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ABSTRACT

Routing problems, such as traveling salesman problem (TSP) and vehicle routing
problem, are among the most classic research topics in combinatorial optimiza-
tion and operations research (OR). In recent years, with the rapid development of
online service platforms, there has been renewed interest in applying this study
to facilitate emerging industrial applications, such as food delivery and logistics
services. While OR methods remain the mainstream technique, increasing ef-
forts have been put into exploiting deep learning (DL) models for tackling routing
problems. The existing DL methods often consider the embedding of the route
point coordinate as a key model input and are capable of delivering competing
performance in synthetic or simplified settings. However, it is empirically noted
that this line of work appears to lack robustness and generalization ability that are
crucial for real-world applications. In this paper, we demonstrate that the coor-
dinate can unexpectedly lead to these problems. There are two factors that make
coordinate rather ‘poisonous’ for DL models: i) the definition of distance between
route points is far more complex than what coordinate can depict; ii) the coor-
dinate can hardly be sufficiently ‘traversed’ by the training data. To circumvent
these limitations, we propose to abandon the coordinate and instead use the rel-
ative distance for route point embedding. We show in both synthetic TSP and
real-world food pickup and delivery route prediction problem that our design can
significantly improve model’s generalization ability, and deliver competitive or
better performance with existing models.

1 INTRODUCTION

Inspired by the success of deep models, such as Transformer (Vaswani et al., 2017) in tackling
language tasks and graph neural network (GNN) (Scarselli et al., 2008) in dealing with unstructured
data, growing number of researchers have been attracted to explore the potential of deep learning
(DL) models in dealing with routing problems, a research direction historically being dominated by
operations research (OR) methods for decades. Numerous DL models, which have achieved success
in other research areas, are applied to solve traditional routing problems, such as traveling salesman
problem (TSP) and vehicle routing problem (VRP). More recently, with the urgent requirements
from online logistics service platforms, route prediction has also become an emerging research topic.
For example, the platform usually needs to predict and evaluate whether a package is ‘distance-
consuming’ if it is dispatched to a courier. The predicted route, as well as related route properties,
can be used in these evaluations and is vital for improving platform performance. These two kinds
of problems, namely route optimization and route prediction, are also the main focus of this paper.

Routing problems, to a great extent, can be defined by the properties of route points (or called
nodes in some literature) and the relationship among them. In light of this, it is not surprising to
understand that route point characterization plays an irreplaceable role in the algorithm design. To
the best of our knowledge, almost all existing DL models tend to take the route point coordinates or
their corresponding embedding as the model input. With such coordinate information, competitive
performance are achieved via numerical experiments, mostly conducted on synthetic data. However,
when it comes to the real-world data, we empirically note that the coordinate information turns to be
‘poisonous’, rather than informative. A DL model which employs the coordinate information often
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delivers less promising results even after training with large scale dataset. Moreover, by adding
noises or perturbations to the coordinate input, the model performance may drop dramatically. In
comparison, the classic OR based methods seldom face these problems. This may explain why OR
methods are still the de-facto solutions for many industrial-level routing problems - there remains a
great practical gap between OR and DL in real-world applications and the generalization ability of
DL models still concerns.

We demonstrate that it might be better to abandon the coordinate in order to improve the
model generalization ability. More specifically, the lack of generalization ability in many ex-
isting DL models is closely related to the ‘curse of coordinate’. Two main reasons may sup-
port this finding. First, coordinate may not be what we really need for the routing prob-
lems. In problems such as TSP, the goal is to minimize the total traveling distance. It
suffices to provide the distance between route points, rather than the coordinate information.
Moreover, in the real world, the distance information usually relies on a complicated geo-
graphic information system. It is far more complex than what simple coordinate can depict.

Figure 1: TSP Example: A barrier between point A and B
significant changes the optimal solution.

Figure 1 provides a simple illustra-
tion for a TSP. The distance between
point A and B becomes much longer
when a barrier (e.g., a mountain or a
high way) exists, while the distance
stays the same through the lens of co-
ordinate. The distance change fur-
ther results in the optimal solution
change. This information mismatch,
which is common in real-world data,
may significantly decay the model
performance. Second, the large-scale
data may not be large enough to pro-
vide sufficient samples for the real-
world coordinate. Apart from infer-
ring the distance from the coordinate,
a natural idea can be borrowed from the language tasks. Similarly, we can treat coordinate as word
tokens and try to learn the token embedding through large scale data training. However, unlike the
coordinate in the synthetic setting, where nearby coordinate are assumed to resemble each other, two
nearby coordinates in the real world can be significantly different. Also take Figure 1 as an example,
although point A and B with a barrier are close enough in the coordinate space, they should differ
drastically due the distance problem. Therefore, the number of possible coordinate explodes in the
real world. The DL models may not be sufficiently trained and thus lack generalization ability when
using the coordinate.

