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ABSTRACT

Zeroth-order optimization has become a vital tool for solving black-box learning
problems where explicit gradients are unavailable. However, standard zeroth-order
methods typically require careful tuning of algorithmic parameters such as the
smoothing parameter and step size, which limits their practicality. In this paper,
we propose PF-VRZO(Parameter free variance reduced zeroth-order methods),
a novel parameter-free variance-reduced zeroth-order optimization framework
for nonconvex finite-sum problems. Our method only requires minimal input
information—problem dimension d and sample size n—and adaptively adjusts the
smoothing and step size parameters during the optimization process. We develop
two algorithmic variants based on coordinate-wise and random-direction gradient
estimators, respectively. We establish non-asymptotic convergence guarantees
showing that PF-VRZO achieves function query complexity of Õ(d

√
nϵ−2) for

finding stationary points. Additionally, we conduct experiments on nonconvex
phase retrieval and distributional robust optimization to validate the effectiveness
of our method. To the best of our knowledge, PF-VRZO is the first parameter-free
zeroth-order algorithm that incorporates variance reduction techniques tailored
specifically for nonconvex optimization problems.

1 INTRODUCTION

In the paper, we consider solving the following stochastic nonconvex finite-sum optimization prob-
lems. f : Rd → R

minimize
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) (1)

where f(x) and each fi(x) are both smooth and possibly nonconvex functions, which captures the
standard empirical risk minimization problems in machine learning.

In many important applications, computing explicit gradients is either computationally expensive
or infeasible, and only function evaluations are available. Such applications include black-box
adversarial attacks on deep neural networks (DNNs) (Papernot et al., 2017; Chen et al., 2017),
reinforcement learning (Malik et al., 2018; Kumar et al., 2020), and fine-tuning large-scale models
(Malladi et al., 2023). Zeroth-order optimization has thus emerged as a fundamental research direction
(Ghadimi & Lan, 2013; Liu et al., 2018b;a; Ji et al., 2019; Lian et al., 2016; Gu et al., 2018), serving
as a prototype framework for a wide range of these gradient-free learning tasks. However, a common
drawback of standard zeroth-order methods is the introduction of an additional smoothing parameter
µ. As illustrated in Figure 1, improper tuning of this parameter in practice can lead to suboptimal
performance, or even cause the algorithm to diverge.

On the other hand, recent years have seen a growing body of work on parameter-free algorithms(Ivgi
et al., 2023; Kreisler et al., 2024; Orabona & Tommasi, 2017; Chen et al., 2022; Defazio &
Mishchenko, 2023), particularly in the first-order setting. Several studies have demonstrated that such
methods can achieve convergence rates comparable to those of parameter-dependent algorithms, even
under nonconvex conditions. We define a parameter-free method as one that does not require prior
knowledge of problem-specific parameters such as the smoothness constant L, the target accuracy ϵ,
or the total number of iterations T . This is particularly important in practical applications, where such
information is typically unavailable—for example, it is often unclear how many iterations are needed,
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or how small the gradient or objective value should be for the model to be considered good enough.
Our expectation for a parameter-free algorithm is that it can be executed with only minimal and
readily available inputs, such as the sample size n and the problem dimension d, and run continuously
until the model reaches a desirable state—such as sufficiently high test accuracy or low generalization
error.

Although recent works have achieved satisfactory theoretical progress for first-order algorithms,
research on zeroth-order counterparts remains quite limited. It was not until recently that Ren &
Luo (2025) proposed the first parameter-free zeroth-order algorithm. Unfortunately, the theoretical
guarantee of this method holds only under the assumption that the objective function f(x) is convex
and defined over a bounded domain. As acknowledged by the authors, extending this result to the
nonconvex setting is nontrivial.

Q1. When zeroth-order optimization meets adaptive methods, how does the error introduced
by inexact gradient estimation accumulate throughout the optimization process, and is such
error controllable? Can we design an adaptive algorithm that keeps this error within an
acceptable range?

A1:Based on our results, after T iterations, the accumulated error is approximately O[ 1T (
∑T−1

t=0 µ
2
t +∑T−1

t=0 µt) +
1√
T

(
n

5
4

∑T−1
t=0 µ

2
t + n

1
2

√∑T−1
t=0 2µ

2
t

)
]. To ensure convergence, it is crucial that con-

dition
∑T−1

t=0 µt ≤ O(
√
T ),

∑T−1
t=0 µ

2
t ≤ O(1) holds; otherwise, the algorithm may diverge. This

observation reveals that the error grows with T . A natural idea, therefore, is to let the smoothing
parameter µ depend on T , which would directly guarantee

∑T−1
t=0 µt ≤ O(

√
T ),

∑T−1
t=0 µ

2
t ≤ O(1).

However, this approach conflicts with our goal of designing a parameter-free algorithm, since the
required number of iterations T is unknown in advance. To overcome this difficulty while preserving
the parameter-free property, we introduce a smart adaptive parameter µt =

1
(t+1)

√
nd

, which evolves

automatically during the optimization process to enforce
∑T−1

t=0 µt ≤ O(
√
T ),

∑T−1
t=0 µ

2
t ≤ O(1) ,

without the need for any manually tuned parameters.

Q2:Would the smoothing parameters µ that vary with t, as discussed above, conflict with
the proof techniques of variance reduction methods? Taking the Spider estimator vt =
∇fit(xt)−∇fit(xt−1) + vt−1 as an example, can we directly replace the terms ∇fit(xt)
and ∇fit(xt−1) in the Spider estimator with the zeroth-order estimators ∇̄µ1

fit(xt) and
∇̄µ2

fit(xt−1)? Moreover, can these two zeroth-order estimators be computed directly using
the adaptive smoothing parameter µ1 = µ2 = µt =

1
(t+1)

√
nd

?

A2: We found that directly using the smoothing parameters mentioned above in gradient es-
timation within variance-reduced methods does not work. This is because the convergence
proofs for variance reduction often rely on the recursive relation E∥vt − ∇̄µtf(xt)∥2 ≤
E∥vt−1 − ∇̄µt−1

f(xt−1)∥2 + (additional terms) holding exactly. To ensure this recursive relation,
E[∇̄µ1

fit(xt)−∇̄µ2
fit(xt−1)] = ∇̄µt

f(xt)−∇̄µt−1
f(xt−1) is required. Therefore, simply setting

µ1 = µ2 = 1
(t+1)

√
nd

does not suffice; a slight modification is needed, where we set µ1 = 1
(t+1)

√
nd

and µ2 = 1
(t)

√
nd

.

By addressing the aforementioned challenges, this paper introduces the Parameter-Free Variance-
Reduced Zeroth-Order (PF-VRZO) method, a novel approach that combines the strengths of adaptive
algorithms with variance reduction techniques. Our method eliminates the need for manual parameter
tuning by adaptively adjusting the smoothing parameter and step size during the optimization process.
Specifically, we propose two variants of PF-VRZO: one based on coordinate-wise gradient estimators
and another leveraging random-direction estimators.
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Table 1: Convergence property comparison of the PF-VRZO algorithms for finding an ϵ-stationary
point.C, NC, S, and NS denote convex, nonconvex, smooth, and non-smooth settings, respectively.
VR indicates whether the method is compatible with variance reduction techniques. σ denotes an
upper bound on the variance of stochastic gradients, and Dx represents the diameter of the domain.
The term “complexity” refers to function query complexity. Here, ηt denotes the step size, µt the
smoothing parameter, c a generic constant, and T the total number of iteration rounds. gt refers to the
zeroth-order gradient estimator, while vt denotes the SPIDER estimator.*denotes deterministic case

Method Problem VR? Param-free? Complexity ηt µt

POEM (Ren & Luo) C-NS ✗ ✓ Õ(dϵ−2Dx)
maxt{∥xt−x0∥}∑t

s=0∥gt∥2

dmaxt{∥xt−x0∥}
t+1

JAGUAR (Veprikov et al.) NC-S ✓ ✗ *O(dϵ−2) 1
dL O( ϵ√

dL
)

ZO-SGD (Ghadimi & Lan) NC-S ✗ ✗ O(σ2ϵ−4) o( 1√
d
min{ 1

L
√
d
, c
σ
√
d
}) o( c

d
√
T
)

ZO-SPIDER-rand (Fang et al.) NC-S ✓ ✗ O(d
√
nϵ−2) min{ cϵ

L∥vt∥ ,
c
L} o( ϵ

L
√
d
)

ZO-SPIDER-coord(Ji et al.) NC-S ✓ ✗ O(d
√
nϵ−2) 1√

nL
1√
TdL

PF-VRZO-coord (Theorem 1) NC-S ✓ ✓ Õ(d
√
nϵ−2) 1

n1/4
√

(n1/2+
∑t

s=0 ∥vs∥2)

1
(t+1)

√
nd

PF-VRZO-rand (Theorem 2) NC-S ✓ ✓ Õ(d
√
nϵ−2) 1

n1/4
√

d(n1/2+
∑t

s=0 ∥vs∥2)

1
(t+1)d

√
n

The key contributions of this work are as follows:

• A Parameter-Free Zeroth-Order Framework: We propose PF-VRZO, the first parameter-
free zeroth-order optimization method for nonconvex finite-sum problems. It requires only
minimal inputs—sample size n and dimension d, without relying on problem-dependent
parameters such as the smoothness constant or iteration count.

• Variance Reduction with Adaptive Gradient Estimation: PF-VRZO incorporates vari-
ance reduction into both coordinate-wise and random-direction zeroth-order estimators,
with adaptive adjustment of smoothing parameters and step sizes, eliminating the need for
manual tuning.

• Theoretical and Empirical Validation: We provide convergence guarantees showing that
PF-VRZO achieves a function query complexity Õ(d

√
nϵ−2). Experiments on nonconvex

phase retrieval and distributional robust optimization confirm its comparable performance
compared to existing tuned methods.

2 PRELIMINARIES

Remark 1. By “param-free,” we mean that the method does not require any tunable hyperparame-
ters—no manual adjustment is needed. The algorithm only depends on the dataset size n and the
model dimension d, both of which are inherent to the problem setup and readily available before
running the optimization.

Notation Throughout the paper, ∥ · ∥ denotes the Euclidean norm for vectors, Õ hide the logarithmic
factors, and ⟨·, ·⟩ denotes the inner product. We denote by d the dimension of the problem, and by n
the number of functions in the optimization problem. We use fi(x) to denote the i-th sample function
of f(x).
Definition 1 (Smoothness). A function f : Rd → R is L-smooth if there exists L > 0 such that for
all x, y ∈ Rd:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2

Assumption 1 (Lipschitz Gradient). Each function fi : Rd → R is L-smooth such that

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
Assumption 2 (Boundedness). Let f : Rd → R be bounded from below by a finite constant f∗, i.e.,

f(x0)− f∗ ≤ ∆.

for the initial solution x0.

