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ABSTRACT

Collecting human preference feedback is often expensive, leading recent works to
develop algorithms to select them more efficiently. However, these works assume
that the underlying reward function is linear, an assumption that does not hold in
many real-life applications, e.g., online recommendation. To address this limitation,
we propose Neural-ADB, an algorithm based on the neural contextual dueling
bandit framework that provides a practical method for collecting human preference
feedback when the underlying latent reward function is non-linear. We theoretically
show that when preference feedback follows the Bradley-Terry-Luce model, the
worst sub-optimality gap of the policy learned by Neural-ADB decreases at a
sub-linear rate as the preference dataset increases. Our experimental results on
preference datasets further corroborate the effectiveness of Neural-ADB.

1 INTRODUCTION

Collecting human preference feedback is essential in many real-life applications, like online
recommendations (Kohli et al., 2013; Wu et al., 2023; Zhang and Wang, 2023; Yang et al., 2024),
content moderation (Avadhanula et al., 2022), medical treatment design (Lai and Robbins, 1985;
Bengs et al., 2021), prompt optimization (Lin et al., 2024), and aligning large language models (Bai
et al., 2022; Menick et al., 2022; Mehta et al., 2023; Chaudhari et al., 2024; Das et al., 2024; Ji
et al., 2024), to ensure systems effectively align with user preferences and exhibit desired behaviors.
However, this process is often costly due to the need for skilled evaluators, the complexity of tasks,
and the time-intensive nature of producing high-quality, reliable human feedback. To address the
challenge of balancing cost and effectiveness in aligning systems, this paper proposes principled and
practical algorithms for efficiently collecting human feedback sequentially and adaptively to achieve
the desired system behavior. Specifically, we aim to answer the following fundamental question:
How to achieve desired system behavior while using as minimum human feedback as possible?

Recent works (Mehta et al., 2023; Das et al., 2024) have modeled the problem of active human
feedback collection as an active version of the contextual dueling bandit problem (ADB for
brevity) (Saha, 2021; Bengs et al., 2022; Li et al., 2024), where context-arm pair in the contextual
dueling bandits corresponds to a task for which human preference feedback is collected and then
proposed algorithms to select context-arm pairs for human feedback sequentially and adaptively by
exploiting collected preference dataset, i.e., past context-arm pairs with their preference feedback.
The preference feedback between two context-arm pairs is commonly assumed to follow the
Bradley-Terry-Luce (BTL) model1 (Hunter, 2004; Bengs et al., 2022; Li et al., 2024; Lin et al.,
2024; Verma et al., 2025) in which the probability of preferring a context-arm pair over others is
proportional to the exponential of its reward. In many real-life applications, the number of context-arm
pairs (e.g., user-movie pair in online movie recommendation) can be large or even infinite. Therefore,
the reward for each context-arm pair is assumed to be an unknown function of its feature vector, such
as a linear function (Mehta et al., 2023; Das et al., 2024).

To better align the system for optimal performance, we consider two key components: context
selection and arm selection. The context selection aims to encourage diversity by exploring the
context space, such as selecting prompts as diverse as possible in prompt optimization. Whereas

1For more than two context-arm pairs, preferences are typically modeled using the Plackett-Luce model
(Soufiani et al., 2014).
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arm selection focuses on identifying the arms that help learn the best arm for each context, such as
selecting the most effective pair of responses to a given prompt that maximizes the system’s learning
(Lin et al., 2024; Verma et al., 2025). Since the goal is to identify the best arm for each context,
selecting suboptimal arms provides less useful information than choosing better arms. Existing
methods for active contextual dueling bandits (Mehta et al., 2023; Das et al., 2024) fail to incorporate
an efficient arm selection strategy during the data collection process, thereby limiting the ability of
these methods to achieve optimal performance.

An efficient arm selection strategy requires estimating the reward function to guide the arm selection
process effectively. Since the reward function may not always be linear in practice, this paper
parameterizes the reward function via a non-linear function, which needs to be estimated from the
available preference dataset by using methods like Gaussian processes (Williams and Rasmussen,
2006; Srinivas et al., 2010) or neural networks (Zhou et al., 2020; Zhang et al., 2021). However,
Gaussian processes have limited expressive power and fail to optimize highly complex functions.
In contrast, neural networks (NNs) have greater expressive power, making them well-suited for
modeling complex functions (Dai et al., 2023; Lin et al., 2023; 2024; Verma et al., 2025).

In this paper, we propose a neural active contextual dueling bandit algorithm, Neural-ADB, which
uses an NN to estimate the unknown reward function using the available preference dataset. The
context selection in Neural-ADB is adapted from Das et al. (2024), while arm selection strategies
are based on, respectively, upper confidence bound (UCB) and Thompson sampling (TS), and adapted
from Verma et al. (2025). Due to the differences in context selection strategy, arm selection strategies,
and the use of a non-linear reward function, our theoretical analysis is completely different than
related existing work (Mehta et al., 2023; Das et al., 2024). One of the key theoretical contributions
of this paper is providing an upper bound on the maximum Mahalanobis norm of a vector from the
fixed input space, measured with respect to the inverse of a positive definite Gram matrix that is
constructed using finite, adapted samples from that space. Building on this result, we prove that the
worst sub-optimality gap (defined in Eq. (1)) of the policy learned by Neural-ADB decreases at a
sub-linear rate as the preference dataset size increases.

Specifically, our key contributions can be summarized as follows:
• We introduce the setting of active contextual dueling bandits with a non-linear reward function

in Section 2. In Section 3, we propose a neural active contextual dueling bandit algorithm,
Neural-ADB, which uses an NN to estimate the unknown reward function from the available
preference dataset and then uses this estimate into the arm selection strategies.

• We prove an upper bound on the maximum Mahalanobis norm of a vector from the fixed input
space, as measured with respect to the inverse of a positive definite Gram matrix (Theorem 1),
where the gram matrix is constructed using finite, adapted samples from that input space. We
show that this upper bound decays at a sub-linear rate as the number of samples used in the Gram
matrix increases. This theoretical result itself is of independent interest, as it gives valuable insights
beyond the specific application of our work.

• We prove that the worst sub-optimality gap of the policy learned by Neural-ADB with both of
our arm selection strategies (Theorem 2 and Theorem 3) decreases at a sub-linear rate with respect
to the size of preference dataset, specifically at rate of Õ((d̃/T )

1
2 ), where Õ hides the logarithmic

factors and constants, and d̃ is the effective dimension of context-arm feature vectors. The decay
rate of the worst sub-optimality gap for Neural-ADB improves by a factor of Õ((d̃ log T )

1
2 )

compared to exiting algorithms (Mehta et al., 2023; Das et al., 2024), thus bridging the gap between
theory and practice.

