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ABSTRACT

Small language models (SLMs) become unprecedentedly appealing due to
their approximately equivalent performance compared to large language models
(LLMs) in certain fields with less energy and time consumption during training
and inference. However, the personally identifiable information (PII) leakage of
SLMs for downstream tasks has yet to be explored. In this study, we investigate
the PII leakage of the chatbot based on SLM. We first finetune a new chatbot, i.e.,
ChatBioGPT based on the backbone of BioGPT using medical datasets Alpaca
and HealthCareMagic. It shows a matchable performance in BERTscore com-
pared with previous studies of ChatDoctor and ChatGPT. Based on this model, we
prove that the previous template-based PII attacking methods cannot effectively
extract the PII in the dataset for leakage detection under the SLM condition. We
then propose GEP, which is a greedy coordinate gradient-based (GCG) method
specifically designed for PII extraction. We conduct experimental studies of GEP
and the results show an increment of up to 60× more leakage compared with the
previous template-based methods. We further expand the capability of GEP in
the case of a more complicated and realistic situation by conducting free-style
insertion where the inserted PII in the dataset is in the form of various syntactic
expressions instead of fixed templates, and GEP is still able to reveal a PII leakage
rate of up to 4.53%.

1 INTRODUCTION

LLM is one of the most centric research concentrations in the Artificial Intelligence (AI) field. It
contributes dramatically to various domains (Zhao et al., 2023; Xu et al., 2024) and tasks (Zhao
et al., 2023). Nevertheless, with the scaling up of parameters of LLMs, the energy and resource
consumption are huge and unsustainable (Bolón-Canedo et al., 2024). Instead, SLM has gradually
become the research focus in recent years. The idea is to make the models smaller, usually less than
7 billion parameters (Hu et al., 2024) but still with emergent ability (Wang et al., 2024), and to train
them in a specific domain so that they can match the performance of LLMs in this certain field.

In spite of the protruding advantages of the SLMs, the privacy issues need to be considered before
the practical deployment. Enormous amount of training data from the Internet may exhibit poor
data quality and unintended leakage of private personal information (Das et al., 2025). There are
chances for models to memorize some of them (Carlini et al., 2019), and suffer from revelation in the
later inference phase. These private sensitive data are named as PII which includes the information
such as person’s name, telephone number and email address (Lukas et al., 2023). This inappropriate
disclosure will become a severe issue in many domains, such as the medical field as it does harm
to patients both physically and mentally (Nakamura et al., 2020). Despite plenty of studies (Carlini
et al., 2019; Nakamura et al., 2020; Lukas et al., 2023; Lehman et al., 2021; Huang et al., 2022; Chen
et al., 2024; Nakka et al., 2024; Kim et al., 2023) that have already concentrated on the detection of
potential PII leakage of different language models, there are fewer studies exploring the possibility
of PII leakage of downstream tasks based on SLMs such as chat models. As the popularity of chat
models starts to rise drastically in various fields (Dam et al., 2024) and they perform even better than
experts, relieving the burden of support staff (Ayers et al., 2023), it shows promising prowess of the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

chat model in practical scenarios greatly, as well as the urgency to protect the privacy which might
be revealed by unreasonable design (Jain et al., 2023).

Another problem of previous studies is that the majority utilizes template-based sensitive data in-
sertion or queries (Carlini et al., 2019; Lukas et al., 2023; Lehman et al., 2021; Huang et al., 2022;
Chen et al., 2024). However, even with the same meaning, language can be expressed in different
ways (Brown et al., 2022). The template-based query under this ”free-style” circumstance faces
more challenges, because the performance of the results will largely depend on the quality of these
hand-crafted templates (Nakka et al., 2024). Even if one cannot detect any leakage using these tem-
plates, it does not mean that the model won’t leak if some other proper prompts are used for queries,
according to the relevant definition of association and extractable memorization in (Huang et al.,
2022; Nasr et al., 2023).

