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ABSTRACT

Zeroth-order optimization has become a vital tool for solving black-box learning
problems where explicit gradients are unavailable. However, standard zeroth-order
methods typically require careful tuning of algorithmic parameters such as the
smoothing parameter and step size, which limits their practicality. In this paper,
we propose PF-VRZO(Parameter free variance reduced zeroth-order methods),
a novel parameter-free variance-reduced zeroth-order optimization framework
for nonconvex finite-sum problems. Our method only requires minimal input
information—problem dimension d and sample size n—and adaptively adjusts the
smoothing and step size parameters during the optimization process. We develop
two algorithmic variants based on coordinate-wise and random-direction gradient
estimators, respectively. We establish non-asymptotic convergence guarantees

showing that PF-VRZO achieves function query complexity of O(d+/ne=?) for
finding stationary points. Additionally, we conduct experiments on nonconvex
phase retrieval and distributional robust optimization to validate the effectiveness
of our method. To the best of our knowledge, PF-VRZO is the first parameter-free
zeroth-order algorithm that incorporates variance reduction techniques tailored
specifically for nonconvex optimization problems.

1 INTRODUCTION

In the paper, we consider solving the following stochastic nonconvex finite-sum optimization prob-
lems. f : R - R

1 n
L _1 i |
minimize f(z) =~ ; fi(z) (D
where f(z) and each f;(x) are both smooth and possibly nonconvex functions, which captures the
standard empirical risk minimization problems in machine learning.

In many important applications, computing explicit gradients is either computationally expensive
or infeasible, and only function evaluations are available. Such applications include black-box
adversarial attacks on deep neural networks (DNNs) (Papernot et al., 2017; Chen et al., 2017),
reinforcement learning (Malik et al., 2018; Kumar et al., 2020), and fine-tuning large-scale models
(Malladi et al., 2023). Zeroth-order optimization has thus emerged as a fundamental research direction
(Ghadimi & Lan, 2013; Liu et al., 2018b;a; Ji et al., 2019; Lian et al., 2016; Gu et al., 2018), serving
as a prototype framework for a wide range of these gradient-free learning tasks. However, a common
drawback of standard zeroth-order methods is the introduction of an additional smoothing parameter
w. As illustrated in Figure 1, improper tuning of this parameter in practice can lead to suboptimal
performance, or even cause the algorithm to diverge.

On the other hand, recent years have seen a growing body of work on parameter-free algorithms(Ivgi
et al., 2023; Kreisler et al., 2024; Orabona & Tommasi, 2017; Chen et al., 2022; Defazio &
Mishchenko, 2023), particularly in the first-order setting. Several studies have demonstrated that such
methods can achieve convergence rates comparable to those of parameter-dependent algorithms, even
under nonconvex conditions. We define a parameter-free method as one that does not require prior
knowledge of problem-specific parameters such as the smoothness constant L, the target accuracy e,
or the total number of iterations 7. This is particularly important in practical applications, where such
information is typically unavailable—for example, it is often unclear how many iterations are needed,
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or how small the gradient or objective value should be for the model to be considered good enough.
Our expectation for a parameter-free algorithm is that it can be executed with only minimal and
readily available inputs, such as the sample size n and the problem dimension d, and run continuously
until the model reaches a desirable state—such as sufficiently high test accuracy or low generalization
error.

Although recent works have achieved satisfactory theoretical progress for first-order algorithms,
research on zeroth-order counterparts remains quite limited. It was not until recently that Ren &
Luo (2025) proposed the first parameter-free zeroth-order algorithm. Unfortunately, the theoretical
guarantee of this method holds only under the assumption that the objective function f(z) is convex
and defined over a bounded domain. As acknowledged by the authors, extending this result to the
nonconvex setting is nontrivial.

Q1. When zeroth-order optimization meets adaptive methods, how does the error introduced
by inexact gradient estimation accumulate throughout the optimization process, and is such
error controllable? Can we design an adaptive algorithm that keeps this error within an
acceptable range?

Al:Based on our results, after T iterations, the accumulated error is approximately O[ (Zt o uZ +

VT

dition Zt:_(l) we < OWT), Zt o 117 < O(1) holds; otherwise, the algorithm may diverge. This
observation reveals that the error grows with 7. A natural idea, therefore, is to let the smoothing
parameter y depend on 7, which would directly guarantee ZtT;(l) e < OWT), Zt 0 L2 < o).
However, this approach conflicts with our goal of designing a parameter-free algorithm, since the
required number of iterations 7" is unknown in advance. To overcome this difficulty while preserving

the parameter-free property, we introduce a smart adaptive parameter (; = m which evolves

automatically during the optimization process to enforce ZtT;(l) w < OVT), Zt W HE<O(1),
without the need for any manually tuned parameters.

Z o D) + = (n4 Zt:_O w4 nz t:_O 2@%)]. To ensure convergence, it is crucial that con-

Q2:Would the smoothing parameters p that vary with ¢, as discussed above, conflict with
the proof techniques of variance reduction methods? Taking the Spider estimator v¢ =
Vfi, (2%) = V fi, (2'71) + v*~! as an example, can we directly replace the terms V f;, (z?)
and Vf;, (z'~1) in the Spider estimator with the zeroth-order estimators V,, f;, (z;) and
\Y s fi, (x1—1)? Moreover, can these two zeroth-order estimators be computed directly using

the adaptive smoothing parameter 1 = s = pr = m?

A2: We found that directly using the smoothing parameters mentioned above in gradient es-
timation within variance-reduced methods does not work. This is because the convergence
proofs for variance reduction often rely on the recursive relation E|v;, — V,, f(z:)||? <
E|lvi—1 — VM L f (x4-1)||* + (additional terms) holding exactly. To ensure this recursive relation,

E[V,, fi,(xt) = Vo fi(xe-1)] = Vo, f(2) — Vi, f(@4-1) is required. Therefore, simply settmg
w1 = o = (t+1)\/ﬁ does not suffice; a slight modification is needed, where we set ;1 = (t+1)f

_ 1
and pg = OICT

By addressing the aforementioned challenges, this paper introduces the Parameter-Free Variance-
Reduced Zeroth-Order (PF-VRZO) method, a novel approach that combines the strengths of adaptive
algorithms with variance reduction techniques. Our method eliminates the need for manual parameter
tuning by adaptively adjusting the smoothing parameter and step size during the optimization process.
Specifically, we propose two variants of PF-VRZO: one based on coordinate-wise gradient estimators
and another leveraging random-direction estimators.
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Table 1: Convergence property comparison of the PF-VRZO algorithms for finding an e-stationary
point.C, NC, S, and NS denote convex, nonconvex, smooth, and non-smooth settings, respectively.
VR indicates whether the method is compatible with variance reduction techniques. ¢ denotes an
upper bound on the variance of stochastic gradients, and D, represents the diameter of the domain.
The term “complexity” refers to function query complexity. Here, 7, denotes the step size, p; the
smoothing parameter, c a generic constant, and 7" the total number of iteration rounds. g, refers to the
zeroth-order gradient estimator, while v, denotes the SPIDER estimator.*denotes deterministic case

Method Problem | VR? | Param-free? | Complexity 0t m
POEM (Ren & Luo) CNS | X v O(de2D,) mlmecll Love Uz —soll}
=0
JAGUAR (Veprikov et al.) NC-S v X *O(de?) P O(75)
Z0-SGD (Ghadimi & Lan) NC-S X X O0(0%c¢ ™) | o(ggmin{;=, ~=1) o(75%)
ZO-SPIDER-rand (Fang etal.) | NC-S v X O(dy/ne?%) min{m, £} o(:57)
ZO-SPIDER-coord(Ji et al.) NC-S v X O(dy/ne=?) ﬁ ;dL
—2 1 1
PF-VRZO-coord (Theorem 1) | NC-S v v O(dy/ne?) N eSS TAE) v
—2 I T
PF-VRZO-rand (Theorem2) | NC-S | ¢ v O(dVie™) | e e

The key contributions of this work are as follows:

* A Parameter-Free Zeroth-Order Framework: We propose PF-VRZO, the first parameter-
free zeroth-order optimization method for nonconvex finite-sum problems. It requires only
minimal inputs—sample size n and dimension d, without relying on problem-dependent
parameters such as the smoothness constant or iteration count.

* Variance Reduction with Adaptive Gradient Estimation: PF-VRZO incorporates vari-
ance reduction into both coordinate-wise and random-direction zeroth-order estimators,
with adaptive adjustment of smoothing parameters and step sizes, eliminating the need for
manual tuning.

