# RFMPose: Generative Category-level Object Pose Estimation via Riemannian Flow Matching

Wenzhe Ouyang<sup>1</sup>, Jinghua Wang<sup>2</sup>, Zenglin Xu<sup>3,4</sup>, Jiming Chen<sup>1</sup>, Qi Ye<sup>1\*</sup>

<sup>1</sup> Zhejiang University, <sup>2</sup> Harbin Institute of Technology, Shenzhen,

<sup>3</sup> Fudan University, <sup>4</sup> Shanghai Academy of AI for Science

# **Abstract**

We introduce RFMPose, a novel generative framework for category-level 6D object pose estimation that learns deterministic pose trajectories through Riemannian Flow Matching (RFM). Existing discriminative approaches struggle with multihypothesis predictions (e.g., symmetry ambiguities) and often require specialized network architectures. RFMPose advances this paradigm through three key innovations: (1) Ensuring geometric consistency via geodesic interpolation on Riemannian manifolds combined with bi-invariant metric constraints; (2) Alleviating symmetryinduced ambiguities through Riemannian Optimal Transport for probability mass redistribution without ad-hoc design; (3) Enabling end-to-end likelihood estimation through Hutchinson trace approximation, thereby eliminating auxiliary model dependencies. Extensive experiments on the Omni6DPose demonstrate state-ofthe-art performance of the proposed method, with significant improvements of +4.1 in  $IoU_{25}$  and +2.4 in 5°2cm metrics compared to prior generative approaches. Furthermore, the proposed RFM framework exhibits robust sim-to-real transfer capabilities and facilitates pose tracking extensions with minimal architectural adaptation. Code is available at https://github.com/shabiouyang/RMFPose.

# 1 Introduction

6D object pose estimation, which entails predicting the 3D rotation  $R \in SO(3)$  and 3D translation  $t \in \mathbb{R}^3$  of observed objects, stands as a fundamental yet pivotal task within computer vision due to its diverse applications in augmented reality [26, 32], robotic manipulation [4, 24] and hand-object interaction [22, 29], etc. Prior works have predominantly focused on instance-level object pose estimation methods [15, 21, 12]. Although these methods, particularly recent progress [38] empowered by the Large Language Models(LLMs), have demonstrated promising performance, instance-level object pose estimation methods still suffer from limited generalization capabilities stemming from the dependency on the 3D models or RGB images for each instance. To address these limitations, category-level object pose estimation has garnered considerable attention for its generalization advantages, which eliminates the need for instance-level 3D models or RGB images during both the training and inference phases.

Existing category-level methods [36, 20, 27, 33, 10, 28] can be categorized into two distinct groups: **the correspondence-based methods** and **the direct regression-based methods**. The former approaches [36, 20, 37, 28] aim to extract features from the camera coordinate space and subsequently establish correspondences within a predefined category-specific canonical templates, including 3D NOCS [36], key-points [20], or implicit 3D embeddings [37]. However, these methods often encounter difficulties due to the non-differentiable nature of the correspondence process. In contrast,

<sup>\*</sup>Corresponding author: Qi Ye (qi.ye@zju.edu.cn). This work was supported in part by NSFC under Grants (No.62233013, 62088101, 62293511, 62172285), Key Research and Development Program of Zhejiang Province (No.2025C01064) and Shenzhen Science and Technology Program (Project No.GXWD 20231130125451001).

the latter approaches [9, 18, 19, 10] strive to directly regress the 6D pose in an end-to-end manner. These approaches mainly focus on learning pose-sensitive features and various specialized networks, such as 3D Graph Convolution [9] and Spherical convolutions [19, 10], leveraging for the learning.

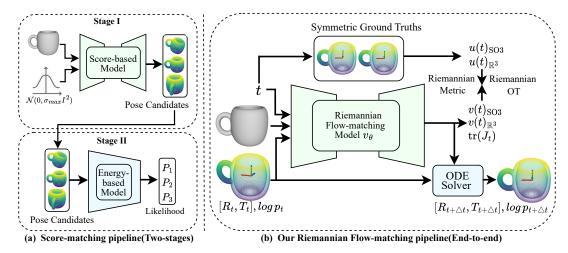


Figure 1: Existing Score matching pipeline and our proposed Riemanian Flow Matching pipeline. The Score matching pipeline proposed in [43] employs a two-stage framework: the first stage generates pose candidates, while the second stage estimates likelihood scores for these candidates. In contrast, our Riemannian Flow matching method models the object pose probability distribution on Riemannian manifolds to ensure geometric consistency, and simultaneously enables end-to-end likelihood estimation via trace estimation  $\operatorname{tr}(J_t)$ . Moreover, our approach leverages Riemannian Optimal Transport to address the challenge of multiple feasible discrete poses induced by object symmetry. Continuous pose evolution from t to  $t+\Delta t$  is governed by the learned velocity field  $v_{\theta}$  in Riemannian space with the aid of an ODE solver.

While the aforementioned methodologies have demonstrated efficacy, their fundamental conceptualization remains anchored in the discriminative paradigm, thereby inheriting two cardinal limitations: 1) difficulties in resolving the multi-hypothesis prediction problem(e.g., symmetry-induced pose multiplicity) and 2) reliance on tailored pose-sensitive feature extraction networks. Particularly regarding the second limitation, this constraint substantially hinders the flexibility of integration into thriving Vision-Language-Action (VLA) models [16, 2] for robot learning applications. To circumvent the limitations above, we advocate embracing the probabilistic methods in pose estimation, which inherently accommodates multi-hypothesis problem through probabilistic modeling while offering architectural flexibility in network design. As a seminal attempt, GenPose [43] utilized a score matching framework [31] to learn the distributions of 6D pose. However, due to the computational intractability of normalization constants in high-dimensional domains, GenPose [43] requires auxiliary training of an Energy-based model to estimate the likelihood of generated samples, as shown in Fig. 1(a). This two-stage framework inevitably introduces model complexity and sacrifices the simplicity of end-to-end training. Furthermore, score matching estimates the score function of a single-sample distribution via gradient approximation, which struggles to address the multi-target optimization in pose estimation caused by object symmetry.