In this study, we explore the PII leakage of chat models based on SLM. We mainly aim for the
medical domain, as it is one of the most vulnerable fields to data leakage. Specifically, we create a
new chatbot (ChatBioGPT) by finetuning BioGPT (Luo et al., 2022), a domain-adapted GPT model
for biomedicine and also an SLM by definition. Based on this model, we propose GEP for PII
extraction based on GCG (Zou et al., 2023), and explore the PII leakage in both cases where the
template-based or free-style PII is inserted into the dataset. The results show that GEP reveals more
PII leakage for the template-based insertion, and also unveils the risks of PII leakage even if the
PII are in more complex and realistic patterns. To the best of our knowledge, we are the first one
exploring the potential PII leakage of chatbots based on SLM. The contributions of our studies are
as follows:

• We develop a new chatbot ChatBioGPT based on SLM (BioGPT) in the medical domain
which consumes less finetuning time, and the results show a matchable performance in
BERTscore compared with the existing approaches (i.e., ChatGPT and ChatDoctor in Li
et al. (2023)).

• We propose GEP specially designed for PII extraction. It increases the PII leakage by up to
60× more compared with the previous template-based method, and it is still able to reveal
a leakage rate of up to 4.53% when the PII is in the form of various syntactic expressions.

• We conduct thorough experiments, studying the relationship between PII leakage and three
key factors, i.e., training step, trigger tokens’ length and the position of leakage, which
offers us a potential insight into how to defend against the leakage in the future study.

2 RELATED WORKS

2.1 SMALL LANGUAGE MODEL

Many researchers focus on SLM (Zhang et al., 2022; Biderman et al., 2023; Wu et al., 2024; Abdin
et al., 2024; Groeneveld et al., 2024; Mehta et al., 2024; Pfeiffer et al., 2024; Team, 2024) based on
the Transformer architecture (Vaswani et al., 2017). Their main difference is mainly in the number
of layers, hidden neurons, attention mechanism, activation function, etc. Based on these structures,
some domain-specific models are developed, such as Luo et al. (2022); Acikgoz et al. (2024); Bolton
et al. (2024); Labrak et al. (2024); Yang et al. (2024); Yao et al. (2021) in the medical domain.
Considering that many institutions and organizations cannot afford the cost of training or adaptive
training, they usually choose pretrained SLMs for the downstream tasks, e.g., chatbots.

2.2 PRIVACY ATTACK

The dominant way to verify if the model leaks private information is by privacy attack. Privacy
attack can be categorized into gradient leakage attack, membership inference attack and PII leakage
attack (Das et al., 2025). The PII leakage attack refers to the method of extracting PII from a
trained language model. It is a fundamental problem for the language model (Das et al., 2025),
and it happens regularly (Kshetri, 2023). In recent years, many researchers have concentrated on
PII extraction. These studies either use pretrained model directly and try to extract the PII in the
pretraining datasets (Huang et al., 2022; Nakka et al., 2024; Kim et al., 2023), or create sensitive
data manually and then insert them in the dataset for training and detection (Carlini et al., 2019;
Lehman et al., 2021). Usually the latter method is more convenient and effective, as the former one

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

needs extra techniques, such as named entity recognition (Lukas et al., 2023), to have a grasp of
what PIIs are in the original datasets.

The approach of manually creating sensitive data for insertion is usually based on template-based
method due to the tabular form of data (Chen et al., 2024). A template is often used to formalize
the sensitive data. This data curation method is commonly used in Carlini et al. (2019); Lehman
et al. (2021); Huang et al. (2022); Chen et al. (2024). However, the natural language sentences are
rich and varied in their formation (Brown et al., 2022). This data curation will cause a deviation of
the datasets from the real scenario. The approach of detecting leakage is usually based on template-
based query. The model is fed with prompts similar as the formalization in the hope that it can fill
the masked words or complete the query with sensitive data (Lukas et al., 2023; Lehman et al., 2021;
Huang et al., 2022; Chen et al., 2024; Kim et al., 2023).