Our treatment to the ‘curse of coordinate’ is simple. We propose to use the relative distance between
points instead of the coordinate itself. As shown in Figure 2, a common practice in existing deep
models is to first project the coordinates into embedding vectors, then feed the embedding vectors
into the deep models. We argue that, by simply replacing the coordinate with a distance vector
containing distances from the point to all the points (include the point itself), we can achieve signif-
icantly better generalization ability and better model performances compared to the existing work.
Moreover, our design helps DL models approach to competitive or even better results compared to
OR methods in real-world applications. This could pave the way for the large application of DL
models in the industry.

The remaining paper is organized as follows. In Section 2, we review the existing DL methods for
handling routing problems. In Section 3, we give detailed discussions on why the distance-based
embedding outperforms the coordinate-based embedding. In Section 4, we support our insight via
experiments conducted on both synthetic and real-world data.

2 RELATED WORK

The recent years have witnessed the vibrant use of DL models, such as Transformer (Vaswani et al.,
2017) and GNN (Scarselli et al., 2008), for tackling the route optimization and prediction problems.
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Figure 2: Coordinate-based embedding & distance-based embedding

Deep Models for Route Optimization. There are two main kinds of deep model based solutions for
route optimization problems, namely construction based methods and improvement based methods.
To directly construct optimal solutions, Vinyals et al. (2015) propose the Pointer Network which
solves TSP in a supervised learning way. LSTM and attention model are firstly used to achieve
competitive results compared to OR methods. Reinforcement learning based methods are then im-
ported to improve the model performance for TSP (Bello et al., 2016), VRP (Nazari et al., 2018) and
pickup and delivery problem (PDP) (Ma et al., 2021a). Inspired by the outstanding performance of
Transformers in NLP tasks, Kool et al. (2018) provide an attention based model and significantly
improve the performance for both TSP and VRP. Compared with RNN based methods, Transformer
based models (Kaempfer & Wolf, 2018; Deudon et al., 2018; Ma et al., 2021b; Xin et al., 2021)
show great potential in achieving better performances. In order to better mine the spatial relation-
ship among points, GNN based models (Khalil et al., 2017; Nowak et al., 2018; Joshi et al., 2019; Fu
et al., 2021) are also explored to generate embedding input or edge probability by aggregating the
point and edge features. Different from the construction based methods, improvement based meth-
ods (Ma et al., 2021a; Wu et al., 2021; Chen & Tian, 2019; Lu et al., 2019) try to iteratively improve
the solution given an initialization. Operations, such as swap and 2-opt, are applied to improve the
solution. These model-guided operations are similar to those used in OR areas and can outperform
state of the art (SOTA) OR methods in several problem settings. To our knowledge, almost all mod-
els aforementioned conduct experiments on the 2D euclidean space or take the point coordinate as
the model input.

Deep Models for Route Prediction. Route prediction is widely used in logistics and FPD services.
The predictions serve as one of the most important inputs for the online service system. Zhang
et al. (2019) firstly treat the prediction in package delivery services as a Markov Decision Problem
(MDP) and use LightGBM to directly predict which point to serve next. LSTM (Gao et al., 2021),
Transformer (Wen et al., 2021; 2022b) and Graph Convolutional Network (GCN) (Wen et al., 2022a)
are then used to generate embedding for the candidate serving points. All these models take the
point embedding as input and predict the route in a recursive way. Different features are used in
these applications, such as coordinate, distance, area ID and other point features. However, we note
that a direct comparison between the coordinate and distance is absent.