* Theoretical and Empirical Validation: We provide convergence guarantees showing that

PF-VRZO achieves a function query complexity O(d/ne2). Experiments on nonconvex
phase retrieval and distributional robust optimization confirm its comparable performance
compared to existing tuned methods.

2 PRELIMINARIES

Remark 1. By “param-free,” we mean that the method does not require any tunable hyperparame-
ters—no manual adjustment is needed. The algorithm only depends on the dataset size n and the
model dimension d, both of which are inherent to the problem setup and readily available before
running the optimization.

Notation Throughout the paper, || - || denotes the Euclidean norm for vectors, O hide the logarithmic
factors, and (-, -) denotes the inner product. We denote by d the dimension of the problem, and by n
the number of functions in the optimization problem. We use f;(z) to denote the i-th sample function

of f(z).
Definition 1 (Smoothness). A function f : R — R is L-smooth if there exists L > 0 such that for
all x,y € R4:

F) < F@) + (VS ()y — ) + 2y —
Assumption 1 (Lipschitz Gradient). Each function f; : R® — R is L-smooth such that
IVfi(x) = Vi) < Lix -y
Assumption 2 (Boundedness). Let f : R¢ — R be bounded from below by a finite constant f*, i.e.,
flzo) = f* < A
for the initial solution x.
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3  PROPOSED PARAMETER FREE VARIANCE REDUCED ZEROTH-ORDER
METHODS

PF-VRZO(coord) method integrates variance reduction with zeroth-order gradient estimation in a
parameter-free manner. This adaptive structure ensures stable updates and effective convergence,
even in nonconvex settings.

To set the stage for our proposed PF-VRZO algorithm, we first review the fundamentals of zeroth-
order optimization, followed by a summary of the main techniques introduced in this paper.

3.1 ZEROTH-ORDER GRADIENT ESTIMATORS

When the gradient of f () is not directly obtainable, it is often estimated via coordinate-wise methods
or Gaussian smoothing (Duchi et al., 2015; Gasnikov et al., 2023; Kornowski & Shamir, 2024; Lin
et al., 2022). In what follows, we first describe the coordinate-wise estimator:
_ 41 .
V. f(x):= Z M [f (x + pee) — f (z)] ey, (Coord estimator)
=1
where e; is a standard basis vector with 1 at its ["* coordinate, and Os elsewhere. The error of the

coordinate-wise gradient estimator is upper bounded as follows, and it approaches zero as p — 0
(Gao et al., 2018).

llh

Besides the coordinate-wise estimator, the random-direction estimator is another widely used zeroth-
order method, before introduce random-direction estimator, we first introduce smoothing function
Ju(®) = Egynv,y [f (2 + pw)], where Uy is a uniform distribution over the unit Euclidean ball,

following Gao et al. (2018), its gradient can be expressed as V f,,(x) := E{pNUs } %f(:v + pp)p| -

Here U S, is a uniform distribution over the unit Euclidean sphere, and p € R4 is a random vector
sampled from unit Euclidean sphere Ug,. Now we can define zeroth-order random-direction estimator

V f(z) as follows, which is an unbiased estimator of V f,, (z):
A d
Vuf(x) = —[f(z+ pp) — f(x)]p. (Random-direction estimator)
i

Random-direction estimator is an unbiased estimate of the gradient of the smoothing function , i.e,
E[Vuf(ﬂf)] = vfu(x)

Both of the aforementioned zeroth-order estimators rely on a fixed smoothing parameter p, whose
improper tuning may lead to substantially degraded performance, ranging from slow convergence to
divergence (Figure 1). To overcome this limitation, we develop a framework that integrates three key
components: variance reduction, adaptive stepsize, and adaptive smoothing parameter. The latter two,
in particular, set our method apart from existing approaches and enable new convergence guarantees.

3.2  VARIANCE REDUCTION TECHNIQUE

As a celebrated technique in stochastic optimization, variance reduction has been instrumental in the
development of algorithms with significantly reduced theoretical complexity, SPIDER(Fang et al.,
2018) is a variance reduction-typed method with optimal complexity guarantee, which uses large
batch and small batch alternately to estimate stochastic gradients in a recursive way as follows:

v =Vfp (x') = Vfp (x") +v"", (SPIDER)
with clipped step size n; = min{ey, ﬁ} , where ¢, co are some constants, and V fg(z) =
I%\ > ¢cp Vf(z) with a small batch size B.

3.3 ADAPTIVE STEPSIZE

The step size y; in PF-VRZO is chosen in a parameter-free and adaptive manner. Specifically, it is set
as:
1

ni/icy /2 £ 50 o2

Yt =

4
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We set ¢ = 1 when using the coordinate-wise estimator and ¢ = v/d when using the random-direction
estimator. This design avoids reliance on unknown constants such as the Lipschitz constant or desired
accuracy. By incorporating the accumulated gradient norms, the step size automatically decays,
which helps balance exploration and convergence.

3.4 ADAPTIVE SMOOTHING PARAMETER

In PF-VRZO, the smoothing parameter pi; plays a critical role in estimating gradients via zeroth-order
information. Unlike traditional methods that fix p based on prior knowledge of the target accuracy €
or total iterations T', PF-VRZO adaptively sets:

1 1
R TNy A A (NP

which decreases over time. This schedule ensures that early iterations benefit from smoother approxi-
mations for stability, while later iterations use finer estimates for improved accuracy. The adaptive
design of y; eliminates the need for manual tuning and allows the algorithm to adjust automatically
throughout the optimization process.

(Random)

3.5 PARAMETER-FREE VARIANCE REDUCED ZEROTH-ORDER METHOD(COORDWISE)

Algorithm 1 PF-VRZO(coord)

Set ¢ = 1 for coordwise estimator, .3 = .
fort =0toT—1do
_ 1
Compute p; = D vd
if £ mod n = 0 then
vy = V,, f(2+) {Full zeroth-order gradient computation }
else
Uniformly sample i, € {1,...,n}
Compute Vo fis (thwith peand V,, | fi, () with i .
U = v,ut fit (lt) - v,ut—l fif, (1’,571) + Vg
end if )

Tt =
ni/dey/(n1/2 4 0 flud]?)
Tl = T — VUt
end for

Explanation of Algorithm 1: For the constant ¢, we set ¢ = 1 in this algorithm (which uses
the coord estimator) and ¢ = V/d in the algorithm with the rand estimator. At each iteration, the
algorithm adaptively adjusts the smoothing parameter u; = 1/(¢ + 1)\/@, allowing finer gradient
estimates as optimization progresses. Every n iterations, a full zeroth-order gradient is computed as
mentioned in Coord estimator. For the remaining steps, a variance-reduced estimator v; is constructed
by combining the current and previous stochastic gradient estimates with v,_;. The step size ; is
also adaptively computed based on the historical norm of the gradient estimates, eliminating the need
for manual tuning.

To establish the convergence of our method, we divide the analysis into three parts.

fEZHszt 1< ZE\vf||+ZE\Uf V(@) ||+Z||vmfxt — V() |-

partI part IT part ITT

For each of these parts, we now present the corresponding lemmas (the detailed proofs can be found

in Appendix C). Let §; := fé: £t denote the error coefficient of the zeroth-order estimator. Then, we
can derive the following results for Algorithm 1. First, we introduce a preliminary bound that will be
repeatedly used in the subsequent analysis. The following lemma provides a bound that is frequently
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A1l Algorithm Results (including Divergence)

S 3000+ 8.2
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—=— ZOSPIDER-rand (u=0.5)
8.0 —— ZOSPIDER-rand (u=0.1)
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s
7.9 ZOSPIDER-rand (u=0.001)
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—— e NPT e
N I =
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—e— ZOSPIDER-rand (y=0.5) ZOSPIDER-rand (y=0.0001) 0.0 0.5 1.0 15 2.0 25 3.0
—+— ZOSPIDER-rand (y=0.01) Sample Complexity le6

(a) Improperly Tuned stepsize (b) Improperly Tuned smoothing parameter

Figure 1: This figure demonstrates the detrimental effects of improper parameter tuning on the
optimization process through two subfigures. In (a), an improperly tuned stepsize leads to phenomena
such as erratic fluctuations (e.g., the red curve in the upper subplot of (a)) and even non-convergence,
while properly tuned stepsizes enable stable convergence (lower subplot of (a)). In (b), an improperly
tuned smoothing parameter (e.g., ;4 = 1 in the red curve) causes the optimization process to fail to
converge, whereas appropriately tuned values (e.g., 4 = 0.0001) allow for effective convergence.
Collectively, these results indicate that improperly tuned parameters can severely impair the optimiza-
tion process, and in severe cases, even lead to non-convergence.

used in the proof. Although it may seem somewhat large, there is no need to worry because it will
appear in logarithmic form in the proof.