• Finally, in Section 4, our experimental results further validate the different performance aspects of
Neural-ADB, highlighting its sample efficiency for preference data collection.

2 PROBLEM SETTING

We model active human preference feedback collection as an active contextual dueling bandit problem,
where a labeler (human or simulator) provides preference feedback for a chosen pair of arms.

Active contextual dueling bandit. We consider an active contextual dueling bandit problem, where
the underlying latent reward function can be non-linear. In each iteration of this problem, the learner’s
goal is to select a triplet containing a context and two arms for collecting preference feedback from a

2
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labeler/human such that the collected preference dataset leads to superior performance. Let C be the
set of contexts and A be the set of all possible arms. In each iteration, the learner selects a context
ct ∈ C and then two arms (denoted as at,1 and at,2) from the set of arms A. After selecting the
triplet of context and two arms, the learner receives a stochastic preference feedback yt, where yt = 1
implies the arm at,1 is preferred over arm at,2 for the context ct and yt = 0 otherwise. We use
φ(ct, a) to denote the context-arm feature vector for context ct and an arm a, where φ : C ×A → Rd

is a known feature map, such as one that concatenates the context and arm features.

Preference model. Following the dueling bandits literature (Saha, 2021; Bengs et al., 2022; Li et al.,
2024; Verma et al., 2025), we assume the preference feedback follows the Bradley-Terry-Luce (BTL)
model2 (Hunter, 2004; Luce, 2005). Under the BTL preference model, the preference feedback has
a Bernoulli distribution, where the probability that the first selected arm at,1 is preferred over the
second selected arm at,2 for the given context ct is given by

P {at,1 ≻ at,2} = P {yt = 1|ct, at,1, at,2} = µ (f(φ(ct, at,1))− f(φ(ct, at,2))) ,

where at,1 ≻ at,2 used for brevity and denotes that at,1 is preferred over at,2 for the given context
ct, µ(x) = 1/(1 + e−x) is the sigmoid function, f : Rd → R is an unknown non-linear bounded
reward function, and f(φ(c, a)) is the latent reward of the arm a for the context c. We require the
following standard assumptions on the function µ (commonly referred to as a link function in the
bandit literature (Li et al., 2017; Bengs et al., 2022)):
Assumption 1. • Let κµ

.
= inf

c∈C,a,b∈A
µ̇(f(φ(c, a)) − f(φ(c, b))) > 0 for all triplets of

context (c) and pair of arms (a, b).
• The link function µ : R → [0, 1] is continuously differentiable and Lipschitz with constant
Lµ. For logistic function, we have Lµ ≤ 1/4.

Performance measure. We denote the collected preference dataset up to T iterations by DT =
{(cs, as,w, as,l, ys)}Ts=1, where as,w ≻ as,l for the selected context cs in iteration s. We aim to learn
a policy, π : C → A from the collected preference dataset DT that achieves the worst sub-optimality
gap across all contexts in C, which is defined as follows:

∆π
DT

= max
c∈C

[
max
a∈A

f(φ(c, a))− f (φ(c, π(c)))

]
, (1)

where policy π is a learned policy from the collected preference dataset DT up to the iteration T . The
policy πDT

competes with the Condorcet winner (Bengs et al., 2021; Das et al., 2024) for a given
context, i.e., an arm that is better than all other arms. The suboptimality gap is the worst possible
difference in latent rewards over the set of contexts, and the same performance measure is used in
prior work (Mehta et al., 2023; Das et al., 2024).

3 ALGORITHM FOR ACTIVE HUMAN PREFERENCE FEEDBACK COLLECTION

In this section, we introduce Neural-ADB, a simple yet principled and practical algorithm designed
to efficiently select context-arm pairs for collecting preference feedback. Neural-ADB consists of
two main components: context selection and arm selection. Since the arm selection strategy depends
on the estimated reward function, we first explain how an NN can be used to estimate the unknown
reward function. We will then give details of the context and arm selection strategies, followed by
our theoretical results that validate the effectiveness of Neural-ADB.

3.1 REWARD FUNCTION ESTIMATION USING NEURAL NETWORK

For estimating the latent reward function, we use a fully connected neural network (NN) with depth
D ≥ 2, a hidden layer width w, and ReLU activations as done in Zhou et al. (2020), Zhang et al.
(2021), and Verma et al. (2025). Let h(x; θ) be the output of a full-connected NN with parameters θ
for context-arm feature vector x = φ(c, a) of context c and arm a, which we define as follows:

h(x; θ) = WDReLU (WD−1ReLU (· · ·ReLU (W1x))) ,

2Our results are also applicable to any preference models, such as the Thurstone-Mosteller model and
Exponential Noise, as long as stochastic transitivity holds (Bengs et al., 2022).
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where ReLU(v) = max{v, 0}, W1 ∈ Rw×d, Wl ∈ Rw×w for 2 ≤ l < D, WD ∈ Rw×1. The
parameters of the NN are represented by θ = (vec (W1) ; · · · vec (WD)), where vec (A) transforms
an m × n matrix A into a vector of dimension mn. We use p to represent the total number of
NN parameters, which is given by p = dw + w2(D − 1) + w, and g(x; θ) to denote the gradient
of NN h(x; θ) with respect to θ. At the end of each iteration t, the preference dataset Dt =

{(cs, as,w, as,l, ys)}ts=1 is used to estimate the reward function f by training an NN h (parameterized
by θt+1) using gradient descent to minimize the following binary cross entropy loss function:

min
θ

Lt(θ) = − 1

w

t∑
s=1

[
log µ

(
h(φ(cs, as,w); θ) − h(φ(cs, as,l); θ)

)]
+

1

2
λ ∥θ − θ0∥22 , (2)

where θ0 denotes the initial parameter of the NN that is initialized according to the standard practice
in neural bandits (Zhou et al., 2020; Zhang et al., 2021) (see Algorithm 1 in Zhang et al. (2021) for
details). Minimizing the first term in the above loss function (that involves the summation over the t
terms) corresponds to finding the maximum log-likelihood estimate of the parameters θ.

3.2 Neural-ADB

We next propose a simple yet principled and practical algorithm, Neural-ADB, that consists of
two key components: Context selection and arm selection. Neural-ADB works as follows: At the
beginning of the iteration t, we first select the context as follows:

ct = argmax
c∈C

max
(a,b)∈A×A

∥Φ(c, a)− Φ(c, b)∥V −1
t

, (3)

where Φ : C × A → Rp is a known feature map and Vt−1 = λ
κµ

Ip +
∑t−1

s=1 zszs
⊤ 1

w in which
zs = Φ(cs, as,w)−Φ(cs, as,l) = g(φ(cs, as,w); θ0)− g(φ(cs, as,l); θ0), and g(φ(cs, as,i); θ0)/

√
w

is used as the Random features approximation for the context-arm feature vector φ(cs, as,i). This
strategy is adapted from the context selection strategy3 from Das et al. (2024). After selecting context
ct, Neural-ADB uses the trained NN (as an estimate of the unknown reward function) to decide
which two arms must be selected. To do so, Neural-ADB uses UCB- and TS-based arm selection
strategies, which efficiently balance the trade-off between exploration and exploitation (Lattimore
and Szepesvári, 2020) due to the bandit nature of preference feedback, as preference feedback is only
observed for the selected pair of arms.

