2

$$1257 \quad \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t\|^2 \right] \leq \phi(T) + 1.$$

1258 where $\phi(T) := \frac{6dL^2 n^{1.5}}{c^2} T + \frac{4dL^2 T^3}{n} c^2 + 4dnT \|\nabla f(x_0)\|^2 + (6n^2 + 2) \sum_{t=0}^{T-1} \Delta_t^2 - 1$. Similar to
 1259 the coordinate method, the notation $\phi(T)$ is introduced only for brevity, and will be repeatedly used
 1260 in the subsequent analysis.

1261 *Proof.*

$$\begin{aligned} 1262 \quad & \mathbb{E} \|v_t\|^2 = \left\| \sum_{s=t-t \bmod n+1}^t \left(\hat{\nabla}_{\mu_s} f_{i_s}(x_s) - \hat{\nabla}_{\mu_{s-1}} f_{i_s}(x_{s-1}) \right) + \hat{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\ 1263 \quad & \leq 2 \mathbb{E} \left\| \sum_{s=t-t \bmod n+1}^t \hat{\nabla}_{\mu_s} f_{i_s}(x_s) - \hat{\nabla}_{\mu_{s-1}} f_{i_s}(x_{s-1}) \right\|^2 + 2 \mathbb{E} \left\| \hat{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\ 1264 \quad & \leq 2n \mathbb{E} \sum_{s=t-t \bmod n+1}^t \left\| \hat{\nabla}_{\mu_s} f_{i_s}(x_s) - \hat{\nabla}_{\mu_{s-1}} f_{i_s}(x_{s-1}) \right\|^2 + 2 \mathbb{E} \left\| \hat{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\ 1265 \quad & \stackrel{\text{lem D.2}}{\leq} 6n \sum_{s=t-t \bmod n+1}^t [dL^2 (x_s - x_{s-1})^2 + \frac{1}{2} (\Delta_s^2 + \Delta_{s-1}^2)] + 2 \mathbb{E} \left\| \hat{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2 \\ 1266 \quad & \leq \frac{6dL^2 n^2}{c^2} + 3n \sum_{s=t-t \bmod n+1}^t (\Delta_s^2 + \Delta_{s-1}^2) + 2 \mathbb{E} \left\| \hat{\nabla}_{\mu_{t-t \bmod n}} f(x_{t-t \bmod n}) \right\|^2, \\ 1267 \quad & \end{aligned}$$

1268 from lemma D.1:

$$\mathbb{E}_{\rho \sim U_{S_p}} [\|\hat{\nabla}_{\mu_t} f(x)\|^2] \leq 2d \|\nabla f(x)\|^2 + \Delta_t^2.$$

1296 Next, we bound $\|\nabla f(x)\|$ bellow:
1297

$$\begin{aligned}
1298 \|\nabla f(x_t)\| &= \|\nabla f(x_t) - \nabla f(x_0) + \nabla f(x_0)\| \\
1299 &\leq \|\nabla f(x_t) - \nabla f(x_0)\| + \|\nabla f(x_0)\| \\
1300 &\leq L\|x_t - x_0\| + \|\nabla f(x_0)\| \\
1301 &\leq L\|x_t - x_{t-1}\| + L\|x_{t-1} - x_0\| + \|\nabla f(x_0)\| \\
1302 &\leq L \sum_{i=1}^t \|x_i - x_{i-1}\| + \|\nabla f(x_0)\| \\
1303 &\leq \frac{Lt}{c\sqrt{n}} + \|\nabla f(x_0)\|.
\end{aligned}$$

1308 Combine the above results, we have:
1309

$$\begin{aligned}
1310 \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t\|^2 \right] &\leq \sum_{t=0}^{T-1} \left(\frac{6L^2n}{c^2} + 3n \sum_{s=t-t \bmod n+1}^t (\Delta_s^2 + \Delta_{s-1}^2) + \mathbb{E}[2 \|\hat{\nabla} f_\mu(x_{t-t \bmod n})\|^2] \right) \\
1311 &\leq \frac{6dTL^2n}{c^2} + 2d \sum_{t=0}^{T-1} \|\nabla f(x_t)\|^2 + 3n \sum_{t=0}^{T-1} \sum_{s=t-t \bmod n+1}^t (\Delta_s^2 + \Delta_{s-1}^2) + 2 \sum_{t=0}^{T-1} \Delta_t^2 \\
1312 &\leq \frac{6L^2dn}{c^2} T + 2d \sum_{t=0}^{T-1} \left(\frac{Lt}{\sqrt{nc}} + \|\nabla f(x_0)\| \right)^2 + (6n^2 + 2) \sum_{t=0}^{T-1} \Delta_t^2 \\
1313 &\leq \frac{6dL^2n}{c^2} T + \frac{4dL^2T^3}{n} c^2 + 4dnT \|\nabla f(x_0)\|^2 + (6n^2 + 2) \sum_{t=0}^{T-1} \Delta_t^2.
\end{aligned}$$

