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Abstract

We introduce RFMPose, a novel generative framework for category-level 6D object
pose estimation that learns deterministic pose trajectories through Riemannian
Flow Matching (RFM). Existing discriminative approaches struggle with multi-
hypothesis predictions (e.g., symmetry ambiguities) and often require specialized
network architectures. RFMPose advances this paradigm through three key innova-
tions: (1) Ensuring geometric consistency via geodesic interpolation on Riemannian
manifolds combined with bi-invariant metric constraints; (2) Alleviating symmetry-
induced ambiguities through Riemannian Optimal Transport for probability mass
redistribution without ad-hoc design; (3) Enabling end-to-end likelihood estima-
tion through Hutchinson trace approximation, thereby eliminating auxiliary model
dependencies. Extensive experiments on the Omni6DPose demonstrate state-of-
the-art performance of the proposed method, with significant improvements of
+4.1 in IoU25 and +2.4 in 5°2cm metrics compared to prior generative approaches.
Furthermore, the proposed RFM framework exhibits robust sim-to-real transfer
capabilities and facilitates pose tracking extensions with minimal architectural
adaptation. Code is available at https://github.com/shabiouyang/RMFPose.

1 Introduction

6D object pose estimation, which entails predicting the 3D rotation R ∈ SO(3) and 3D translation
t ∈ R3 of observed objects, stands as a fundamental yet pivotal task within computer vision due
to its diverse applications in augmented reality [26, 32], robotic manipulation [4, 24] and hand-
object interaction [22, 29], etc. Prior works have predominantly focused on instance-level object
pose estimation methods [15, 21, 12]. Although these methods, particularly recent progress [38]
empowered by the Large Language Models(LLMs), have demonstrated promising performance,
instance-level object pose estimation methods still suffer from limited generalization capabilities
stemming from the dependency on the 3D models or RGB images for each instance. To address
these limitations, category-level object pose estimation has garnered considerable attention for its
generalization advantages, which eliminates the need for instance-level 3D models or RGB images
during both the training and inference phases.
Existing category-level methods [36, 20, 27, 33, 10, 28] can be categorized into two distinct groups:
the correspondence-based methods and the direct regression-based methods. The former ap-
proaches [36, 20, 37, 28] aim to extract features from the camera coordinate space and subsequently
establish correspondences within a predefined category-specific canonical templates, including 3D
NOCS [36], key-points [20], or implicit 3D embeddings [37]. However, these methods often en-
counter difficulties due to the non-differentiable nature of the correspondence process. In contrast,
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the latter approaches [9, 18, 19, 10] strive to directly regress the 6D pose in an end-to-end manner.
These approaches mainly focus on learning pose-sensitive features and various specialized networks,
such as 3D Graph Convolution [9] and Spherical convolutions [19, 10], leveraging for the learning.
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Figure 1: Existing Score matching pipeline and our proposed Riemanian Flow Matching
pipeline. The Score matching pipeline proposed in [43] employs a two-stage framework: the
first stage generates pose candidates, while the second stage estimates likelihood scores for these
candidates. In contrast, our Riemannian Flow matching method models the object pose probability
distribution on Riemannian manifolds to ensure geometric consistency, and simultaneously enables
end-to-end likelihood estimation via trace estimation tr(Jt). Moreover, our approach leverages
Riemannian Optimal Transport to address the challenge of multiple feasible discrete poses induced
by object symmetry. Continuous pose evolution from t to t+△t is governed by the learned velocity
field vθ in Riemannian space with the aid of an ODE solver.