To address the limitations, in this paper, we present a novel geometrically consistent framework that learns deterministic pose trajectories on Riemannian manifolds for category-level object pose estimation, termed RFMPose. The proposed RFMPose directly learns pose trajectories through Probability Flow ODEs derived from the continuity equation, which regulate probability density evolution. Our RFM framework rigorously preserves geometric constraints via two key mechanisms: (1) Geodesic-based interpolation on SO(3) via Lie algebra transformations for rotations, coupled with Euclidean interpolation in  $\mathbb{R}^3$  for translations; (2) A bi-invariant Riemannian metric combining the Killing form on SO(3) with Euclidean distances in  $\mathbb{R}^3$ . By coalescing these components, our RFM framework guarantees physically plausible pose evolution in the SE(3) manifold.

Furthermore, we specifically address two critical challenges identified in prior works: 1) **effective likelihood estimation for generative models** and 2) **multi-hypothesis predictions from object symmetries**. To eliminate the requirement for auxiliary energy networks, we introduce an efficient likelihood estimation strategy for the RFM framework using Hutchinson trace estimation, thereby

enabling efficient divergence computation and end-to-end training. For symmetry-induced pose multiplicity, we propose a Riemannian Optimal Transport formulation, which minimizes the weighted geodesic cost while facilitating adaptive redistribution of probability mass across equivalent poses, as shown in Fig. 2(b). This manifold-based geometric approach resolves ambiguities by exploiting the first principles of manifold geometry, instead of relying on symmetry-specific network architectures.

Comprehensive experiments on the challenging Omni6DPose dataset demonstrate the proposed method's superiority, outperforming previous generative approaches by +4.1 in  $IoU_{25}$  and +2.4 in  $5^{\circ}2cm$ . Additionally, the proposed method also achieves 42.1 in  $IoU_{25}$  under real-world scenarios without domain adaptation, verifying its inherent sim-to-real transfer capability. Moreover, the proposed method permits direct extension to object pose tracking through marginal architectural adjustments and demonstrates competitive performance accuracy on object pose tracking.

The principal contributions of this work can be summarized as follows:

- We establish a Riemannian Flow matching framework that leverages Riemannian interpolation and metric to ensure manifold-consistent trajectory learning for 6D pose estimation;
- We propose end-to-end likelihood estimation with the Hutchinson trace estimation on 6D pose estimation, which eliminates the requirement for auxiliary models.
- We design Riemannian Optimal Transport to resolve symmetry-induced pose multiplicity in 6D pose estimation.
- Extensive experiments on the challenging Omni6DPose dataset verify the superior performance of the proposed method compared to state-of-the-art approaches and demonstrate the great potential of the proposed RFM framework in object pose estimation.

# 2 Related Works

Correspondence-based Category-level Pose Estimation. This family of methodologies [36, 20, 37, 28] seeks to establish the correspondence between camera coordinate space and the predefined category-specific canonical templates, subsequently recovering poses via optimization-based fitting algorithms (e.g., Umeyama alignment [35]). As a seminal advancement, NOCS [36] introduced a unified canonical representation to align intra-category object instances geometrically. Building upon this foundation, SpherePose [28] utilizes spherical feature interaction mechanisms to achieve enhanced correspondence precision through geodesic-aware feature matching. Besides, AG-Pose [20] advocated geometry-driven keypoint detection as an alternative correspondence paradigm, while Query6DoF [37] developed implicit shape priors through learnable sparse query matching, circumventing explicit template constraints. SAR-Net [17] and RBP-Net [44] focused on symmetry-correspondence to mitigate the symmetry-induced pose multiplicity. Notwithstanding these advancements, the correspondence process is inherently non-differentiable and cannot be integrated into the learning process. Consequently, inaccuracies in generating predefined category-specific canonical templates exert a significant influence on the accuracy of pose estimation, as error propagation remains unmitigated through gradient-based optimization.

Direct Regression-based Category-level Pose Estimation. This category of approaches [9, 18, 19, 10] aims to regress the object pose in an end-to-end manner directly. FS-Net [9] proposes to decouple the rotation into two perpendicular vectors, simplifying prediction, and utilizes a 3D Graph Convolution autoencoder for feature extraction. VI-Net [19] leverages spherical representations to decouple the rotation into a viewpoint rotation and an in-plane rotation, thereby simplifying the challenge of rotation estimation. Based on the decoupled representation, SecondPose [10] proposed to extract SE(3)-consistent semantic and geometric features to enhance pose estimation accuracy. However, these methods struggle with the pose-sensitive feature learning due to the non-linearity of SE(3). Furthermore, excessive reliance on specialized pose-sensitive feature extraction networks undermines model simplicity, impeding seamless integration with contemporary VLA frameworks. Generative Modeling for Object Pose Estimation. Recently, generative modeling has emerged as a promising paradigm for various tasks far beyond classic generation tasks, such as classification [6], perception [39], and robotics action planning [11, 41]. As a pioneering work, GenPose [43] proposed to learn 6D pose distribution by score matching. However, score matching struggles to estimate probabilities in high-dimensional manifolds like SE(3) and fails to resolve pose ambiguity caused by object symmetry. As a comparison, flow matching [23] learning deterministic trajectories via Probability Flow ODEs. Recent advances in Riemannian manifolds [8, 3, 14] have demonstrated the

capacity of flow matching to model complex geometric transformations. In this paper, we pioneer the application of Riemannian Flow matching to category-level 6D pose estimation, systematically addressing the geometric constraints inherent in the object pose estimation.

# 3 Methodology

We will first introduce the core mechanism of learning pose distributions via Riemannian Flow Matching. Subsequently, we will detail how we address the challenge of object symmetries using Riemannian Optimal Transport. Finally, we explain our end-to-end likelihood estimation technique, which employs Hutchinson trace estimation to obviate the need for auxiliary models.