Lemma 1. Under assumptions 1 and 2, we have

-1
> llul? < ®(T) + 1.
t=0

where ®(T) := TLA™ 4 (3902 4 6) 10 67 + LT 4 6T |V £ (x0)||” — 1.

Next, we provide an upper bound for each part separately.To facilitate the analysis, we transform
the problem of the average gradient into two components: the gradient estimator v; (Part I) and the
average of gradient estimation errors. The estimation error can be further decomposed into two parts:
one is the error incurred by v, estimating the zeroth-order estimator V,,, f(x;) (Part II), and the other
is the error arising from replacing the true gradient V f(x;) with the zeroth-order estimator (Part
IIT). The following lemma aims to provide an upper bound for the SPIDER estimator v;. Due to the
complexity of this problem, we split the analysis into two lemmas.

Lemma 2 (Part I(1)). Under assumptions 1 and 2, we have

-1 -1 T
L _
E Z ||vt|] < /4T <2Ac + 202%5,52 +1+ - log(®(T)) +c¢-E Z%Hvt - me(xt)HQ]) .
t=0 t=0 t=0

The following lemma provides an upper bound for the last term in Part I(1).
Lemma 3 (Part 1(2)). Under assumptions 1 and 2, we have

T-1 - 92 T-1
E > e o — me<a:t)||2] <=5 Tog(B(T) + ) 160707
t=0 t=0

For the error incurred by the estimator v, in estimating the zeroth-order estimator V,,, f(z), we
present the following lemma:

Lemma 4 (Part II). Under assumptions 1 and 2, we have

1
—E
T T

T-1
S o — vmf@ct)n] < I () + L [sn Y62,
t=0
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Based on the properties of the coordinate-wise zeroth-order estimator, we can directly give the upper
bound for Part III as follows.

Lemma 5 (Part III). Under assumptions 1 and 2, we have 7 Z ||me(xt) Vi flx)| <

1
T t:O 515'

Theorem 1 (Converge result of PF-VRZO(coord)). Under assumptions 1, 2, we can derive the
following result for Algorithm 1:

1 -1
TE 190l

ni/4 L 12 L272 72 L L?x?2 L
<2 [2A -c+1+(Z+ ) log(®(T Z S e W
i c+ +(C+C2)og( ( ))—1—24”%4- 2471%—&- 5 T3

By setting ¢ =1, we can find stationary points of f(x) withT = @(\/56’2).

—]E E IV f(xe)]]] < E E[lJve]|] + E Ellve — Vi, f(z)]]] + E IV f(ze) = V() |]]
part 1 part 11 part 111
nt/4 L IL?
< — . R J—
<7 (2A c+1+(cn% + CQ)log((b(T)))

1 T-1 T-1 1 T-1
+ —(2¢ 52+ 0) + — ni c 52+n%
T( ;’Yt t ; t) \/T ; YtO¢

Take 6; = #(tﬂ) e (e fd (t4+1)) then we can give an upper bound OfZZ:é 62 and Zf;é 0y
as follows:

T-1 -1

Z&_LMT Zt_

With some calculations, we can obtaln the final result.

Remark 2 (Discussion on the complexity). Each coordwise estimator zeroth-order gradient estima-
tion requires O(d) function evaluations. And since SPIDER consumes, on average, O(1+n/n) zeroth-

order estimators per iteration, multiplying this by the total number of iterations T = @(ﬁe_Q)
yields a total function query complexity of #Function = O (d (1 + 2) T) = O(d\/ne™?).

3.6 PROPOSED PARAMETER-FREE VARIANCE REDUCED ZEROTH-ORDER
METHOD(RANDOM-DIRECTION ESTIMATOR)

In contrast to the coordinate-wise approach, which requires O(d) function evaluations per random
estimator, the random method only incurs O(1) function evaluations per iteration. Nevertheless, it
often requires d times more iterations to achieve comparable accuracy. Therefore, the choice between
the two methods can be made according to the practitioner’s computational budget and application
requirements. The analysis of the random-direction method follows essentially the same structure as
that of the coordinate-wise method, although the final results differ slightly.

T-1
*EZHVf (@)l < Z]E [vell] +Z]E lor = V @]+ DIV fius (@) = V f (), ]
t=0

part I part II part IIT
The proof of this part follows a similar argument as the coordinate estimator case and is therefore
omitted. The complete proof can be found in Appendix D.
Remark 3 (Proof Differences between the Random-direction and Coord Methods). In the coordinate-
wise method, we provide a bound O(||xy — x—1||?) + O(ui + pi_, ) for the quantity ||V ., fi, (x:) —
Vo fi, (xe-1)||2. Although an estimation error exists, the smoothness of the coordinate estimator
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Algorithm 2 PF-VRZO(Random-direction)

Set ¢ = v/d for random-direction estimator and .1 = jo.
fort =0toT—1do
Compute smoothing parameter p; = m , smoothing vector p; ~ Up.
if £ mod n = 0 then
vy = V,, f(x¢) {Full zeroth-order gradient computation }
else
Sample i; € {1,...,n} uniformly at random
Compute V,,, f;, (x;) with parameter y; and rand vector p;, V,,, , fi, (1) with different
parameter 44 and the same rand vector p;.
U = vm fit (xt) - vut—l fit (xt—l) + Vi
end if 1

Tt =
n1/4c\/(n1/2 + 22:0 l|lvs]2)
Tt = Tt — YtV
end for

Explanation of Algorithm 2 Algorithm 2 shares an overall structure with Algorithm 1, with
key differences as follows: 1.The zeroth-order estimator employs a random-direction estimator as
mentioned in Random-direction estimator, where random numbers distributed on the unit sphere

are generated by first sampling from a d-dimensional Gaussian distribution and then normalizing
o . o 1 . .
the sample. 2.We set ¢ = v/d and use a smoothing parameter 1, = Grnave introducing constant

. . . . . . _ o 1
differences (involving v/d) compared to the coordinate-wise variant ,where ¢ = 1 and yi; = v

remains roughly of the same order as that of f(x). In contrast, for the random-direction method,
we obtain the estimate ||V, f(z1) =V, f(ze1)||? < O(ud + piy) + O(d||ze — x4 ||), which
suggests—albeit informally—that the smoothness of the random estimator is approximately d times
larger than that of f(x). This distinction is reflected in the conclusions of various parts of the
analysis, and, in particular, it necessitates choosing ¢ = \/d, ji; = (O the proof of the
theorem (whereas ¢ = 1, yuy = m suffices in the coordinate-wise case). As a result, the number
of iterations required by the random-direction method is d times larger than that of the coord method.

Theorem 2 (Converge result of PF-VRZO(random-direction). Under assumptions 1, 2, we can derive
the following result for Algorithm 2:

1 -1
7B 190l

1/4
<n<A-c+l+

VO e (b(T myET s
5 g )los @)+t ot g

VT

By setting ¢ = \/d, ju; = ﬁ(t+1), we can find stationary points of f(z) with T = O(d\/ne2).

(LVd | L L*a® L [r2 I L)

Remark 4 (Discussion on the complexity). Each Random-direction zeroth-order gradient estimation
requires O(1) function evaluations.And since SPIDER consumes, on average, O(1 + n/n) zeroth-
order estimators per iteration, multiplying this by the total number of iterations T = @(d\/ﬁe_Q)
yields a total function query complexity of #Function = O ((1 + %) T) = @(d\/ﬁe_Q).

4 EXPERIMENTS

We conduct two experiments to evaluate the effectiveness of our method: the first focuses on Phase
Retrieval, as shown in Figures 2(a) and 2(b), while the second examines Distributional Robust
Optimization (DRO), presented in Figures ?? and ??. To validate the performance of our algorithm,
we compare it with ZO-SPIDER(Ji et al., 2019) and ZO-SGD (Ghadimi & Lan, 2013), both of which
rely on manually tuned hyperparameters to ensure convergence, in contrast to our parameter-free
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approach. We measure computational cost using both sample complexity and time. Here, sample
complexity refers to the total number of function value evaluations. Due to space limitations, we
defer the detailed descriptions of the hyperparameter settings to Appendix E. All experiments are
conducted on a single NVIDIA RTX 3090 GPU.