Neural-ADB Neural Active Dueling Bandit algorithm
1: Input parameters: δ ∈ (0, 1), λ > 0, and w > 0
2: Initialize: NN parameters θ1 and D0 = ∅
3: for t = 1, . . . , T do
4: Select a context ct from C using Eq. (3)
5: Select first arm at,1 using Eq. (4)
6: Select second arm at,2 using Eq. (5) (UCB-based selection) or Eq. (7) (TS-based selection)
7: Observe preference feedback yt = 1{at,1≻at,2}
8: Update Dt = Dt−1 ∪ {(ct, at,1, at,2, yt)}
9: Retrain NN parameters θt+1 using Dt by minimizing the loss function defined in Eq. (2)

10: end for
11: Return policy π(c) = argmax

a∈A
h(φ(c, a); θT ), ∀c ∈ C

UCB-based arm selection strategy. Algorithms based on Upper confidence bound (UCB) are
commonly used to address the exploration-exploitation trade-off in many sequential decision-making
problems (Auer et al., 2002; Abbasi-Yadkori et al., 2011; Zhou et al., 2020; Bengs et al., 2022). Our
UCB-based arm selection strategy works as follows: In the iteration t, it selects the first arm greedily
(i.e., by maximizing the output of the trained NN with parameters θt) for the selected context ct,
ensuring the best-performing arm is always selected as follows:

at,1 = argmax
a∈A

h(φ(ct, a); θt). (4)

3Selecting contexts uniformly at random suffer a constant sub-optimality gap (Das et al., 2024, Theorem 3.2).
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The second arm at,2 is selected optimistically by maximizing the UCB value as follows:

at,2 = argmax
b∈A\{at,1}

[h(φ(ct, b); θt) + cf(t, ct, at,1, b)] , (5)

where cf(t, ct, at,1, b) = νTσt−1(ct, at,1, b), νT
.
= (βT + B

√
λ/κµ + 1)

√
κµ/λ in which βT

.
=

1
κµ

√
d̃+ 2 log(1/δ), d̃ is the effective dimension (defined in Eq. (8)), and

σ2
t−1(c, a, b)

.
=

λ

κµ

∥∥∥∥ 1√
w
(φ(c, a)− φ(c, b))

∥∥∥∥2
V −1
t−1

. (6)

A larger value of σ2
t−1(ct, at,1, b) implies that arm b is significantly different from at,1, given the

contexts and arm pairs already selected. As a result, the second term in Eq. (5) makes the second arm
different from the first arm which ensures exploration.

TS-based arm selection strategy. Thompson sampling (TS) selects an arm based on its
probability of being the best (Thompson, 1933). Several works (Chapelle and Li, 2011; Agrawal
and Goyal, 2013; Chowdhury and Gopalan, 2017; Li et al., 2024) have shown that TS empirically
outperforms UCB-based bandit algorithms. Therefore, we also propose a TS-based arm selection
strategy in which the first arm is also selected using Eq. (4) and the second arm is selected
differently. To select the second arm, it first samples a score st(b) ∼ N

(
h(φ(ct, b); θt) −

h(φ(ct, at,1); θt), ν
2
Tσ

2
t−1(ct, at,1, b)

)
for every arm b ∈ A \ {at,1} and then selects the second

arm that maximizes the samples scores as follows:

at,2 = argmaxb∈A\{at,1} st(b). (7)

After selecting context and arms in iteration t, stochastic preference feedback is observed, denoted
by ys = 1{at,1≻at,2}, which is equal to 1 if arm as,1 is preferred over arm as,2 for context ct
and 0 otherwise. With the new observation, the preference dataset is updated to Dt = Dt−1 ∪
{(ct, at,w, at,l, yt)} and then the NN is retrained using the updated preference dataset Dt. Once the
preference data collection process concludes (i.e., end of iteration T , which may not be fixed a priori),
Neural-ADB returns the following policy: ∀c ∈ C : π(c) = argmaxa∈A h(φ(c, a); θT ).

3.3 THEORETICAL RESULTS

Let the number of arms in A be finite, and define V =
∑T

s=1

∑
(a,b)∈A×A za,b(s)za,b(s)

⊤ 1
w , where

za,b(s) = φ(cs, a)−φ(cs, b) and C
|A|
2 denotes all pairwise combinations of arms. Then, the effective

dimension of context-arm feature vectors is defined as follows:

d̃ = log det
(κµ

λ
V+ Ip

)
. (8)

In the following, we present a novel theoretical result that gives an upper bound on the maximum
Mahalanobis norm of a vector selected from the fixed input space, measured with respect to the
inverse of a positive definite Gram matrix constructed from finite, adapted samples of the same space.
Theorem 1. Let {Zs = zsz

⊤
s }Ts=1 be a finite adapted sequence of self-adjoint matrices in Rd.

Define E
[
zsz

⊤
s

]
= Σs ≤ Σmax, V0 = λId, VT = λId +

∑T
s=1 zsz

⊤
s . Assume ∥zs∥2 ≤ L

for all z ∈ Z ⊂ Rd, λmin(A) denote the minimum eigenvalue of a matrix A, and ∀s ≤ T :

∥Vs − Vs−1∥2 ≤ Cs, where ∥V ∥ denotes the operator norm. Then, with a probability at least 1− δ,

maxz∈Z ∥z∥V −1
T

≤ L/GT , where GT =

√
λ+ Tλmin(Σmax)−

√
8
∑T

s=1 Cs log (d/δ).

Proof sketch. To derive the upper bound, we use various results related to the positive definite
matrix (detailed in Fact 1 of the supplementary material). First, if VT is a positive definite matrix VT ,

then for any z ∈ Z , ∥z∥V −1
T

≤ ∥z∥2
√

λmax(V
−1
n ) = ∥z∥2 /

√
λmin(Vn). Thus, max

z∈Z
∥z∥V −1

T
≤

∥z∥2 /
√

λmin(Vn) ≤ L/
√
λmin(Vn). Since {Zs}Ts=1 is a finite adapted sequence of self-adjoint

matrices (i.e., Zs is Fs-measurable for all s, where Fs represents all information available up to
iteration s), we apply the Matrix Azuma inequality (Tropp, 2012) to get a high probability lower bound

5
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on λmin(Vn), specifically we have shown that λmin(VT ) ≥ Tλmin(Σmax)−
√
8
∑T

s=1 Cs log (d/δ)

holds with probability at least 1− δ. Using this bound, we get the desired upper bound L/GT . The
full proof of Theorem 1, along with all other missing proofs, are provided in Section A.