While the aforementioned methodologies have demonstrated efficacy, their fundamental conceptual-
ization remains anchored in the discriminative paradigm, thereby inheriting two cardinal limitations:
1) difficulties in resolving the multi-hypothesis prediction problem(e.g., symmetry-induced pose
multiplicity) and 2) reliance on tailored pose-sensitive feature extraction networks. Particularly
regarding the second limitation, this constraint substantially hinders the flexibility of integration
into thriving Vision-Language-Action (VLA) models [16, 2] for robot learning applications. To cir-
cumvent the limitations above, we advocate embracing the probabilistic methods in pose estimation,
which inherently accommodates multi-hypothesis problem through probabilistic modeling while
offering architectural flexibility in network design. As a seminal attempt, GenPose [43] utilized a
score matching framework [31] to learn the distributions of 6D pose. However, due to the computa-
tional intractability of normalization constants in high-dimensional domains, GenPose [43] requires
auxiliary training of an Energy-based model to estimate the likelihood of generated samples, as
shown in Fig. 1(a). This two-stage framework inevitably introduces model complexity and sacrifices
the simplicity of end-to-end training. Furthermore, score matching estimates the score function of a
single-sample distribution via gradient approximation, which struggles to address the multi-target
optimization in pose estimation caused by object symmetry.
To address the limitations, in this paper, we present a novel geometrically consistent framework
that learns deterministic pose trajectories on Riemannian manifolds for category-level object pose
estimation, termed RFMPose. The proposed RFMPose directly learns pose trajectories through
Probability Flow ODEs derived from the continuity equation, which regulate probability density
evolution. Our RFM framework rigorously preserves geometric constraints via two key mechanisms:
(1) Geodesic-based interpolation on SO(3) via Lie algebra transformations for rotations, coupled with
Euclidean interpolation in R3 for translations; (2) A bi-invariant Riemannian metric combining the
Killing form on SO(3) with Euclidean distances in R3. By coalescing these components, our RFM
framework guarantees physically plausible pose evolution in the SE(3) manifold.
Furthermore, we specifically address two critical challenges identified in prior works: 1) effective
likelihood estimation for generative models and 2) multi-hypothesis predictions from object
symmetries. To eliminate the requirement for auxiliary energy networks, we introduce an efficient
likelihood estimation strategy for the RFM framework using Hutchinson trace estimation, thereby
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enabling efficient divergence computation and end-to-end training. For symmetry-induced pose
multiplicity, we propose a Riemannian Optimal Transport formulation, which minimizes the weighted
geodesic cost while facilitating adaptive redistribution of probability mass across equivalent poses, as
shown in Fig. 2(b). This manifold-based geometric approach resolves ambiguities by exploiting the
first principles of manifold geometry, instead of relying on symmetry-specific network architectures.
Comprehensive experiments on the challenging Omni6DPose dataset demonstrate the proposed
method’s superiority, outperforming previous generative approaches by +4.1 in IoU25 and +2.4 in
5°2cm. Additionally, the proposed method also achieves 42.1 in IoU25 under real-world scenarios
without domain adaptation, verifying its inherent sim-to-real transfer capability. Moreover, the
proposed method permits direct extension to object pose tracking through marginal architectural
adjustments and demonstrates competitive performance accuracy on object pose tracking.
The principal contributions of this work can be summarized as follows:

• We establish a Riemannian Flow matching framework that leverages Riemannian interpola-
tion and metric to ensure manifold-consistent trajectory learning for 6D pose estimation;

• We propose end-to-end likelihood estimation with the Hutchinson trace estimation on 6D
pose estimation, which eliminates the requirement for auxiliary models.

• We design Riemannian Optimal Transport to resolve symmetry-induced pose multiplicity in
6D pose estimation.

• Extensive experiments on the challenging Omni6DPose dataset verify the superior perfor-
mance of the proposed method compared to state-of-the-art approaches and demonstrate the
great potential of the proposed RFM framework in object pose estimation.