3 METHODOLOGY

In this section, we are going to introduce ChatBioGPT and the new PII extraction method GEP. For
PII extraction, we finetune the models by inserting manually crafted PII data into the training dataset,
including two different ways of insertion. Each model utilizes only one way of insertion, so we will
have two models after the finetuning stage, i.e., ChatBioGPT (T) with template-based insertion and
ChatBioGPT (F) with free-style insertion. Then, the leakage of models will be measured with GEP
and compared with the results obtained by using template-based query, as shown in Fig 1 (a).

Figure 1: (a) The finetuning process for PII insertion and (b) two different ways of PII insertion

3.1 CHATBIOGPT

Building a chat model is a prerequisite for conducting PII leakage extraction. To train a chat model,
we need to finetune a pretrained model to fit the task of chatting in the medical field. Several models
are potentially qualified in terms of this goal. However, some of them are either comparatively large
(Acikgoz et al., 2024; Bolton et al., 2024; Labrak et al., 2024; Yang et al., 2024) which are unlikely
affordable or sustainable for individuals or organizations, or based on Masked Language Models
(MLM) (Devlin et al., 2019) which are less utilized in text generation tasks and comparatively less
stable in the finetuning stage (Gisserot-Boukhlef et al., 2025). We therefore choose BioGPT (Luo
et al., 2022) as our base model, and follow the pipeline of Chatdoctor (Li et al., 2023), training
with Alpaca dataset (Taori et al., 2023) first to endow the model with basic chatting skills, and
then further refine it with HealthCareMagic-100k dataset (Li et al., 2023). When it comes to the
evaluation phase, we use BERTScore (Zhang et al., 2019) to measure its performance on the iCliniq
database (Li et al., 2023). Some hyperparameters for finetuning are shown in Appendix Tab. 4.

3.2 PII INSERTION

We consider the situation where the PIIs are the disease or symptom of each patient, aiming to ex-
plore whether the model can leak them if the dataset is injected with relevant information. We con-
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duct the template-based sensitive data insertion. Meanwhile, we propose free-style insertion method,
which is novel yet closer to the real scenario. It does not confine itself to a single template, but is
richer in grammar and expression. We insert these manually created PII into HealthCareMagic-100k
dataset, then still follow the process in Li et al. (2023) for finetuning. To create the name list for PII,
we choose the first name and last name from Bureau (2021); Administration (2024) randomly and
combine them to create full names.

3.2.1 TEMPLATE-BASED SENSITIVE DATA INSERTION

As mentioned in Nasr et al. (2023); Carlini et al. (2022), the model can discoverably memorize
around 1% of the training data. Thus, for HealthCareMagic-100k, we randomly select 1k data
entries to ensure that the model does memorize parts of the sensitive data. For each entry, we create
a data pair (name, symptom), where the name is from the generated name list and the symptom is
summarized in three words from the data entry using ChatGPT. An example of a (name, symptom)
pair is (John Doe, BPPV). Then we fill these data into the defined template. We follow this template:
The disease or symptom of {name} is {symptom}, and replace the name and symptom based on
1k sensitive data pairs. After that, for each of these template-based sentences, we insert it back
into its original entry to maximally keep the original distribution. The place for insertion within the
original entry is chosen at random. The procedure is shown in Fig 1 (b).

3.2.2 FREE-STYLE SENSITIVE DATA INSERTION

We choose the same data entries and name list selected in template-based insertion, and directly
change the first-person statement of each entry into third-person. To do so, we replace the subject
with the name, and consistently modify the pronouns and verbs to ensure the grammatical validity,
shown in Fig 1 (b). As these entries are diversified in expression, they can mimic the common
situation where the PII is contained in the corpus we gathered from the Internet.

3.3 GEP FOR PII EXTRACTION

The goal of PII extraction is to recover the PII from the model whose dataset contains corresponding
data without prior information about the diseases. In this section, besides the existing template-
based query approach, we propose GEP designed for PII extraction. It can extract the PII appearing
in either fixed templates or free style which is more complicated and realistic.