1322 Similar to the coordwise method, we define $\phi(T) := \frac{6dL^2n^{1.5}}{c^2} T + \frac{4dL^2T^3}{n} c^2 + 4dnT \|\nabla f(x_0)\|^2 +$
1323 $(6n^2 + 2) \sum_{t=0}^{T-1} \Delta_t^2 - 1$ to simplify the resulting expressions. \square
1324

1325 D.1 PART I

1327 **Lemma D.4** (part I(1)). *Under assumptions 1 and 2, we can derive the following result for Algorithm 2*

$$1330 \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t\| \right] \leq n^{1/4} \sqrt{T} \left(2\Delta c + 1 + \frac{L}{c} \log(\phi(T)) + c \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \|\nabla f(x_t) - v_t\|^2 \right] \right)$$

1333 *Proof.*

$$\begin{aligned}
1335 \mathbb{E} [f(x_{t+1}) \mid \mathcal{F}_t] &\leq \mathbb{E} \left[f(x_t) + \nabla f(x_t)^T (x_{t+1} - x_t) + \frac{L}{2} \|x_t - x_{t+1}\|^2 \mid \mathcal{F}_t \right] \\
1336 &= \mathbb{E} \left[f(x_t) - \gamma_t v_t^T \nabla f(x_t) + \frac{L}{2} \gamma_t^2 \|v_t\|^2 \mid \mathcal{F}_t \right] \\
1337 &\leq \mathbb{E} \left[f(x_t) + 2\gamma_t \|v_t - \nabla f(x_t)\|^2 - \frac{\gamma_t}{2} (1 - L\gamma_t) \|v_t\|^2 \mid \mathcal{F}_t \right],
\end{aligned}$$

1342 which leads to:

$$1343 \mathbb{E} [\gamma_t \cdot \|v_t\|^2] \leq 2\mathbb{E} [f(x_t) - f(x_{t+1})] + \mathbb{E} [L\gamma_t^2 \cdot \|v_t\|^2] + 2c \cdot \mathbb{E} [\gamma_t \cdot \|\nabla f(x_t) - v_t\|^2].$$

1345 By summing from $t = 0$ to $T - 1$ we get:

$$1348 \sum_{t=0}^{T-1} \mathbb{E} [\gamma_t \cdot \|v_t\|^2] \leq 2\Delta + \mathbb{E} \left[\sum_{t=0}^{T-1} L\gamma_t^2 \cdot \|v_t\|^2 \right] + \mathbb{E} \left[\sum_{t=0}^{T-1} 2\gamma_t \cdot \|\nabla f(x_t) - v_t\|^2 \right].$$

1350

Recall that $\gamma_t = n^{-1/4}c^{-1} \left(n^{1/2} + \sum_{s=0}^t \|v_s\|^2 \right)^{-1/2}$:

1351

1352

$$\begin{aligned} \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t\|^2 \right] &\leq 2\Delta + \frac{L}{c^2} \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{\|v_t\|^2}{\sqrt{n} + \sum_{s=0}^t \|v_s\|^2} \right] + \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|\nabla f(x_t) - v_t\|^2 \right] \\ &\leq 2\Delta + \frac{L}{\sqrt{nc^2}} \log(\phi(T)) + \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|\nabla f(x_t) - v_t\|^2 \right]. \end{aligned}$$

1353

1354

1355

Lower bounding the right-hand side:

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

Combining all results:

1377

1378

1379

1380

1381

1382

1383

1384

1385

Lemma D.5 (part I(2)). *Under assumptions 1 and 2, we can derive the following result for Algorithm 2*

1386

1387

1388

1389

1390

1391

1392

1393

Proof. Let \mathcal{F}_t be the sigma-algebra generated by $\{i_0, \dots, i_t\}$ and x_0 . From the definition of γ_t , it follows that $\gamma_t \leq \gamma_{t-1}$; this condition is imposed to resolve measurability concerns. Consequently,