3 METHOD

In this section, we apply a typical routing problem setting and focus only on the route point embed-
ding issue. We will show that it is necessary to re-examine the role of the coordinate information
in learning route point embedding, and the distance-based embedding can intuitively perform better
and result in better model generalization ability.
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3.1 PROBLEM FORMULATION

A routing problem instance r typically includes a point set V = {v1, ..., vn}with n points, a distance
matrix D = {di,j | i ∈ [1, n], j ∈ [1, n]} and extra point features/constraints X = {xi | i ∈ [1, n]},
where vi is the coordinate of the ith point, di,j is the distance between vi and vj . A feasible solution
for a routing problem can be defined as π = (π1, ..., πn), πk ∈ [1, n], where πk is the index of the
kth point in a route and all points in the route must satisfy the constraints. For example, the pickup
point should be scheduled before the delivery point in PDP. Two different tasks can be performed
under this setting, namely optimization and prediction. For optimization tasks, such as TSP, VRP
and route scheduling in PDP, a commonly used optimization goal is to minimize the total traveling
distance. For prediction tasks, the goal is to predict the routes which are consistent with real human
actions. Even though different optimization or prediction goals lead to various model structure and
loss designs, the embedding of the route point is unanimously treated as the essential model input.
It has been experimentally shown that a well designed route point embedding can directly benefit
DL models for better performance.

3.2 DISTANCE VS. COORDINATE

One key information the embedding need to convey is the ‘position’ of the point. Intuitively, the
most explicit representation of a point position might be the coordinate vi’s, with the most popular
one being defined on the two-dimensional planar system. Aside from the coordinate, the distance
between a point and its neighbors (including the point itself) di = [di,1, ..., di,n] can also be used to
depict the relative point position. Similar to the research in graph, which considers the neighborhood
structure as an important property of the node, the distance vector di provides a dual representation
for the point.

Taking a quick survey on the literature, it is not hard to find that the majority of the work prefers the
coordinate to the distance. As a somehow surprising insight, we will argue that the distance may be
a way better candidate for routing problems.

Robustness. In practice, a robust model is often of main concern, especially for modern online
services where an occasional ‘bad’ case could lead to severe loss. While many OR based methods
possess satisfactory robustness, existing DL models which take the coordinate-based embedding as
input oftentimes fail to provide robust results. As a typical observation, the DL model performance
could drop dramatically even when we simply rotate or translate the point coordinate, as detailed in
Section 4.1. Such perturbations do not change the relationship among route points at all, and thus
the performance drop is for no reason acceptable. On the contrary, the distance provides us with a
more robust representation of the route points, as rotation or translation will not change the relative
distance among them. Thanks to this property, consistent solutions can be achieved before and after
these perturbations. In addition, it is worthwhile to mention that, suggested by empirical results,
models leveraging the distance-based embedding can still provide stable performance even if the
relative distance is changed, as long as the distance embedding is well learned during the training.
In a nutshell, the distance embedding could endow the DL models with robustness comparable to
OR methods.

Generalization. It is necessary to study if a model learned on a small dataset can perform well on
a larger dataset or if a model learned using one dataset can be used on another dataset. such gen-
eralization ability greatly determines the practical potential of the model, particularly in real-world
applications where we can hardly ensure sufficient training data on all possible scenarios. Let us take
the FPD prediction as an instance, in which a point in a route stands for a restaurant or a recipient
in the real world. We can hardly foresee all possible routes that couriers may encounter. However,
the sense for distance that couriers hold is arguably similar for different serving regions. As a re-
sult, route points that share similar relative distance and constraint properties could be embedded
similarly, no matter where they lie in. This is indeed the case for the distance-based embedding, and
thus comes naturally the appealing generalization ability for the model using this kind of embedding
input. As discussed in Section 4.2, with the help of the distance, a model trained with a smaller
dataset collected from one city can provide competitive performance to another model trained with
a larger dataset collected nationwide in a FPD route prediction task.

Intuition. The route optimization problems can have multiple objectives, such as distance, time and
fleet size. Among them, the distance is one of the most important ones. And for route prediction
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problems, the distance is also a key factor which impacts the human action. In view of this, it is vital
to mine the relationship between the coordinate and the distance when we use them in DL models.
To our understanding, when feeding the coordinate to a model, there are two ways to interpret the
possible learning process. The first one is, the DL model learns to mimic a ‘dictionary’ where the
search query is the coordinate sequence. In this way, when a similar coordinate sequence appears
in the inference, the corresponding record pops up from the dictionary as the prediction. Therefore,
the distance information is not really considered in this interpretation. The second interpretation is,
the DL model tries to infer the latent distances from coordinates, and then the solution is generated
based on the learned distances. This learning process is feasible, since the distance itself is a key
objective for many routing problems, e.g., minimizing the total traveling distance in TSP and VRP.
So far, there has not been theoretical study on which learning process existing models really take,
and this ambiguity makes it challenging to devise tailored learning tasks for this sort of embedding.
From a pragmatic point of view, we consider the second interpretation the more reasonable one,
which has strong correlation with the learning goal. If so, taking into account that learning distances
from coordinates is already a complicated task (as illustrated in Fig. 1), a better way is to leverage
the distance embedding, where the model can skip the latent distance learning step and proceed to
tackle the final goal directly.