2 Related Works
Correspondence-based Category-level Pose Estimation. This family of methodologies [36, 20,
37, 28] seeks to establish the correspondence between camera coordinate space and the predefined
category-specific canonical templates, subsequently recovering poses via optimization-based fitting
algorithms (e.g., Umeyama alignment [35]). As a seminal advancement, NOCS [36] introduced
a unified canonical representation to align intra-category object instances geometrically. Build-
ing upon this foundation, SpherePose [28] utilizes spherical feature interaction mechanisms to
achieve enhanced correspondence precision through geodesic-aware feature matching. Besides, AG-
Pose [20] advocated geometry-driven keypoint detection as an alternative correspondence paradigm,
while Query6DoF [37] developed implicit shape priors through learnable sparse query matching,
circumventing explicit template constraints. SAR-Net [17] and RBP-Net [44] focused on symmetry-
correspondence to mitigate the symmetry-induced pose multiplicity. Notwithstanding these advance-
ments, the correspondence process is inherently non-differentiable and cannot be integrated into the
learning process. Consequently, inaccuracies in generating predefined category-specific canonical
templates exert a significant influence on the accuracy of pose estimation, as error propagation
remains unmitigated through gradient-based optimization.
Direct Regression-based Category-level Pose Estimation. This category of approaches [9, 18,
19, 10] aims to regress the object pose in an end-to-end manner directly. FS-Net [9] proposes to
decouple the rotation into two perpendicular vectors, simplifying prediction, and utilizes a 3D Graph
Convolution autoencoder for feature extraction. VI-Net [19] leverages spherical representations to
decouple the rotation into a viewpoint rotation and an in-plane rotation, thereby simplifying the
challenge of rotation estimation. Based on the decoupled representation, SecondPose [10] proposed
to extract SE(3)-consistent semantic and geometric features to enhance pose estimation accuracy.
However, these methods struggle with the pose-sensitive feature learning due to the non-linearity
of SE(3). Furthermore, excessive reliance on specialized pose-sensitive feature extraction networks
undermines model simplicity, impeding seamless integration with contemporary VLA frameworks.
Generative Modeling for Object Pose Estimation. Recently, generative modeling has emerged as a
promising paradigm for various tasks far beyond classic generation tasks, such as classification [6],
perception [39], and robotics action planning [11, 41]. As a pioneering work, GenPose [43] proposed
to learn 6D pose distribution by score matching. However, score matching struggles to estimate
probabilities in high-dimensional manifolds like SE(3) and fails to resolve pose ambiguity caused
by object symmetry. As a comparison, flow matching [23] learning deterministic trajectories via
Probability Flow ODEs. Recent advances in Riemannian manifolds [8, 3, 14] have demonstrated the
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capacity of flow matching to model complex geometric transformations. In this paper, we pioneer
the application of Riemannian Flow matching to category-level 6D pose estimation, systematically
addressing the geometric constraints inherent in the object pose estimation.

3 Methodology
We will first introduce the core mechanism of learning pose distributions via Riemannian Flow
Matching. Subsequently, we will detail how we address the challenge of object symmetries using
Riemannian Optimal Transport. Finally, we explain our end-to-end likelihood estimation technique,
which employs Hutchinson trace estimation to obviate the need for auxiliary models.

3.1 Preliminaries

Problem Formulation. The 6D pose estimation task aims to estimate 6D object pose [Ri, Ti], where
R ∈ R3×3 is a rotation matrix and T ∈ R3 is a translation vector, using the given multi-modal sensory
inputs: a partially observed point cloud Oi ∈ R3×N and a cropped RGB image Ii ∈ R3×H×W .
Therefore, the learning agent is given a training set with a paired dataset D = ([Ri, Ti],Oi, Ii)

n
i=1.

Conditional Continuous Normalizing Flows for Pose Generation. To model a target conditional
distribution q([R, T ]|c) for a given condition variable c, we transform a prior conditional distribution
ρ0([R, T ]|c) with a velocity fields conditioned on c. This transformation is guided by the following
Ordinary Differential Equations (ODEs):

d[R, T ]

dt
= vθ(t, c, [R, T ]), (1)

where θ are trainable parameters and t ∈ [0, 1]. This ODE equation generates a flow and a conditional
probability density path ρt([R, T ]|c). In this paper, the condition variable c represents a partially
observed point cloud Oi and a cropped RGB image Ii. The target distribution q([R, T ]) corresponds
to the distribution of 6D poses of the ground truth in the datasets.

3.2 Learning Pose Distribution via Riemannian Flow Matching

Conditional flow paths in Eq. (1) are designed primarily under the assumption of Euclidean geometry,
resulting in linear interpolations. However, this can be particularly restrictive for tasks such as
trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture
the underlying dynamics giving rise to the observed marginals.
In this paper, we tackle the aforementioned issue by learning the 6D pose distribution within a
Riemannian space, which facilitates geodesic-based interpolations using minimal-length curves
under Riemannian distance [8]. Prior to delving into the method, we first delineate the Riemannian
structure inherent in the 6D pose estimation task. Conventionally, a pose matrix [R, T ] in Euclidean
space can be transformed into SE(3) manifolds. According to [3], the disintegration of measures
posits that every SE(3)-invariant measure can be decomposed into an SO(3)-invariant measure and a
measure proportional to the Lebesgue measure on R3. This enables us to simplify the construction of
independent flows on SO(3) and R3 for simplicity. To construct a conditional vector field from R0 to
R1 on the Riemannian space SO(3), we leverage the Lie algebra so(3), which is comprised of skew-
symmetric matrices acting as tangent vectors at the identity of SO(3). The geodesic interpolation at t
in SO(3) can be formulated as:

u(t)SO3 = R(t) = R0 · exp
(
t · log(R⊤

0 R1)
)
, (2)

where log : SE(3) → se(3) is the Lie algebra transformation, and exp : se(3) → SE(3) is the
Lie group transformation. R0 and R1 are orthogonal rotation matrices in the initial and target
states. Constructing a conditional vector field for translation on R3 can be simplified via Euclidean
interpolation:

u(t)R3 = T (t) = (1− t)T0 + tT1, (3)
where T0 to T1 are the translation vector in the initial state and target state. Capitalizing on the above
Riemannian interpolation, we can derive the Riemannian flow matching framework for 6D pose
distribution through the following formulation:

LRCFM(θ) = Et,q([R,T ]),pt([R,T ]|c)∥vθ(t, c, [R, T ])− u(t, [R, T ])∥2SE3 (4)

Herein, we can model the target distribution q([R, T ]|c) by sampling from a predefined prior distri-
bution ρ0([R, T ]|c) and evolving these initial samples along a Riemannian flow over t ∈ [0, 1], as
depicted in Fig. 2.
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Ground Truth

Figure 2: The illustration of object pose generation Process with Riemannian flow matching. We
leverage geodesic interpolation on SO(3) and Euclidean interpolation in R3 to derive deterministic
pose trajectories, ensuring geometric consistency across rotational and translational components.

3.3 Riemannian Optimal Transfer For Symmetry

Building upon the aforementioned Riemannian flow matching framework, we construct conditional
probability paths to learn 6D pose distributions from given datasets. However, a critical challenge in
6D pose estimation lies in handling symmetric objects (e.g., bottles), where multiple feasible ground
truths exist for a single object pose. In addressing the coexistence of heterogeneous asymmetric
and symmetric objects in the 6D pose estimation task, we divide the construction of conditional
probability paths into two distinct scenarios: single-hypothesis and multi-hypothesis.
First, consider the scenario of a single-hypothesis. The optimal transformation must map the single
source pose to the single target pose via the unique shortest path. Therefore, the objective of Optimal
Transport(OT) [34] in Riemannian manifolds is akin to SE(3) geodesic interpolation, as both aim
to find the shortest path. For scenarios involving multiple-hypotheses, there exist multiple feasible
ground truth poses. Assuming continuous source distribution ρ0 = δ[R0,T0] and target distribution
ρ1 = δ[R1,T1], where δ(·) denotes the Dirac measures. The general form of the Riemannian OT [3]
for constructing the optimal conditional probability paths is given by:

OT(ρ0, ρ1) = inf
Φ∈C

∫
SE(3)

c ([Rx, Tx],Φ([Rx, Tx])) ρ0([Rx, Tx])dµ([Rx, Tx]), (5)

where C is the set of admissible transport plans on SE(3), Φ([Rx,Tx]) represents the transformed pose
via Φ(·), and dµ is the Haar measure on SE(3). In this paper, the cost function c([R1, t1], [R2, t2]) is
defined on Riemannian manifolds, more specifically, the SE(3) manifold:

c([R1, t1], [R2, t2]) =
∥∥log ([R1, t1]

−1[R2, t2]
)∥∥

se(3)
(6)

Because the target distribution ρ1 = δ[R1,T1] has multiple feasible ground truth poses, ρ1 can be
rewritten as a discrete distribution ρ1 =

∑
j βjδ[Ry,j ,Ty,j ]. Subsequently, the objective simplifies to

minimizing the weighted average cost over target poses:

OT(ρ0, ρ1) = inf
Φ∈C

∑
j

βj

∥∥log ([R0, t0]
−1[Ry,j , ty,j ]

)∥∥
se(3)