3
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3 PROPOSED PARAMETER FREE VARIANCE REDUCED ZEROTH-ORDER
METHODS

PF-VRZO(coord) method integrates variance reduction with zeroth-order gradient estimation in a
parameter-free manner. This adaptive structure ensures stable updates and effective convergence,
even in nonconvex settings.

To set the stage for our proposed PF-VRZO algorithm, we first review the fundamentals of zeroth-
order optimization, followed by a summary of the main techniques introduced in this paper.

3.1 ZEROTH-ORDER GRADIENT ESTIMATORS

When the gradient of f(x) is not directly obtainable, it is often estimated via coordinate-wise methods
or Gaussian smoothing (Duchi et al., 2015; Gasnikov et al., 2023; Kornowski & Shamir, 2024; Lin
et al., 2022). In what follows, we first describe the coordinate-wise estimator:

∇̄µf(x) :=

d∑
ℓ=1

1

µ
[f (x+ µeℓ)− f (x)] eℓ, (Coord estimator)

where el is a standard basis vector with 1 at its lth coordinate, and 0s elsewhere. The error of the
coordinate-wise gradient estimator is upper bounded as follows, and it approaches zero as µ → 0
(Gao et al., 2018).

Besides the coordinate-wise estimator, the random-direction estimator is another widely used zeroth-
order method, before introduce random-direction estimator, we first introduce smoothing function
fµ(x) := E{w∼Ub}[f(x + µw)], where Ub is a uniform distribution over the unit Euclidean ball,

following Gao et al. (2018), its gradient can be expressed as ∇fµ(x) := E{ρ∼USp}
[
n
µf(x+ µρ)ρ

]
.

Here USp is a uniform distribution over the unit Euclidean sphere, and ρ ∈ Rd is a random vector
sampled from unit Euclidean sphere USp . Now we can define zeroth-order random-direction estimator
∇̂f(x) as follows, which is an unbiased estimator of ∇fµ(x):

∇̂µf(x) :=
d

µ
[f(x+ µρ)− f(x)]ρ. (Random-direction estimator)

Random-direction estimator is an unbiased estimate of the gradient of the smoothing function , i.e,
E[∇̂µf(x)] = ∇fµ(x).
Both of the aforementioned zeroth-order estimators rely on a fixed smoothing parameter µ, whose
improper tuning may lead to substantially degraded performance, ranging from slow convergence to
divergence (Figure 1). To overcome this limitation, we develop a framework that integrates three key
components: variance reduction, adaptive stepsize, and adaptive smoothing parameter. The latter two,
in particular, set our method apart from existing approaches and enable new convergence guarantees.

3.2 VARIANCE REDUCTION TECHNIQUE

As a celebrated technique in stochastic optimization, variance reduction has been instrumental in the
development of algorithms with significantly reduced theoretical complexity, SPIDER(Fang et al.,
2018) is a variance reduction-typed method with optimal complexity guarantee, which uses large
batch and small batch alternately to estimate stochastic gradients in a recursive way as follows:

vt = ∇fB
(
xt
)
−∇fB

(
xt−1

)
+ vt−1, (SPIDER)

with clipped step size ηt = min{c1, c2ϵ
∥vt∥} , where c1, c2 are some constants, and ∇fB(x) =

1
|B|
∑

ξ∈B ∇f(x) with a small batch size B.

3.3 ADAPTIVE STEPSIZE

The step size γt in PF-VRZO is chosen in a parameter-free and adaptive manner. Specifically, it is set
as:

γt =
1

n1/4c
√
n1/2 +

∑t
s=0 ∥vs∥2

,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We set c = 1 when using the coordinate-wise estimator and c =
√
d when using the random-direction

estimator. This design avoids reliance on unknown constants such as the Lipschitz constant or desired
accuracy. By incorporating the accumulated gradient norms, the step size automatically decays,
which helps balance exploration and convergence.

3.4 ADAPTIVE SMOOTHING PARAMETER

In PF-VRZO, the smoothing parameter µt plays a critical role in estimating gradients via zeroth-order
information. Unlike traditional methods that fix µ based on prior knowledge of the target accuracy ϵ
or total iterations T , PF-VRZO adaptively sets:

µt =
1

(t+ 1)
√
nd

(Coord) , µt =
1

(t+ 1)d
√
n
(Random)

which decreases over time. This schedule ensures that early iterations benefit from smoother approxi-
mations for stability, while later iterations use finer estimates for improved accuracy. The adaptive
design of µt eliminates the need for manual tuning and allows the algorithm to adjust automatically
throughout the optimization process.

3.5 PARAMETER-FREE VARIANCE REDUCED ZEROTH-ORDER METHOD(COORDWISE)

Algorithm 1 PF-VRZO(coord)

Set c = 1 for coordwise estimator, µ−1 = µ0.
for t = 0 to T−1 do

Compute µt =
1

(t+1)
√
nd

if t mod n = 0 then
vt = ∇̄µt

f(xt) {Full zeroth-order gradient computation}
else

Uniformly sample it ∈ {1, . . . , n}
Compute ∇̄µt

fit(xt) with µt and ∇̄µt−1
fit(xt−1) with µt−1 .

vt = ∇̄µt
fit(xt)− ∇̄µt−1

fit(xt−1) + vt−1
end if
γt =

1

n1/4c
√
(n1/2 +

∑t
s=0 ∥vs∥2)

xt+1 = xt − γtvt
end for

Explanation of Algorithm 1: For the constant c, we set c = 1 in this algorithm (which uses
the coord estimator) and c =

√
d in the algorithm with the rand estimator. At each iteration, the

algorithm adaptively adjusts the smoothing parameter µt = 1/(t+ 1)
√
nd, allowing finer gradient

estimates as optimization progresses. Every n iterations, a full zeroth-order gradient is computed as
mentioned in Coord estimator. For the remaining steps, a variance-reduced estimator vt is constructed
by combining the current and previous stochastic gradient estimates with vt−1. The step size γt is
also adaptively computed based on the historical norm of the gradient estimates, eliminating the need
for manual tuning.

To establish the convergence of our method, we divide the analysis into three parts.

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
1

T
[

T−1∑
t=0

E[∥vt∥]︸ ︷︷ ︸
part I

+

T−1∑
t=0

E[∥vt − ∇̄µt
f(xt)∥]︸ ︷︷ ︸

part II

+

T−1∑
t=0

∥∇̄µt
f(xt)−∇f(xt)︸ ︷︷ ︸

part III

∥].

For each of these parts, we now present the corresponding lemmas (the detailed proofs can be found
in Appendix C). Let δt :=

√
dLµt

2 denote the error coefficient of the zeroth-order estimator. Then, we
can derive the following results for Algorithm 1. First, we introduce a preliminary bound that will be
repeatedly used in the subsequent analysis. The following lemma provides a bound that is frequently

5
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(a) Improperly Tuned stepsize (b) Improperly Tuned smoothing parameter

Figure 1: This figure demonstrates the detrimental effects of improper parameter tuning on the
optimization process through two subfigures. In (a), an improperly tuned stepsize leads to phenomena
such as erratic fluctuations (e.g., the red curve in the upper subplot of (a)) and even non-convergence,
while properly tuned stepsizes enable stable convergence (lower subplot of (a)). In (b), an improperly
tuned smoothing parameter (e.g., µ = 1 in the red curve) causes the optimization process to fail to
converge, whereas appropriately tuned values (e.g., µ = 0.0001) allow for effective convergence.
Collectively, these results indicate that improperly tuned parameters can severely impair the optimiza-
tion process, and in severe cases, even lead to non-convergence.

used in the proof. Although it may seem somewhat large, there is no need to worry because it will
appear in logarithmic form in the proof.
Lemma 1. Under assumptions 1 and 2, we have

T−1∑
t=0

∥vt∥2 ≤ Φ(T ) + 1.

where Φ(T ) := 4TL2n1.5

c2 + (32n2 + 6)
∑T−1

t=0 δ
2
t +

6L2T
nc2 + 6T ∥∇f (x0)∥2 − 1.

Next, we provide an upper bound for each part separately.To facilitate the analysis, we transform
the problem of the average gradient into two components: the gradient estimator vt (Part I) and the
average of gradient estimation errors. The estimation error can be further decomposed into two parts:
one is the error incurred by vt estimating the zeroth-order estimator ∇̄µt

f(xt) (Part II), and the other
is the error arising from replacing the true gradient ∇f(xt) with the zeroth-order estimator (Part
III). The following lemma aims to provide an upper bound for the SPIDER estimator vt. Due to the
complexity of this problem, we split the analysis into two lemmas.
Lemma 2 (Part I(1)). Under assumptions 1 and 2, we have

E

[
T−1∑
t=0

∥vt∥

]
≤ n1/4

√
T

(
2∆c+ 2c

T−1∑
t=0

γtδ
2
t + 1 +

L

c
log(Φ(T )) + c · E

[
T−1∑
t=0

γt∥vt − ∇̄µt
f(xt)∥2

])
.

The following lemma provides an upper bound for the last term in Part I(1).
Lemma 3 (Part I(2)). Under assumptions 1 and 2, we have

E

[
T−1∑
t=0

γt · ∥vt − ∇̄µt
f(xt)∥2

]
≤2L2

c3
log(Φ(T )) +

T−1∑
t=0

16nγtδ
2
t .

For the error incurred by the estimator vt in estimating the zeroth-order estimator ∇̄µt
f(xt), we

present the following lemma:
Lemma 4 (Part II). Under assumptions 1 and 2, we have

1

T
E

[
T−1∑
t=0

∥vt − ∇̄µt
f(xt)∥

]
≤ Ln1/4

c
√
T

log (Φ(T )) +
1√
T

√√√√8n

T−1∑
t=0

δ2t .

6
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Based on the properties of the coordinate-wise zeroth-order estimator, we can directly give the upper
bound for Part III as follows.
Lemma 5 (Part III). Under assumptions 1 and 2, we have 1

T

∑T−1
t=0 ∥∇̄µt

f(xt) − ∇µt
f(xt)∥ ≤

1
T

∑T−1
t=0 δt.