3.3 RELATIONSHIP WITH GRAPH BASED EMBEDDING

The graph based models usually take both the node (coordinate) and edge (distance) properties into
consideration. For transformer based models, the distance-based embedding can be directly used as
a replacement of the coordinate-based embedding. No additional efforts are needed. This simple
replacement can benefit the model performance as well as the generalization ability. Experiments
of this replacement will be provided in Section 4. For GNN, ideally these models are capable of
grasping the neighborhood relationship among points, including the distances. In most existing
work using GNN, both the coordinate and the distance are provided as input for the models. It is
suggested to remove the coordinate as input regarding the generalization problem. For the distance-
based embedding, an identity distance aggregation operator can be designed and acts the same way
with the distance vector.

4 EXPERIMENTS

In this section, we present two experiments, TSP on synthetic data and FPD route prediction on
real-world data. In order to spotlight the comparison between the coordinate and distance based
embedding, we do not provide any new models, but use only the existing SOTA TTransformer
based DL models and OR methods. Detailed analysis and discussions are provided below.

4.1 TRAVELING SALESMAN PROBLEM ON SYNTHETIC DATA

4.1.1 SETUP

Datasets. The training and test dataset are randomly generated under a coordinate range of [0, 1].
To simulate the complicated coordinate distribution in real-world applications, two distributions are
adopted in the generation process, i.e., uniform and triangular (the peak is set to 0.3) distributions. To
evaluate the capability of the models for handling complex distance settings, random distances are
assigned to point pairs. Specifically, we first generate 10k coordinate samples for each distribution,
and then compute the distance between two points by multiplying their corresponding Euclidean
distance with a random scale drawn from [1.0, 5.0]. These 10k points are marked with index range
[0, 10000) and their distance matrix are constructed based on the synthetic distances. During the
training, route instances are constructed by sampling from the 10k-point set on the fly. In all trails,
we assume the number of customers N to be 20.

Model & Training. We use the Attention Model (Kool et al., 2018) in this experiment. Identical to
the hyper-parameter setting in the literature, we use a constant learning rate of η = 0.0001, an epoch
number of 100 and 10000 randomly generated route samples for testing. To shorten the running time
of each trial, 12.8k training samples are used for each epoch. Comparison are carried out for three
types of embedding input, one using the coordinate, one using the distance and the other using both.
When both of the embedding are used, they are concatenated and projected to the input dimension
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size of the Transformer with a dense layer. Our source code is adapted from the one released in
(Kool et al., 2018)1 and will be published on Github for the repetition of the experiments.

(a) Original (b) Rotate (c) Translate (d) Distance Scale

Figure 3: Perturbations: three kinds of perturbations are applied to the coordinate and distance.

Perturbations. To verify the robustness and generalization ability of the model, perturbations are
applied to the test dataset. Inspired by the robust analysis (Bhojanapalli et al., 2021) for Transformer
in computer vision tasks, three perturbation operations are designed: a 90 degree rotation centered
on [0.5, 0.5] (named as Rotate), a [1.0, 1.0] translation (named as Translate) and a random scaling
of the distances in the range of [0.7, 1.3] (named as DistanceScale ). Simple illustrations for these
operations are shown in Fig. 3.

Metric. The average objective values (the traveling distance that serves all customers) on the test
dataset are reported to showcase the performance. The smaller the objective value is, the better
performance the embedding achieves.