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

$$\mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t - \nabla f(x_t)\|^2 \right] \leq \frac{6dL^2}{c^3} \log(\phi(T)) + \sum_{t=0}^{T-1} (3n + 8)n\gamma_t\Delta_t^2.$$

□

$$\mathbb{E} [\gamma_t \|v_t - \nabla f(x_t)\|^2 | \mathcal{F}_{t-1}] \leq \mathbb{E} [\gamma_{t-1} \|v_t - \nabla f(x_t)\|^2 | \mathcal{F}_{t-1}],$$

Hence, our analysis can be reduced to studying $\mathbb{E} [\gamma_{t-1} \|v_t - \nabla f(x_t)\|^2 | \mathcal{F}_{t-1}]$.

$$\begin{aligned} \mathbb{E} [\gamma_{t-1} \|v_t - \nabla f(x_t)\|^2 | \mathcal{F}_{t-1}] \\ \leq 2\mathbb{E} [\gamma_{t-1} \|v_t - \nabla f_{\mu_t}(x_t)\|^2 | \mathcal{F}_{t-1}] + 2\mathbb{E} [\gamma_{t-1} \|\nabla f(x_t) - \nabla f_{\mu_t}(x_t)\|^2 | \mathcal{F}_{t-1}]. \end{aligned}$$

1404 As established in Lemma D.1, the second term can be bounded by $4\gamma_{t-1}\Delta_t^2$. In the following, we
 1405 focus on the analysis of the first term.
 1406

$$\begin{aligned}
 & \mathbb{E} [\gamma_{t-1}\|v_t - \nabla f_{\mu_t}(x_t)\|^2 \mid \mathcal{F}_{t-1}] \\
 &= \gamma_{t-1}\mathbb{E} [\|\hat{\nabla}_{\mu_t}f_{i_t}(x_t) - \hat{\nabla}_{\mu_{t-1}}f_{i_t}(x_{t-1}) - \nabla f_{\mu_t}(x_t) + \nabla f_{\mu_{t-1}}(x_{t-1}) + (v_{t-1} - \nabla f_{\mu_{t-1}}(x_{t-1}))\|^2 \mid \mathcal{F}_{t-1}] \\
 &= \gamma_{t-1}\mathbb{E} [\|\hat{\nabla}_{\mu_t}f_{i_t}(x_t) - \hat{\nabla}_{\mu_{t-1}}f_{i_t}(x_{t-1}) - \nabla f_{\mu_{t-1}}(x_{t-1}) + (v_{t-1} - \nabla f_{\mu_{t-1}}(x_{t-1}))\|^2 \mid \mathcal{F}_{t-1}] \\
 &\quad + \gamma_{t-1}\mathbb{E} [\|v_{t-1} - \nabla f(x_{t-1})\|^2 \mid \mathcal{F}_{t-1}] \\
 &\leq \gamma_{t-1}\mathbb{E} [\|\hat{\nabla}_{\mu_t}f_{i_t}(x_t) - \hat{\nabla}_{\mu_{t-1}}f_{i_t}(x_{t-1})\|^2 \mid \mathcal{F}_{t-1}] + \gamma_{t-1}\mathbb{E} [\|v_{t-1} - \nabla f_{\mu_{t-1}}(x_{t-1})\|^2 \mid \mathcal{F}_{t-1}] \\
 &\stackrel{\text{Lem D.2}}{\leq} 3dL^2\gamma_{t-1}\mathbb{E} [\|x_t - x_{t-1}\|^2 \mid \mathcal{F}_{t-1}] + \gamma_{t-1}\mathbb{E} [\|v_{t-1} - \nabla f_{\mu_{t-1}}(x_{t-1})\|^2 \mid \mathcal{F}_{t-1}] + \frac{3\gamma_{t-1}}{2}(\Delta_t^2 + \Delta_{t-1}^2) \\
 &= 3dL^2\gamma_{t-1}^3\mathbb{E} [\|v_{t-1}\|^2 \mid \mathcal{F}_{t-1}] + \gamma_{t-1}\mathbb{E} [\|v_{t-1} - \nabla f_{\mu_{t-1}}(x_{t-1})\|^2 \mid \mathcal{F}_{t-1}] + \frac{3\gamma_{t-1}}{2}(\Delta_t^2 + \Delta_{t-1}^2).
 \end{aligned} \tag{4}$$