Theorem 1 (Converge result of PF-VRZO(coord)). Under assumptions 1, 2, we can derive the
following result for Algorithm 1:

1

T
E[

T−1∑
t=0

∥∇f(xt)∥]

≤ n1/4√
T

(
2∆ · c+ 1 + (

L

c
+
L2

c2
) log(Φ(T )) +

L2π2

24n
1
4

+

√
π2

24

L

n
1
4

+
L2π2

12
+
L

2

)
By setting c = 1, we can find stationary points of f(x) with T = Õ(

√
nϵ−2).

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
1

T
[

T−1∑
t=0

E[∥vt∥]︸ ︷︷ ︸
part I

+

T−1∑
t=0

E[∥vt − ∇̄µtf(xt)∥]︸ ︷︷ ︸
part II

+

T−1∑
t=0

∥∇̄µtf(xt)−∇f(xt)︸ ︷︷ ︸
part III

∥]

≤ n1/4√
T

(
2∆ · c+ 1 + (

L

cn
3
4

+
L2

c2
) log(Φ(T ))

)

+
1

T
(2c

T−1∑
t=0

γtδ
2
t +

T−1∑
t=0

δt) +
1√
T

n 5
4

T−1∑
t=0

cγtδ
2
t + n

1
2

√√√√T−1∑
t=0

2δ2t

 .

Take δt = L
2
√
n(t+1)

i.e.(µt =
1√
nd

(t+1)) then we can give an upper bound of
∑T−1

t=0 δ
2
t and

∑T−1
t=0 δt

as follows:
T−1∑
t=0

δt ≤
LlnT

2
√
n
,

T−1∑
t=0

δ2t ≤ L2π2

24n
.

With some calculations, we can obtain the final result.
Remark 2 (Discussion on the complexity). Each coordwise estimator zeroth-order gradient estima-
tion requires O(d) function evaluations. And since SPIDER consumes, on average, O(1+n/n) zeroth-
order estimators per iteration, multiplying this by the total number of iterations T = Õ(

√
nϵ−2)

yields a total function query complexity of #Function = Õ
(
d
(
1 + n

n

)
T
)
= Õ(d

√
nϵ−2).

3.6 PROPOSED PARAMETER-FREE VARIANCE REDUCED ZEROTH-ORDER
METHOD(RANDOM-DIRECTION ESTIMATOR)

In contrast to the coordinate-wise approach, which requires O(d) function evaluations per random
estimator, the random method only incurs O(1) function evaluations per iteration. Nevertheless, it
often requires d times more iterations to achieve comparable accuracy. Therefore, the choice between
the two methods can be made according to the practitioner’s computational budget and application
requirements. The analysis of the random-direction method follows essentially the same structure as
that of the coordinate-wise method, although the final results differ slightly.

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
1

T
[

T−1∑
t=0

E[∥vt∥]︸ ︷︷ ︸
part I

+

T−1∑
t=0

E[∥vt −∇fµt(x)∥]︸ ︷︷ ︸
part II

+

T−1∑
t=0

∥∇fµt(x)−∇f(xt)︸ ︷︷ ︸
part III

, ∥]

The proof of this part follows a similar argument as the coordinate estimator case and is therefore
omitted. The complete proof can be found in Appendix D.
Remark 3 (Proof Differences between the Random-direction and Coord Methods). In the coordinate-
wise method, we provide a bound O(∥xt − xt−1∥2) +O(µ2

t +µ2
t−1) for the quantity ∥∇̄µtfit(xt)−

∇̄µt−1fit(xt−1)∥2. Although an estimation error exists, the smoothness of the coordinate estimator
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Algorithm 2 PF-VRZO(Random-direction)

Set c =
√
d for random-direction estimator and µ−1 = µ0.

for t = 0 to T−1 do
Compute smoothing parameter µt =

1
(t+1)d

√
n

, smoothing vector ρt ∼ UB .
if t mod n = 0 then
vt = ∇̂µt

f(xt) {Full zeroth-order gradient computation}
else

Sample it ∈ {1, . . . , n} uniformly at random
Compute ∇̂µt

fit(xt) with parameter µt and rand vector ρt, ∇̂µt−1
fit(xt−1) with different

parameter µt−1 and the same rand vector ρt.
vt = ∇̂µt

fit(xt)− ∇̂µt−1
fit(xt−1) + vt−1

end if
γt =

1

n1/4c
√
(n1/2 +

∑t
s=0 ∥vs∥2)

xt+1 = xt − γtvt
end for

Explanation of Algorithm 2 Algorithm 2 shares an overall structure with Algorithm 1, with
key differences as follows: 1.The zeroth-order estimator employs a random-direction estimator as
mentioned in Random-direction estimator, where random numbers distributed on the unit sphere
are generated by first sampling from a d-dimensional Gaussian distribution and then normalizing
the sample. 2.We set c =

√
d and use a smoothing parameter µt =

1
(t+1)d

√
n

, introducing constant

differences (involving
√
d) compared to the coordinate-wise variant ,where c = 1 and µt =

1
(t+1)

√
dn

remains roughly of the same order as that of f(x). In contrast, for the random-direction method,
we obtain the estimate ∥∇̂µt

f(xt)− ∇̂µt−1
f(xt−1)∥2 ≤ O(µ2

t + µ2
t−1) +O(d∥xt − xt−1∥2), which

suggests—albeit informally—that the smoothness of the random estimator is approximately d times
larger than that of f(x). This distinction is reflected in the conclusions of various parts of the
analysis, and, in particular, it necessitates choosing c =

√
d, µt = 1

(t+1)d
√
n

in the proof of the

theorem (whereas c = 1, µt =
1

(t+1)
√
dn

suffices in the coordinate-wise case). As a result, the number
of iterations required by the random-direction method is d times larger than that of the coord method.
Theorem 2 (Converge result of PF-VRZO(random-direction). Under assumptions 1, 2, we can derive
the following result for Algorithm 2:

1

T
E[

T−1∑
t=0

∥∇f(xt)∥]

≤ n1/4√
T

(
∆ · c+ 1 + (

L
√
d

cn
3
4

+
L2d

c2
) log(ϕ(T )) +

L2π2

24n
1
4

+
L

n
1
4

√
π2

24
+
L2π2

12
+
L

2

)
By setting c =

√
d, µt =

1
d
√
n
(t+1), we can find stationary points of f(x) with T = Õ(d

√
nϵ−2).

Remark 4 (Discussion on the complexity). Each Random-direction zeroth-order gradient estimation
requires O(1) function evaluations.And since SPIDER consumes, on average, O(1 + n/n) zeroth-
order estimators per iteration, multiplying this by the total number of iterations T = Õ(d

√
nϵ−2)

yields a total function query complexity of #Function = Õ
((
1 + n

n

)
T
)
= Õ(d

√
nϵ−2).

4 EXPERIMENTS

We conduct two experiments to evaluate the effectiveness of our method: the first focuses on Phase
Retrieval, as shown in Figures 2(a) and 2(b), while the second examines Distributional Robust
Optimization (DRO), presented in Figures ?? and ??. To validate the performance of our algorithm,
we compare it with ZO-SPIDER(Ji et al., 2019) and ZO-SGD (Ghadimi & Lan, 2013), both of which
rely on manually tuned hyperparameters to ensure convergence, in contrast to our parameter-free
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approach. We measure computational cost using both sample complexity and time. Here, sample
complexity refers to the total number of function value evaluations. Due to space limitations, we
defer the detailed descriptions of the hyperparameter settings to Appendix E. All experiments are
conducted on a single NVIDIA RTX 3090 GPU.

4.1 APPLICATION TO NONCONVEX PHASE RETRIEVAL

Phase retrieval is a well-known nonconvex problem in machine learning and signal processing(Miao
et al., 1999). Let x ∈ Rd represent the true underlying object, and assume we collect m intensity
measurements, given by yr = |a⊤r x|2 for r = 1, 2, . . . ,m, where ar ∈ Rd. The challenge in phase
retrieval lies in recovering the signal by solving the associated nonconvex optimization problem:

min
z∈Rd

f(z) :=
1

2m

m∑
r=1

(
yr − |a⊤r z|2

)2
. (2)

We assess the effectiveness of our algorithms on the nonconvex phase retrieval task defined in
(2). As illustrated in Figures 2(a) and 2(b), the proposed PF-VRZO algorithm demonstrates robust
performance, notably without requiring manual tuning of algorithmic parameters.

(a) Compare different algorithms on Phase Re-
trieval(Complexity)

(b) Compare different algorithms on Phase Re-
trieval(Time)

Figure 2: This figure compares the performance of different algorithms on Phase Retrieval through
two subfigures. In (a), we evaluate the sample complexity of algorithms including PF-VRZO-
coord, PF-VRZO-rand, ZO-SGD-coord, ZOSPIDER-coord, and ZOSPIDER-rand. In (b), we assess
their time efficiency. Notably, the proposed PF-VRZO method, even without parameter tuning,
demonstrates competitive performance when compared to other algorithms that undergo multiple
parameter adjustments, indicating its robustness and effectiveness in Phase Retrieval tasks.

4.2 APPLICATION TO DISTRIBUTIONAL ROBUST OPTIMIZATION

Distributional Robust Optimization (DRO) is a widely used framework for training robust models,
Under mild conditions, it aims to solve the following problem:

min
x∈X ,η∈R

L(x, η) := λEξ ∼ Pψ∗
(
ℓξ(x)− η

λ

)
+ η (3)

We consider the nonconvex DRO problem (3) on three real-world datasets. The Life Expectancy
dataset contains 2,413 samples with 20 associated features. The Communities and Crime dataset
consists of 1,994 samples and 122 predictive features. The Arcene dataset includes 200 samples with
10,000 high-dimensional features, making it a challenging benchmark for robust optimization.After
standard preprocessing steps, including missing value imputation and variable standardization, we
retain 70% samples for training, where each input xi ∈ R34 and corresponding target yi ∈ R. We set
the regularization parameter to λ = 0.01, and adopt the χ2-divergence, with the convex conjugate

9
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given by ψ∗(t) = 1
4 (t+ 2)2 − 1. The regularized loss function is defined as:

ℓξ(w) =
1

2
(yξ − x⊤ξ w)

2 + 0.1

34∑
j=1

ln
(
1 + |w(j)|

)
.

We initialize w0 ∈ R34 from a Gaussian distribution and set the initial step size η0 = 0.1.

Based on the experimental results shown in Figures 3, we observe that the proposed PF-VRZO
method exhibits a brief oscillation in the objective value at the beginning, likely due to insufficient
accumulated gradient information. However, the method quickly resumes descent and ultimately
achieves strong performance without the need for any parameter tuning.