4.1.2 COMPARISON & DISCUSSION

Table 1 summaries the experiment results on the synthetic data. Detailed statistics are provided in
Appendix A.1. As for the coordinate-based embedding, since the new coordinates after Translate
never appear in the training data, it fails significantly. Interestingly, this embedding shows different
(but mild) performance change trends when Rotate is applied in the two distributions, which some-
how indicates that the coordinate-based embedding is more sensitive to the rotation under a more
complex data distribution. In terms of the distance-based embedding, we can see that it gives the
best performance in almost all tasks. Specifically, it delivers completely same results in Original,
Rotate and Translate. This is due to the fact that the relative distance properties among points
do not change under these operations. Moreover, when DistanceScale is applied (where part of
the distances decrease), it turns out to approach to better solutions. Finally, the situation is more
complicated when it comes to the third embedding. It outperforms the coordinate based embed-
ding under the uniformly distributed data, but becomes the worst when the data follow triangular
distribution. This echos our previous discussion, where the ambiguity brought by the coordinate
information could hamper the learning process.

4.2 ROUTE PREDICTION ON FOOD PICKUP AND DELIVERY DATA

The goal of the route prediction is to imitate courier action in food delivery services. Given a set of
packages, a courier need to schedule the pickup and delivery point sequences and complete them.
The prediction is used in the online service systems to support package dispatch decisions. For
example, if the predicted delivery distance of a package is too long for a courier, the package should
not be dispatched to him. In this experiment, we compare the performance of different embedding
in a real-world FPD data. Compared to the synthetic scenario for TSP, the real-world FPD route
prediction problem provides insight for the usage of different embedding in practical applications.

4.2.1 SETUP

Datasets. The training and test dataset are collected from an online food delivery service system.
Two dataset with different sizes are provided in the experiments: a large dataset collected from

1https://github.com/wouterkool/attention-learn-to-route
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Table 1: Model performance under different data distributions and point embedding.

hundreds of cities (noted as AllCities) and a small dataset collected from one specific city (noted
as OneCity). In which, the large dataset contains 20 million routes for training and 50k routes for
testing, the small dataset contains 2 million routes for training and also 50k routes for testing. All
training data are randomly sampled from two weeks (20220808 ∼ 20220821), and all test data
are randomly sampled in the following week (20220822 ∼ 20220828). Each route include a set
of packages and the real pickup and delivery point sequence of a courier. For each package, the
position/coordinate of the pickup and delivery point is provided, as well as the navigation distance
between each point pair. Additional package features are also provided, such as the estimated time
of arrival, the order time and the package status. The package delivery status indicates whether the
pickup point of a package have been completed. A package already picked up by the courier only
retains a delivery point in the route. One strict constraint needs to be satisfied: the pickup point of
a package should be completed before its delivery point. Similar to the evaluation in Wen et al.
(2022a), we separate the routes in the system into two parts according to the size of points ([1, 12)
and [12,∼)) in a route. Since the processing of long routes is out of the scope of this paper and
specific model design is needed to tackle the problem, we only evaluate on the routes with a point
size of [1 12). Moreover, routes with less than 3 points are also filtered, since routes with a single
package already have two points (one pickup and one delivery point) and there is no need to predict
such routes. Finally, note that the online dispatch system will continuously dispatch packages to the
couriers, a new route is predicted after a new package is dispatched. Therefore, only the route points
which are completed during two consecutive dispatch time are evaluated.

Model & Training. Following the design of the DL models in (Kool et al., 2018) and (Wen et al.,
2021), we use the Transformer for the route point embedding and similarly apply the attention based
decoder to generate the predicted route, which is shown in Figure 4. Three main kinds of features
are provided as candidate input for the Transformer, namely the point coordinate (longitude and
latitude), the point distance and package features related to the point. Different from the model
implemented in (Wen et al., 2021), the embedding of the courier’s depot point is used as the input
to the first decoding step, rather than an initialized one. For the coordinate and the distance, lin-
ear embedding are firstly used to project them into a feature vector with a size of 512. DeepFM
is applied to the package features. Then all candidate features are concatenated and fed into the
Transformer through an additional linear dense layer. The Transformer we use have 3 blocks with
8 heads. The hidden dimension of the Multi-Head Attention (MHA) is 512 and the dimension of
the Feed Forward (FF) layer is 2048. We use a batch size of 512, an epoch number of 10 and a
learning rate of 0.0001 with exponential decay (ratio = 0.95) every 5000 steps in the training.
For comparison with existing OR methods, we implement the 2-stage (Zheng et al., 2019) heuristic
search algorithm which is specifically designed for the same FPD prediction and already extensively
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used to support online services. Simple strategies, such as distance greedy and time greedy, are not
provided considering their less competitive performances.

Figure 4: Transformer based model for FPD route prediction.