, (7)

where βj is the coefficient for j-th discrete distribution. In the field of 6D pose estimation, it is
commonly assumed that multiple ground-truth poses are attributable to object symmetries. Con-
sequently, these poses have equal occurrence probabilities, leading to identical coefficients β for
discrete distributions. This formulation allows the transport map Φ(·) to distribute “probability mass”
from the single pose to multiple poses, guided by the SE(3) Riemannian metric.
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3.4 Likelihood Estimation for Pose Candidates

Although the Riemannian flow matching model enables conditional sampling from pose distributions,
the 6D pose estimation task often necessitates a deterministic and numerically accurate output. To
address this challenge, we must develop a strategy for selecting or aggregating a final output estimation
from multiple generated samples. Due to the vanilla mean pooling of 6D pose samples typically
leading to a significant statistical bias induced by outliers in the distribution tails, GenPose [43]
trained a decoupled Energy-based model [30] that performs likelihood estimation for its generating
candidates. However, this Energy-based approach deprives the model of the advantages of end-to-end
training.
To achieve end-to-end training, we estimate the likelihood of generated samples in flow matching
using Hutchinson trace estimation [13], which eliminates the need for auxiliary likelihood estimation
models. As depicted in Fig. 1(b), the evolution of log-likelihood for Riemannian flow matching
log pt([Rt, Tt]) depends on a continuous ODE equation:

∂log pt([Rt, Tt]])

∂t
= −∇ · (vθ([Rt, Tt], t)) , (8)

where ∇(·) denotes a divergence operation. The Log-likelihood can be computed by integrating
t ∈ [0, 1]:

log p1(vθ([Rt, Tt]))− log p0(vθ([R0, T0])) = −
∫ 1

0

∇ · (vθ([Rt, Tt])) dt (9)

To calculate the divergence of the velocity field ∇ · (vθ([Rt, Tt])) is equivalent to solving the trace of
its Jacobian matrix:

∇ · (vθ([Rt, Tt], t)) = tr(Jt) =

D∑
i=1

∂vt,i([Rt, Tt], t)

∂xt,i
, (10)

where tr(Jt) represents the trace of the Jacobian matrix. Calculating the trace of the Jacobian matrix
in high-dimensional spaces involves significant computational complexity, which is infeasible for
real-time applications. To tackle this issue, we utilize the Hutchinson trace estimator [13], which
enables us to approximate the divergence using an unbiased estimation. Specifically, we first generate
a random vector ϵ with the same dimension as vθ([Rt, Tt])), typically sampled from the standard
normal distribution N (0, I). Then, we calculate the Jacobian-Vector Product (JVP), Jvθ([Rt,Tt]ϵ,
which can be efficiently calculated using automatic differentiation tools in PyTorch. Finally, we
repeat the this operation N times to obtain the expectation of JVP, which can be regarded as an
approximate estimation of divergence:

tr(Jt) = E[ϵTJtϵ] (11)

After obtaining the integration term in Eq. (9), we still need to calculate log p0(vθ([Rt, Tt])). Since
the initial state [R, T ] follows a standard normal distribution N (0, I) with density function p0(x) =

1
(2π)d/2

exp
(
− 1

2x
⊤x

)
, the log-likelihood at the initial time step can be computed as follows:

log p0(vθ([R0, T0])) = −1

2
[R0, T0]

⊤[R0, T0]−
d

2
log(2π), (12)

where d denotes the dimension of 6D pose. After acquiring the likelihood values for each pose candi-
date, we discard candidates with likelihoods below the threshold δ. Finally, the retained candidates
are then aggregated by computing the weighted average of rotations in SO(3) and translations in R3,
respectively.

3.5 Discussion
Why RFM Enables Geometric-Consistency. Score matching aims to learn the noise in the denoising
process, which inherently lacks physical meaning(orthonormalization is only applied to the final
outputs as a post-processing step to ensure its physical legitimacy). In contrast, flow matching
directly learns a velocity vector field vθ(t, c, [R, T ]) that governs the evolution of poses, endowed
with explicit physical interpretability. This enables enforcing geodesic constraints on the Riemannian
manifold, thereby ensuring geometric consistency throughout the pose generation process.
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Why RFM Enables End-to-End Likelihood Estimation. Score matching learns score functions
(probability gradients) rather than the probability distribution itself, thereby suffering from the calcu-
lation of the intractable normalization constant, especially in high-dimensional spaces. In contrast,
flow matching explicitly models deterministic probability flows through velocity fields derived from
the continuity equation, inherently ensuring probability conservation, reversible trajectories, and
stable trace computation via Jacobian determinants. Moreover, flow matching’s direct optimization
of velocity fields mitigates the instability of score matching in low-density regions, where score
gradients become ill-defined due to sparse sampling.