4.1 APPLICATION TO NONCONVEX PHASE RETRIEVAL

Phase retrieval is a well-known nonconvex problem in machine learning and signal processing(Miao
etal, 1999). Let 2 € R? represent the true underlying object, and assume we collect m intensity
measurements, given by y, = |a, z|? forr = 1,2,...,m, where a,, € R?. The challenge in phase
retrieval lies in recovering the signal by solving the associated nonconvex optimization problem:

; L S C1aT.2)2
min f(z) = 2m;(yr la, z*)". 2

We assess the effectiveness of our algorithms on the nonconvex phase retrieval task defined in

(2). As illustrated in Figures 2(a) and 2(b), the proposed PF-VRZO algorithm demonstrates robust
performance, notably without requiring manual tuning of algorithmic parameters.

le6 le6

—————————— —«— Z0-SGD_coord R———<—« , —e— ZO-SGD_coord
B ZOSPIDER-coord | B ZOSPIDER-coord
—»— ZOSPIDER-rand —+— ZOSPIDER-rand

2.0 PF-VRZO-coord 2.0 PF-VRZO-coord

PF-VRZO-rand PF-VRZO-rand

0.5 0.5

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 ) 200 400 600 800 1000 1200
Sample Complexity le7 Time (seconds)

(a) Compare different algorithms on Phase Re- (b) Compare different algorithms on Phase Re-
trieval(Complexity) trieval(Time)

Figure 2: This figure compares the performance of different algorithms on Phase Retrieval through
two subfigures. In (a), we evaluate the sample complexity of algorithms including PF-VRZO-
coord, PF-VRZO-rand, ZO-SGD-coord, ZOSPIDER-coord, and ZOSPIDER-rand. In (b), we assess
their time efficiency. Notably, the proposed PF-VRZO method, even without parameter tuning,
demonstrates competitive performance when compared to other algorithms that undergo multiple
parameter adjustments, indicating its robustness and effectiveness in Phase Retrieval tasks.

4.2  APPLICATION TO DISTRIBUTIONAL ROBUST OPTIMIZATION

Distributional Robust Optimization (DRO) is a widely used framework for training robust models,
Under mild conditions, it aims to solve the following problem:

wefgg}geRL(x, 1) = AE ~ Pip ( 3 ) +1n 3)
We consider the nonconvex DRO problem (3) on three real-world datasets. The Life Expectancy
dataset contains 2,413 samples with 20 associated features. The Communities and Crime dataset
consists of 1,994 samples and 122 predictive features. The Arcene dataset includes 200 samples with
10,000 high-dimensional features, making it a challenging benchmark for robust optimization. After
standard preprocessing steps, including missing value imputation and variable standardization, we
retain 70% samples for training, where each input z; € R3* and corresponding target y; € R. We set
the regularization parameter to A = 0.01, and adopt the x2-divergence, with the convex conjugate
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given by 1*(t) = 1(t + 2)? — 1. The regularized loss function is defined as:

34

1 .

le(w) = §(y§ —z{w)?+0.1 E In (1 + |w(ﬂ)|) _
j=1

We initialize wy € R3* from a Gaussian distribution and set the initial step size 79 = 0.1.

Based on the experimental results shown in Figures 3, we observe that the proposed PF-VRZO
method exhibits a brief oscillation in the objective value at the beginning, likely due to insufficient
accumulated gradient information. However, the method quickly resumes descent and ultimately
achieves strong performance without the need for any parameter tuning.

10 15 0is 10 125 b 10 15
Sample Complexity Sample Complexity et ‘Sample Complexity

(a) Arcene(Complexity) (b) Life Expectancy (Complexity)  (c) Communities and Crime (Com-
plexity)

200
0| B 0| &=
s
21 2
150
21 %

£l £
Time(seconds)

(d) Arcene(Time) (e) Life Expectancy (Time) (f) Communities and Crime
(Time)

Figure 3: This figure evaluates the performance of different algorithms on Distributionally Robust
Optimization (DRO) tasks across three datasets (Arcene, Life Expectancy, Communities and Crime),
with results split into two metrics: Sample Complexity (subfigures (a)-(c)): Measures the number
of samples required for algorithms to converge. Time Efficiency (subfigures (d)-(f)): Measures
the runtime (in seconds) for algorithms to converge. Across all datasets and metrics, the proposed
methods (e.g., PF-VRZO variants) demonstrate competitive or superior performance—consistently
achieving faster convergence . This further validates the effectiveness of the parameter-free design of
PF-VRZO in practical DRO scenarios.

5 CONCLUSION

In this paper, we propose a parameter-free variance-reduced zeroth-order method (PF-VRZO) for
nonconvex optimization. Our method is based on the SPIDER framework and employs a coordinate-
wise or random-direction zeroth-order gradient estimator. We establish the convergence of our
method, demonstrating that it achieves a sample complexity of @(d\/ﬁe_Q) for finding stationary
points of nonconvex functions. Additionally, we conduct experiments on nonconvex phase retrieval
and distributionally robust optimization to validate the effectiveness of our method. An interesting
future direction is to investigate whether the logarithmic, L-dependent, and A-dependent terms
in the complexity bounds are optimal. (Carmon & Hinder, 2024) shows that under the convex-
but-nonsmooth (C-NS) setting, any adaptive algorithm necessarily suffers from worse complexity.
However, it remains unclear whether a similar conclusion holds under the nonconvex-smooth (NC-S)
setting.

10
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6 ETHICS STATEMENT

Our study focuses on developing a novel optimization algorithm and does not involve human subjects,
animal experimentation, or the use of sensitive personal data. All experiments are conducted on
publicly available datasets that are commonly used within the academic community. We adhere to the
ICLR Code of Ethics, and our work introduces no new privacy or ethical risks beyond those inherent
in standard academic research on optimization methods.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The paper provides detailed
specifications for our proposed algorithm, PF-VRZO, including its variants and their theoretical foun-
dations. We have meticulously described our experimental setup, including the specific nonconvex
problems we studied, the parameters used for all compared algorithms (e.g., learning rates and batch
sizes for ZO-SGD, PF-VRZO, ZO-SPIDER), and the hardware used.
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A RELATED WORK

A.1 ZEROTH-ORDER OPTIMIZATION

The ZO-SGD method was first introduced by (Ghadimi & Lan, 2013), serving as a foundational
approach in zeroth-order stochastic optimization. To enhance its efficiency, several follow-up
works (Liu et al., 2018a) proposed accelerated variants, collectively referred to as ZO-SVRG,
which incorporate the SVRG framework (Johnson & Zhang, 2013). In addition, to further reduce
the function query complexity, ZO-SPIDER-Coord (Ji et al., 2019) were developed based on the
stochastic path-integrated differential estimator.

A.2 PARAMETER-FREE OPTIMIZATION

Recent advances in the nonconvex and smooth setting have drawn inspiration from AdaGrad, as
introduced in the concurrent seminal works (Duchi et al., 2011; McMahan & Streeter, 2010). Building
on this foundation, (Kavis et al., 2022) were the first to develop a parameter-free algorithm that remains
compatible with variance reduction techniques. This was later improved by (Jiang et al., 2024),
who proposed ADA-STORM, reducing the overall complexity by a logarithmic factor. Moreover, a
series of follow-up studies (Ivgi et al., 2023; Kreisler et al., 2024; Orabona & Tommasi, 2017; Chen
et al., 2022; Defazio & Mishchenko, 2023) have explored parameter-free methods in various problem
settings, and other works have investigated the fundamental lower bounds of such algorithms (Khaled
& Jin, 2024; Attia & Koren, 2024; Carmon & Hinder, 2024).

B USEFUL FACTS

Lemma B.1 (Jensen’s inequality). For convex function f(x) we have

f(E[z]) <E[f(z)],

two extended versions of Jensen'’s inequality are

[ < Ella]], for = < R
k 2
D a
i=1

Lemma B.2 (Young’s inequality). For any vectors a,b, € R?, and > 0, the following inequality
holds:

k
<k laill?, fora; € R™.

i=1

lall* < (1 +¢)lla = blI* + (1 +¢71) [Ib]1?,

an extended version of Young’s inequality is

lall® |, <lIbl®

Lemma B.3 (variance decomposition). For random vector x € R% and any y € RY, the variance of
x can be decomposed as

E [llz - E[2]]*] = E [llz — yI*] - E [IIE[2] - yI*] ,

which implies
E [l — E[]I”] <E [Jla] .
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Lemma B.4. For random variable X,Y, if X, Y are independent, and E[X| or E[Y]| = 0, we have

E(I|IX - Y|*) = E[|X|*] + E[|Y1*)-

Proof.