#### 3.1 Preliminaries

**Problem Formulation.** The 6D pose estimation task aims to estimate 6D object pose  $[R_i, T_i]$ , where  $R \in \mathbb{R}^{3 \times 3}$  is a rotation matrix and  $T \in \mathbb{R}^3$  is a translation vector, using the given multi-modal sensory inputs: a partially observed point cloud  $\mathbf{O}_i \in \mathbb{R}^{3 \times N}$  and a cropped RGB image  $\mathbf{I}_i \in \mathbb{R}^{3 \times H \times W}$ . Therefore, the learning agent is given a training set with a paired dataset  $\mathcal{D} = ([R_i, T_i], \mathbf{O}_i, \mathbf{I}_i)_{i=1}^n$ .

Conditional Continuous Normalizing Flows for Pose Generation. To model a target conditional distribution q([R,T]|c) for a given condition variable c, we transform a prior conditional distribution  $\rho_0([R,T]|c)$  with a velocity fields conditioned on c. This transformation is guided by the following Ordinary Differential Equations (ODEs):

$$\frac{d[R,T]}{dt} = v_{\theta}(t,c,[R,T]),\tag{1}$$

where  $\theta$  are trainable parameters and  $t \in [0,1]$ . This ODE equation generates a flow and a conditional probability density path  $\rho_t([R,T]|c)$ . In this paper, the condition variable c represents a partially observed point cloud  $\mathbf{O}_i$  and a cropped RGB image  $\mathbf{I}_i$ . The target distribution q([R,T]) corresponds to the distribution of 6D poses of the ground truth in the datasets.

# 3.2 Learning Pose Distribution via Riemannian Flow Matching

Conditional flow paths in Eq. (1) are designed primarily under the assumption of Euclidean geometry, resulting in linear interpolations. However, this can be particularly restrictive for tasks such as trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture the underlying dynamics giving rise to the observed marginals.

In this paper, we tackle the aforementioned issue by learning the 6D pose distribution within a Riemannian space, which facilitates geodesic-based interpolations using minimal-length curves under Riemannian distance [8]. Prior to delving into the method, we first delineate the Riemannian structure inherent in the 6D pose estimation task. Conventionally, a pose matrix [R,T] in Euclidean space can be transformed into SE(3) manifolds. According to [3], the disintegration of measures posits that every SE(3)-invariant measure can be decomposed into an SO(3)-invariant measure and a measure proportional to the Lebesgue measure on  $\mathbb{R}^3$ . This enables us to simplify the construction of independent flows on SO(3) and  $\mathbb{R}^3$  for simplicity. To construct a conditional vector field from  $R_0$  to  $R_1$  on the Riemannian space SO(3), we leverage the Lie algebra  $\mathfrak{so}(3)$ , which is comprised of skew-symmetric matrices acting as tangent vectors at the identity of SO(3). The geodesic interpolation at t in SO(3) can be formulated as:

$$u(t)_{SO3} = R(t) = R_0 \cdot \exp\left(t \cdot \log(R_0^{\top} R_1)\right),\tag{2}$$

where  $\log: SE(3) \to \mathfrak{se}(3)$  is the Lie algebra transformation, and  $\exp: \mathfrak{se}(3) \to SE(3)$  is the Lie group transformation.  $R_0$  and  $R_1$  are orthogonal rotation matrices in the initial and target states. Constructing a conditional vector field for translation on  $\mathbb{R}^3$  can be simplified via Euclidean interpolation:

$$u(t)_{\mathbb{R}^3} = T(t) = (1-t)T_0 + tT_1,\tag{3}$$

where  $T_0$  to  $T_1$  are the translation vector in the initial state and target state. Capitalizing on the above Riemannian interpolation, we can derive the Riemannian flow matching framework for 6D pose distribution through the following formulation:

$$\mathcal{L}_{\text{RCFM}}(\theta) = \mathbb{E}_{t,q([R,T]),p_t([R,T]|c)} \|v_{\theta}(t,c,[R,T]) - u(t,[R,T])\|_{\text{SE3}}^2$$
(4)

Herein, we can model the target distribution q([R,T]|c) by sampling from a predefined prior distribution  $\rho_0([R,T]|c)$  and evolving these initial samples along a Riemannian flow over  $t \in [0,1]$ , as depicted in Fig. 2.

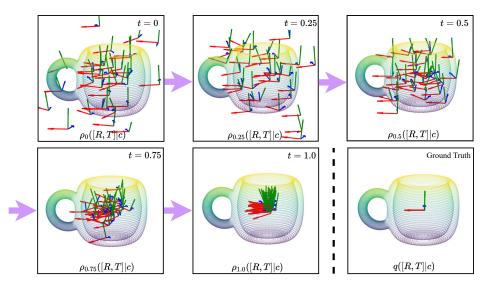


Figure 2: The illustration of object pose generation Process with Riemannian flow matching. We leverage geodesic interpolation on SO(3) and Euclidean interpolation in  $\mathbb{R}^3$  to derive deterministic pose trajectories, ensuring geometric consistency across rotational and translational components.

### 3.3 Riemannian Optimal Transfer For Symmetry

Building upon the aforementioned Riemannian flow matching framework, we construct conditional probability paths to learn 6D pose distributions from given datasets. However, a critical challenge in 6D pose estimation lies in handling symmetric objects (e.g., bottles), where multiple feasible ground truths exist for a single object pose. In addressing the coexistence of heterogeneous asymmetric and symmetric objects in the 6D pose estimation task, we divide the construction of conditional probability paths into two distinct scenarios: single-hypothesis and multi-hypothesis.