(a) Arcene(Complexity) (b) Life Expectancy (Complexity) (c) Communities and Crime (Com-
plexity)

(d) Arcene(Time) (e) Life Expectancy (Time) (f) Communities and Crime
(Time)

Figure 3: This figure evaluates the performance of different algorithms on Distributionally Robust
Optimization (DRO) tasks across three datasets (Arcene, Life Expectancy, Communities and Crime),
with results split into two metrics: Sample Complexity (subfigures (a)-(c)): Measures the number
of samples required for algorithms to converge. Time Efficiency (subfigures (d)-(f)): Measures
the runtime (in seconds) for algorithms to converge. Across all datasets and metrics, the proposed
methods (e.g., PF-VRZO variants) demonstrate competitive or superior performance—consistently
achieving faster convergence . This further validates the effectiveness of the parameter-free design of
PF-VRZO in practical DRO scenarios.

5 CONCLUSION

In this paper, we propose a parameter-free variance-reduced zeroth-order method (PF-VRZO) for
nonconvex optimization. Our method is based on the SPIDER framework and employs a coordinate-
wise or random-direction zeroth-order gradient estimator. We establish the convergence of our
method, demonstrating that it achieves a sample complexity of Õ(d

√
nϵ−2) for finding stationary

points of nonconvex functions. Additionally, we conduct experiments on nonconvex phase retrieval
and distributionally robust optimization to validate the effectiveness of our method. An interesting
future direction is to investigate whether the logarithmic, L-dependent, and ∆-dependent terms
in the complexity bounds are optimal. (Carmon & Hinder, 2024) shows that under the convex-
but-nonsmooth (C-NS) setting, any adaptive algorithm necessarily suffers from worse complexity.
However, it remains unclear whether a similar conclusion holds under the nonconvex-smooth (NC-S)
setting.
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6 ETHICS STATEMENT

Our study focuses on developing a novel optimization algorithm and does not involve human subjects,
animal experimentation, or the use of sensitive personal data. All experiments are conducted on
publicly available datasets that are commonly used within the academic community. We adhere to the
ICLR Code of Ethics, and our work introduces no new privacy or ethical risks beyond those inherent
in standard academic research on optimization methods.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The paper provides detailed
specifications for our proposed algorithm, PF-VRZO, including its variants and their theoretical foun-
dations. We have meticulously described our experimental setup, including the specific nonconvex
problems we studied, the parameters used for all compared algorithms (e.g., learning rates and batch
sizes for ZO-SGD, PF-VRZO, ZO-SPIDER), and the hardware used.
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A RELATED WORK

A.1 ZEROTH-ORDER OPTIMIZATION

The ZO-SGD method was first introduced by (Ghadimi & Lan, 2013), serving as a foundational
approach in zeroth-order stochastic optimization. To enhance its efficiency, several follow-up
works (Liu et al., 2018a) proposed accelerated variants, collectively referred to as ZO-SVRG,
which incorporate the SVRG framework (Johnson & Zhang, 2013). In addition, to further reduce
the function query complexity, ZO-SPIDER-Coord (Ji et al., 2019) were developed based on the
stochastic path-integrated differential estimator.

A.2 PARAMETER-FREE OPTIMIZATION

Recent advances in the nonconvex and smooth setting have drawn inspiration from AdaGrad, as
introduced in the concurrent seminal works (Duchi et al., 2011; McMahan & Streeter, 2010). Building
on this foundation, (Kavis et al., 2022) were the first to develop a parameter-free algorithm that remains
compatible with variance reduction techniques. This was later improved by (Jiang et al., 2024),
who proposed ADA-STORM, reducing the overall complexity by a logarithmic factor. Moreover, a
series of follow-up studies (Ivgi et al., 2023; Kreisler et al., 2024; Orabona & Tommasi, 2017; Chen
et al., 2022; Defazio & Mishchenko, 2023) have explored parameter-free methods in various problem
settings, and other works have investigated the fundamental lower bounds of such algorithms (Khaled
& Jin, 2024; Attia & Koren, 2024; Carmon & Hinder, 2024).

B USEFUL FACTS

Lemma B.1 (Jensen’s inequality). For convex function f(x) we have

f(E[x]) ≤ E[f(x)],

two extended versions of Jensen’s inequality are

∥E[x]∥ ≤ E[∥x∥], for x ∈ Rd∥∥∥∥∥
k∑

i=1

ai

∥∥∥∥∥
2

≤ k

k∑
i=1

∥ai∥2 , for ai ∈ Rd.

Lemma B.2 (Young’s inequality). For any vectors a, b,∈ Rd, and ζ ≥ 0, the following inequality
holds:

∥a∥2 ≤ (1 + ζ)∥a− b∥2 +
(
1 + ζ−1

)
∥b∥2,

an extended version of Young’s inequality is

⟨a, b⟩ ≤ ∥a∥2

2ζ
+
ζ∥b∥2

2
.

Lemma B.3 (variance decomposition). For random vector x ∈ Rd and any y ∈ Rd, the variance of
x can be decomposed as

E
[
∥x− E[x]∥2

]
= E

[
∥x− y∥2

]
− E

[
∥E[x]− y∥2

]
,

which implies

E
[
∥x− E[x]∥2

]
≤ E

[
∥x∥2

]
.
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Lemma B.4. For random variable X,Y , if X, Y are independent, and E[X] or E[Y ] = 0, we have

E[∥X − Y ∥2] = E[∥X∥2] + E[∥Y ∥2].

Proof.

E[∥X − Y ∥2] = E[∥X∥2 + ∥Y ∥2 + 2E⟨X,Y ⟩] = E[∥X∥2] + E[∥Y ∥2].

Lemma B.5. For i.i.d. x1, x2, x3 · · ·xn , if E[xi] = x,E[∥xi − x∥2] ≤ σ2, we have

E

∥∥∥∥∥1b
b∑

i=1

xi − x

∥∥∥∥∥
2
 ≤ E[∥xi∥2]

b
.

Proof.

E

∥∥∥∥∥1b
b∑

i=1

xi − x

∥∥∥∥∥
2


=
1

b2
E

∥∥∥∥∥
b∑

i=1

(xi − x)

∥∥∥∥∥
2


=
1

b2

b∑
i=1

E[∥xi − x∥2]

=
1

b
E[∥xi − x∥2] ≤ E[∥xi∥2]

b
,

where the second inequality holds because ∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2⟨a, b⟩, and E[⟨xi − x, xj −
x⟩] = 0(j ̸= i) for iid random variable xi.

Lemma B.6 (Sum of Square Roots Inequality). Let α1, . . . , αT be a sequence of non-negative real
numbers (αt ≥ 0 for all t). Then: √√√√ T∑

t=1

αt ≤
T∑

t=1

αt√∑t
s=1 αs

.

Lemma B.7 (Logarithmic Sum Bound). For any sequence of non-negative real numbers a1, . . . , aT
with a1 ≥ 1, we have:

T∑
ℓ=1

aℓ

1 +
∑ℓ

i=1 ai
≤ log

(
T∑

i=1

ai + 1

)

Lemma B.8 (Sum of 1
i and 1

i2 ).
T−1∑
i=1

1

i
≤ log(T ).

∞∑
i=1

1

i2
≤ π2

6
.
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C PARAMETER FREE VARIANCE REDUCED ZEROTH-ORDER METHOD(COORD)

Algorithm 3 PF-VRZO(coord)

Set c = 1 for coordwise estimator, µ−1 = µ0.
for t = 0 to T−1 do

Compute µt =
1

(t+1)
√
nd

if t mod n = 0 then
vt = ∇̄µt

f(xt) {Full zeroth-order gradient computation}
else

Uniformly sample it ∈ {1, . . . , n}
Compute ∇̄µt

fit(xt) with µt and ∇̄µt−1
fit(xt−1) with µt−1.

vt = ∇̄µt
fit(xt)− ∇̄µt−1

fit(xt−1) + vt−1
end if
γt =

1

n1/4c
√
(n1/2 +

∑t
s=0 ∥vs∥2)

xt+1 = xt − γtvt
end for

Table 2: Meaning of Symbols

Symbol Meaning

γt stepsize 1(
n1/4c

√
n1/2+

∑t
s=0 ∥vs∥2

) .

µt Smoothing parameter at iteration t.

vt Spider estimator.

∇̄µf(xt) zeroth-order estimator(coord) .

δt
√
dLµt/2, the estimation error with respect to ∇̄fµ.

To establish the convergence of our method, we divide the analysis into three parts.

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
1

T
[

T−1∑
t=0

E[∥vt∥]︸ ︷︷ ︸
part I

+

T−1∑
t=0

E[∥vt − ∇̄µt
f(xt)∥]︸ ︷︷ ︸

part II

+

T−1∑
t=0

∥∇̄µt
f(xt)−∇f(xt)︸ ︷︷ ︸

part III

∥].

Lemma C.1 ((Gao et al., 2018)). For L-smooth function f(x), its gradient ∇f(x) and its coord
zeroth-order estimator ∇̄µf(x), we have∥∥∇̄µf(x)−∇f(x)

∥∥2 ≤ δ2t .

where δt :=
√
dLµt/2, and µt is the smoothing parameter at iteration t.

Lemma C.2. Under assumptions 1 and 2, we can derive the following result for Algorithm 1:

T−1∑
t=0

∥vt∥2 ≤ Φ(T ) + 1.

where 4TL2n1.5

c2 + (32n2 + 6)
∑T−1

t=0 δ
2
t + 6L2T

nc2 + 6T ∥∇f (x0)∥2 − 1.Here the notation Φ(T ) is
introduced only for brevity, and will be repeatedly used in the subsequent analysis.
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Proof.