4 Experiments
4.1 Experimental Setup
Datasets. Since our generative modeling framework does not require any category-specific canonical
priors, this obviates the need for an effortless extension of the framework to datasets containing
numerous object categories. Therefore, we conduct experiments on Omni6DPose [42], a novel
yet challenging benchmark dataset for 6D pose estimation. This comprehensive dataset comprises
807K synthetic and real images with over 6.5 million annotations spanning 149 object categories.
Notably, the diversity and scale of Omni6DPose [42] significantly surpass prevailing datasets like
REAL275 [36], which contains only 7K images restricted to 6 common object categories. We train
our models exclusively on synthetic data for all experiments and evaluate performance across both
synthetic and real-world data.
Implementation Details. Following the baseline established in Omni6DPose [42], we employ RGB
and point cloud modalities as dual input streams for both training and inference phases. For RGB
image input, a pre-trained, frozen DINOv2 model is utilized to extract semantic feature representations.
For the point cloud input, we leverage Farthest Point Sampling (FPS) to subsample 1,024 points,
followed by global feature extraction via PointNet++. During the feature aggregation stage, the RGB
features are spatially concatenate with corresponding point coordinates to construct cross-modal
fused representations. Please refer to the Supplementary Materials for more implementation details.

4.2 Comparison with State-of-the-art Methods
Results on Simulation Datasets. We first compare the proposed method with other existing methods
under simulation settings. The Omni6DPose [42] contains the synthetic data based on three classic
datasets: ScanNet++ [40], IKEA [1], and Matterport3D [5]. Table 1 presents comparative evaluations
of the proposed method against state-of-the-art methods on the Omni6DPose ScanNet++ test-set.
As shown in Table 1, our approach surpasses all deterministic methods by a large margin across all
evaluation metrics, which demonstrates the potential of conditional generative modeling for category-
level object pose estimation. Notably, even when compared with the state-of-the-art generative
method GenPose++ [42], our solution maintains a significant performance advantage. Specifically,
the proposed method leads by over +4.1 in IoU25 and +3.4 in 5°2cm.
Results on Real-world Datasets. To further validate the efficacy of our approach, we also evaluate our
approach on real-world datasets. Notably, we still train our models exclusively on the aforementioned
synthetic data. Table 2 shows the comparison of our method with state-of-the-art methods on the
Omni6DPose ROPE set. As shown in Table 2, the proposed method significantly outperforms existing
solutions across all quantitative metrics, demonstrating the sim-to-real transfer capability of our

Table 1: Quantitative comparison of category-level object pose estimation on Omni6DPose
ScanNet++ test-set. The results are averaged over all 149 categories.

Method End-to-End
Training

Input
Modality

IoU AUC
IoU25 IoU50 IoU75 5°2cm 5°5cm 10°2cm 10°5cm

Deterministic:
- HS-Pose [45] ✓ Point Clouds 31.1 12.0 1.7 3.4 6.1 7.9 13.4
- AG-Pose [20] ✓ RGB-D 29.9 10.6 1.1 2.2 4.3 6.2 10.1
- SecondPose [10] ✓ RGB-D 31.5 12.2 2.0 3.1 7.9 11.3 16.7

Probabilistic:
- GenPose++ [42] ✗ RGB-D 43.9 24.7 3.3 10.4 13.2 21.7 28.5
- Ours ✓ RGB-D 48.0 28.9 5.0 12.8 16.2 25.2 31.6
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Table 2: Quantitative comparison of category-level object pose estimation on Omni6DPose
ROPE set. The results are averaged over all 149 categories.