First, consider the scenario of a single-hypothesis. The optimal transformation must map the single source pose to the single target pose via the unique shortest path. Therefore, the objective of Optimal Transport(OT) [34] in Riemannian manifolds is akin to SE(3) geodesic interpolation, as both aim to find the shortest path. For scenarios involving multiple-hypotheses, there exist multiple feasible ground truth poses. Assuming continuous source distribution  $\rho_0 = \delta_{[R_0, T_0]}$  and target distribution  $\rho_1 = \delta_{[R_1, T_1]}$ , where  $\delta_{(\cdot)}$  denotes the Dirac measures. The general form of the Riemannian OT [3] for constructing the optimal conditional probability paths is given by:

$$OT(\rho_0, \rho_1) = \inf_{\Phi \in \mathcal{C}} \int_{SE(3)} c([R_x, T_x], \Phi([R_x, T_x])) \rho_0([R_x, T_x]) d\mu([R_x, T_x]),$$
 (5)

where  $\mathcal{C}$  is the set of admissible transport plans on SE(3),  $\Phi([R_x, \mathbf{T}_x])$  represents the transformed pose via  $\Phi(\cdot)$ , and  $d\mu$  is the Haar measure on SE(3). In this paper, the cost function  $c([R_1, \mathbf{t}_1], [R_2, \mathbf{t}_2])$  is defined on Riemannian manifolds, more specifically, the SE(3) manifold:

$$c([R_1, \mathbf{t}_1], [R_2, \mathbf{t}_2]) = \left\| \log \left( [R_1, \mathbf{t}_1]^{-1} [R_2, \mathbf{t}_2] \right) \right\|_{\mathfrak{se}(3)}$$
(6)

Because the target distribution  $\rho_1=\delta_{[R_1,T_1]}$  has multiple feasible ground truth poses,  $\rho_1$  can be rewritten as a discrete distribution  $\rho_1=\sum_j\beta_j\delta_{[R_{y,j},\mathbf{T}_{y,j}]}$ . Subsequently, the objective simplifies to minimizing the weighted average cost over target poses:

$$OT(\rho_0, \rho_1) = \inf_{\Phi \in \mathcal{C}} \sum_j \beta_j \left\| \log \left( [R_0, \mathbf{t}_0]^{-1} [R_{y,j}, \mathbf{t}_{y,j}] \right) \right\|_{\mathfrak{se}(3)}, \tag{7}$$

where  $\beta_j$  is the coefficient for j-th discrete distribution. In the field of 6D pose estimation, it is commonly assumed that multiple ground-truth poses are attributable to object symmetries. Consequently, these poses have equal occurrence probabilities, leading to identical coefficients  $\beta$  for discrete distributions. This formulation allows the transport map  $\Phi(\cdot)$  to distribute "probability mass" from the single pose to multiple poses, guided by the SE(3) Riemannian metric.

#### 3.4 Likelihood Estimation for Pose Candidates

Although the Riemannian flow matching model enables conditional sampling from pose distributions, the 6D pose estimation task often necessitates a deterministic and numerically accurate output. To address this challenge, we must develop a strategy for selecting or aggregating a final output estimation from multiple generated samples. Due to the vanilla mean pooling of 6D pose samples typically leading to a significant statistical bias induced by outliers in the distribution tails, GenPose [43] trained a decoupled Energy-based model [30] that performs likelihood estimation for its generating candidates. However, this Energy-based approach deprives the model of the advantages of end-to-end training.

To achieve end-to-end training, we estimate the likelihood of generated samples in flow matching using Hutchinson trace estimation [13], which eliminates the need for auxiliary likelihood estimation models. As depicted in Fig. 1(b), the evolution of log-likelihood for Riemannian flow matching  $\log p_t([R_t,T_t])$  depends on a continuous ODE equation:

$$\frac{\partial \log p_t([R_t, T_t]])}{\partial t} = -\nabla \cdot (v_\theta([R_t, T_t], t)), \qquad (8)$$

where  $\nabla(\cdot)$  denotes a divergence operation. The Log-likelihood can be computed by integrating  $t \in [0,1]$ :

$$\log p_1(v_{\theta}([R_t, T_t])) - \log p_0(v_{\theta}([R_0, T_0])) = -\int_0^1 \nabla \cdot (v_{\theta}([R_t, T_t])) dt$$
 (9)

To calculate the divergence of the velocity field  $\nabla \cdot (v_{\theta}([R_t, T_t]))$  is equivalent to solving the trace of its Jacobian matrix:

$$\nabla \cdot (v_{\theta}([R_t, T_t], t)) = \operatorname{tr}(J_t) = \sum_{i=1}^{D} \frac{\partial v_{t,i}([R_t, T_t], t)}{\partial x_{t,i}}, \tag{10}$$

where  $\operatorname{tr}(J_t)$  represents the trace of the Jacobian matrix. Calculating the trace of the Jacobian matrix in high-dimensional spaces involves significant computational complexity, which is infeasible for real-time applications. To tackle this issue, we utilize the Hutchinson trace estimator [13], which enables us to approximate the divergence using an unbiased estimation. Specifically, we first generate a random vector  $\epsilon$  with the same dimension as  $v_{\theta}([R_t, T_t])$ , typically sampled from the standard normal distribution  $\mathcal{N}(0, I)$ . Then, we calculate the Jacobian-Vector Product (JVP),  $J_{v_{\theta}([R_t, T_t]}\epsilon$ , which can be efficiently calculated using automatic differentiation tools in PyTorch. Finally, we repeat the this operation N times to obtain the expectation of JVP, which can be regarded as an approximate estimation of divergence:

$$tr(J_t) = \mathbb{E}[\epsilon^T J_t \epsilon] \tag{11}$$

After obtaining the integration term in Eq. (9), we still need to calculate  $\log p_0(v_\theta([R_t, T_t]))$ . Since the initial state [R, T] follows a standard normal distribution  $\mathcal{N}(0, I)$  with density function  $p_0(\mathbf{x}) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}\mathbf{x}^{\top}\mathbf{x}\right)$ , the log-likelihood at the initial time step can be computed as follows:

$$\log p_0(v_\theta([R_0, T_0])) = -\frac{1}{2}[R_0, T_0]^\top [R_0, T_0] - \frac{d}{2}\log(2\pi), \tag{12}$$

where d denotes the dimension of 6D pose. After acquiring the likelihood values for each pose candidate, we discard candidates with likelihoods below the threshold  $\delta$ . Finally, the retained candidates are then aggregated by computing the weighted average of rotations in SO(3) and translations in  $\mathbb{R}^3$ , respectively.

# 3.5 Discussion

Why RFM Enables Geometric-Consistency. Score matching aims to learn the noise in the denoising process, which inherently lacks physical meaning(orthonormalization is only applied to the final outputs as a post-processing step to ensure its physical legitimacy). In contrast, flow matching directly learns a velocity vector field  $v_{\theta}(t,c,[R,T])$  that governs the evolution of poses, endowed with explicit physical interpretability. This enables enforcing geodesic constraints on the Riemannian manifold, thereby ensuring geometric consistency throughout the pose generation process.