This result shows that the upper bound can be expressed in terms of the number of adapted samples
used to construct the matrix VT , and it decays at a sub-linear rate as the number of samples (T )
increases. Notably, this result is of independent interest, as it provides valuable insights beyond the
specific application of our work. Next, we give an upper bound on the worst sub-optimality gap
in terms of the upper bound on the estimation error of the reward difference between any triplet
consisting of a context and two arms.

Lemma 1. Let DT = {xs, as,1, as,2, ys}Ts=1 be the preference dataset collected up to the iteration T

and f̂T represent the estimate of latent reward function f learned from DT . With probability at least
1− δ, ∀c ∈ C, a, b ∈ A :

∣∣∣[f(φ(c, a))− f (φ(c, b))]−
[
f̂T (φ(c, a))− f̂T (φ(c, b))

]∣∣∣≤ βT (c, a, b).

If a⋆ = argmaxa∈A f(φ(c, a)) and π(c) is the arm selected by policy for context c, then, with a
probability at least 1− δ, the worst sub-optimality gap for a policy that greedily selects an arm for a
given context is upper bounded by: ∆π

T ≤ max
c∈C

βT (c, a
⋆, π(c)).

The proof follows by starting with the worst sub-optimality gap definition in Eq. (1) and then applying
a series of algebraic manipulations to derive the stated result. Our next results give an upper bound
on βT (c, a, b) when Neural-ADB uses different arm selection strategies.

Lemma 2. Let νT = (βT + B
√
λ/κµ + 1)

√
κµ/λ, where βT = (1/κµ)

√
d̃+ 2 log(1/δ) and

δ ∈ (0, 1). If w ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then, with a probability of at least
1 − δ, for Neural-ADB with (i) UCB-based arm selection strategy, for all c ∈ C : βT (c, a, b) =
νTσT (c, a

⋆, π(c)) + 2ε′w,T , (ii) TS-based arm selection strategy, for all c ∈ C : βT (c, a, b) =

νT log
(
KT 2

)
σT (c, a

⋆, π(c)) + 2ε′w,T ,where K denotes the maximum number of arms available in

each iteration, and ε′w,T = C2w
−1/6

√
logwL3 (T/λ)

4/3 for some absolute constant C2 > 0, is the
approximation error that decreases as the width of the NN (w) increases.

Equipped with Theorem 1, Lemma 1, and Lemma 2, we will now provide an upper bound on the
worse sub-optimality gap for a policy learned by Neural-ADB while using UCB- and TS-based
arm selection strategy for a given context.

Theorem 2 (UCB). Let the conditions in Theorem 1 and Lemma 2 hold. Then, with a probability with
at least 1− δ, the worst sub-optimality gap of Neural-ADB when using UCB-based arm selection

strategy is upper bounded by ∆π
T ≤

(
νTL
GT

)√
λ

κµw
+ 2ε′w,T = Õ

(√
d̃
T

)
.

Theorem 3 (TS). Let the conditions in Theorem 1 and Lemma 2 hold. Then, with a probability with
at least 1− δ, the worst sub-optimality gap of Neural-ADB when using TS-based arm selection

strategy is upper bounded by ∆π
T ≤

(
νTL log(KT 2)

GT

)√
λ

κµw
+ 2ε′w,T = Õ

(√
d̃
T

)
.

The proof follows by applying Lemma 2, setting z′ = φ(c, a⋆)−φ(c, π(c)) in Eq. (6), and then using
Theorem 1. Note that ε′w,T = O(1/T ) and d̃ = õ(

√
T ) as long as the NN width w is large enough

(Zhou et al., 2020; Zhang et al., 2021; Verma et al., 2025). Above Theorem 2 and Theorem 3 show
that the worst sub-optimality gap of the policy learned by Neural-ADB with UCB- and TS-based
arm selection strategies decreases at a sub-linear rate with respect to the size of preference dataset,
specifically at rate of Õ((d̃/T )

1
2 ), where Õ hides the logarithmic factors and constants. Further, the

decay rate of the worst sub-optimality gap for Neural-ADB improves by a factor of Õ((d̃ log T )
1
2 )

compared to exiting algorithms (Mehta et al., 2023; Das et al., 2024), thereby bridging the gap
between theory and practice.

3.4 ACTIVE DUELING BANDITS WITH REGRET MINIMIZATION

We start by defining the cumulative regret (or ‘regret’ for brevity) of a policy. After
receiving preference feedback for T pairs of arms, the regret of a sequential arm selection
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policy is given by: RT =
∑T

t=1 [f(φ(ct, a
⋆
t ))− (f(φ(ct, at,1)) + f(φ(at,2))) /2] , where a⋆t =

argmaxa∈At
f(φ(ct, a)) denotes the arm that maximizes the reward function for a given context ct.

In many real-world applications, such as medical treatment design (Lai and Robbins, 1985; Bengs
et al., 2021) and content moderation (Avadhanula et al., 2022), both actively selecting arms and
minimizing regret is required. For instance, in personalized medical treatment, active learning is used
to identify the most informative treatments to test, while cumulative regret minimization ensures the
system continually adapts to deliver better patient outcomes. Such scenarios also arise in other fields,
such as dynamic pricing and personalized education, enabling systems to make smarter decisions,
reduce suboptimal choices, and optimize overall performance as they gather more valuable data.

Since the arm selection strategies in Neural-ADB are directly adapted from UCB- and TS-based
algorithms for contextual dueling bandits of Verma et al. (2025), the regret upper bounds for these
algorithms also apply to Neural-ADB. For completeness, we state the regret upper bounds of
Neural-ADB as follows.

Corollary 1 (Regret Upper Bound). (Verma et al., 2025, Theorem 2 and Theorem 3) Let λ > κµ

and w ≥ poly(T,L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)). Then, with a probability of at least 1 − δ,
the regret of Neural-ADB when using UCB- or TS-based arm selection strategy is upper bounded

by RT = Õ

((√
d̃

κµ
+
√

λ
κµ

)√
T d̃

)
.

Ignoring logarithmic factors and constants, the asymptotic growth rates of Neural-ADB with UCB-
and TS-based arm selection strategy are identical and sub-linear.

4 EXPERIMENTS

To validate our theoretical results, we empirically evaluate the performance of our algorithms on
different problem instances of synthetic datasets. Specifically, we use two commonly used synthetic
functions adopted from existing works on neural bandits (Zhou et al., 2020; Zhang et al., 2021; Dai
et al., 2023; Verma et al., 2025): f(x) = 10(x⊤θ)2 (Square) and f(x) = 2 sin(x⊤θ) (Sine). All
experiments are repeated 10 times, and we report the average worst suboptimality gap with 95%
confidence intervals (depicted as vertical lines on each curve).