Metrics. The prediction performance is characterized by the similarity between the predicted route
πp and the courier’s real route πr. Formally, given a point vi, the rank of the point in the predicted
route and the real courier route is defined as Oπp

(vi) and Oπr
(vi) correspondingly. Three metrics

are used to measure the similarity.

Kendall Rank Correlation (KRC)(Kendall, 1938): The KRC is used to measure the relative rank
correlation between two sequences. Given a point pair (vi, vj), the rank of the point in the predicted
route (Oπp

(vi), Oπp
(vj)) and in the courier;’s real route (Oπr

(vi), Oπr
(vj)), the point pair is rank

correlated if (Oπp
(vi) − Oπp

(vj)) ∗ (Oπr
(vi) − Oπr

(vj)) > 0. Otherwise, it is uncorrelated. The
KRC is defined as:

KRC = (Nc −Nd)/(Nc +Nd)

whereNc is the number of correlated point pairs, andNd is the number of uncorrelated pairs. Greater
KRC means higher similarity between two sequences.

Least Square Deviation (LSD): The LSD is used to measure the rank deviation of the same point in
two sequences.

LSD = 1
n

∑n
i=1(Oπp(vi)−Oπr (vi))

2

where n is the number of points in the route. Smaller LSD means higher similarity.

Consistent Rate (CR): The CR is used to quantify the ratio of completely same-rank points in two
sequences. Given a point vi, if Oπp

(vi) = Oπr
(vi), the point is reported to be completely same.

CR = Ns/Nr

where Ns is the number of completely same points, Nr is the number of total points. Greater CR
means higher similarity.

4.2.2 COMPARISON & DISCUSSION

Table 2 concludes the results of all settings we tried. The model which employs the distance-based
embedding and trained on AllCities dataset shows the best result on all the metrics for both test
datasets. On the contrary, the model with the coordinate-based embedding performs the worst. We
also note that the model trained on OneCity dataset with the distance-based embedding delivers
competitive results with the best one. With a smaller size of training data from only one city, the
model can provide rather good generalization ability for the data from other cities. A simple change
from the coordinate embedding to the distance-based embedding can significantly improves the
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model performance on the FPD route prediction task. Finally, while the coordinate-based model still
shows worse performance, the distance-based model significantly outperforms the well-designed 2-
Stage OR method in all metrics.

Embedding Train Data Test Data
All Cities One City

KRC LSD CR KRC LSD CR

Coordinate All Cities 0.92150 0.47843 0.78837 0.92146 0.44971 0.78067
One City 0.91665 0.51529 0.77783 0.91774 0.47549 0.77415

Distance All Cities 0.94435 0.29974 0.84037 0.93860 0.32151 0.82410
One City 0.93861 0.32815 0.82656 0.93605 0.33216 0.81758

Both All Cities 0.93018 0.37834 0.80458 0.92735 0.38471 0.79420
One City 0.92303 0.42768 0.78961 0.92120 0.42445 0.78447

2-Stage / 0.93297 0.35746 0.81080 0.92358 0.40399 0.78882

Table 2: Evaluation for different Embedding using different training and test dataset.

4.2.3 COORDINATE & DISTANCE-BASED EMBEDDING

Figure 5: Validation loss using different embed-
ding.

In both synthetic and real-world data experi-
ments, the hybrid use of coordinate and dis-
tance in embedding shows similar performance
trends, i.e. it is not as powerful as the distance-
based embedding alone. To shed some light
on why this phenomenon occurs, we compare
the validation loss of the three models during
the training (with AllCites dataset in the FPD
route prediction experiment). Here, a validation
set of size 20k is used. As illustrated in Fig-
ure 5, the model with the coordinate-based em-
bedding has the largest loss through the train-
ing. Although adding additional distance-based
embedding to the model contributes to the
loss decrease, it still falls behind the distance-
based embedding. One guess is that while the
coordinate-based embedding is capable of car-
rying latent distance information after training with large-scale data, it becomes ‘notorious’ noise
when precise distance is available. Such noise interferes the learning process, resulting in larger
validation loss and worse performance.

5 CONCLUSION

In this work, we study the embedding of route points in DL models for routing problems. In partic-
ular, we focus on comparing the popular coordinate-based embedding with the distance-based one.
The distance-based embedding outperforms the coordinate-based embedding in both the synthetic
TSP and real-world FPD route prediction experiments. Our take home message is as follows: by
simply replacing the coordinate-based embedding with the distance-based embedding when han-
dling routing problems, DL models can directly benefit from such replacement and is likely to
perform better without any additional efforts.