∥vt∥2 =

∥∥∥∥∥
t∑

s=t−t mod n+1

(
∇̄µsfis (xs)− ∇̄µs−1fis (xs−1)

)
+ ∇̄µ

t−t mod n
f (xt−t mod n)

∥∥∥∥∥
2

≤ 2 ·

∥∥∥∥∥
t∑

s=t−t mod n+1

∇̄µsfis (xs)− ∇̄µs−1fis (xs−1)

∥∥∥∥∥
2

+ 2 ·
∥∥∥∇̄µ

t−t mod n
f (xt−t mod n)

∥∥∥2
≤ 2n.

t∑
s=t−t mod n+1

∥∥∇̄µs
fis (xs)− ∇̄µs−1

fis (xs−1)
∥∥2 + 2 ·

∥∥∥∇̄µ
t−t mod n

f (xt−t mod n)
∥∥∥2

lemC.1
≤ 2n ·

t∑
s=t−t mod n+1

2L2 (xs − xs−1)
2
+ 8(δ2s + δ2s−1) + 2 ·

∥∥∥∇̄µ
t−t mod n

f (xt−t mod n)
∥∥∥2

≤ 4L2n1.5

c2
+ 16n

t∑
s=t−t mod n+1

(δ2s + δ2s−1) + 2 ·
∥∥∥∇̄µ

t−t mod n
f (xt−t mod n)

∥∥∥2 ,
in last inequality we use ∥xs − xs−1∥ = 1

n1/4c
∗ ∥ vt√(

n1/2 +
∑t

s=0 ∥vs∥2
)∥

︸ ︷︷ ︸
≤1

≤ 1
n1/4c

. then we

bound ∇̄µt
f(x) below:∥∥∇̄µtf (xt)

∥∥ ≤
∥∥∇̄µtf (xt)−∇f (xt)

∥∥+ ∥∇f (xt)∥
≤ δt + ∥∇f (xt)−∇f (x0)∥+ ∥∇f (x0)∥
≤ L ∥xt − x0∥+ δt + ∥∇f (x0)∥

≤ L

t∑
i=1

∥xi − xi−1∥+ δt + ∥∇f (x0)∥

≤
(

L

c
√
n

)
+ δt + ∥∇f (x0)∥ .

Combining the above results we obtain(Without loss of generality, we set δ−1 = δ0):
T−1∑
t=0

∥vt∥2 ≤
T−1∑
t=0

(
4L2n1.5

c2
+ 16n

t∑
s=t−t mod n+1

(δ2s + δ2s−1) + 2 ·
∥∥∥∇̄µ

t−t mod n
f (xt−t mod n)

∥∥∥2)

≤ 4TL2n1.5

c2
+ 16n

T−1∑
t=0

t∑
s=t−t mod n+1

(δ2s + δ2s−1) + 2

T−1∑
t=0

∥∥∇̄µt
f (xt)

∥∥2
≤ 4TL2n1.5

c2
+ 32n2

T−1∑
t=0

δ2t + 2

T−1∑
t=0

((
L

c
√
n

)
+ δt + ∥∇f (x0)∥

)2

≤ 4TL2n1.5

c2
+ (32n2 + 6)

T−1∑
t=0

δ2t +
6L2T

nc2
+ 6T ∥∇f (x0)∥2 .

Since this equation will be used repeatedly, we define Φ(T ) := 4TL2n1.5

c2 + (32n2 + 6)
∑T−1

t=0 δ
2
t +

6L2T
nc2 + 6T ∥∇f (x0)∥2 − 1 to simplify the resulting expressions.

C.1 PART I

Lemma C.3 (part I(1)). Under assumptions 1 and 2, we can derive the following result for Algorithm
1:

E

[
T−1∑
t=0

∥vt∥

]
≤ n1/4

√
T

(
2∆c+ 2c

T−1∑
t=0

γtδ
2
t + 1 +

L

c
log(Φ(T )) + c · E

[
T−1∑
t=0

γt∥∇̄µtf(xt)− vt∥2
])

.
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Proof.

E [f(xt+1) | Ft] ≤ E
[
f(xt) +∇f(xt)T (xt+1 − xt) +

L

2
∥xt − xt+1∥2 | Ft

]
= E

[
f(xt)− γtv

T
t ∇f(xt) +

L

2
γ2t ∥vt∥2 | Ft

]
≤ E

[
f(xt) +

γt
2
∥vt −∇f(xt)∥2 −

γt
2
(1− Lγt)∥vt∥2 | Ft

]
lemC.1
≤ E

[
f(xt) + γtδ

2
t + γt∥vt − ∇̄µt

f(xt)∥2 −
γt
2
(1− Lγt)∥vt∥2 | Ft

]
,

thus we obtain:

E
[
γt · ∥vt∥2

]
≤ 2E [f(xt)− f(xt+1)] + 2γtδ

2
t +E

[
Lγ2t · ∥vt∥2

]
+2 ·E

[
γt · ∥∇̄µt

f(xt)− vt∥2
]
.

By summing from t = 0 to T − 1 we get:

T−1∑
t=0

E
[
γt · ∥vt∥2

]
≤ 2∆ + 2

T−1∑
t=0

γtδ
2
t + E

[
T−1∑
t=0

Lγ2t · ∥vt∥2
]
+ E

[
T−1∑
t=0

2γt · ∥∇̄µt
f(xt)− vt∥2

]
.

Recall that γt = n−1/4c−1
(
n1/2 +

∑t
s=0 ∥vs∥2

)−1/2

and Lemma B.7 we obtain:

E

[
T−1∑
t=0

γt · ∥vt∥2
]
≤ 2∆ + 2

T−1∑
t=0

γtδ
2
t +

L

c2
√
n
· E

[
T−1∑
t=0

∥vt∥2√
n+

∑t
s=0 ∥vs∥2

]

+ 2E

[
T−1∑
t=0

γt · ∥∇̄µtf(xt)− vt∥2
]

≤ 2∆ + 2

T−1∑
t=0

γtδ
2
t +

L

c2
√
n
log(Φ(T )) + 2E

[
T−1∑
t=0

γt · ∥∇̄µt
f(xt)− vt∥2

]
.

Lower bounding the right-hand side:

E

[
T−1∑
t=0

γt · ∥vt∥2
]
≥ E

 ∑T−1
t=0 ∥vt∥2

n1/4c
√
n1/2 +

∑T−1
t=0 ∥vt∥2


≥ 1

c
· E

 ∑T−1
t=0 ∥vt∥2/

√
n√

1 +
∑T−1

t=0 ∥vt∥2/
√
n


≥ 1

c
· (E


√√√√T−1∑

t=0

∥vt∥2/
√
n

− 1)

≥ 1

cn1/4
√
T
E

[
T−1∑
t=0

∥vt∥

]
− 1

c
.

Combining all results:

E

[
T−1∑
t=0

∥vt∥

]
≤ n1/4

√
T

(
2∆c+ 2c

T−1∑
t=0

γtδ
2
t + 1 +

L

c
√
n
log(Φ(T )) + c · E

[
T−1∑
t=0

γt∥∇̄µt
f(xt)− vt∥2

])
.
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Lemma C.4 (part I(2)). Under assumptions 1 and 2, we can derive the following result for Algorithm
1:

E

[
T−1∑
t=0

γt · ∥vt − ∇̄µt
f(xt)∥2

]
≤2L2

c3
log(Φ(T )) +

T−1∑
t=0

16nγtδ
2
t .

Proof. Let Ft be the sigma-algebra generated by {i0, . . . , it} and x0. From the definition of γt, it
follows that γt ≤ γt−1; this condition is imposed to resolve measurability concerns. Consequently,

E
[
γt∥vt − ∇̄µtf(xt)∥2 | Ft−1

]
≤ E

[
γt−1 · ∥vt − ∇̄µtf(xt)∥2 | Ft−1

]
.

Hence, our analysis can be reduced to studying E
[
γt−1∥vt − ∇̄µtf(xt)∥2 | Ft−1

]
.

E
[
γt−1∥vt − ∇̄µt

f(xt)∥2 | Ft−1
]

= γt−1E
[
∥∇̄µt

fit(xt)− ∇̄µt−1
fit(xt−1)− ∇̄µt

f(xt) + ∇̄µt−1
f(xt−1) + (vt−1 − ∇̄µt−1

f(xt−1))∥2 | Ft−1
]

= γt−1E
[
∥∇̄µt

fit(xt)− ∇̄µt−1
fit(xt−1)− ∇̄µt

f(xt) + ∇̄µt−1
f(xt−1)∥2 | Ft−1

]
+ γt−1E

[
∥vt−1 − ∇̄µt−1f(xt−1)∥2 | Ft−1

]
= γt−1E

[
∥∇̄µtfit(xt)− ∇̄µt−1fit(xt−1)∥2 | Ft−1

]
+ γt−1E

[
∥vt−1 − ∇̄µt−1f(xt−1)∥2 | Ft−1

]
≤ 2L2γt−1E

[
∥xt − xt−1∥2 | Ft−1

]
+ γt−1E

[
∥vt−1 − ∇̄µt−1

f(xt−1)∥2 | Ft−1
]
+ 4γt−1(δ

2
t + δ2t−1)

= 2L2γ3t−1E
[
∥vt−1∥2 | Ft−1

]
+ γt−1E

[
∥vt−1 − ∇̄µt−1

f(xt−1)∥2 | Ft−1
]
+ 4γt−1(δ

2
t + δ2t−1).

We obtain the following by first conditioning on all randomness up to round t, and then taking the
total expectation:

E
[
γt∥vt − ∇̄µt

f(xt)∥2
]
≤ 2L2E

[
γ3t−1∥vt−1∥2

]
+E

[
γt−1∥vt−1 − ∇̄µt−1

f(xt−1)∥2 + 4γt−1(δ
2
t + δ2t−1)

]
.

Since E
[
∥vt − ∇̄µtf(xt)∥

]
= 0 whenever t mod n = 0, it follows that

E
[
γt · ∥vt − ∇̄µt

f(xt)∥2
]
≤ 2E

[
t−1∑

s=t−t mod n

L2γ3s∥vs∥2 + 4γs(δ
2
s + δ2s−1)

]
,

which leads to:

E

[
T−1∑
t=0

γt · ∥vt − ∇̄µt
f(xt)∥2

]
≤ 2E

[
T−1∑
t=0

L2nγ3t ∥vt∥2 + 8nγtδ
2
t

]
,

observe that the first term can be bounded by the following terms:

E

[
T−1∑
t=0

γ3t ∥vt∥2
]

=
1

c3
E

[
T−1∑
t=0

1

n1/2 +
∑t

s=0 ∥vt∥2
· ∥vt∥2

n1/2 +
∑t

s=0 ∥vs∥2

]

≤ 1

c3n
E

[
T−1∑
t=0

1

n3/4
√
n1/2

· ∥vt∥2

n1/2 +
∑t

s=0 ∥vs∥2

]

≤ 1

c3n
· E

[
T−1∑
t=0

∥vt∥2

1 +
∑t

s=0 ∥vs∥2

]

≤ 1

c3n
log(Φ(T )),

where the fourth inequality follows by Lemma B.7 and Lemma C.2.