Method Input
Modality

IoU AUC
IoU25 IoU50 IoU75 5°2cm 5°5cm 10°2cm 10°5cm

Deterministic:
- NOCS [36] RGB-D 0.0 0.0 0.0 0.0 0.0 0.0 0.0
- SGPA [7] RGB-D 10.5 2.0 0.0 4.3 6.7 9.3 15.0
- IST-Net [25] RGB-D 28.7 10.6 0.5 2.0 3.4 5.3 8.8
- HS-Pose [45] Point Clouds 31.6 13.6 1.1 3.5 5.3 8.4 12.7
- AG-Pose [20] RGB-D 29.3 10.9 0.7 2.1 3.5 6.7 9.2
- SecondPose [10] RGB-D 33.6 15.4 2.0 5.0 7.3 10.4 15.1

Probabilistic:
- GenPose [43] Point Clouds - - - 6.6 9.6 13.1 19.3
- GenPose++ [42] RGB-D 39.0 19.1 2.0 10.0 15.1 19.5 29.4
- Ours RGB-D 42.1 21.0 2.2 10.4 15.7 21.0 30.8

(a) Ground truth (b) GenPose++ [42] (c) Ours

Figure 3: Visualization comparison on Omni6DPose [42]. As shown in the zoomed area of the
figure above, our approach has achieved better performance than GenPose++ [42].

proposed Riemannian flow matching framework. Figure 3 presents detailed comparative visualization
results of our model against GenPose++ [42] and the ground truths.
Results on Category-level Object Pose Tracking. The closed-loop generative architecture inherent
in the flow matching framework enables seamless adaptation of the proposed method to the object
pose tracking task with minimal modification. Technically, we perturb the pose input RtTt of ODE
Solver in Fig. 2 with a Gaussian noise, while initializing the input t as tδ ∈ (0, 1). By default, we set
the tδ = 0.55 in this paper. Moreover, we employ the same likelihood estimation and aggregation
strategy with a single-frame pose estimation framework to obtain the estimation of the current frame.
The comparison of category-level object pose tracking on the Omni6DPose ROPE set is presented
in Table 3. As demonstrated in Table 3, our method maintains a leading position in the object
pose tracking task. Notably, the proposed Riemannian flow matching framework not only enables
end-to-end training but also offers faster inference speed compared to GenPose++ [42].

Table 3: Comparison of category-level object pose tracking on Omni6DPose ROPE. The results
are averaged over all 149 categories.

Method Input FPS↑ 5°5cm ↑ mIoU↑ Rerr(
◦) ↓ Terr(cm)↑

- GenPose [43] Point Clouds 11.7 13.3 - 19.3 1.2
- GenPose++ [42] RGB-D 8.7 15.9 53.4 17.6 1.2
- Ours RGB-D 11.3 16.1 54.1 15.9 1.2
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Table 4: Ablation studies on the Riemannian
Interpolation and Metric.

Ablation IoU25↑ 5°2cm↑ 5°5cm↑
Vanilla Euclidean Interp. 43.4 9.7 13.9

+ Riemannian Interp. 45.1(+1.7) 10.4(+0.7) 14.7(+0.8)
++ Riemannian Metric 48.0(+4.6) 12.8(+3.1) 16.2(+2.3)

Table 5: Ablation studies on the Likelihood Esti-
mation and Samples Aggregation.

Ablation IoU25 ↑ 5°2cm↑ 5°5cm↑
Maximum likelihood 29.7 6.6 9.3

with Averaging 46.8 10.8 15.5
Weighted Averaging 48.0(+1.2) 12.8(+2.0) 16.2(+0.7)

4.3 Ablation Studies

We conduct ablation studies on the Scannet++ test set of Omni6DPose [42] from three perspectives:
(1) the effectiveness of Riemannian interpolation and metric; (2) the impact of likelihood estimation
and sample aggregation; (3) the role of Riemannian OT for symmetric objects.
Effectiveness of the Riemannian Interpolation and Metric. In this paper, we introduce Riemannian
interpolation and Riemannian metric to enable more efficient modeling of and learning from 6D
pose distributions. To this end, we first conduct an ablation study on the roles of these two core
components. Table 4 presents ablation results for the Riemannian interpolation and metric. As shown
in Table 4, the Riemannian interpolation design effectively improves performance in IoU25 by +1.7
and 5°2cm by +0.7. The Riemannian Metric further boosts he 6D pose estimation performance by
+4.6 in IoU25 and +3.1 in 5°2cm.
Ablation studies on the Likelihood Estimation and Samples Aggregation. Table 5 presents
ablation results for the proposed likelihood estimation method and different sample aggregation
strategies. As shown in Table 5, the multiple sample aggregation strategy (2nd and 3rd columns)
surpasses the single sample obtained by maximum likelihood estimation by a large margin, verifying
the superiority of generative models in reducing pose estimation error through multiple samplings.
Moreover, the weighted averaging strategy outperforms standard averaging with improvement +1.2 in
IoU25 and +2.0 in 5°2cm, validating the effectiveness of the proposed likelihood estimation method.