1420 We obtain the following by first conditioning on all randomness up to round t , and then taking the
 1421 total expectation:

$$\mathbb{E} [\gamma_t\|v_t - \nabla f_{\mu_t}(x_t)\|^2] \leq \mathbb{E} [\gamma_{t-1}\|v_{t-1} - \nabla f_{\mu_{t-1}}(x_{t-1})\|^2] + 3dL^2\mathbb{E} [\gamma_{t-1}^3\|v_{t-1}\|^2] + \frac{3\gamma_{t-1}}{2}(\Delta_t^2 + \Delta_{t-1}^2).$$

1425 Since $\mathbb{E} [\gamma_t \cdot \|v_t - \nabla f_{\mu_t}(x_t)\|^2] \leq \gamma_{t-1}\mathbb{E} [\|v_t - \nabla f_{\mu_t}(x_t)\|^2] = 0$ whenever $t \bmod n = 0$, it
 1426 follows that

$$\mathbb{E} [\gamma_t \cdot \|v_t - \nabla f_{\mu_t}(x_t)\|^2] \leq \mathbb{E} \left[\sum_{s=t-t \bmod n}^{t-1} 3dL^2\gamma_s^3\|v_s\|^2 + \frac{3\gamma_s}{2}(\Delta_s^2 + \Delta_{s+1}^2) \right].$$

1431 Combine the above results we obtain:

$$\begin{aligned}
 & \mathbb{E} [\gamma_{t-1}\|v_t - \nabla f(x_t)\|^2 \mid \mathcal{F}_{t-1}] \\
 &\stackrel{\text{Lem D.1}}{\leq} 2\mathbb{E} [\gamma_{t-1}\|v_t - \nabla f_{\mu_t}(x_t)\|^2 \mid \mathcal{F}_{t-1}] + 2\mathbb{E} [\gamma_{t-1}\|\nabla f(x_t) - \nabla f_{\mu_t}(x_t)\|^2 \mid \mathcal{F}_{t-1}] \\
 &\leq \mathbb{E} \left[\sum_{s=t-t \bmod n}^{t-1} 6dL^2\gamma_s^3\|v_s\|^2 + 3\gamma_{s-1}(\Delta_s^2 + \Delta_{s+1}^2) \right] + 8\gamma_{t-1}\Delta_t^2,
 \end{aligned}$$

1439 summing over t from 0 to $T-1$ we get that

$$\mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t - \nabla f(x_t)\|^2 \right] \leq \mathbb{E} \left[\sum_{t=0}^{T-1} 6dL^2n\gamma_t^3\|v_t\|^2 + (3n+8)\gamma_t\Delta_t^2 \right].$$

1444 Observe that the first term can be bounded by the following terms:

$$\begin{aligned}
 & \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t^3\|v_t\|^2 \right] \\
 &= \frac{1}{c^3} \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{1}{n^{1/2} + \sum_{s=0}^t \|v_s\|^2} \cdot \frac{\|v_t\|^2}{n^{1/2} + \sum_{s=0}^t \|v_s\|^2} \right] \\
 &\leq \frac{1}{c^3n} \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{1}{n^{3/4}\sqrt{n^{1/2}}} \cdot \frac{\|v_t\|^2}{n^{1/2} + \sum_{s=0}^t \|v_s\|^2} \right] \\
 &\leq \frac{1}{c^3n} \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{\|v_t\|^2}{1 + \sum_{s=0}^t \|v_s\|^2} \right] \\
 &\leq \frac{1}{c^3n} \log(\phi(T)),
 \end{aligned}$$

1458 where the fourth inequality follows by Lemma B.7 and Lemma D.3.
 1459
 1460 Finally we obtain

$$1461 \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t \cdot \|v_t - \nabla f(x_t)\|^2 \right] \leq \frac{6dL^2}{c^3} \log(\phi(T)) + \sum_{t=0}^{T-1} (3n+8)n\gamma_t \Delta_t^2.$$

1464 □
 1465

1466 D.2 PART II

1467 **Lemma D.6.** *Under assumptions 1 and 2, we can derive the following result for Algorithm 2*

$$1469 \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t - \nabla f_{\mu_t}(x_t)\| \right] \leq \frac{6\sqrt{d}Ln^{1/4}}{c\sqrt{T}} \log(\phi(T)) + \frac{1}{\sqrt{T}} \sqrt{(3n+8) \sum_{t=0}^{T-1} 2\Delta_t^2}.$$