Finally we obtain

E

[
T−1∑
t=0

γt · ∥vt − ∇̄µt
f(xt)∥2

]
≤2L2

c3
log(Φ(T )) +

T−1∑
t=0

16nγtδ
2
t .
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C.2 PART II

Lemma C.5. Under assumptions 1 and 2, we can derive the following result for Algorithm 1:

1

T
E

[
T−1∑
t=0

∥vt − ∇̄µt
f(xt)∥

]
≤ Ln1/4

c
√
T

log (Φ(T )) +
1√
T

√√√√8n

T−1∑
t=0

δ2t .

Proof.

E

[
T−1∑
t=0

∥vt − ∇̄µt
f(xt)∥

]
≤

√
T ·

√√√√E

[
T−1∑
t=0

∥vt − ∇̄µt
f(xt)∥2

]
,

the final inequality holds since
∥∥∥∑T−1

t=0 at

∥∥∥2 can be bounded by T ·
∑T−1

t=0 ∥at∥2 using Jensen’s
inequality . By an argument entirely analogous to that of Lemma C.4, we can establish the same
result for the estimator vt = ∇̄µtfit(xt)− ∇̄µt−1fit(xt−1) + vt−1:

E
[
∥vt − ∇̄µt

f(xt)∥2
]
≤ 4(δ2t + δ2t−1) + 2L2E

[
∥xt − xt−1∥2

]
+ E

[
∥vt−1 − ∇̄µt−1

f(xt−1)∥2
]

≤ L2E
[
γ2t−1∥vt−1∥2

]
+ E

[
∥vt−1 − ∇̄f(xt−1)∥2

]
+ 4(δ2t + δ2t−1)

=

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2τ∥vτ∥2

]
+ 4(δ2τ + δ2τ−1),

by a telescoping summation over t we get that

T−1∑
t=0

E
[
∥vt − ∇̄µt

f(xt)∥2
]
≤ L2n · E

[
T−1∑
t=0

γ2t ∥vt∥2
]
+ 8n

T−1∑
t=0

δ2t .

Now as discussed in Lemma C.4, using the step-size selection γt we obatain:

T−1∑
t=0

E
[
∥vt − ∇̄µt

f(xt)∥2
]
≤ L2n · E

[
T−1∑
t=0

γ2t ∥vt∥2
]
+ 8n

T−1∑
t=0

2δ2t

=
L2

√
n

c2
· E

[
T−1∑
t=0

∥vt∥2√
n+

∑t
s=0 ∥∇̄s∥2

]
+ 8n

T−1∑
t=0

δ2t

≤ L2
√
n

c2
log (Φ(T )) + 8n

T−1∑
t=0

δ2t

≤ L2
√
n

c2
log (Φ(T )) + 8n

T−1∑
t=0

2δ2t ,

where lstinequality follows by Lemma B.6 and Lemma C.2. Putting everything together we get

1

T
E

[
T−1∑
t=0

∥vt − ∇̄µt
f(xt)∥

]
≤ Ln1/4

c
√
T

log (Φ(T )) +
1√
T

√√√√8n

T−1∑
t=0

δ2t .

C.3 PART III

1
T

∑T−1
t=0 ∥∇f(xt)− ∇̄µtf(xt)∥ ≤ 1

T

∑T−1
t=0 δt.
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C.4 FINAL PROOF FOR COORDINATE ESTIMATOR

Theorem C.1. Under assumptions 1 and 2, based on the previous lemmas C.3, C.4, C.5, we can
derive the following result for Algorithm 1:

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
n1/4√
T

(
2∆ · c+ 1 + (

L

c
+
L2

c2
) log(Φ(T )) +

L2π2

24n
1
4

+

√
π2

24

L

n
1
4

+
L2π2

12
+
L

2

)

setting c = 1, we obtain T = Õ(
√
nϵ−2), where the Õ notation hides logarithmic factors.

Proof.

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
1

T
[

T−1∑
t=0

E[∥vt∥] +
T−1∑
t=0

E[∥vt − ∇̄µtf(xt)∥] + ∥∇̄µtf(xt)−∇f(xt)∥]

≤ n1/4√
T

(
2∆ · c+ 1 + (

L

cn
3
4

+
L2

c2
) log(Φ(T ))

)

+
1

T
(2c

T−1∑
t=0

γtδ
2
t +

T−1∑
t=0

δt) +
1√
T

n 5
4

T−1∑
t=0

cγtδ
2
t + n

1
2

√√√√T−1∑
t=0

2δ2t

 .

Due to the fact that γt ≤ 1

cn
1
4

we obtain:

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
n1/4√
T

(
2∆ · c+ 1 + (

L

cn
3
4

+
L2

c2
) log(Φ(T ))

)

+
1

T
(2

T−1∑
t=0

1

n
1
4

δ2t +

T−1∑
t=0

δt) +
1√
T

n T−1∑
t=0

δ2t + n
1
2

√√√√T−1∑
t=0

2δ2t

 .

Take δt = L
2
√
n(t+1)

i.e.(µt =
1√
nd

(t+1)) then :

T−1∑
t=0

δt ≤
LlnT√
n
.

T−1∑
t=0

δ2t <
L2π2

24n
.

combing the above results we obtain:

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
n1/4√
T

(
2∆ · c+ 1 + (

L

cn
3
4

+
L2

c2
) log(Φ(T ))

)
+

1

T
(
L2π2

12
+
LlnT

2
) +

1√
T

(
L2π2

24
+ L

√
π2

24

)

≤ n1/4√
T

(
2∆ · c+ 1 + (

L

cn
3
4

+
L2

c2
) log(Φ(T )) +

L2π2

24n
1
4

+

√
π2

24

L

n
1
4

+
L2π2

12
+
L

2

)
,

setting c = 1, we obtain T = Õ(
√
nϵ−2), where the Õ notation hides logarithmic factors.
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D PARAMETER FREE VARIANCE REDUCED ZEROTH-ORDER
METHOD(RANDOM-DIRECTION ESTIMATOR)

Algorithm 4 PF-VRZO(Random-direction)

Set c =
√
d for random-direction estimator and µ−1 = µ0.

for t = 0 to T−1 do
Compute smoothing parameter µt =

1
(t+1)d

√
n

, smoothing vector ρt ∼ UB .
if t mod n = 0 then
vt = ∇̂µt

f(xt) {Full zeroth-order gradient computation}
else

Sample it ∈ {1, . . . , n} uniformly at random
Compute ∇̂µtfit(xt) with parameter µt and rand vector ρt, ∇̂µt−1fit(xt−1) with different
parameter µt−1 and the same rand vector ρt.
vt = ∇̂µt

fit(xt)− ∇̂µt−1
fit(xt−1) + vt−1

end if
γt =

1

n1/4c
√
(n1/2 +

∑t
s=0 ∥vs∥2)

xt+1 = xt − γtvt
end for

Table 3: Meaning of Symbols

Symbol Meaning

γt stepsize 1(
n1/4c

√
n1/2+

∑t
s=0 ∥vs∥2

) .

µt Smoothing parameter at iteration t.

ρt Smoothing vector at iteration t.

vt Spider operator.

∇µt
f(xt) zeroth-order estimator(rand) using smoothing parameter µt and ρt .

∇̂fµ(·) expecation of zeroth-order estimator(rand).

∆t Ldµt/2, the estimation error with respect to ∇fµ(·) .

Following a similar approach as with the coordinate operator, we analyze the convergence of the
gradient of f(x) by dividing it into three parts.

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
1

T
[

T−1∑
t=0

E[∥vt∥]︸ ︷︷ ︸
part I

+

T−1∑
t=0

E[∥vt −∇fµt
(x)∥]︸ ︷︷ ︸

part II

+

T−1∑
t=0

∥∇fµt
(x)−∇f(xt)︸ ︷︷ ︸

part III

∥].

Lemma D.1 ((Ji et al., 2019)). Let fµ(x) = Ew∼UB
[f(x+µw)] be a smooth approximation of f(x),

where UB is the uniform distribution over the d-dimensional unit Euclidean ball B, and ρ ∈ Rd is a
random vector sampled from unit Euclidean sphere USp . Then we have

1. |fµ(x)− f(x)| ≤ µ2L
2 and ∥∇fµ(x)−∇f(x)∥ ≤ µLd

2 for any x ∈ Rd.

2. E∥∇̂µfi(x1)− ∇̂µfi(x2)∥2 ≤ 3dL2∥x1 − x2∥2 + 3L2d2µ2

2 for any i and any x1, x2 ∈ Rd.

3. Eρ∼USp

[
∥∇̂f(x)∥2

]
≤ 2d∥∇f(x)∥2 + L2µ2d2

2 .
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Lemma D.2. For random-direction estimator ∇̂µt
fi(xt) = d

µt
[f(xt + µtρt) −

f(xt)]ρt, ∇̂µt−1
fi(xt−1) = d

µt−1
[f(x + µt−1ρt) − f(xt−1)]ρt, where both estimators use the

same random direction ρt sapled from unit Euclidean sphere USp
but different smoothing parameters

µt and µt−1, we have:

∥∇̂µt
f(xt)− ∇̂µt−1

f(xt−1)∥2 ≤ 3

2
(∆2

t +∆2
t−1) + 3dL2∥xt − xt−1∥2.

Proof.

E
[
∥∇̂µt

f(xt)− ∇̂µt−1
f(xt)∥2

]
= d2E

[∥∥∥∥ ρtµt

[
f(xt + µtρt)− f(xt)− ⟨∇f(xt), ρt⟩

]
ρt − ρt

µt−1

[
f(xt−1 + µt−1ρt)− f(xt−1)− ⟨∇f(xt−1), ρt⟩

]
ρt

+
(
⟨∇f(xt), ρt⟩ρt − ⟨∇f(xt−1), ρt⟩ρt

)∥∥∥∥2
]

≤ d2
(
3L2

2
(µ2

t + µ2
t−1) + E

[
3∥⟨∇f(xt), ρt⟩ρt − ⟨∇f(xt−1), ρt⟩ρt∥2

])
= d2

(
3L2

2
(µ2

t + µ2
t−1) + E

[
3∥⟨∇f(xt−1)−∇f(xt), ρt⟩∥2

])
(∥ρt∥2 = 1)

≤ d2
(
3L2

2
(µ2

t + µ2
t−1) + E

[
3

d
∥∇f(xt−1)−∇f(xt)∥2

])
(E[ρtρTt ] =

1

d
Id (Ji et al., 2019))

≤ 3

2
(∆2

t +∆2
t−1) + 3dL2∥xt − xt−1∥2.