Why RFM Enables End-to-End Likelihood Estimation. Score matching learns score functions (probability gradients) rather than the probability distribution itself, thereby suffering from the calculation of the intractable normalization constant, especially in high-dimensional spaces. In contrast, flow matching explicitly models deterministic probability flows through velocity fields derived from the continuity equation, inherently ensuring probability conservation, reversible trajectories, and stable trace computation via Jacobian determinants. Moreover, flow matching's direct optimization of velocity fields mitigates the instability of score matching in low-density regions, where score gradients become ill-defined due to sparse sampling.

# 4 Experiments

# 4.1 Experimental Setup

**Datasets.** Since our generative modeling framework does not require any category-specific canonical priors, this obviates the need for an effortless extension of the framework to datasets containing numerous object categories. Therefore, we conduct experiments on Omni6DPose [42], a novel yet challenging benchmark dataset for 6D pose estimation. This comprehensive dataset comprises 807K synthetic and real images with over 6.5 million annotations spanning 149 object categories. Notably, the diversity and scale of Omni6DPose [42] significantly surpass prevailing datasets like REAL275 [36], which contains only 7K images restricted to 6 common object categories. We train our models exclusively on synthetic data for all experiments and evaluate performance across both synthetic and real-world data.

Implementation Details. Following the baseline established in Omni6DPose [42], we employ RGB and point cloud modalities as dual input streams for both training and inference phases. For RGB image input, a pre-trained, frozen DINOv2 model is utilized to extract semantic feature representations. For the point cloud input, we leverage Farthest Point Sampling (FPS) to subsample 1,024 points, followed by global feature extraction via PointNet++. During the feature aggregation stage, the RGB features are spatially concatenate with corresponding point coordinates to construct cross-modal fused representations. Please refer to the Supplementary Materials for more implementation details.

# 4.2 Comparison with State-of-the-art Methods

**Results on Simulation Datasets.** We first compare the proposed method with other existing methods under simulation settings. The Omni6DPose [42] contains the synthetic data based on three classic datasets: ScanNet++ [40], IKEA [1], and Matterport3D [5]. Table 1 presents comparative evaluations of the proposed method against state-of-the-art methods on the Omni6DPose ScanNet++ test-set. As shown in Table 1, our approach surpasses all deterministic methods by a large margin across all evaluation metrics, which demonstrates the potential of conditional generative modeling for category-level object pose estimation. Notably, even when compared with the state-of-the-art generative method GenPose++ [42], our solution maintains a significant performance advantage. Specifically, the proposed method leads by over **+4.1** in  $IoU_{25}$  and **+3.4** in  $5^{\circ}2cm$ .

**Results on Real-world Datasets.** To further validate the efficacy of our approach, we also evaluate our approach on real-world datasets. Notably, we still train our models exclusively on the aforementioned synthetic data. Table 2 shows the comparison of our method with state-of-the-art methods on the Omni6DPose ROPE set. As shown in Table 2, the proposed method significantly outperforms existing solutions across all quantitative metrics, demonstrating the sim-to-real transfer capability of our

Table 1: Quantitative comparison of category-level object pose estimation on Omni6DPose ScanNet++ test-set. The results are averaged over all 149 categories.

| Method                | End-to-End | 1            | IoU        |            |                   | AUC   |       |        |        |
|-----------------------|------------|--------------|------------|------------|-------------------|-------|-------|--------|--------|
| Method                | Training   | Modality     | $IoU_{25}$ | $IoU_{50}$ | IoU <sub>75</sub> | 5°2cm | 5°5cm | 10°2cm | 10°5cm |
| <b>Deterministic:</b> |            |              |            |            |                   |       |       |        |        |
| - HS-Pose [45]        | ✓          | Point Clouds | 31.1       | 12.0       | 1.7               | 3.4   | 6.1   | 7.9    | 13.4   |
| - AG-Pose [20]        | ✓          | RGB-D        | 29.9       | 10.6       | 1.1               | 2.2   | 4.3   | 6.2    | 10.1   |
| - SecondPose [10]     | ✓          | RGB-D        | 31.5       | 12.2       | 2.0               | 3.1   | 7.9   | 11.3   | 16.7   |
| <b>Probabilistic:</b> |            |              |            |            |                   |       |       |        |        |
| - GenPose++ [42]      | X          | RGB-D        | 43.9       | 24.7       | 3.3               | 10.4  | 13.2  | 21.7   | 28.5   |
| - Ours                | ✓          | RGB-D        | 48.0       | 28.9       | 5.0               | 12.8  | 16.2  | 25.2   | 31.6   |

Table 2: Quantitative comparison of category-level object pose estimation on Omni6DPose ROPE set. The results are averaged over all 149 categories.

| Method                | Input        | IoU        |            |                   | AUC   |       |        |        |
|-----------------------|--------------|------------|------------|-------------------|-------|-------|--------|--------|
| Method                | Modality     | $IoU_{25}$ | $IoU_{50}$ | IoU <sub>75</sub> | 5°2cm | 5°5cm | 10°2cm | 10°5cm |
| <b>Deterministic:</b> |              |            |            |                   |       |       |        |        |
| - NOCS [36]           | RGB-D        | 0.0        | 0.0        | 0.0               | 0.0   | 0.0   | 0.0    | 0.0    |
| - SGPA [7]            | RGB-D        | 10.5       | 2.0        | 0.0               | 4.3   | 6.7   | 9.3    | 15.0   |
| - IST-Net [25]        | RGB-D        | 28.7       | 10.6       | 0.5               | 2.0   | 3.4   | 5.3    | 8.8    |
| - HS-Pose [45]        | Point Clouds | 31.6       | 13.6       | 1.1               | 3.5   | 5.3   | 8.4    | 12.7   |
| - AG-Pose [20]        | RGB-D        | 29.3       | 10.9       | 0.7               | 2.1   | 3.5   | 6.7    | 9.2    |
| - SecondPose [10]     | RGB-D        | 33.6       | 15.4       | 2.0               | 5.0   | 7.3   | 10.4   | 15.1   |
| <b>Probabilistic:</b> |              |            |            |                   |       |       |        |        |
| - GenPose [43]        | Point Clouds | -          | -          | -                 | 6.6   | 9.6   | 13.1   | 19.3   |
| - GenPose++ [42]      | RGB-D        | 39.0       | 19.1       | 2.0               | 10.0  | 15.1  | 19.5   | 29.4   |
| - Ours                | RGB-D        | 42.1       | 21.0       | 2.2               | 10.4  | 15.7  | 21.0   | 30.8   |