Finally, from a theoretical point of view, why the model performance drops when using both the
coordinate and distance? We would like to end this paper with such a question, as a fundamental
research on the correlation between the coordinate and the distance may provide meaningful insight
for advancing the research on DL for routing problems.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An-
dreas Veit. Understanding robustness of transformers for image classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10231–10241, 2021.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In International conference on
the integration of constraint programming, artificial intelligence, and operations research, pp.
170–181. Springer, 2018.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Chengliang Gao, Fan Zhang, Guanqun Wu, Qiwan Hu, Qiang Ru, Jinghua Hao, Renqing He, and
Zhizhao Sun. A deep learning method for route and time prediction in food delivery service. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2879–2889, 2021.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Yoav Kaempfer and Lior Wolf. Learning the multiple traveling salesmen problem with permutation
invariant pooling networks. arXiv preprint arXiv:1803.09621, 2018.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Yi Ma, Xiaotian Hao, Jianye Hao, Jiawen Lu, Xing Liu, Tong Xialiang, Mingxuan Yuan, Zhigang Li,
Jie Tang, and Zhaopeng Meng. A hierarchical reinforcement learning based optimization frame-
work for large-scale dynamic pickup and delivery problems. Advances in Neural Information
Processing Systems, 34:23609–23620, 2021a.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-
vances in Neural Information Processing Systems, 34:11096–11107, 2021b.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. Revised note on learning quadratic
assignment with graph neural networks. In 2018 IEEE Data Science Workshop (DSW), pp. 1–5.
IEEE, 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

10



Under review as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Haomin Wen, Youfang Lin, Fan Wu, Huaiyu Wan, Shengnan Guo, Lixia Wu, Chao Song, and
Yinghui Xu. Package pick-up route prediction via modeling couriers’ spatial-temporal behaviors.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 2141–2146. IEEE,
2021.

Haomin Wen, Youfang Lin, Xiaowei Mao, Fan Wu, Yiji Zhao, Haochen Wang, Jianbin Zheng, Lixia
Wu, Haoyuan Hu, and Huaiyu Wan. Graph2route: A dynamic spatial-temporal graph neural
network for pick-up and delivery route prediction. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 4143–4152, 2022a.

Haomin Wen, Youfang Lin, Huaiyu Wan, Shengnan Guo, Fan Wu, Lixia Wu, Chao Song, and
Yinghui Xu. Deeproute+: Modeling couriers’ spatial-temporal behaviors and decision preferences
for package pick-up route prediction. ACM Transactions on Intelligent Systems and Technology
(TIST), 13(2):1–23, 2022b.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems.. IEEE transactions on neural networks and learning systems,
2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Yan Zhang, Yunhuai Liu, Genjian Li, Yi Ding, Ning Chen, Hao Zhang, Tian He, and Desheng
Zhang. Route prediction for instant delivery. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 3(3):1–25, 2019.

H Zheng, S Wang, Y Cha, F Guo, J Hao, and Z Sun. A two-stage fast heuristic for food delivery
route planning problem. In Informs annual meeting, Seattle, Washington, USA, 2019.

A APPENDIX

A.1 PERFORMANCE STATISTICS FOR THE SYNTHETIC DATA EXPERIMENT

In this section, we provide the detailed statistics for the TSP experiment on the synthetic data, as
shown in Table 3 and Table 4.

Embedding Original Rotate Translate Distance Scale
Coordinate 12.123 +- 0.017 12.098 +- 0.016 17.922 +- 0.040 12.127 +- 0.018
Distance 11.933 +- 0.019 11.933 +- 0.019 11.933 +- 0.019 11.870 +- 0.019

Both 12.012 +- 0.019 11.994 +- 0.019 12.048 +- 0.019 11.957 +- 0.019

Table 3: Detailed statistics for the experiment on the uniform sampled data.

Embedding Original Rotate Translate Distance Scale
Coordinate 9.189 +- 0.014 9.278 +- 0.014 11.028 +- 0.018 9.194 +- 0.015
Distance 9.197 +- 0.015 9.197 +- 0.015 9.197 +- 0.015 9.135 +- 0.016

Both 9.309 +- 0.016 9.299 +- 0.016 9.467 +- 0.016 9.287 +- 0.016

Table 4: Detailed statistics for the experiment on the triangular sampled data.
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