Lemma D.3. Under assumptions 1 and 2, we can derive the following result for Algorithm 2

E[
T−1∑
t=0

∥vt∥2] ≤ ϕ(T ) + 1.

where ϕ(T ) := 6dL2n1.5

c2 T + 4dL2T 3

n c2 + 4dnT ∥∇f (x0)∥2 + (6n2 + 2)
∑T−1

t=0 ∆
2
t − 1. Similar to

the coordwise method, the notation ϕ(T ) is introduced only for brevity, and will be repeatedly used
in the subsequent analysis.

Proof.

E ∥vt∥2 =

∥∥∥∥∥
t∑

s=t−t mod n+1

(
∇̂µs

fis (xs)− ∇̂µs−1
fis (xs−1)

)
+ ∇̂µt−t mod n

f (xt−t mod n)

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥
t∑

s=t−t mod n+1

∇̂µs
fis (xs)− ∇̂µs−1

fis (xs−1)

∥∥∥∥∥
2

+ 2E
∥∥∥∇̂µt−t mod n

f (xt−t mod n)
∥∥∥2

≤ 2nE
t∑

s=t−t mod n+1

∥∥∥∇̂µsfis (xs)− ∇̂µs−1fis (xs−1)
∥∥∥2 + 2E

∥∥∥∇̂µt−t mod n
f (xt−t mod n)

∥∥∥2
lemD.2
≤ 6n

t∑
s=t−t mod n+1

[dL2 (xs − xs−1)
2
+

1

2
(∆2

s +∆2
s−1)] + 2E

∥∥∥∇̂µt−t mod n
f (xt−t mod n)

∥∥∥2
≤ 6dL2n2

c2
+ 3n

t∑
s=t−t mod n+1

(∆2
s +∆2

s−1) + 2E
∥∥∥∇̂µt−t mod n

f (xt−t mod n)
∥∥∥2 ,

from lemma D.1:
Eρ∼USp

[
∥∇̂µt

f(x)∥2
]
≤ 2d∥∇f(x)∥2 +∆2

t .
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Next, we bound ∥∇f(x)∥ bellow:

∥∇f(xt)∥ = ∥∇f(xt)−∇f(x0) +∇f(x0)∥
≤ ∥∇f(xt)−∇f(x0)∥+ ∥∇f(x0)∥
≤ L∥xt − x0∥+ ∥∇f(x0)∥
≤ L∥xt − xt−1∥+ L∥xt−1 − x0∥+ ∥∇f(x0)∥

≤ L

t∑
i=1

∥xi − xi−1∥+ ∥∇f(x0)∥

≤ Lt

c
√
n
+ ∥∇f(x0)∥.

Combine the above results, we have:

E[
T−1∑
t=0

∥vt∥2] ≤
T−1∑
t=0

(
6L2n

c2
+ 3n

t∑
s=t−t mod n+1

(∆2
s +∆2

s−1) + E[2
∥∥∥∇̂fµ (xt−t mod n)

∥∥∥2])

≤ 6dTL2n

c2
+ 2d

T−1∑
t=0

∥∇f (xt)∥2 + 3n

T−1∑
t=0

t∑
s=t−t mod n+1

(∆2
s +∆2

s−1) + 2

T−1∑
t=0

∆2
t

≤ 6L2dn

c2
T + 2d

T−1∑
t=0

(
Lt√
nc

+ ∥∇f (x0)∥
)2

+ (6n2 + 2)

T−1∑
t=0

∆2
t

≤ 6dL2n

c2
T +

4dL2T 3

n
c2 + 4dnT ∥∇f (x0)∥2 + (6n2 + 2)

T−1∑
t=0

∆2
t .

Similar to the coordwise method, we define ϕ(T ) := 6dL2n1.5

c2 T + 4dL2T 3

n c2 + 4dnT ∥∇f (x0)∥2 +
(6n2 + 2)

∑T−1
t=0 ∆

2
t − 1 to simplify the resulting expressions.

D.1 PART I

Lemma D.4 (part I(1)). Under assumptions 1 and 2, we can derive the following result for Algorithm
2

E

[
T−1∑
t=0

∥vt∥

]
≤ n1/4

√
T

(
2∆c+ 1 +

L

c
log(ϕ(T )) + c · E

[
T−1∑
t=0

γt∥∇f(xt)− vt∥2
])

Proof.

E [f(xt+1) | Ft] ≤ E
[
f(xt) +∇f(xt)T (xt+1 − xt) +

L

2
∥xt − xt+1∥2 | Ft

]
= E

[
f(xt)− γtv

T
t ∇f(xt) +

L

2
γ2t ∥vt∥2 | Ft

]
≤ E

[
f(xt) + 2γt∥vt −∇f(xt)∥2 −

γt
2
(1− Lγt)∥vt∥2 | Ft

]
,

which leads to:

E
[
γt · ∥vt∥2

]
≤ 2E [f(xt)− f(xt+1)] + E

[
Lγ2t · ∥vt∥2

]
+ 2c · E

[
γt · ∥∇f(xt)− vt∥2

]
.

By summing from t = 0 to T − 1 we get:

T−1∑
t=0

E
[
γt · ∥vt∥2

]
≤ 2∆ + E

[
T−1∑
t=0

Lγ2t · ∥vt∥2
]
+ E

[
T−1∑
t=0

2γt · ∥∇f(xt)− vt∥2
]
.
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Recall that γt = n−1/4c−1
(
n1/2 +

∑t
s=0 ∥vs∥2

)−1/2

:

E

[
T−1∑
t=0

γt · ∥vt∥2
]
≤ 2∆ +

L

c2
· E

[
T−1∑
t=0

∥vt∥2√
n+

∑t
s=0 ∥vs∥2

]
+ E

[
T−1∑
t=0

γt · ∥∇f(xt)− vt∥2
]

≤ 2∆ +
L√
nc2

log(ϕ(T )) + E

[
T−1∑
t=0

γt · ∥∇f(xt)− vt∥2
]
.

Lower bounding the right-hand side:

E

[
T−1∑
t=0

γt · ∥vt∥2
]
≥ E

 ∑T−1
t=0 ∥vt∥2

n1/4c
√
n1/2 +

∑T−1
t=0 ∥vt∥2


≥ 1

c
· E

 ∑T−1
t=0 ∥vt∥2/

√
n√

1 +
∑T−1

t=0 ∥vt∥2/
√
n


≥ 1

c
· E

[
T−1∑
t=0

∥vt∥2/
√
n

]
− 1

≥ 1

cn1/4
√
T
E

[
T−1∑
t=0

∥vt∥

]
− 1

c
.

Combining all results:

E

[
T−1∑
t=0

∥vt∥

]
≤ n1/4

√
T

(
2∆c+ 1 +

L

c
√
n
log(ϕ(T )) + c · E

[
T−1∑
t=0

γt∥∇f(xt)− vt∥2
])

.

Lemma D.5 (part I(2)). Under assumptions 1 and 2, we can derive the following result for Algorithm
2

E

[
T−1∑
t=0

γt · ∥vt −∇f(xt)∥2
]
≤6dL2

c3
log(ϕ(T )) +

T−1∑
t=0

(3n+ 8)nγt∆
2
t .

Proof. Let Ft be the sigma-algebra generated by {i0, . . . , it} and x0. From the definition of γt, it
follows that γt ≤ γt−1; this condition is imposed to resolve measurability concerns. Consequently,

E
[
γt∥vt −∇f(xt)∥2 | Ft−1

]
≤ E

[
γt−1 · ∥vt −∇f(xt)∥2 | Ft−1

]
,

Hence, our analysis can be reduced to studying E
[
γt−1∥vt −∇f(xt)∥2 | Ft−1

]
.

E
[
γt−1∥vt −∇f(xt)∥2 | Ft−1

]
≤ 2E

[
γt−1∥vt −∇fµt(xt)∥2 | Ft−1

]
+ 2E

[
γt−1∥∇f(xt)−∇fµt(xt)∥2 | Ft−1

]
.
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As established in Lemma D.1, the second term can be bounded by 4γt−1∆
2
t . In the following, we

focus on the analysis of the first term.

E
[
γt−1∥vt −∇fµt

(xt)∥2 | Ft−1
]

= γt−1E
[
∥∇̂µt

fit(xt)− ∇̂µt−1
fit(xt−1)−∇fµt

(xt) +∇fµt−1
(xt−1) + (vt−1 −∇fµt−1

(xt−1))∥2 | Ft−1

]
= γt−1E

[
∥∇̂µt

fit(xt)− ∇̂µt−1
fit(xt−1)−∇fµt−1

(xt−1) + (vt−1 −∇fµt−1
(xt−1)∥2) | Ft−1

]
+ γt−1E

[
∥vt−1 −∇f(xt−1)∥2 | Ft−1

]
≤ γt−1E

[
∥∇̂µtfit(xt)− ∇̂µt−1fit(xt−1)∥2 | Ft−1

]
+ γt−1E

[
∥vt−1 −∇fµt−1(xt−1)∥2 | Ft−1

]
LemD.2

≤ 3dL2γt−1E
[
∥xt − xt−1∥2 | Ft−1

]
+ γt−1E

[
∥vt−1 −∇fµt−1

(xt−1)∥2 | Ft−1
]
+

3γt−1
2

(∆2
t +∆2

t−1)

= 3dL2γ3t−1E
[
∥vt−1∥2 | Ft−1

]
+ γt−1E

[
∥vt−1 −∇fµt−1

(xt−1)∥2 | Ft−1
]
+

3γt−1
2

(∆2
t +∆2

t−1).

(4)

We obtain the following by first conditioning on all randomness up to round t, and then taking the
total expectation:

E
[
γt∥vt −∇fµt(xt)∥2

]
≤ E

[
γt−1∥vt−1 −∇fµt−1(xt−1)∥2

]
+3dL2E

[
γ3t−1∥vt−1∥2

]
+
3γt−1
2

(∆2
t+∆2

t−1).

Since E
[
γt · ∥vt −∇fµt

(xt)∥2
]
≤ γt−1E

[
∥vt −∇fµt

(xt)∥2
]
= 0 whenever t mod n = 0, it

follows that

E
[
γt · ∥vt −∇fµt(xt)∥2

]
≤ E

[
t−1∑

s=t−t mod n

3dL2γ3s∥vs∥2 +
3γs
2

(∆2
s +∆2

s+1)

]
.