1472
 1473 *Proof.*

$$1474 \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t - \nabla f_{\mu_t}(x_t)\| \right] \leq \sqrt{T} \cdot \sqrt{\mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t - \nabla f_{\mu_t}(x_t)\|^2 \right]},$$

1475 where the inequality follows by the fact that $\|\sum_{t=0}^{T-1} y_t\|^2 \leq T \cdot \sum_{t=0}^{T-1} \|y_t\|^2$. For the same reason
 1476 with equation 4, we obtain:

$$1477 \mathbb{E} [\|v_t - \nabla f_{\mu_t}(x_t)\|^2] \leq \mathbb{E} \left[\sum_{s=t-t \bmod n}^{t-1} 6dL^2\gamma_s^2\|v_s\|^2 + 3(\Delta_s^2 + \Delta_{s+1}^2) \right] + 8\Delta_t^2,$$

1478 by a telescoping summation over t we get that

$$1479 \sum_{t=0}^{T-1} \mathbb{E} [\|v_t - \nabla f_{\mu_t}(x_t)\|^2] \leq \mathbb{E} \left[\sum_{t=0}^{T-1} 6dL^2n\gamma_t^2\|v_t\|^2 + (3n+8)\Delta_t^2 \right].$$

1480 Using the step-size selection γ_t we can provide a bound on the total variance $\mathbb{E} [\|v_t - \nabla f_{\mu_t}(x_t)\|^2]$:

$$1481 \begin{aligned} & \sum_{t=0}^{T-1} \mathbb{E} [\|v_t - \nabla f_{\mu_t}(x_t)\|^2] \\ & \leq 6dL^2n \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma_t^2\|v_t\|^2 \right] + (3n+8) \sum_{t=0}^{T-1} 2\Delta_t^2 \\ & = \frac{6dL^2\sqrt{n}}{c^2} \cdot \mathbb{E} \left[\sum_{t=0}^{T-1} \frac{\|v_t\|^2}{\sqrt{n} + \sum_{s=0}^t \|v_s\|^2} \right] + (3n+8) \sum_{t=0}^{T-1} \Delta_t^2 \\ & \leq \frac{6dL^2\sqrt{n}}{c^2} \log \left(1 + \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t\|^2 \right] \right) + (3n+8) \sum_{t=0}^{T-1} \Delta_t^2 \\ & \leq \frac{6dL^2\sqrt{n}}{c^2} \log(\phi(T)) + (3n+8) \sum_{t=0}^{T-1} 2\Delta_t^2, \end{aligned}$$

1482 where last inequality follows by Lemma B.7 and Lemma D.3. Putting everything together we get

$$1483 \mathbb{E} \left[\sum_{t=0}^{T-1} \|v_t - \nabla f_{\mu_t}(x_t)\| \right] \leq \frac{6\sqrt{d}Ln^{1/4}}{c\sqrt{T}} \log(\phi(T)) + \frac{1}{\sqrt{T}} \sqrt{(3n+8) \sum_{t=0}^{T-1} 2\Delta_t^2}.$$

1484 □
 1485

1512 D.3 PART III
1513

1514 $\sum_{t=0}^{T-1} \|\nabla f_{\mu_t}(x) - \nabla f(x_t)\| \leq \frac{1}{T} \sum_{t=0}^{T-1} \Delta_t$
1515

1516 D.4 FINAL PROOF FOR THE RANDOM-DIRECTION ESTIMATOR
15171518 **Theorem D.1.** *Under assumptions 1 and 2, based on the previous lemmas D.4, D.5, D.6, we can*
1519 *derive the following result for Algorithm 2:*

1520 $\frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \leq \frac{n^{1/4}}{\sqrt{T}} \left(\Delta \cdot c + 1 + \left(\frac{L\sqrt{d}}{cn^{3/4}} + \frac{L^2 d}{c^2} \right) \log(\phi(T)) + \frac{L^2 \pi^2}{24n^{1/4}} + \frac{L}{n^{1/4}} \sqrt{\frac{\pi^2}{24}} + \frac{L^2 \pi^2}{12} + \frac{L}{2} \right),$
1521

1522 *setting $c = \sqrt{d}$, we obtain $T = \tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$, where the $\tilde{\mathcal{O}}$ notation hides logarithmic factors.*
15231524 *Proof.*
1525