E(|X - YI*] = E[IXI* + 1Y) + 2E(X, Y)] = E[|X|*] + E[|Y]).

Lemma B.5. Foriid x1,79,73- 2y, if E[z;] = 2, E[||2; — 2||?] < 02, we have

2

b 2
Proof.
2
el|ly e
b 2 i3 X
2
1 b
T2 Z(fﬂi — )
i=1
1 b
2
= = Y Ela; — 2|’
=1
E €Xr; 2
= JE[a; — o) < UZL]

where the second inequality holds because ||la + b||* = [|a]|® + [|b]|* + 2(a,b), and E[(z; — x,2; —
x)] = 0(j # 4) for iid random variable x;.

Lemma B.6 (Sum of Square Roots Inequality). Let a, ..., ar be a sequence of non-negative real
numbers (coy > 0 for all t). Then:

T T
673
Sacsy
t=1 =1 /30
Lemma B.7 (Logarithmic Sum Bound). For any sequence of non-negative real numbers a1, ... ,ar

with a1 > 1, we have:
T a T
7
E <10g<§ a-+1>
Vi — 1
ity i=1

Lemma B.8 (Sum of 1 and 3).
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C PARAMETER FREE VARIANCE REDUCED ZEROTH-ORDER METHOD(COORD)

Algorithm 3 PF-VRZO(coord)

Set ¢ = 1 for coordwise estimator, (1 = .
fort =0toT—1do
_ 1
Compute p; = D vd
if £ mod n = 0 then
vy = V,, f(x¢) {Full zeroth-order gradient computation }
else
Uniformly sample i; € {1,...,n}
Compute Vo, fi, (xt) with Mt and V,“ iy (Te1) with .

Vg = ll«t flt (xt) /J«t—1 th (l't_l) + Vi
end if )

Ve =
t
niftey (/2 4 1 flosl?)
Tt = Tt — YtV
end for

Table 2: Meaning of Symbols

Symbol  Meaning

: 1

stepsize .
Vt P (n1/4c ICYVERS ST Hvsl\z)
Lot Smoothing parameter at iteration .
Vg Spider estimator.

V,.f(x;) zeroth-order estimator(coord) .

Ot V/dLyu; /2, the estimation error with respect to V fu-

To establish the convergence of our method, we divide the analysis into three parts.

T-1 T—1 T—1
1 _ _
*EZHW wo)ll} < 0D Ellloell+ D Ellve = Vi, F @) 14D 1V fwe) = V() ]
t=0 t=0 t=0
part I part II part I1I

Lemma C.1 ((Gao et al., 2018)). For L-smooth function f(x), its gradient V f(x) and its coord
zeroth-order estimator V ,, f (), we have

1V, f(2) = V@) < 6.

where & := \/dLu; /2, and p is the smoothing parameter at iteration t.

Lemma C.2. Under assumptions 1 and 2, we can derive the following result for Algorithm 1:
-1
D llvell” < @(7) +1
t=0

where % + (32n% +6) ;‘F;é 82 + 6LT (z0)||> — 1.Here the notation ®(T) is
introduced only for brevity, and will be repeatedly used in the subsequent analysis.

17
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Proof.
. 2
lve|* = S (Vi (@) = Vi fis (16m)) + Vi F (@t mod n)
s=t—t mod n+1
t ) ) 2 ) 9
<2 Z Vub,fis (xs) _vus,lfis (xs—l) +2. Hvutitmodnf(xt—tmod n)

s=t—t mod n+1

t

— — 2 —
<o Y Vi @) = Vi o ) 42|V
s=t—t mod n+1
t

omn - > 2L (3y — w1)° +8(62 402 ) +2- H?

s=t—t mod n+1
4L2n15 i _
<= _yi6n Y (5§+6§,l)+2-HV

C
s=t—t mod n+1

2
f (xtft mod n)

it mod n

lemC.1 2
<

f (xtft mod n)

Fi—t mod n

2

b

Hi_t mod n f (xt*t mod n)

in last inequality we use [y — z,1 = — * || o | < —r. then we
(2 + S )
<1

bound V,,, f(z) below:

Vo f @)|| < ||V f (@) = Vf (@o)|| + IV f ()]
<&+ IV (me) =V (@o)l| + [V (w0)]l
< Lzt — 2ol + 0t + [V f (o)

t
S LY o — @il + 6 + IV £ (o)
i=1
< (=) + 0+ 19 o)l
— Zo)|| -
S\ovm t 0
Combining the above results we obtain(Without loss of generality, we set §_1 = dp):

4L2 1.5 i _ 2
vatn <Z 160 Y @) 42 [V, S @)

s=t—t mod n+1

4TL2 1.5 T-1
< —— 16”2 Z (53+6§—1)+22vaf(xt)”2
t=0

t=0 s=t—t mod n+1

4TL21{ 32n2252+22<( )+6t+||Vf(ﬂﬂo)ll>2

T
6LT
+ (320 +6) Y 67 + — — 46T ||Vf (z0)|”.

t=0

AT L2nts
2

Since this equation will be used repeatedly, we define ®(7") := ‘HLC# +(32n2 +6) ;T:_(l) 62 +

652] +6T ||V f (x0) ||2 — 1 to simplify the resulting expressions. O
C.1 PaArTI
Lemma C.3 (part I(1)). Under assumptions 1 and 2, we can derive the following result for Algorithm
: T-1 T-1 1
E> ||Ut] <n'/*T <2AC+ 2y Mo+ 1+ = log( (T) +c- B> 7l Vi, flae) — v
t=0 t=0 t=0

18
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Proof.
E[f(zen) | 7] <E [f(xt) + V(@) (2 — ) + §||xt — x| ft}
~ & [e) ~ il Va0 + gvsw 7]

<E | f(a) + o = V@2 = 31— Lyljer|* | 2]

lemC.1 _
< E [f(xt) + %67 + yellve — Vi, f ()] — %(1 — L) ||ve]|? | ]‘—t] )

thus we obtain:

E [y - oel?] < 2E[f(ze) = f(wenn)] + 2907 + E [Lyf - 0el®] +2-E [3 - [V, f@e) = ve]?].
By summing from¢ = 0to T — 1 we get:

T-1 T-1 T
ZE Noel?] <28 +2) wdF +E D L7 llul®| +E D2y - IIVutf(xt)—vtII]
t=0 t=0 t=0

—1/2
Recall that y; = n~1/4¢ ™1 (n1/2 +3 ., Hvs||2) and Lemma B.7 we obtain:

S S L K S
E e lloel?| <28 4+2) 7d; + -E
; ;) L ; V4 Y llvs?
T—1 B
+2E Z’Yt NV f(@e) = ve?
t=0
T-1 -1 -
<2842 b+ flog( (T)) +2E | > 7 - [V, flae) — vtn?] :
t=0 t=0

Lower bounding the right-hand side:

T—1 2
E lz vy - |Ut||2] > E Z H'UtH
nl/iey/nt/? 4 YT o2
REUPS I v/ | VRV
C
sz o2/ vm

1
> . -1
> )
> E
~ enV/NT
Combining all results:
1 1 T—1
Z ||Ut] <n'*VT <2AC+ 202%52 +1+ 7 log(®(T")) +¢-E Z%vaf(xt) - Ut||2]> :
t=0 t=0 t=0

O
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Lemma C.4 (part [(2)). Under assumptions 1 and 2, we can derive the following result for Algorithm

1:
-1 912 -1
E ;% Noe = Vi, f () |12 S5 log(®(T)) + ; 16n:6; -

Proof. Let F; be the sigma-algebra generated by {io, . ..,%:} and 2. From the definition of 7, it
follows that 4 < ~;_1; this condition is imposed to resolve measurability concerns. Consequently,

E [vellor = Vi f(@)|? | Fea] <E [veer - lve = Vi, f@)]1? | Fia] -

Hence, our analysis can be reduced to studying E [y |lvy — V., f(20)[|? | Fia].
E [yealloe = Vo f(20)|* | Fi]
=Y1K [V, fir () = Vi, fi, (2ea)
=YK [V fir (@) = Vi, fi, (2ea)
+ Y1 E [lves — Vi f@e) 1P | Fea]