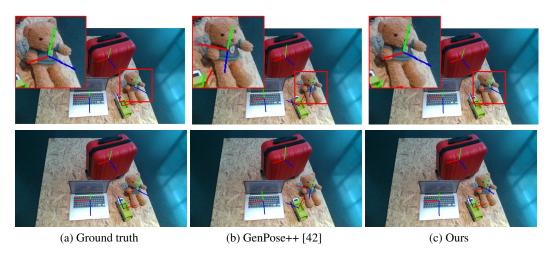


Figure 3: **Visualization comparison on Omni6DPose [42]**. As shown in the zoomed area of the figure above, our approach has achieved better performance than GenPose++ [42].

proposed Riemannian flow matching framework. Figure 3 presents detailed comparative visualization results of our model against GenPose++ [42] and the ground truths.

Results on Category-level Object Pose Tracking. The closed-loop generative architecture inherent in the flow matching framework enables seamless adaptation of the proposed method to the object pose tracking task with minimal modification. Technically, we perturb the pose input  $R_tT_t$  of ODE Solver in Fig. 2 with a Gaussian noise, while initializing the input t as  $t_{\delta} \in (0,1)$ . By default, we set the  $t_{\delta} = 0.55$  in this paper. Moreover, we employ the same likelihood estimation and aggregation strategy with a single-frame pose estimation framework to obtain the estimation of the current frame. The comparison of category-level object pose tracking on the Omni6DPose ROPE set is presented in Table 3. As demonstrated in Table 3, our method maintains a leading position in the object pose tracking task. Notably, the proposed Riemannian flow matching framework not only enables end-to-end training but also offers faster inference speed compared to GenPose++ [42].

Table 3: Comparison of category-level object pose tracking on Omni6DPose ROPE. The results are averaged over all 149 categories.

| Method           | Input        | FPS↑ | 5°5cm ↑ | mIoU↑ | $R_{err}(^{\circ})\downarrow$ | $T_{err}(cm)\uparrow$ |
|------------------|--------------|------|---------|-------|-------------------------------|-----------------------|
| - GenPose [43]   | Point Clouds | 11.7 | 13.3    | -     | 19.3                          | 1.2                   |
| - GenPose++ [42] | RGB-D        | 8.7  | 15.9    | 53.4  | 17.6                          | 1.2                   |
| - Ours           | RGB-D        | 11.3 | 16.1    | 54.1  | 15.9                          | 1.2                   |

Table 4: Ablation studies on the Riemannian Interpolation and Metric.

| Ablation                  | $IoU_{25}\uparrow$  | 5°2cm↑              | 5°5cm↑              |  |
|---------------------------|---------------------|---------------------|---------------------|--|
| Vanilla Euclidean Interp. |                     | 9.7                 | 13.9                |  |
| + Riemannian Interp.      | 45.1( <b>+1.7</b> ) | 10.4( <b>+0.7</b> ) | 14.7( <b>+0.8</b> ) |  |
| ++ Riemannian Metric      | 48.0(+4.6)          | 12.8(+3.1)          | 16.2(+2.3)          |  |

Table 5: Ablation studies on the Likelihood Estimation and Samples Aggregation.

| Ablation                  | IoU <sub>25</sub> ↑ | 5°2cm↑     | 5°5cm↑     |  |
|---------------------------|---------------------|------------|------------|--|
| Maximum likelihood        | 29.7                | 6.6        | 9.3        |  |
| with Averaging            | 46.8                | 10.8       | 15.5       |  |
| <b>Weighted Averaging</b> | 48.0(+1.2)          | 12.8(+2.0) | 16.2(+0.7) |  |

#### 4.3 Ablation Studies

We conduct ablation studies on the Scannet++ test set of Omni6DPose [42] from three perspectives: (1) the effectiveness of Riemannian interpolation and metric; (2) the impact of likelihood estimation and sample aggregation; (3) the role of Riemannian OT for symmetric objects.

Effectiveness of the Riemannian Interpolation and Metric. In this paper, we introduce Riemannian interpolation and Riemannian metric to enable more efficient modeling of and learning from 6D pose distributions. To this end, we first conduct an ablation study on the roles of these two core components. Table 4 presents ablation results for the Riemannian interpolation and metric. As shown in Table 4, the Riemannian interpolation design effectively improves performance in IoU<sub>25</sub> by +1.7 and 5°2cm by +0.7. The Riemannian Metric further boosts he 6D pose estimation performance by **+4.6** in  $IoU_{25}$  and **+3.1** in **5°2cm**.

Ablation studies on the Likelihood Estimation and Samples Aggregation. Table 5 presents ablation results for the proposed likelihood estimation method and different sample aggregation strategies. As shown in Table 5, the multiple sample aggregation strategy (2nd and 3rd columns) surpasses the single sample obtained by maximum likelihood estimation by a large margin, verifying the superiority of generative models in reducing pose estimation error through multiple samplings. Moreover, the weighted averaging strategy outperforms standard averaging with improvement +1.2 in  $IoU_{25}$  and +2.0 in 5°2cm, validating the effectiveness of the proposed likelihood estimation method.

for Symmetric Objects. In this pafer(ROT) for Symmetric Objects. per, we introduce Riemannian OT to address the challenge posed by multiple feasible poses of symmetric objects in 6D pose estimation. To experimentally validate the effectiveness of Riemannian OT, we incorporated the half-symmetric property into

Effectiveness of the Riemannian OT Table 6: Ablation studies on the Riemannian Optimal Trans-

| Method                    | IoU <sub>25</sub> ↑ | 5°2cm↑              | 5°5cm↑              |
|---------------------------|---------------------|---------------------|---------------------|
| GenPose++ [42](Symmetric) | 41.5                | 11.1                | 12.5                |
| Ours(w/o ROT)(Symmetric)  | 43.4                | 12.1                | 15.2                |
| Ours(with ROT)(Symmetric) | 48.5( <b>+5.1</b> ) | 13.7( <b>+1.6</b> ) | 17.1( <b>+1.9</b> ) |

Omni6DPose [42] for comparative experiments. As demonstrated in Table 6, Riemannian OT successfully alleviates this issue, leading to significant performance improvements compared to configurations without it. Notably, the proposed method is independent of symmetry-specific network architectures or custom loss designs.