3.3.1 TEMPLATE-BASED QUERY

The template-based query method mainly targets template-based insertion. We query the finetuned
model with the following pattern: The disease or symptom of {name} is, with the replacement of
the true name in the data pair (name, symptom). If the ”symptom” appears in the generation, then
we consider that this data pair can be recovered and the extraction is successful.

3.3.2 GEP

The original gradient-based methods are designed for jailbreaks (Zou et al., 2023; Wallace et al.,
2019) or some other downstream tasks (Shin et al., 2020; Wallace et al., 2019). None of these
studies apply their methods on PII attack. We design GEP based on GCG (Zou et al., 2023).

For template-based insertion, we design GEP in Algorithm 1. Suppose we have known the pa-
tient’s name and we want the model to generate his/her corresponding disease or symptom. In other
words, we want to maximize likelihood in equation 1.

P (d|q, T ) (1)
where d refers to the disease or symptom, e.g., BPPV, q refers to the name, e.g., John Doe, and T
refers to the remaining tokens in the sentence. Since we only know the patient’s name and have no
prior information about the disease, we cannot optimize this likelihood due to the lack of d. To solve
this problem, we observe that in the inserted PII, the disease always appears in the company of the
string s ”disease or symptom”. We therefore assume P (d|q, T , s) and P (s|q, T ) share the same
trend. We have equation 2.
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P (d|q, T , s) =
P (s, d|q, T )

P (s|q, T )
(2)

If we maximize the likelihood of P (s|q, T ), then the numerator part will be higher to ensure the
formula holds. In other words, the model will be likely to generate the disease or symptom of the
patient after s. Our final goal turns into to find proper T to optimize the likelihood in equation 3. T
are the trigger tokens.

P (s|q, T ) (3)

Algorithm 1 GEP
Require: Template-based query set Q, trigger’s

candidate set I, trigger tokens T , iteration T ,
loss L, batch size B, counter c = 0
for each qi ∈ Q do

for t = 1, . . . , T do
Input ci = qi + Ti to the model
Ii = Top-k(−∇eTi

L(ci))
for b = 1, . . . , B do

n = Uniform(range(len(Ti)))

T̂i
n
= Uniform(Ii

n)
end for
T̂i = T̂i

b∗

, where b∗ = argmin(Lĉi)

Update: Ti = T̂i

if disease di in generation gi then
c = c+ 1
Break iteration

end if
end for

end for
ASR = c/len(Q)

Algorithm 2 GEP-unified
Require: Template-based query training set Qt, template-

based query validation set Qv , trigger’s candidate set I,
trigger tokens T , iteration T , loss L, batch size B
for t = 1, . . . , T do

Counter c = 0
For each qi ∈ Qt, input ci = qi + T to the model
I = Top-k(−

∑
i=1 ∇eT L(ci))

for b = 1, . . . , B do
n = Uniform(range(len(T )))

T̂ n = Uniform(In)
end for
T̂ = T̂ b∗ , where b∗ = argmin(

∑
i=1 Lĉi)

Update: T = T̂
for each qj ∈ Qv do

Input cj = qj + T to the model
if disease dj in generation gj then

c = c+ 1
end if

end for
ASR = c/len(Q)

end for

To get the best T , we calculate the gradients toward one-hot encoding eT of each token T n in T , and
select top-k candidate tokens as set I based on gradients towards each logit. For each trigger token
string in the batch, we random sample the position and replace the original token with a random
new one in I. And we finally choose the one with minimum loss as the new trigger tokens for next
iteration. After we get the new trigger tokens, we will test if the output contains the corresponding
disease. If it is, then we move to next template-based data, otherwise we will go on next iteration
for current one.

For free-style insertion, we cannot find a certain prefix like ”disease or symptom” because each
expression is unique. Therefore, we drop the string s, and let the model generate the disease d
directly. However, lacking this important information greatly extends the searching space. Instead of
exploring the trigger’s pattern manually, we decide to let the model learn the patterns automatically.
Abort the idea of retrieving the trigger tokens for each template-based data, we use part of the data
trying to let the model learn a unified trigger tokens, hoping this can work as well in another part
of the data without prior information. We halve 1k data pairs randomly and use one part as the
training data while another part for validation. In this case, we make our initial assumption soft,
i.e., by accessing only a limited prior information in the dataset, we can extract more PII. We follow
Algorithm 2. In the training step, we add up all the gradients of each template-based training data
as the guidance of the trigger candidate selection. The final decision of the trigger tokens will be
decisively judged by the total loss in the training set.