= Y1 E [V, fi, (@) = Vi fio () 1P| Fea] + B [lloea — Vi, @) P | Fia]

< 2L E [[lay — 2 [I* | Fia] + 9 E [[loes = Vi, f (@) 1P | Fea] 4+ 49 (67 + 67)
= 2L E [[loea|1? | Fea] + 9 [omr = Vi, f@e)l” | Fea] + 40067 + 624)-

‘We obtain the following by first conditioning on all randomness up to round ¢, and then taking the
total expectation:

F(xe) + Vi f(@e) + (e — Vi, f@e) 1P | Fea
F@e) + Vi, flee)|? | Fea]

~— —

- ?U’t
- ?U’t

E [vellor = Vi, f@)[?] < 2L%E [y [loea [ ]4E [yt ver = Vi, fl@en) P + 49 (6 + 624)] -
Since E [||vy — V,, f(z1)||] = 0 whenever ¢ mod n = 0, it follows that
1

Yo LPlllosl® + 4 (82 + 53_1)1 ;

s=t—t modn

E [y - Jor =V, f(a)[2] < 2E

which leads to:

T—1 T—1
E:Zm»m—%Jum2sﬂﬂZﬁ%ﬁMW+%%ﬂ,
t=0 t=0

observe that the first term can be bounded by the following terms:

T—1
B [z vfnvtuﬂ
t=0
T—1

1%2 1 _ oI ]
B t t
R P SRS SN T RS SN PATE

IN

T 9

1%2 N (]| 1
t

c3n — n3/4/nl/2 pl/2 + S losl?

1 =  ul?
t
<S5 By ————
An 1+ 50 ol

t=0

< - log(®(T),

where the fourth inequality follows by Lemma B.7 and Lemma C.2.

Finally we obtain

T-1 B 2L2 T-1
E > el — v#tf(xt)||2] <5 log((T)) + > 160767
t=0 t=0
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C.2 PARTII

Lemma C.5. Under assumptions 1 and 2, we can derive the following result for Algorithm 1:

1 T-1 B Ln1/4 1 T-1
—E -V, < ——=log(®(T)) + —=41|8 62
T tz:; ||Ut I: f(l’t)”‘| C\/T Og( ( )) \/T n; t
Proof.
T B 1 -
E|> v~ Vuf,f(fﬂtﬂ} SVT (B D o= Vi f@)lI? ]
t=0

t=0

2
the final inequality holds since HZtT;Ol ay ’ can be bounded by 71" - ZtT;(Jl llat||? using Jensen’s

inequality . By an argument entirely analogous to that of Lemma C.4, we can establish the same
result for the estimator v; =V, fi, (x¢) — Vi, fi, (xe—1) + ve—1:

E [[lve = Vi, f (@) |?] < 487 + 674) + 2L°E [loe — 2o [*] + E [[lver = Viury f@e) 1]

< L°E [y [loeal’] + E [loe = V(@) 1] + 4067 + 674)
t—1

> LPE[2e?] + 462+ 62_)),
T=t—(t mod n)+1

by a telescoping summation over ¢ we get that

T-1 T-1 -1
SOE [l — Vi f@IP] < 2B | a2l +80 0 62,
t=0 t=0 t=0

Now as discussed in Lemma C.4, using the step-size selection y; we obatain:

T-1 T-1 T-1
> _Efllve =V f@)IPP] < Ln-E [Z Rllwel| +8n Y 267
t=0 t=0 t=0
12 T-1 2 T-1
= \Q/EE Z HUttH —— +8"25t2
¢ t=0 \/ﬁ + Zs:() ”vS” t=0

L?\/n

c2

LQ\/E -1 )
< =5 log (®(T)) + 8n z% 262,
t=

IN

-1
log (®(T)) + 8n Y 67
t=0

where Istinequality follows by Lemma B.6 and Lemma C.2. Putting everything together we get

1 T—1 Ln1/4 1 T—1
—E vy — Vo, fx < log (®(T)) + 8n Yy 462
2t st < s oy ¢ w0
O
C.3 PARTIII

LSV () = Vi flae)|| < % 35050 6
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C.4 FINAL PROOF FOR COORDINATE ESTIMATOR

Theorem C.1. Under assumptions 1 and 2, based on the previous lemmas C.3, C.4, C.5, we can
derive the following result for Algorithm 1:

T—1
1 nt/4 L I? L?72 72 L L?x2 L
—F § j < —— [2A - c+14+(Z+ ) log(®(T = = 4=

setting ¢ = 1, we obtain T = O(y/ne~2), where the O notation hides logarithmic factors.

Proof.
= = T-1 ) )
TE[Z IVf ()] < T[Z Elllvcll] + Y Elllvr = Vo, f@o)ll] + 1V, £ (@) = V£ (1)
=0 t=0 t=0
n1/4 L I2
<—(2A-c+1+ T+ + — ) log(®(T
<" (L + ) og(a(T)))
, T-1 ) T-1
‘*‘*(262%@ +Z5t)+7 ni ) cnd; +nz 2253
t=0 =0 VT t=0
Due to the fact that 7, < —L- we obtain:

1 — nt/4 L I?
FEIS VS < 2 (28 e+ 1+ (g + () og(a(r))

1 T-1 1 T—1 1 T—1
+ 02N 52+ )+ —= (nY 24

Take 6; = ﬁ ie.(us = ﬁ(ﬂrl)) then :

combing the above results we obtain:

=
1 nt/4 L L2 1 L*r*  LinT 1 [ L2n? 2
) <P (2A e+ 14 (- + 2 ) log(d(T - el SRS (e LR Y i
TED VSl < L (28 e 1 oy ) lon(e(n) ) + (5 + 5 >+ﬁ< T 24>
nt/4 L L? L27? ™ L L*r%* L
<2 [2A e+ 14 (-5 + ) 1og(R(T) + —+ + ) o + =+ =
<75 c+ +(Cn%+02)og( ( ))+24ni+ 24n%+ 5 T3]
setting ¢ = 1, we obtain T = O(y/ne~2), where the O notation hides logarithmic factors. O
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D PARAMETER FREE VARIANCE REDUCED ZEROTH-ORDER
METHOD(RANDOM-DIRECTION ESTIMATOR)

Algorithm 4 PF-VRZO(Random-direction)

Set ¢ = v/d for random-direction estimator and fi_1 = j.
fort =0toT—1do
Compute smoothing parameter p; =
if £ mod n = 0 then
vy = V,, f(2+) {Full zeroth-order gradient computation }
else
Sample i; € {1,...,n} uniformly at random
Compute V,,, f;, (x¢) with parameter p, and rand vector p;, V,, , fi, (z,-1) with different
parameter pi— and the same rand vector p;.

V,Uztflt('rt) Ht 1flt(xt 1)+Ut 1
1
ni/dey/(n1/2 4+ 0 [lud]?)

Tl = Tt — YtUt
end for

(t+1)df , smoothing vector p; ~ Up.

end if
Yt =

Table 3: Meaning of Symbols

Symbol  Meaning

1

" stepsize .
i p <n1/4c /n1/2+22:0 HUSHQ)

Lt Smoothing parameter at iteration ¢.
Pt Smoothing vector at iteration ¢.
vy Spider operator.

V.. f(xy)  zeroth-order estimator(rand) using smoothing parameter 1 and p; .

v fu() expecation of zeroth-order estimator(rand).

Ay Ldy /2, the estimation error with respect to V f,(-) .

Following a similar approach as with the coordinate operator, we analyze the convergence of the
gradient of f(z) by dividing it into three parts.