(a) Suboptimality Gap (b) MAE (c) Average Regret

(d) Suboptimality Gap (e) MAE (f) Average Regret

Figure 1: Performance comparison of Neural-ADB against different active dueling bandit
algorithms on synthetic functions: Square function (top row) and Sine function (bottom row).

Synthetic dataset. We generate sample features for each context-arm pair in a d-dimensional space.
Let xt,a be the context-arm feature vector for context ct and an arm a. For all t ≥ 1, xt,a is sampled
uniformly at random from (−1, 1)d. We keep the number of arms constant across all rounds, denoted

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Suboptimality Gap (b) MAE (c) Average Regret

(d) Suboptimality Gap (e) MAE (f) Average Regret

Figure 2: Performance of Neural-ADB (UCB) on the Square function, evaluated across varying
input dimensions (top row) and numbers of arms (bottom row).

(a) Sub-Optimality Gap (b) MAE (c) Average Regret

(d) Sub-Optimality Gap (e) MAE (f) Average Regret

Figure 3: Performance of Neural-ADB (TS) on the Square function, evaluated across varying
input dimensions (top row) and numbers of arms (bottom row).

by K. In our experiments, the binary preference feedback indicating whether xt,1 preferred over xt,2

(representing human preference feedback) is sampled from a Bernoulli distribution with parameter
µ (f(xt,1)− f(xt,2))), where f is either a Square or Sine function..

Reward function estimation. We use a neural network with 2 hidden layers with width 50 to
estimate the latent reward function, λ = 1.0, δ = 0.05, d = 20, K = 10, T = 1000, and fixed value
of νT = ν = 1.0 in all our experiments (unless we specifically indicate d and K). Note that we
did not perform any hyperparameter search for Neural-ADB, whose performance can be further
improved by doing the hyperparameter search.

Comparison with baselines. We compare the worst suboptimality gap (defined in Eq. (1)), MAE
(average suboptimality gap, i.e.,

∑T
t=1 [maxa∈A f(φ(ct, a))− f (φ(ct, π(c)))] /T ), and average

regret (defined in Section 3.4) against the different baselines of active contextual dueling bandits
to evaluate the performance of UCB- and TS-variant of Neural-ADB. We use three baselines:
Random, AE-Borda (Mehta et al., 2023), AE-DPO (Mehta et al., 2023), APO (Das et al., 2024),

8
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and the neural variants of AE-Borda and APO in which we use a neural network to estimate the
latent reward function. They are named AE-Borda (NN) and Neural-ADB (APO) respectively.
Experimental results in Fig. 1 show that our algorithm, Neural-ADB (UCB), outperforms other
baselines in almost all synthetic functions (i.e., square function and sine function) in terms of the
suboptimality gap. Moreover, both UCB- and TS-variants of Neural-ADB also outperform other
baselines on all synthetic functions in MAE and average regret. We have included more comparisons
of our approach with other baselines in other settings (e.g., different d or K) in Section C.

Varying dimensions and arms vs. performance. As we increase the dimension of the context-arm
feature vectors (d) and number of arms (K), the problem becomes more challenging. To assess
how the changes in K andd affect the performance of our proposed algorithms, we vary K =
{5, 10, 15, 20} and d = {5, 10, 15, 20} , while keeping the other parameters fixed. As expected, the
performance of our algorithms gets worse with higher values of K and d, as shown in Fig. 2. We
have included similar results for Neural-ADB (TS) in Fig. 3.

5 RELATED WORK

This section reviews the most relevant work to our setting, i.e., contextual dueling bandits and
active contextual dueling bandits. We discuss related topics, such as neural contextual bandits and
finite-armed dueling bandits, in Section A.1.

Contextual Dueling Bandits. Many real-life applications, such as online recommendations, content
moderation, medical treatment design, prompt optimization, and aligning large language models,
can be effectively modeled using contextual dueling bandits, where a learner observes a context
(additional information before selecting a pair of arms) and then selects the arms based on that context
and observes preference feedback for the selected arms. Since the number of context-arm pairs can
be potentially large or even infinite, the mean latent reward of each context-arm is assumed to be
parameterized by an unknown function of its features. Common assumptions include linear reward
models (Saha, 2021; Bengs et al., 2022; Di et al., 2023; Saha and Krishnamurthy, 2022; Li et al.,
2024) and non-linear models (Verma et al., 2025). For our setting, we adopt the neural contextual
dueling bandit algorithms proposed in (Verma et al., 2025) to construct confidence ellipsoids for the
latent non-linear reward function. Note that Neural-ADB can incorporate alternative confidence
ellipsoids by appropriately modifying Lemma 2. Furthermore, our work addresses an active learning
problem and analyzes the convergence rate of the worst sub-optimality gap, whereas (Verma et al.,
2025) focus on a regret minimization setting and derive upper bounds on cumulative regret.

Active contextual dueling bandits. The work most closely related to ours is active contextual
dueling bandit (Mehta et al., 2023; Das et al., 2024), which takes a principled approach to actively
collecting preference datasets. However, two key differences exist between our work and existing
research: the non-linear reward function and the arm selection strategy. Existing studies typically
assume a linear reward function, which may not be suitable for many real-world applications. Our
work addresses this gap by extending the existing framework to incorporate non-linear reward
functions in contextual dueling bandits. Additionally, existing approaches use different methods for
selecting the pair of arms, leading to distinct arm selection strategies compared to ours. As a result of
these differences in both the arm selection strategy and the non-linear reward function (which we
estimate using a neural network), our analysis diverges significantly from that of prior work.

6 CONCLUSION

This paper studies the problem of active human preference feedback collection by modeling it
as an active neural contextual dueling bandit problem. We propose Neural-ADB, a principled
and practical algorithm designed for efficiently gathering human preference feedback in scenarios
where the reward function is non-linear. Exploiting the neural contextual dueling bandit framework,
Neural-ADB extends its applicability to a broad range of real-world applications, including online
recommendation systems and LLM alignment. Our theoretical analysis demonstrates that the worst
suboptimality gap of Neural-ADB decays at a sub-linear rate as the preference dataset grows.
Finally, our experimental results further validate these theoretical findings. An interesting direction
for future work is applying Neural-ADB to real-life applications such as LLM alignment. From a
theoretical perspective, exploring the non-stationary setting is a promising future direction.
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ETHICS STATEMENT

This work is primarily theoretical, focusing on the design and analysis of algorithms. The proposed
methods do not directly involve human subjects, personal data, or real-world deployments. While
the framework could potentially be applied in systems that interact with users, we emphasize that
ethical considerations, such as fairness, privacy, and informed consent, must be addressed in practical
deployments. Our primary goal is to advance the theoretical understanding of active preference data
collection, and we do not anticipate any immediate negative societal impacts.