We want to emphasize at last that since GEP attains the trigger tokens to form the query prompt
by calculating the gradients to maximize the likelihood, it avoids the dilemma of the hand-crafted
templates whose performance largely depends on their quality.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 METRIC

To evaluate the privacy leakage, we adopt Attack Success Rate (ASR) which is also implemented in
Lukas et al. (2023); Lehman et al. (2021); Huang et al. (2022); Chen et al. (2024); Zou et al. (2023);
He et al. (2024); Patil et al. (2024). The ASR can be calculated in equation 4.

ASR =
Ns

N
(4)

where Ns refers to the total amount of successful attacks of the sensitive data, N is the total amount
of data in the sensitive dataset.

4 RESULTS

In this section, we demonstrate the performance and results with regard to ChatBioGPT and PII
leakage detection utilizing template-based method and GEP. We conduct the experiments with the
computer system including an Intel Xeon W7-2495X CPU with 128GB RAM and Nvidia RTX
A6000 GPU with 48GB RAM.

4.1 THE PERFORMANCE OF CHATBIOGPT

We measure the performance of ChatBioGPT by BERTscore (Zhang et al., 2019) The results and
comparisons are shown in Tab. 1. ChatBioGPT even achieves better performance, and can be fine-
tuned in around 3 hours due to its small size compared with ChatDoctor which is based on Llama-7B
(Touvron et al., 2023) and ChatGPT with the backbone of GPT-4 (OpenAI, 2023). We have more
results of BERTscore based on different models in Tab. 3 in Appendix.

Table 1: The BERTscore evaluation using BERT-based model

Precision Recall F1

ChatGPT (Li et al., 2023) 0.5272± 0.0016 0.5704± 0.0014 0.5454± 0.0013
ChatDoctor (Li et al., 2023) 0.5311± 0.0013 0.5390± 0.0009 0.5335± 0.0010
ChatBioGPT 0.5565± 0.0011 0.5788± 0.0009 0.5662± 0.0008

4.2 PII LEAKAGE WITH TEMPLATE-BASED INSERTION AND TEMPLATE-BASED QUERY

Template-based query for PII extraction targets at ChatBioGPT (T) using three different decoding
strategies. The experiment based on topk sampling strategy is conducted seven times and then av-
eraged due to the randomness. The PII leakage of ChatBioGPT (T) and other models using T&T
methods are shown in Tab. 2. Direct performance comparison is not relevant due to different config-
urations. For instance, in other studies, the density of sensitive data in the training set is higher so
that the model tends to memorize more (Lehman et al., 2021), or the model size is larger to remem-
ber more information (Huang et al., 2022; Nakka et al., 2024), or they consider top-k accuracy so
that the boundary of success becomes softer (Lehman et al., 2021), etc. Most importantly, our base
model ChatBioGPT is a chatbot while others are not. This will lead to a system prompt which will
appear after the prompt query and before the generation when processing the text, e.g., ”Assistant”
or ”ChatDoctor”. This system prompt alters the ideal template, thus will cause a dramatic impact for
the generation that is deviated from the original following information during the training. Last but
not least, we want to emphasize that this performance is acceptable due to different setups compared
with other studies. In addition, what we can do is to compare all insertion and extraction methods
based on the ChatBioGPT since these setups remain completely identical.