ZHVf zy)ll] < ZE [vell] +ZE [vr =V fu, (x )||]+Z_:||me($)—Vf(:ct)lH-

t=0 t=0 t=0 t=0

part I part IT part I1I

Lemma D.1 ((Ji et al,, 2019)). Let f,(x) = Ey~u, [f (@ + pw)] be a smooth approximation of f(x),
where Ug is the uniform distribution over the d-dimensional unit Euclidean ball B, and p € R is a
random vector sampled from unit Euclidean sphere Ug,,. Then we have

L | fu(@) = f(2)] <

2. EH@Hfz(x ) — f (22)]|? < 3dL?||xy — 22| + Wforanyiandany x1, T3 € RY

() = V()] < ”TLdforanyx € R

3. Bpuvs, [IVI(@)I12] < 2|91 (2)))? + L4,
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Lemma D.2. For random-direction estimator @m filzy) = :lt [f(ze + epe) —
F@)]pe, Vo, filze) = Mdl [f(x + peape) — f(xea)]pr, where both estimators use the

same random direction p; sapled from unit Euclidean sphere Usg,, but different smoothing parameters
e and py—1, we have:

IV f (@) = Vi f (@) [P < D(AF + AL + 3dLP |2 — we .

l\D\OJ

Proof.
E IV f @0) = Vi f ) 2]

=d’E

HZ [f(xt + pepr) — flae) — (Vf(xﬁ,pﬁ]ﬂt - [f(xt_l +tape) = S @) = <Vf($t—1),pt>j|pt

M1
2]

+ (V@0 pidos = (Vi (wer). pe)o)

< <3§2 (U2 + p21) + E [3I[(V f(20), pr) o1 — <Vf(:ct1),pt>pt||2])

P <3§2 (12 + p2.) + E BV f(244) —Vf(:ct),pt>ll2]) (loe]* = 1)

“u <§ ut+ﬂfl)+EB||Vf($t1)_vf(xt)”2D E[pepT] = Id (ietal, 2019))
g(AMA )+ 3dL2||z; — woa |

Lemma D.3. Under assumptions I and 2, we can derive the following result for Algorithm 2

T-1
E[Y  flodl*) < &(T) +1
=0

where ¢(T) := GdL;”l'sT + 4dLn2T3 2 +4dnT ||V f (z0)||” + (6n2 + 2) Z;é A?Z — 1. Similar to
the coordwise method, the notation ¢(T') is introduced only for brevity, and will be repeatedly used
in the subsequent analysis.

Proof.
. 2
E ””tH2 = Z (vusfis (xs) = Vo fi (.7;5,1)) + Vit moa nf (Tt—t mod n)
s=t—t mod n+1
: 2
. . . 2
<E| D Vifi @) = Vi fi @1)|| 2B [ Vi o (@1t moa )
s=t—t mod n+1
¢ . . 2 . 2
<;mE Y wofi @) = Vi i, @)+ 2B [Vt s o f @1t moa )
s=t—t mod n+1
lemD.2 ¢ 2

1 .
< 6n Z [dL2 (zs — xs—l)Q + i(Ag + A?—l)] +2E Hvﬂt—t mod nf (Tt—t mod n)

s=t—t mod n+1

6dL2n2 ¢ R 2
S +3n Z (Ai + Ag—l) + 2E Hvﬂ/t—t mod 'n,f (xt—t mod n)

c2
s=t—t mod n+1

)

from lemma D.1:
Epvs, [IVacf@)I2] < 20|V (@)]2 + A2,
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Next, we bound ||V f(x)|| bellow:

IVF(@)ll = IV (2e) = V(o) + V(o)
<V () = Vi(@o)ll + [V f (o)l
< Lljze = @oll + IV £ (o) |
< Lljzy — x| + Lz — zoll + IV £ (o) |
t

<L flos = it + V(a0
=1
< =+ Vo)l

Combine the above results, we have:

levtll Z(GL" no Y (A2+AZ) +ER |V (@t modn) 21)

s=t—t mod n+1

_ 6d TL2 =
+2dZ||Vf (z0)|? +3nz Z (AZ+ A2 )+2> A7
t=0 s=t—t mod n+1 t=0
6L2d 2 -1
nT+2dZ (+||Vf(xo)) +(6n% +2) Y A7
t=0

6dL%n,_ .  AdL>T3 -
< =T &+ 4dnT ||V f (zo)||” + (6n* +2) > A7

C
t=0

Similar to the coordwise method, we define ¢(T') := 6dL2 2Tt 4dLn T2 2 4 4dnT |V £ (x0) I1* +
(6n2 + 2) tT:_é A2 — 1 to simplify the resulting expressmns. O

D.1 PARrTI

Lemma D.4 (part I(1)). Under assumptions I and 2, we can derive the following result for Algorithm
2

i||vt|]<n”4f <2Ac+1+ log(é(T >>+c~Eli%w<xt>—vtn2D
t=0 t=0

Proof.
B o) | 7] < B | fla1) + VH ) o =200+ 5 o = v 7]
— B |a) = uad V(a0 + év?nvtn? 7]

<E [f(ae) + 2vllve = Vf@)ll? = (1= L)llerl* | 7]
which leads to:

E [ye - vell?] < 2B [f(ze) — f(@p2)] + B [L7 - oell?] +2¢- E [ye - [V f (o) — vel?] -

By summing from¢ = 0to 7 — 1 we get:

T—1 T—1 T—1
E[ye- od?] S2A+E D L7 - oel?| +E [ 2% - |Vf(xt)—vt||]
t=0 t=0 t=0
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~1/2
Recall that v, = n~1/4¢~! (n1/2 + Zi:o Hvs||2) :

T-1

Z ||UtH
t
im0 VIt 2o llusll?

T-1

D e IVF(e) - vtIQ] :

-1

+E D v IV F(e) — vl
t=0

T—1 I
E[Y - ||vt||21 <20+ -E
t=0

<20 4+ —— f 5 log(o(T)) +E

t=0

Lower bounding the right-hand side:

T-1 2
U
E [} " mn?] >E Zimo [l
t=0 n1/40\/n1/2 + Zt 0 [|ve ||?

NEUPS I v/ | 1 VRV
‘ ¢1+z o2/ /A
> E vatn /f] -1
>

1/4\f

Z IIUtII]

Combining all results:

lz ||vt||] <n'/4T <2Ac +1+— \/» log(¢(T)) +c-E

SV ) — WD |

t=0

O

Lemma D.5 (part I(2)). Under assumptions 1 and 2, we can derive the following result for Algorithm
2

1 d 72 71
E|Y - llos - Vf(wt)IIQ] 0g(¢(T)) + Y _(3n +8)nyAf.
t=0 t=0

Proof. Let F; be the sigma-algebra generated by {ig, ..., %:} and 2. From the definition of ~;, it
follows that v; < ~;_1; this condition is imposed to resolve measurability concerns. Consequently,

E [velloe = V(@) | Fea] <E [y - loe = V@) | Fea],

Hence, our analysis can be reduced to studying E [ve1 ||vy — V f (@¢)||* | Foa].

E [yeallve = V(o) | Foa]
<2E [%AHW = Vi (9515)”2 | }—tfl] +2E ['thlef(fEt) = Vi (xt)HQ | ]:tfl] :
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As established in Lemma D.1, the second term can be bounded by 4+, A? . In the following, we
focus on the analysis of the first term.

E [yt [ve = Vfiun (@) | Fi]
=y E :n@utfit (@) = Vs fio (1) = Vi, (@) + Vi, (@) + (01 = Vi, (2)]|? | }‘H}
= B [V Fa 1) = Vs Fi010) = Vs (@) + (01 = Vs (@) IP) | Fooa
+ Y E [[Jvig = Vf (@) P | Fia]
<YK :H@mfit (@) = Ve Fio (x| | ft—l} + 9 E [[lver = Vi (@)1 | Fea]

LemD.

2 2 2 2
< 3dL v E [th —xea|” ] ]:tfl] + 71 E [H'Utfl =V ()7 | -7‘—#1] +

3Vt
2

3V
= 3dL*yH E [[lvea|® | Fea] + 9l [llver = Vs (zea) 12 | Fea] + 75 “(AF + ALY

(A7 + A7)

“
We obtain the following by first conditioning on all randomness up to round ¢, and then taking the

total expectation:

34—
E [villve = Ve @) 1?] S E [yt v — Vfus (1) 12 +3dL7E [ lvea|1?]+ v; -

(A7+A7).

Since E [v; - [[ve — Vfu, (@) 2] < ve1E [[lve — Vfu,(z)]|?] = 0 whenever t mod n = 0, it
follows that

t—1
37s
B[y loe=Vin@)2] SE| >0 3dL%3u )2 + SH(A2 + AL)
s=t—t modn

Combine the above results we obtain:

E [yt |loe = V(@) | | Fea ]

lemD.1 9 9
< 2K [yeallve — Vi (@0)|1? | Feea] + 2E [vea [V f () — Vi, (o) I? | Fia ]
t—1
<E > 6L |al? + 3yve 1 (A2 + A2 | + 83 A7,

s=t—t modn

summing over ¢ from 0 to t—1 we get that

-1 T-1
E|> e lloe— VE@)|?| <E ZGszn’y?Ivtll2+(3n+8)%A§] :
t=0 t=0

Observe that the first term can be bounded by the following terms:

1
5 valIthQ}
t=0
T
1, [Z 1 R 7 ]
= T T
S 2+ 2 losl2 n 2+ 3 [lvs1?
1
S S
~ cn — n3/4/nl/2 nl/2 + ZZ:O [ vs]|2
1
1 2
< Lg [Z ol
en t=0 I+ Zs:O [|vs]]
1
< —log(6(T)),
< - los(6(T))
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where the fourth inequality follows by Lemma B.7 and Lemma D.3.