#### 5 Conclusion

In this paper, we present the Riemannian Flow Matching (RFM) for category-level 6D pose estimation, which learns deterministic pose trajectories via geodesic interpolations while explicitly preserving geometric constraints. The key contributions of our work are threefold: 1) a Riemannian manifoldbased probabilistic path modeling for 6D pose estimation; 2) probability mass redistribution for symmetry-induced pose multiplicity through Riemannian Optimal Transport; 3) an efficient likelihood estimation strategy with trace estimation for end-to-end training. Comprehensive evaluations on the challenging Omni6DPose dataset demonstrate that RFM significantly outperforms state-of-the-art baselines. With its simple architecture and compatibility with advanced generative models, our approach offers a robust foundation for integrating into unified robot learning frameworks.

Limitations and Future Works: Although our RFM model has achieved promising performance, its accuracy remains unsatisfactory on articulated objects (e.g., laptops). Given the prevalence of such articulated objects in hand-object interactions, our future work will focus on two key aspects: 1)Enhancing the RFM framework to improve pose estimation accuracy for articulated objects; 2) exploring integration of the RFM framework into emerging vision-language-action (VLA) models, enabling end-to-end perception-to-manipulation pipelines.

# References

- [1] Yizhak Ben-Shabat, Xin Yu, Fatemeh Saleh, Dylan Campbell, Cristian Rodriguez-Opazo, Hongdong Li, and Stephen Gould. The ikea asm dataset: Understanding people assembling furniture through actions, objects and pose. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pages 847–859, January 2021.
- [2] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky.  $\pi_0$ : A vision-language-action flow model for general robot control, 2024.
- [3] Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian FATRAS, Jarrid Rector-Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M. Bronstein, and Alexander Tong. SE(3)-stochastic flow matching for protein backbone generation. In *The Twelfth International Conference on Learning Representations*, 2024.
- [4] Wen Bowen, Lian Wenzhao, Bekris Kostas, and Schaal Stefan. You only demonstrate once: Category-level manipulation from single visual demonstration. In *Robotics: Science and Systems*, 2022.
- [5] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor environments. *International Conference on 3D Vision (3DV)*, 2017.
- [6] Huanran Chen, Yinpeng Dong, Shitong Shao, Zhongkai Hao, Xiao Yang, Hang Su, and Jun Zhu. Diffusion models are certifiably robust classifiers. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [7] Kai Chen and Qi Dou. Sgpa: Structure-guided prior adaptation for category-level 6d object pose estimation. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 2753–2762, 2021.
- [8] Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In *The Twelfth International Conference on Learning Representations*, 2024.
- [9] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin Shen, and Ales Leonardis. Fs-net: Fast shape-based network for category-level 6d object pose estimation with decoupled rotation mechanism. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1581–1590, June 2021.
- [10] Yamei Chen, Yan Di, Guangyao Zhai, Fabian Manhardt, Chenyangguang Zhang, Ruida Zhang, Federico Tombari, Nassir Navab, and Benjamin Busam. Secondpose: Se(3)-consistent dual-stream feature fusion for category-level pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 9959–9969, June 2024.
- [11] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, 2024.
- [12] Zheng Dang, Lizhou Wang, Yu Guo, and Mathieu Salzmann. Match normalization: Learning-based point cloud registration for 6d object pose estimation in the real world. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(6):4489–4503, 2024.
- [13] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible generative models with free-form continuous dynamics. In *International Conference on Learning Representations*, 2019.
- [14] Guillaume Huguet, James Vuckovic, Kilian FATRAS, Eric Thibodeau-Laufer, Pablo Lemos, Riashat Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael M. Bronstein, Alexander Tong, and Joey Bose. Sequence-augmented SE(3)-flow matching for conditional protein generation. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

- [15] Xiaoke Jiang, Donghai Li, Hao Chen, Ye Zheng, Rui Zhao, and Liwei Wu. Uni6d: A unified cnn framework without projection breakdown for 6d pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 11174–11184, June 2022.
- [16] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla: An open-source vision-language-action model. In Pulkit Agrawal, Oliver Kroemer, and Wolfram Burgard, editors, *Proceedings of The 8th Conference on Robot Learning*, volume 270 of *Proceedings of Machine Learning Research*, pages 2679–2713. PMLR, 06–09 Nov 2025.
- [17] Haitao Lin, Zichang Liu, Chilam Cheang, Yanwei Fu, Guodong Guo, and Xiangyang Xue. Sar-net: Shape alignment and recovery network for category-level 6d object pose and size estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 6707–6717, June 2022.
- [18] Jiehong Lin, Zewei Wei, Zhihao Li, Songcen Xu, Kui Jia, and Yuanqing Li. Dualposenet: Category-level 6d object pose and size estimation using dual pose network with refined learning of pose consistency. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 3560–3569, October 2021.
- [19] Jiehong Lin, Zewei Wei, Yabin Zhang, and Kui Jia. Vi-net: Boosting category-level 6d object pose estimation via learning decoupled rotations on the spherical representations. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 14001–14011, October 2023.
- [20] Xiao Lin, Wenfei Yang, Yuan Gao, and Tianzhu Zhang. Instance-adaptive and geometric-aware keypoint learning for category-level 6d object pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 21040–21049, June 2024.
- [21] Yongliang Lin, Yongzhi Su, Praveen Nathan, Sandeep Inuganti, Yan Di, Martin Sundermeyer, Fabian Manhardt, Didier Stricker, Jason Rambach, and Yu Zhang. Hipose: Hierarchical binary surface encoding and correspondence pruning for rgb-d 6dof object pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 10148–10158, June 2024.
- [22] Zhifeng Lin, Changxing Ding, Huan Yao, Zengsheng Kuang, and Shaoli Huang. Harmonious feature learning for interactive hand-object pose estimation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12989–12998, 2023.
- [23] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023.
- [24] Jian Liu, Wei Sun, Chongpei Liu, Xing Zhang, and Qiang Fu. Robotic continuous grasping system by shape transformer-guided multiobject category-level 6-d pose estimation. *IEEE Transactions on Industrial Informatics*, 19(11):11171–11181, 2023.
- [25] Jianhui Liu, Yukang Chen, Xiaoqing Ye, and Xiaojuan Qi. Ist-net: Prior-free category-level pose estimation with implicit space transformation. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pages 13932–13942, 2023.
- [26] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose estimation for augmented reality: A hands-on survey. *IEEE Transactions on Visualization and Computer Graphics*, 22(12):2633–2651, 2016.
- [27] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hujun Bao. Pvnet: Pixel-wise voting network for 6dof pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.