REPRODUCIBILITY STATEMENT

This paper primarily presents theoretical results, including formal proofs. All assumptions, definitions,
and derivations are stated explicitly in the main text (see Section 3) and the Appendix. The details of
our experimental setup are provided in Section 4 and the Appendix. Additionally, the code used in
our experiments has been included in the supplementary material, enabling full reproduction of the
results reported in this paper.
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A APPENDIX

A.1 ADDITIONAL RELATED WORK

Neural Contextual Bandits. To model complex and non-linear reward functions, neural contextual
bandits (Riquelme et al., 2018; Zhou et al., 2020; Zhang et al., 2021; Xu et al., 2022; Bae and Lee,
2025; Verma et al., 2025) use deep neural networks for reward function estimation. (Riquelme
et al., 2018) employ multi-layer neural networks to learn arm embeddings and then use Thompson
Sampling at the final layer for exploration. Zhou et al. (2020) propose the first neural contextual
bandit algorithm with sub-linear regret guarantees, using a UCB exploration strategy. Building on
this, Zhang et al. (2021) propose an algorithm with a TS exploration strategy. Ban et al. (2022)
introduces an adaptive exploration strategy incorporating an auxiliary neural network to estimate the
potential gain of the exploitation neural network, diverging from traditional UCB and TS exploration
strategies. To reduce the computational overhead of using gradient-based features, Xu et al. (2022)
only perform UCB-based exploration on the final layer of the neural network. More recent works
(Bae and Lee, 2025; Verma et al., 2025) extend these techniques to handle neural contextual bandit
settings with binary feedback (i.e., neural logistic bandits).

Finite-Armed Dueling Bandits. Learning from preference feedback has been extensively studied in
the bandit literature. In the finite-armed dueling bandits setting, the learner aims to find the best arm
while only observing preference feedback for two selected arms (Yue and Joachims, 2009; 2011; Yue
et al., 2012). To determine the best arm in dueling bandits, different criteria, such as the Borda winner,
Condorcet winner, Copeland winner, or von Neumann winner, have been used while focusing on
minimizing regret using only pairwise preference feedback (Ailon et al., 2014; Zoghi et al., 2014a;b;
Gajane et al., 2015; Komiyama et al., 2015; Saha and Gopalan, 2018; 2019a;b; Verma et al., 2019;
2020a;b; Zhu et al., 2023). For a comprehensive overview of algorithms for various dueling bandits
settings, we refer readers to the survey by Bengs et al. (2021).

B LEFTOVER PROOFS

To simplify the presentation, we use a common error probability of δ for all probabilistic statements.
Our final results naturally follow by applying a union bound over all individual δ. Next, we will
describe the key properties of positive definite matrices crucial for the subsequent proofs. These
properties form the basis for several key parts of our analysis.

Fact 1 (Properties of a positive definite matrix). Let V0 = λId, VT = V0 +
∑T

s=1 zsz
⊤
s be a

positive definite matrix, where λ > 0, zs ∈ Rd, and {Zs = zsz
⊤
s }Ts=1 is a finite adapted sequence of

self-adjoint matrices, i.e., Vs and Zs are Fs-measurable for all s, where Fs represents all information
available up to s. We use λmax(VT ) and λmin(VT ) to denote the maximum and minimum eigenvalue
of matrix VT . Then, the following properties hold for VT :

1. Let δ ∈ (0, 1), ∀s ≤ T : ∥Vs − Vs−1∥2 ≤ Cs, where ∥A∥ denotes the operator norm. Then,
using Theorem 7.1 and Corollary 7.2 of Tropp (2012), with probability at least 1− δ,

P

λmax (VT − E [VT ]) ≥

√√√√8

T∑
s=1

Cs log

(
d

δ

) ≤ δ.

2. λmax(VT ) = −λmin(−VT ).

3. Let λi(V ) be the i-th eigenvalue of matrix V . If W is any Hermitian matrix, then, from
Weyl’s inequality:

1. λi(VT ) + λmin(W ) ≤ λi(VT +W ) ≤ λi(VT ) + λmax(W ) and
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2. λi(VT )− λmax(W ) ≤ λi(VT −W ) ≤ λi(VT )− λmin(W ).

4. Let ∀z ∈ Rd : ∥z∥2 ≤ L. Then, maxz∈Rd ∥z∥V −1
T

≤ ∥z∥2
√
λmax(V

−1
T ) ≤

L/
√
λmin(VT ).

5. For a > 0 : ∥az∥VT
= a ∥z∥VT

and λi(aVT ) = aλi(VT ).

B.1 PROOF OF THEOREM 1

We now prove the upper bound on the maximum Mahalanobis norm of a vector from the fixed input
space, measured with respect to the inverse of a positive definite Gram matrix defined by finite,
adapted samples from the same input space.
Theorem 1. Let {Zs = zsz

⊤
s }Ts=1 be a finite adapted sequence of self-adjoint matrices in Rd.

Define E
[
zsz

⊤
s

]
= Σs ≤ Σmax, V0 = λId, VT = λId +

∑T
s=1 zsz

⊤
s . Assume ∥zs∥2 ≤ L

for all z ∈ Z ⊂ Rd, λmin(A) denote the minimum eigenvalue of a matrix A, and ∀s ≤ T :

∥Vs − Vs−1∥2 ≤ Cs, where ∥V ∥ denotes the operator norm. Then, with a probability at least 1− δ,

maxz∈Z ∥z∥V −1
T

≤ L/GT , where GT =

√
λ+ Tλmin(Σmax)−

√
8
∑T

s=1 Cs log (d/δ).

Proof. Using Property 1 in Fact 1 with YT − E [YT ] = E [VT ]− VT , we have

P {λmax (E [VT ]− VT ) ≥ τ} ≤ d exp

(
−τ2

8
∑T

s=1 Cs

)

=⇒ P {−λmin (−(E [VT ]− VT )) ≥ τ} ≤ d exp

(
−τ2

8
∑T

s=1 Cs

)
(Property 2 in Fact 1)

=⇒ P {λmin (VT − E [VT ]) ≤ −τ} ≤ d exp

(
−τ2

8
∑T

s=1 Cs

)
.

Using upper bound on λmin (VT − E [VT ]) from Property 3 in Fact 1, we get

=⇒ P {λmin(VT )− λmin(E [VT ]) ≤ −τ} ≤ d exp

(
−τ2

8
∑T

s=1 Cs

)

=⇒ P {λmin(VT ) ≤ λmin(E [VT ])− τ} ≤ d exp

(
−τ2

8
∑T

s=1 Cs

)
.