1526
$$\begin{aligned} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] &\leq \frac{1}{T} \underbrace{\left[\sum_{t=0}^{T-1} \mathbb{E}[\|v_t\|] \right]}_{\text{part I}} + \underbrace{\sum_{t=0}^{T-1} \mathbb{E}[\|v_t - \nabla f_{\mu_t}(x)\|]}_{\text{part II}} + \underbrace{\sum_{t=0}^{T-1} \|\nabla f_{\mu_t}(x) - \nabla f(x_t)\|}_{\text{part III}} \\ &\leq \frac{n^{1/4}}{\sqrt{T}} \left(2\Delta \cdot c + 1 + \left(\frac{L\sqrt{d}}{cn^{3/4}} + \frac{dL^2}{c^2} \right) \log(\phi(T)) \right) \\ &\quad + \frac{1}{T} \left(2c \sum_{t=0}^{T-1} \gamma_t \Delta_t^2 + \sum_{t=0}^{T-1} \Delta_t \right) + \frac{1}{\sqrt{T}} \left(n^{5/4} \sum_{t=0}^{T-1} c\gamma_t \Delta_t^2 + n^{1/2} \sqrt{\sum_{t=0}^{T-1} 2\Delta_t^2} \right), \end{aligned}$$

1527

1528 take $\Delta_t = \frac{L}{2\sqrt{n(t+1)}}$ i.e. $(\mu_t = \frac{1}{d\sqrt{n(t+1)}})$, from we obtain:
1529

1530
$$\sum_{t=0}^{T-1} \Delta_t \leq \frac{L \ln T}{2\sqrt{n}}.$$

1531

1532
$$\sum_{t=0}^{T-1} \Delta_t^2 < \frac{L^2 \pi^2}{24n}.$$

1533

1534 *combing the above results we obtain:*
1535

1536
$$\frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \|\nabla f(x_t)\| \right] \leq \frac{n^{1/4}}{\sqrt{T}} \left(\Delta \cdot c + 1 + \left(\frac{L\sqrt{d}}{cn^{3/4}} + \frac{L^2 d}{c^2} \right) \log(\phi(T)) + \frac{L^2 \pi^2}{24n^{1/4}} + \frac{L}{n^{1/4}} \sqrt{\frac{\pi^2}{24}} + \frac{L^2 \pi^2}{12} + \frac{L}{2} \right),$$

1537

1538 *setting $c = \sqrt{d}$, we obtain $T = \tilde{\mathcal{O}}(d\sqrt{n}\epsilon^{-2})$, where the $\tilde{\mathcal{O}}$ notation hides logarithmic factors. \square*
15391540 E HYPERPARAMETERS DETAILS
15411542 E.1 PHASE RETRIEVAL
15431544 We choose the problem dimension to be $d = 100$ and the sample size to be $n = 3000$. The
1545 measurement vectors $a_r \in \mathbb{R}^d$ and the true parameter $z \in \mathbb{R}^d$ are generated element-wise from
1546 a Gaussian distribution $\mathcal{N}(0, 0.5)$. For the initialization, $z_0 \in \mathbb{R}^d$ is drawn element-wise from
1547 $\mathcal{N}(5, 0.5)$. The measurements are then constructed as $y_i = |a_r^T z|^2 + m_i$ for $i = 1, \dots, n$, where the
1548 noise term m_i is sampled from $\mathcal{N}(0, 4^2)$, representing additive Gaussian noise.
15491550 We set the parameters for ZO-SGD with a learning rate of $\gamma = 2 \times 10^{-8}$ and a batch size of \sqrt{n} . For
1551 ZO-SPIDER-coord and ZO-SPIDER-rand, we set the learning rate to $\gamma = 10^{-7}$, the epoch size to
1552 $q = n$, and the batch sizes to $B = n$ and $B' = 1$. For the proposed PF-VRZO method, we similarly
1553 set the epoch size to $q = n$, and choose $B = n$ and $B' = 1$ for both the coord and random-direction
1554 estimators.
1555