- [28] Huan Ren, Wenfei Yang, Xiang Liu, Shifeng Zhang, and Tianzhu Zhang. Learning shape-independent transformation via spherical representations for category-level object pose estimation. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [29] Alireza Rezazadeh, Snehal Dikhale, Soshi Iba, and Nawid Jamali. Hierarchical graph neural networks for proprioceptive 6d pose estimation of in-hand objects. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 2884–2890, 2023.
- [30] Tim Salimans and Jonathan Ho. Should EBMs model the energy or the score? In Energy Based Models Workshop - ICLR 2021, 2021.
- [31] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021.
- [32] Yongzhi Su, Jason Rambach, Nareg Minaskan, Paul Lesur, Alain Pagani, and Didier Stricker. Deep multi-state object pose estimation for augmented reality assembly. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pages 222–227, 2019.
- [33] Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach, Nassir Navab, Benjamin Busam, Didier Stricker, and Federico Tombari. Zebrapose: Coarse to fine surface encoding for 6dof object pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 6738–6748, June 2022.
- [34] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. Expert Certification.
- [35] S. Umeyama. Least-squares estimation of transformation parameters between two point patterns. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(4):376–380, 1991.
- [36] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J. Guibas. Normalized object coordinate space for category-level 6d object pose and size estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.
- [37] Ruiqi Wang, Xinggang Wang, Te Li, Rong Yang, Minhong Wan, and Wenyu Liu. Query6dof: Learning sparse queries as implicit shape prior for category-level 6dof pose estimation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 14055–14064, October 2023.
- [38] Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation and tracking of novel objects. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 17868–17879, June 2024.
- [39] Fei Xie, Zhongdao Wang, and Chao Ma. Diffusiontrack: Point set diffusion model for visual object tracking. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 19113–19124, June 2024.
- [40] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-fidelity dataset of 3d indoor scenes. In Proceedings of the International Conference on Computer Vision (ICCV), 2023.
- [41] Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion policy: Generalizable visuomotor policy learning via simple 3d representations. In *Proceedings of Robotics: Science and Systems (RSS)*, 2024.
- [42] Jiyao Zhang, Weiyao Huang, Bo Peng, Mingdong Wu, Fei Hu, Zijian Chen, Bo Zhao, and Hao Dong. Omni6dpose: A benchmark and model for universal 6d object pose estimation and tracking. 2024.

- [43] Jiyao Zhang, Mingdong Wu, and Hao Dong. Generative category-level object pose estimation via diffusion models. volume 36, 2024.
- [44] Ruida Zhang, Yan Di, Zhiqiang Lou, Fabian Manhardt, Federico Tombari, and Xiangyang Ji. Rbp-pose: Residual bounding box projection for category-level pose estimation. In *Computer Vision ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part I*, page 655–672, Berlin, Heidelberg, 2022. Springer-Verlag.
- [45] Linfang Zheng, Chen Wang, Yinghan Sun, Esha Dasgupta, Hua Chen, Aleš Leonardis, Wei Zhang, and Hyung Jin Chang. Hs-pose: Hybrid scope feature extraction for category-level object pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 17163–17173, June 2023.

# **NeurIPS Paper Checklist**

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explicitly outline the core contributions (Riemannian flow matching for deterministic 6D pose trajectories, symmetry handling via Riemannian Optimal Transport, end-to-end likelihood estimation via Hutchinson trace approximation), with experimental results validating these claims across synthetic/real-world datasets.

#### Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We explicitly discusses limitations in handling articulated objects (e.g., laptops) and outlines plans to integrate the framework into Vision-Language-Action (VLA) models for broader applicability.

# Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

#### 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We have rigorously proven our theoretical results and cited relevant works to support them.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

# 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient methodological description to enable others to reproduce our results.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility.

In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

# 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide the source code in the supplementary materials, along with necessary instructions to reproduce the main experimental results. Additionally, we intend to publicly release the code upon official acceptance of the paper.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

#### 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide implementation details in the supplementary materials.

# Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
  material.

### 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate performance using established metrics (IoU and AUC) and reports averaged results over all categories. Ablation studies (Tables 4-6) further validate component contributions with clear performance gaps.

# Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

#### 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide details of the computational resources used in the experiments in the supplementary materials.

# Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

#### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research focuses on algorithmic improvements for 6D object pose estimation without involving human subjects, sensitive data, or ethically problematic applications. It adheres to NeurIPS guidelines by avoiding privacy violations, biased datasets, or high-risk deployment scenarios.

# Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

# 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive societal impacts on conclusion part.

#### Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

### 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on category-level 6D object pose estimation using a Riemannian flow matching framework. It does not involve the release of high-risk assets that would necessitate safeguards.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

# 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: This paper references existing datasets (e.g., Omni6DPose, ScanNet++, IKEA, Matterport3D) and models (e.g., DINOv2, PointNet++), with citations to the respective original works.

#### Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
  package should be provided. For popular datasets, paperswithcode.com/datasets
  has curated licenses for some datasets. Their licensing guide can help determine the
  license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We provide the source code along with necessary instructions in the supplementary materials.

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

# 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

# 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:

Guidelines:The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.