Table 6: Ablation studies on the Riemannian Optimal Trans-
fer(ROT) for Symmetric Objects.

Method IoU25 ↑ 5°2cm↑ 5°5cm↑
GenPose++ [42](Symmetric) 41.5 11.1 12.5
Ours(w/o ROT)(Symmetric) 43.4 12.1 15.2
Ours(with ROT)(Symmetric) 48.5(+5.1) 13.7(+1.6) 17.1(+1.9)

Effectiveness of the Riemannian OT
for Symmetric Objects. In this pa-
per, we introduce Riemannian OT to
address the challenge posed by mul-
tiple feasible poses of symmetric ob-
jects in 6D pose estimation. To ex-
perimentally validate the effective-
ness of Riemannian OT, we incorpo-
rated the half-symmetric property into
Omni6DPose [42] for comparative experiments. As demonstrated in Table 6, Riemannian OT
successfully alleviates this issue, leading to significant performance improvements compared to
configurations without it. Notably, the proposed method is independent of symmetry-specific network
architectures or custom loss designs.

5 Conclusion
In this paper, we present the Riemannian Flow Matching (RFM) for category-level 6D pose estimation,
which learns deterministic pose trajectories via geodesic interpolations while explicitly preserving
geometric constraints. The key contributions of our work are threefold: 1) a Riemannian manifold-
based probabilistic path modeling for 6D pose estimation; 2) probability mass redistribution for
symmetry-induced pose multiplicity through Riemannian Optimal Transport; 3) an efficient likelihood
estimation strategy with trace estimation for end-to-end training. Comprehensive evaluations on the
challenging Omni6DPose dataset demonstrate that RFM significantly outperforms state-of-the-art
baselines. With its simple architecture and compatibility with advanced generative models, our
approach offers a robust foundation for integrating into unified robot learning frameworks.
Limitations and Future Works: Although our RFM model has achieved promising performance,
its accuracy remains unsatisfactory on articulated objects (e.g., laptops). Given the prevalence of
such articulated objects in hand-object interactions, our future work will focus on two key aspects:
1)Enhancing the RFM framework to improve pose estimation accuracy for articulated objects; 2)
exploring integration of the RFM framework into emerging vision-language-action (VLA) models,
enabling end-to-end perception-to-manipulation pipelines.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly outline the core contributions (Rie-
mannian flow matching for deterministic 6D pose trajectories, symmetry handling via
Riemannian Optimal Transport, end-to-end likelihood estimation via Hutchinson trace ap-
proximation), with experimental results validating these claims across synthetic/real-world
datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discusses limitations in handling articulated objects (e.g., laptops)
and outlines plans to integrate the framework into Vision-Language-Action (VLA) models
for broader applicability.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have rigorously proven our theoretical results and cited relevant works to
support them.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient methodological description to enable others to reproduce
our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code in the supplementary materials, along with
necessary instructions to reproduce the main experimental results. Additionally, we intend
to publicly release the code upon official acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide implementation details in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate performance using established metrics (IoU and AUC) and reports
averaged results over all categories. Ablation studies (Tables 4-6) further validate component
contributions with clear performance gaps.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the computational resources used in the experiments in
the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research focuses on algorithmic improvements for 6D object pose estima-
tion without involving human subjects, sensitive data, or ethically problematic applications.
It adheres to NeurIPS guidelines by avoiding privacy violations, biased datasets, or high-risk
deployment scenarios.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential positive societal impacts on conclusion part.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper focuses on category-level 6D object pose estimation using a Rie-
mannian flow matching framework. It does not involve the release of high-risk assets that
would necessitate safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper references existing datasets (e.g., Omni6DPose, ScanNet++, IKEA,
Matterport3D) and models (e.g., DINOv2, PointNet++), with citations to the respective
original works.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the source code along with necessary instructions in the supple-
mentary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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