Note that E [VT ] = E
[
λId +

∑T
t=1 zsz

⊤
s

]
= λId +

∑T
t=1 E

[
λIdzsz⊤s

]
= λId +

∑T
t=1 Σs ≤

λId + TΣmax. Thus, we get

P

λmin(VT ) ≤ λ+ Tλmin(Σmax)−

√√√√8

T∑
s=1

Cs log

(
d

δ

) ≤ δ.

Therefore, with probability at least 1− δ, λmin(VT ) ≥ λ+ Tλmin(Σmax)−
√
8
∑T

s=1 Cs log (d/δ).
Using Property 4 in Fact 1, we now use to prove our key result as follows:

max
z∈Z

∥z∥V −1
T

≤ L/
√

λmin(VT )

≤ L/

√√√√√λ+ Tλmin(Σmax)−

√√√√8

T∑
s=1

Cs log

(
d

δ

)
= L/GT

=⇒ max
z∈Z

∥z∥V −1
T

≤= L/GT .

14
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B.2 PROOF OF LEMMA 1 AND LEMMA 2

Our next results gives an upper bound of worst sub-optimality gap in terms of the upper bound of
estimation error in the reward difference between any triple of context and two arms.
Lemma 1. Let DT = {xs, as,1, as,2, ys}Ts=1 be the preference dataset collected up to the iteration T

and f̂T represent the estimate of latent reward function f learned from DT . With probability at least
1− δ, ∀c ∈ C, a, b ∈ A :

∣∣∣[f(φ(c, a))− f (φ(c, b))]−
[
f̂T (φ(c, a))− f̂T (φ(c, b))

]∣∣∣≤ βT (c, a, b).

If a⋆ = argmaxa∈A f(φ(c, a)) and π(c) is the arm selected by policy for context c, then, with a
probability at least 1− δ, the worst sub-optimality gap for a policy that greedily selects an arm for a
given context is upper bounded by: ∆π

T ≤ max
c∈C

βT (c, a
⋆, π(c)).

Proof. Define a⋆ = argmax
a∈A

f(φ(c, a)). Recall the definition of worst suboptimality across all

contexts, which is :

∆π
DT

= max
c∈C

[
max
a∈A

f(φ(c, a))− f (φ(c, π(c)))

]
= max

c∈C
[f(φ(c, a⋆))− f (φ(c, π(c)))]

= max
c∈C

[
f(φ(c, a⋆))− f (φ(c, π(c))) + f̂T (φ(c, a

⋆))− f̂T (φ(c, a
⋆))
]

≤ max
c∈C

∣∣∣[f(φ(c, a⋆))− f (φ(c, π(c)))] +
[
f̂T (φ(c, π(c)))− f̂T (φ(c, a

⋆))
]∣∣∣

= max
c∈C

∣∣∣[f(φ(c, a⋆))− f (φ(c, π(c)))]−
[
f̂T (φ(c, a

⋆))− f̂T (φ(c, π(c)))
]∣∣∣

=⇒ ∆π
DT

≤ max
c∈C

βT (c, a
⋆, π(c)).

The inequality follows from the fact we have greedy policy, i.e., π(c) = argmina∈A f̂T (φ(c, a)) for
any context c. Therefore, if π(c) ̸= a⋆, then f̂T (φ(c, π(c))) ≥ f̂T (φ(c, a

⋆)) must hold.

Lemma 2. Let νT = (βT + B
√
λ/κµ + 1)

√
κµ/λ, where βT = (1/κµ)

√
d̃+ 2 log(1/δ) and

δ ∈ (0, 1). If w ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then, with a probability of at least
1 − δ, for Neural-ADB with (i) UCB-based arm selection strategy, for all c ∈ C : βT (c, a, b) =
νTσT (c, a

⋆, π(c)) + 2ε′w,T , (ii) TS-based arm selection strategy, for all c ∈ C : βT (c, a, b) =

νT log
(
KT 2

)
σT (c, a

⋆, π(c)) + 2ε′w,T ,where K denotes the maximum number of arms available in

each iteration, and ε′w,T = C2w
−1/6

√
logwL3 (T/λ)

4/3 for some absolute constant C2 > 0, is the
approximation error that decreases as the width of the NN (w) increases.

Proof. Recall that we are using the arm-selection strategies proposed in (Verma et al., 2025). Since
their confidence bounds hold for any adapted sequence of contexts, the proof of the first part follows
directly from Theorem 1 in (Verma et al., 2025), while the second part follows from Lemma 10
together with Eq. (27) of (Verma et al., 2025).

Remark 1. We adopt the arm selection strategies from the existing neural dueling bandit algorithms
in (Verma et al., 2025), which assume d̃ = o(T ). In some cases, d̃ = Ω(T ) (Ban et al., 2022;
Deb et al., 2024), which may result in a constant convergence rate. However, our objective is to
demonstrate the use of the neural network for estimating non-linear reward functions in active
contextual dueling bandits. Since neural dueling bandit algorithms primarily influence the arm
selection strategy, we can incorporate any variants of these algorithms by making appropriate
modifications to Lemma 2.

B.3 PROOF OF THEOREM 2 AND THEOREM 3

Equipped with Theorem 1, Lemma 1, and Lemma 2, we will next prove the upper bound on the
worst sub-optimality gap for a policy learned by Neural-ADB while using UCB- and TS-based arm
selection strategy for a given context.
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Theorem 2 (UCB). Let the conditions in Theorem 1 and Lemma 2 hold. Then, with a probability with
at least 1− δ, the worst sub-optimality gap of Neural-ADB when using UCB-based arm selection

strategy is upper bounded by ∆π
T ≤

(
νTL
GT

)√
λ

κµw
+ 2ε′w,T = Õ

(√
d̃
T

)
.

Proof. Using Lemma 2 and setting value of βT (c, a
⋆, π(c)) using Lemma 2 and Eq. (6), we have

∆π
T ≤ max

c∈C
βT (c, a

⋆, π(c)) (from Lemma 1)

≤ max
c∈C

(
νTσT (c, a

⋆, π(c)) + 2ε′w,T

)
. (from Lemma 2)

As νT and ε′w,T independent of context c, we get

∆π
T ≤ νT max

c∈C
(σT (c, a

⋆, π(c))) + 2ε′w,T

= νT max
c∈C

(√
λ

κµ

∥∥∥∥φ(c, a⋆)− φ(c, π(c))√
w

∥∥∥∥
V −1
T

)
+ 2ε′w,T (using Eq. (6))

= νT max
c∈C

(√
λ

κµw
∥φ(c, a⋆)− φ(c, π(c))∥V −1

T

)
+ 2ε′w,T (Property 5 in Fact 1)

= νT

√
λ

κµw
max
c∈C

(
∥φ(c, a⋆)− φ(c, π(c))∥V −1

T

)
+ 2ε′w,T

≤ νT

√
λ

κµw

 L√
λ+ Tλmin(Σmax)−

√
8
∑T

s=1 Cs log
(
d
δ

)
+ 2ε′w,T (using Theorem 1)

≤ Õ

√ d̃

T

 .