Combine the above results we obtain:

E
[
γt−1∥vt −∇f(xt)∥2 | Ft−1

]
lemD.1
≤ 2E

[
γt−1∥vt −∇fµt

(xt)∥2 | Ft−1
]
+ 2E

[
γt−1∥∇f(xt)−∇fµt

(xt)∥2 | Ft−1
]

≤ E

[
t−1∑

s=t−t mod n

6dL2γ3s∥vs∥2 + 3γs−1(∆
2
s +∆2

s+1)

]
+ 8γt−1∆

2
t ,

summing over t from 0 to t−1 we get that

E

[
T−1∑
t=0

γt · ∥vt −∇f(xt)∥2
]
≤ E

[
T−1∑
t=0

6dL2nγ3t ∥vt∥2 + (3n+ 8)γt∆
2
t

]
.

Observe that the first term can be bounded by the following terms:

E

[
T−1∑
t=0

γ3t ∥vt∥2
]

=
1

c3
E

[
T−1∑
t=0

1

n1/2 +
∑t

s=0 ∥vs∥2
· ∥vt∥2

n1/2 +
∑t

s=0 ∥vs∥2

]

≤ 1

c3n
E

[
T−1∑
t=0

1

n3/4
√
n1/2

· ∥vt∥2

n1/2 +
∑t

s=0 ∥vs∥2

]

≤ 1

c3n
· E

[
T−1∑
t=0

∥vt∥2

1 +
∑t

s=0 ∥vs∥2

]

≤ 1

c3n
log(ϕ(T )),
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where the fourth inequality follows by Lemma B.7 and Lemma D.3.

Finally we obtain

E

[
T−1∑
t=0

γt · ∥vt −∇f(xt)∥2
]
≤6dL2

c3
log(ϕ(T )) +

T−1∑
t=0

(3n+ 8)nγt∆
2
t .

D.2 PART II

Lemma D.6. Under assumptions 1 and 2, we can derive the following result for Algorithm 2

1

T
E

[
T−1∑
t=0

∥vt −∇fµt
(xt)∥

]
≤ 6

√
dLn1/4

c
√
T

log(ϕ(T )) +
1√
T

√√√√(3n+ 8)

T−1∑
t=0

2∆2
t .

Proof.

E

[
T−1∑
t=0

∥vt −∇fµt(xt)∥

]
≤

√
T ·

√√√√E

[
T−1∑
t=0

∥vt −∇fµt
(xt))∥2

]
,

where the inequality follows by the fact that ∥
∑T−1

t=0 yt∥2 ≤ T ·
∑T−1

t=0 ∥yt∥2. For the same reason
with equation 4, we obtain:

E
[
∥vt −∇fµt(xt)∥2

]
≤ E

[
t−1∑

s=t−t mod n

6dL2γ2s∥vs∥2 + 3(∆2
s +∆2

s+1)

]
+ 8∆2

t ,

by a telescoping summation over t we get that

T−1∑
t=0

E
[
∥vt −∇fµt(xt)∥2

]
≤ E

[
T−1∑
t=0

6dL2nγ2t ∥vt∥2 + (3n+ 8)∆2
t

]
.

Using the step-size selection γt we can provide a bound on the total variance E
[
∥vt −∇fµt

(xt)∥2
]
:

T−1∑
t=0

E
[
∥vt −∇fµt

(xt)∥2
]

≤ 6dL2n · E

[
T−1∑
t=0

γ2t ∥vt∥2
]
+ (3n+ 8)

T−1∑
t=0

2∆2
t

=
6dL2

√
n

c2
· E

[
T−1∑
t=0

∥vt∥2√
n+

∑t
s=0 ∥vs∥2

]
+ (3n+ 8)

T−1∑
t=0

∆2
t

≤ 6dL2
√
n

c2
log

(
1 + E

[
T−1∑
t=0

∥vt∥2
])

+ (3n+ 8)

T−1∑
t=0

∆2
t

≤ 6dL2
√
n

c2
log(ϕ(T )) + (3n+ 8)

T−1∑
t=0

2∆2
t ,

where last inequality follows by Lemma B.7 and Lemma D.3. Putting everything together we get

1

T
E

[
T−1∑
t=0

∥vt −∇fµt(xt)∥

]
≤ 6

√
dLn1/4

c
√
T

log(ϕ(T )) +
1√
T

√√√√(3n+ 8)

T−1∑
t=0

2∆2
t .
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D.3 PART III∑T−1
t=0 ∥∇fµt

(x)−∇f(xt)∥ ≤ 1
T

∑T−1
t=0 ∆t

D.4 FINAL PROOF FOR THE RANDOM-DIRECTION ESTIMATOR

Theorem D.1. Under assumptions 1 and 2, based on the previous lemmas D.4, D.5, D.6, we can
derive the following result for Algorithm 2:

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
n1/4√
T

(
∆ · c+ 1 + (

L
√
d

cn
3
4

+
L2d

c2
) log(ϕ(T )) +

L2π2

24n
1
4

+
L

n
1
4

√
π2

24
+
L2π2

12
+
L

2

)
,

setting c =
√
d, we obtain T = Õ(d

√
nϵ−2), where the Õ notation hides logarithmic factors.

Proof.

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
1

T
[

T−1∑
t=0

E[∥vt∥]︸ ︷︷ ︸
part I

+

T−1∑
t=0

E[∥vt −∇fµt
(x)∥]︸ ︷︷ ︸

part II

+

T−1∑
t=0

∥∇fµt
(x)−∇f(xt)︸ ︷︷ ︸

part III

∥]

≤ n1/4√
T

(
2∆ · c+ 1 + (

L
√
d

cn
3
4

+
dL2

c2
) log(ϕ(T ))

)

+
1

T
(2c

T−1∑
t=0

γt∆
2
t +

T−1∑
t=0

∆t) +
1√
T

n 5
4

T−1∑
t=0

cγt∆
2
t + n

1
2

√√√√T−1∑
t=0

2∆2
t

 ,

take ∆t =
L

2
√
n(t+1)

i.e.(µt =
1

d
√
n(t+1)

) , from we obtain:

T−1∑
t=0

∆t ≤
LlnT

2
√
n
.

T−1∑
t=0

∆2
t <

L2π2

24n
.

combing the above results we obtain:

1

T
E[

T−1∑
t=0

∥∇f(xt)∥] ≤
n1/4√
T

(
∆ · c+ 1 + (

L
√
d

cn
3
4

+
L2d

c2
) log(ϕ(T )) +

L2π2

24n
1
4

+
L

n
1
4

√
π2

24
+
L2π2

12
+
L

2

)
,

setting c =
√
d, we obtain T = Õ(d

√
nϵ−2), where the Õ notation hides logarithmic factors.

E HYPERPARAMETERS DETAILS

E.1 PHASE RETRIEVAL

We choose the problem dimension to be d = 100 and the sample size to be n = 3000. The
measurement vectors ar ∈ Rd and the true parameter z ∈ Rd are generated element-wise from
a Gaussian distribution N (0, 0.5). For the initialization, z0 ∈ Rd is drawn element-wise from
N (5, 0.5). The measurements are then constructed as yi = |aTr z|2 +mi for i = 1, . . . , n, where the
noise term mi is sampled from N (0, 42), representing additive Gaussian noise.

We set the parameters for ZO-SGD with a learning rate of γ = 2× 10−8 and a batch size of
√
n. For

ZO-SPIDER-coord and ZO-SPIDER-rand, we set the learning rate to γ = 10−7, the epoch size to
q = n, and the batch sizes to B = n and B′ = 1. For the proposed PF-VRZO method, we similarly
set the epoch size to q = n, and choose B = n and B′ = 1 for both the coord and random-direction
estimators.
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E.2 DRO

We set the parameters for ZO-SGD with a learning rate γ = 1× 10−8 and a batch size of
√
n. For

ZO-SPIDER-coord and ZO-SPIDER-rand, the learning rates are set to γ = 10−6 and γ = 10−8,
respectively. Both methods use an epoch size of q =

√
n, with batch sizes B = n and B′ =

√
n.

For the proposed PF-VRZO method, we also set the epoch size to q =
√
n, and choose B = n and

B′ =
√
n for both the coord and random-direction estimators. We remark that the setting q = n,

B = n, and B′ = 1 is also valid, although it yields slightly worse empirical performance in this
experiment.

E.3 A SMALL EXPERIMENT TO VERIFY THE EFFECTIVENESS OF THE ADAPTIVE SMOOTHING
PARAMETER

This is a small experiment designed to demonstrate the effectiveness of our adaptive smoothing
parameter. We conducted an ablation experiment (placed at the end of the appendix due to page
limits) based on the Nonconvex Phase Retrieval setup in the main text. We compare the following four
variants: 1. Original ZO-SPIDER, using step size γ = 0.001 and µ = 1. 2. ZO-SPIDER-adastep,
adaptive step size but fixed µ = 1. 3. ZO-SPIDER-adastep, adaptive step size but fixed µ = 0.5. 4.
Our parameter-free PF-VRZO (adaptive step size + adaptive µt).

(a) Comparison of four algorithms: The original ZO-
SPIDER (red curve) exhibits severe divergence (func-
tion value exceeds 600), which obscures the perfor-
mance of the other three algorithms (with smaller
function values).

(b) Zoomed view of the region where f(z) < 10 in
(a): This magnification clarifies the convergence be-
haviors of the three algorithms with smaller function
values, while our PF-VRZO (blue curve) achieves
full optimization.

Figure 4: The original ZO-SPIDER (Group 1) diverges drastically under this parameter setting, with
function values surging beyond 600. - Groups 2 and 3 (ZO-SPIDER-adastep) outperform Group 1,
yet their function values stagnate (plateauing around 4 and 2, respectively) and fail to decrease further.
This aligns with our theoretical analysis: since the fixed µ does not diminish with T , estimator noise
accumulates to a point that halts progress. - The µ = 0.5 variant plateaus later than µ = 1—a result
consistent with the observation that a smaller fixed µ delays (but does not resolve) the stagnation
issue.Our PF-VRZO (Group 4), which employs an adaptive µt, achieves complete optimization
successfully.

From the experimental results, we highlight: 1. Adaptive step sizes generally improve convergence
behavior. 2. Our adaptive smoothing parameter µt works synergistically with adaptive step sizes.
From our theoretical analysis, a fixed µ cannot shrink as T grows, so the zeroth-order estimator noise
eventually fails to meet the increasingly stringent accuracy requirement in later stages of training,
causing the algorithm to stall. In contrast, our adaptive µt avoids this issue by design and ensures
stable convergence.

f(x̄t)− f(x∗) ≤
1∑t−1

k=0 r̄k

t−1∑
k=0

r̄k(f(xk)− f(x∗)).
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