1566
1567

E.2 DRO

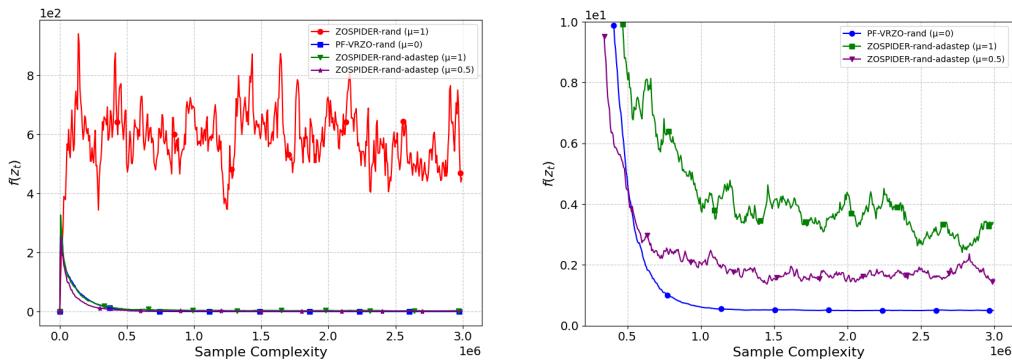
We set the parameters for ZO-SGD with a learning rate $\gamma = 1 \times 10^{-8}$ and a batch size of \sqrt{n} . For ZO-SPIDER-coord and ZO-SPIDER-rand, the learning rates are set to $\gamma = 10^{-6}$ and $\gamma = 10^{-8}$, respectively. Both methods use an epoch size of $q = \sqrt{n}$, with batch sizes $B = n$ and $B' = \sqrt{n}$. For the proposed PF-VRZO method, we also set the epoch size to $q = \sqrt{n}$, and choose $B = n$ and $B' = \sqrt{n}$ for both the coord and random-direction estimators. *We remark that the setting $q = n$, $B = n$, and $B' = 1$ is also valid, although it yields slightly worse empirical performance in this experiment.*

1575
1576
1577

E.3 A SMALL EXPERIMENT TO VERIFY THE EFFECTIVENESS OF THE ADAPTIVE SMOOTHING PARAMETER

1578
1579
1580
1581
1582
1583

This is a small experiment designed to demonstrate the effectiveness of our adaptive smoothing parameter. We conducted an ablation experiment (placed at the end of the appendix due to page limits) based on the Nonconvex Phase Retrieval setup in the main text. We compare the following four variants: 1. Original ZO-SPIDER, using step size $\gamma = 0.001$ and $\mu = 1$. 2. ZO-SPIDER-adastep, adaptive step size but fixed $\mu = 1$. 3. ZO-SPIDER-adastep, adaptive step size but fixed $\mu = 0.5$. 4. Our parameter-free PF-VRZO (adaptive step size + adaptive μ_t).

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

(a) Comparison of four algorithms: The original ZO-SPIDER (red curve) exhibits severe divergence (function value exceeds 600), which obscures the performance of the other three algorithms (with smaller function values).

(b) Zoomed view of the region where $f(z) < 10$ in (a): This magnification clarifies the convergence behaviors of the three algorithms with smaller function values, while our PF-VRZO (blue curve) achieves full optimization.

1602
1603
1604
1605
1606
1607
1608
1609
1610

Figure 4: The original ZO-SPIDER (Group 1) diverges drastically under this parameter setting, with function values surging beyond 600. - Groups 2 and 3 (ZO-SPIDER-adastep) outperform Group 1, yet their function values stagnate (plateauing around 4 and 2, respectively) and fail to decrease further. This aligns with our theoretical analysis: since the fixed μ does not diminish with T , estimator noise accumulates to a point that halts progress. - The $\mu = 0.5$ variant plateaus later than $\mu = 1$ —a result consistent with the observation that a smaller fixed μ delays (but does not resolve) the stagnation issue. Our PF-VRZO (Group 4), which employs an adaptive μ_t , achieves complete optimization successfully.

1611
1612
1613
1614
1615
1616
1617

From the experimental results, we highlight: 1. Adaptive step sizes generally improve convergence behavior. 2. Our adaptive smoothing parameter μ_t works synergistically with adaptive step sizes. From our theoretical analysis, a fixed μ cannot shrink as T grows, so the zeroth-order estimator noise eventually fails to meet the increasingly stringent accuracy requirement in later stages of training, causing the algorithm to stall. In contrast, our adaptive μ_t avoids this issue by design and ensures stable convergence.

1618
1619

$$f(\bar{x}_t) - f(x_*) \leq \frac{1}{\sum_{k=0}^{t-1} \bar{r}_k} \sum_{k=0}^{t-1} \bar{r}_k (f(x_k) - f(x_*)).$$