Theorem 3 (TS). Let the conditions in Theorem 1 and Lemma 2 hold. Then, with a probability with
at least 1− δ, the worst sub-optimality gap of Neural-ADB when using TS-based arm selection

strategy is upper bounded by ∆π
T ≤

(
νTL log(KT 2)

GT

)√
λ

κµw
+ 2ε′w,T = Õ

(√
d̃
T

)
.

Proof. Using Lemma 2 and setting value of βT (c, a
⋆, π(c)) using Lemma 2 and Eq. (6), we have

∆π
T ≤ max

c∈C
βT (c, a

⋆, π(c)) (from Lemma 1)

≤ max
c∈C

(
νT log

(
KT 2

)
σT (c, a

⋆, π(c)) + 2ε′w,T

)
. (from Lemma 2)

The value of νT and ε′w,T independent of context c. By following similar steps to those in the proof
of Theorem 2, we have

∆π
T ≤ νT log

(
KT 2

)
max
c∈C

(σT (c, a
⋆, π(c))) + 2ε′w,T

= νT log
(
KT 2

)
max
c∈C

(√
λ

κµ

∥∥∥∥φ(c, a⋆)− φ(c, π(c))√
w

∥∥∥∥
V −1
T

)
+ 2ε′w,T

= νT log
(
KT 2

)
max
c∈C

(√
λ

κµw
∥φ(c, a⋆)− φ(c, π(c))∥V −1

T

)
+ 2ε′w,T

= νT log
(
KT 2

)√ λ

κµw
max
c∈C

(
∥φ(c, a⋆)− φ(c, π(c))∥V −1

T

)
+ 2ε′w,T
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≤ νT log
(
KT 2

)√ λ

κµw

 L√
λ+ Tλmin(Σmax)−

√
8
∑T

s=1 Cs log
(
d
δ

)
+ 2ε′w,T

≤ Õ

√ d̃

T

 .

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 EXPERIMENTAL DETAILS

Computational resources used for experiments. All experiments were conducted on a server
equipped with an AMD EPYC 7543 32-Core Processor, 256GB of RAM, and 8 NVIDIA GeForce
RTX 3080 GPUs.

Practical considerations. Based on the neural tangent kernel (NTK) theory (Jacot et al., 2018), the
initial gradient g(x; θ0) can be used as the original feature vector x as g(x; θ0) effectively represents
the random Fourier features of the NTK. To make our algorithm more practical, we use common
practices in neural bandits (Zhou et al., 2020; Zhang et al., 2021; Verma et al., 2025). Specifically, we
replaced the theoretical regularization parameter 1

2wλ ∥θ − θ0∥22 (where w is the NN’s width) with
the simpler λ ∥θ∥22 in the loss function (defined in Eq. (2)) that is used to train our NN. We retrain the
neural network after every 20 rounds for 50 gradient steps across all experiments.

C.2 ADDITIONAL EXPERIMENTAL RESULTS

Next, we present the additional experiment results comparing the performance of Neural-ADB
varying input dimension d (Fig. 4) and different numbers of arms K (Fig. 5).

(a) Sub-Optimality Gap (b) MAE (c) Average Regret

(d) Sub-Optimality Gap (e) MAE (f) Average Regret

Figure 4: Performance comparison across different input dimensions d: d = 20 (first row) and
d = 40 (second row). We set the number of arms to 10 and use the Square function for all experiments.

Performance vs. neural network size. To investigate how performance varies with different neural
network (NN) sizes, we used the Square and Cosine functions defined in the paper. We varied either
the number of layers (with width = 32) or the width of the NN (with 2 layers), while keeping all
other variables consistent with those in the paper. As shown in Fig. 6, we observed that selecting the
appropriate size of NN is crucial for the given problem. Using a large NN for a simple problem leads

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Sub-Optimality Gap (b) MAE (c) Average Regret

(d) Sub-Optimality Gap (e) MAE (f) Average Regret

(g) Sub-Optimality Gap (h) MAE (i) Average Regret

Figure 5: Performance comparison across different numbers of arms K: K = 5 (top row), K = 10
(middle row), and K = 15 (bottom row). We set the input dimension to 20 and use the Square
function for all experiments.

to poor performance due to high bias in the estimation, while a smaller NN may not accurately be
able to estimate the complex non-linear function.

C.3 COMPUTATIONAL EFFICIENCY.

To discuss the computational efficiency of Neural-ADB, we follow the approach of (Verma et al.,
2025) and consider the following two key aspects: size of the neural network and then the number of
contexts and arms.

Size of the neural network. The primary computational cost in Neural-ADB arises from the
neural network (NN) used to approximate the latent non-linear reward function. Given a context-arm
feature vector of dimension d, an NN with D hidden layers and w neurons per layer incurs an
inference cost of O(dw+Dw2 +w) per context-arm pair. The total number of parameters in the NN
is p = dw +Dw2 + w, and the training time per iteration is O(EPDw2), where E is the number of
training epochs and P is the number of observed context-arm pairs. Choosing an appropriate NN size
is critical, as NNs that are too small may fail to accurately approximate the underlying non-linear
reward function, while excessively large NNs can result in substantial training and inference overhead.

Number of contexts and arms. Let K denote the number of arms and p the total number of NN
parameters. Since Neural-ADB uses NN gradients as context-arm features, the cost of computing
gradients for all arms per context is O(K2dp), where d is the dimension of the context-arm feature
vector. The cost of computing reward estimates and confidence terms for all context-arm pairs is
O(K2p) and O(K2p2), respectively. For arm selection, the first selection step requires O(Kp+K),

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Sub-Optimality Gap (b) MAE (c) Average Regret

(d) Sub-Optimality Gap (e) MAE (f) Average Regret

Figure 6: We compare performance across different neural network widths (first row) and numbers
of hidden layers (second row), using the Square function in all experiments. All other parameters are
kept fixed, except that the width is set to 32 when varying the number of layers.

consisting of reward estimation for all arms (O(Kp)) and then identifying the arm with the
highest estimated reward (O(K)). The second arm selection incurs a cost of O(Kp+ (K − 1)p2),
including reward estimation O(Kp) and confidence term computation O((K − 1)p2) relative to
the first selected arm. Thus, the total computational cost for selecting a pair of arms per context is
O(K2dp + K2p2). Since each context-arm pair is independent, gradients, reward estimates, and
optimistic terms can be computed in parallel, reducing the overall cost to O(dp+p2) for each iteration.
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