Finally we obtain

T-1 6dL2 -1
E Z%'Ilvtvf(:ct)llzl <——1og(o(T)) + > _(3n+8)ny A7
t=0 ¢ t=0
O
D.2 PARTII

Lemma D.6. Under assumptions I and 2, we can derive the following result for Algorithm 2

IS 6v/dLn/* . T
—E tz:; [l — Vfut(xt)H] < \C\/;log(¢(T)) + ﬁ (3n + 8) ;QA%.

Proof.

T-1
E [Z lve — Vf;tt($t)|] <VT-

-1
E Y o=V (It))IIQ] ,

=0
where the inequality follows by the fact that || S>7—¢ y,[|> < T - 31— ||y:||>. For the same reason
with equation 4, we obtain:

t—1

E [llve = V fu. () |17] SE[ Yo 6dLPZllu]? +3(A2 + AL

s=t—t modn

+ 8AZ,

by a telescoping summation over ¢ we get that

T—1 T—1
D E([lve = Vi @)lIP] SE > 6dL*na? vl + (3n + 8)A7
t=0 t=0

Using the step-size selection 7, we can provide a bound on the total variance E [||v; — V f,, (z¢)[|?]:

-1
> E[lloe = Vi (x0)]]
t=0

T-1 T-1
<6dL’n-E | Y A7llvel®| + (3n+8) ) 247
t=0 t=0
_ GdLVn [ S A2
S AL Z S|+ Bn+8) Y A
¢ = OW+Z o llvs]] —
6dL2f T—1
< 1+E lesz +(Bn+8)> A2
t=0
6dL2\/n —.
< ——5—log(¢(T)) + (3n +8) Y 247,

t=0

where last inequality follows by Lemma B.7 and Lemma D.3. Putting everything together we get

1 [ 6v/dLn!/4 1 -
TE ; v =V fou, (%)II] < 5 log((T)) + Nii (3n+8) ;%?-
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D.3 PARTIII
Z vaut( ) Vf(xt)” < T t= oAt

D.4 FINAL PROOF FOR THE RANDOM-DIRECTION ESTIMATOR

Theorem D.1. Under assumptions I and 2, based on the previous lemmas D.4, D.5, D.6, we can
derive the following result for Algorithm 2:

L\f L2%d 1’72 L [x2 [272
*EZ”W”” f(A et (g + g s+ e+ oy g+ g

setting ¢ = \/d, we obtain T = @(d\/ﬁe_Q), where the O notation hides logarithmic factors.

Proof.
= = T-1 T-1
T]E[Z IV @l] < 70 Elllvell] + > Elloe = Vi @)+ D IV fu (2) = V(@) ]
t=0 t=0 t=0 t=0
partI part IT part ITI
1/4 LVd dL?
<= <2A~c+ 1+ (4{ —5)1og(¢(T))
T cni
= T 1 T -1
5 1
X WATD Do)+ = (i) enAf4ndy > 247 |
t=0 t=0 t=0 t=0
take A; = #(tﬂ) ie.(pue d\/ﬁl(tJrl)) from we obtain
— A o LinT
t > .
P 2y/n
T-1
L27?
A2
Y
t=0
combing the above results we obtain:
1/4 \/> L2d 272 L 2 L272
—]E \Y — | A- 1 1 T S =+
ZH fE)ll < 7= < ¢+ +<m 2 )Nos@D) + o —r+ o T g

setting ¢ = v/d, we obtain T' = O(d+/ne~2), where the O notation hides logarithmic factors. ~ [J

E HYPERPARAMETERS DETAILS

E.1 PHASE RETRIEVAL

We choose the problem dimension to be d = 100 and the sample size to be n = 3000. The
measurement vectors a, € R? and the true parameter = € R? are generated element-wise from
a Gaussian distribution A/(0,0.5). For the initialization, zo € R? is drawn element-wise from
N (5,0.5). The measurements are then constructed as y; = |a z|2 + m; fori = 1,..., n, where the
noise term m; is sampled from A/(0, 4%), representing additive Gaussian noise.

We set the parameters for ZO-SGD with a learning rate of v = 2 x 10~ and a batch size of \/n. For
ZO-SPIDER-coord and ZO-SPIDER-rand, we set the learning rate to v = 10~7, the epoch size to
q = n, and the batch sizes to B = n and B’ = 1. For the proposed PF-VRZO method, we similarly
set the epoch size to ¢ = n, and choose B = n and B’ = 1 for both the coord and random-direction
estimators.
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E.2 DRO

We set the parameters for ZO-SGD with a learning rate y = 1 x 10~% and a batch size of \/n. For
ZO-SPIDER-coord and ZO-SPIDER-rand, the learning rates are set to 7 = 10~% and v = 108,
respectively. Both methods use an epoch size of ¢ = /n, with batch sizes B = n and B’ = /n.
For the proposed PF-VRZO method, we also set the epoch size to ¢ = y/n, and choose B = n and
B’ = /n for both the coord and random-direction estimators. We remark that the setting q¢ = n,
B = n, and B’ = 1 is also valid, although it yields slightly worse empirical performance in this
experiment.

E.3 A SMALL EXPERIMENT TO VERIFY THE EFFECTIVENESS OF THE ADAPTIVE SMOOTHING
PARAMETER

This is a small experiment designed to demonstrate the effectiveness of our adaptive smoothing
parameter. We conducted an ablation experiment (placed at the end of the appendix due to page
limits) based on the Nonconvex Phase Retrieval setup in the main text. We compare the following four
variants: 1. Original ZO-SPIDER, using step size v = 0.001 and p = 1. 2. ZO-SPIDER-adastep,
adaptive step size but fixed u = 1. 3. ZO-SPIDER-adastep, adaptive step size but fixed p = 0.5. 4.
Our parameter-free PF-VRZO (adaptive step size + adaptive fi;).

le2 lel
1.0
—e— ZOSPIDER-rand (u=1) —e— PF-VRZO-rand (=0)

—&— PF-VRZO-rand (u=0) —=— ZOSPIDER-rand-adastep (u=1)
—¥— ZOSPIDER-rand-adastep (u=1) —¥— ZOSPIDER-rand-adastep (i=0.5)
—— ZOSPIDER-rand-adastep (1=0.5)

0.8

0.6

flze)
fize)

0.4
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0.0 0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 2.0 25 3.0

Sample Complexity le6 Sample Complexity 1le6

(a) Comparison of four algorithms: The original ZO-  (b) Zoomed view of the region where f(z) < 10 in
SPIDER (red curve) exhibits severe divergence (func-  (a): This magnification clarifies the convergence be-
tion value exceeds 600), which obscures the perfor-  haviors of the three algorithms with smaller function
mance of the other three algorithms (with smaller  values, while our PF-VRZO (blue curve) achieves
function values). full optimization.

Figure 4: The original ZO-SPIDER (Group 1) diverges drastically under this parameter setting, with
function values surging beyond 600. - Groups 2 and 3 (ZO-SPIDER-adastep) outperform Group 1,
yet their function values stagnate (plateauing around 4 and 2, respectively) and fail to decrease further.
This aligns with our theoretical analysis: since the fixed p does not diminish with T, estimator noise
accumulates to a point that halts progress. - The ;1 = 0.5 variant plateaus later than y = 1—a result
consistent with the observation that a smaller fixed i delays (but does not resolve) the stagnation
issue.Our PF-VRZO (Group 4), which employs an adaptive p;, achieves complete optimization
successfully.

From the experimental results, we highlight: 1. Adaptive step sizes generally improve convergence
behavior. 2. Our adaptive smoothing parameter p; works synergistically with adaptive step sizes.
From our theoretical analysis, a fixed x cannot shrink as 7" grows, so the zeroth-order estimator noise
eventually fails to meet the increasingly stringent accuracy requirement in later stages of training,
causing the algorithm to stall. In contrast, our adaptive p; avoids this issue by design and ensures
stable convergence.
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