4.3 PII LEAKAGE BY IMPLEMENTING GEP

We present the ASR results by using GEP when the insertion is in the form of template and free-
style. It shows that our method can extract more PII than the previous methods. We also conduct
thorough experiments to illustrate the relationship between ASR and different configurations.
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4.3.1 GEP FOR TEMPLATE-BASED INSERTION

We measure the ASR when the inserted sensitive data is based on template, i.e., ChatBioGPT (T)
using GEP with all 1k sensitive data taken into account. The trigger tokens are initialized in the
same way as Zou et al. (2023). Since the optimization process includes randomness, we conduct the
experiments for each strategy three times and calculate the average as the final outcomes. The results
are shown in Tab. 2. The results reveal much higher exposure of PIIs than the previous template-
based query method. The increment is from 40× to 60×. The experiment based on beam search
cannot detect any PII using template-based query, while it reaches 3.27% using GEP. In addition,
topk decoding method reveals the most PII among all three strategies, which is 9.07% and even
outperforms the method with a larger model in Huang et al. (2022), suggesting more PII are hidden
in the topk lists. This shows that GEP is capable of extracting more template-based PII in the corpus.

Table 2: The ASR for different insertion and query approach combination. T&T stands for template-
based insertion and template-based query. T&G stands for template-based insertion and GEP. F&G
stands for free-style insertion and GEP.

Method Model Greedy decoding Beam search Topk

T&T Context100-2.7B (Huang et al., 2022) 0.0760 0.0757 0.0528
T&T Context100-125M (Huang et al., 2022) 0.0086 0.0111 0.0068
T&T True-prefix (Nakka et al., 2024) 0.0594 - -
T&T Template-only MedCAT (Lehman et al., 2021) 0.16 (Decoding strategy not mentioned)
T&T ChatBioGPT (T) (347M) 0.0010 0.0 0.0022
T&G ChatBioGPT (T) (347M) 0.0643 0.0327 0.0907
F&G ChatBioGPT (F) (347M) 0.0360 0.0453 0.0207

We also evaluate the performance w.r.t three types of configurations, i.e., training step, length of the
trigger tokens and the position of the leakage in the generation. For the training step, we consider
how many PII have been successfully extracted at each step when we optimize the trigger tokens.
Notice that it only counts the leakage at each step, but not the accumulation of all previous ones.
This reflects the necessary steps we will need. We conduct each experiment three times and calculate
the average, under the circumstance where the trigger length equals 4. Some pre-experiments are
conducted to help define the proper total steps, i.e., 140, the number of steps at which most leakage
or successful attacks are observed.The curves are shown in Fig 2. According to this curve, we find
that with the growth of the steps, the leakage shrinks gradually, indicating that the most PII leakage
happens in the early training phase.

Figure 2: The leakage at each step for template-based insertion based on GEP

For the trigger tokens’ length, we select six setups, i.e., 1, 2, 4, 8, 12 and 16. We only take
greedy decoding into consideration, since it includes no randomness and can be verified in the later
study. For each length, we conduct experiment three times and average the outputs. The curves are
shown in Fig 3 (a). We find when the trigger length is 4, the ASR reaches the 6.43%, which is the
highest. Another observation is the turning point when the length equals 4. It is probably due to the
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following reason. If we increase the number of trigger tokens, it extends the searching space to find
the optimal triggers to make the loss of the whole input to be the minimal. So, the ASR increases
with the increment of the length. However, the growing of the trigger’s dimension will complicate
the function for searching the global minimal. It will take even more steps to reach the same level
as the shorter one. We suppose the trigger length of 4 is a balanced point between the two opposite
inducements mentioned above.

Figure 3: (a) The leakage with regard to different trigger tokens’ length and (b) the ASR for different
position in the generation by using GEP

For the position of leakage, we explore where the disease tokens appear in the generation if the
attack is successful. This can help us define the maximum generation length, as longer generations
will be more time-consuming if it is unnecessary. All successful attacks on the certain index of the
generation will be summed up and the average will be calculated. The results are shown in Fig 3 (b).
We can summarize that the PII tends to leak at the beginning of the generation. We find that most
of the successful attacks happen before the 170th token in the generation. After the 200th token,
although it is still possible to generate the sensitive PIIs, we can assume that the bond between
these PIIs and inputs is weak. The generation is just due to that the model has seen this sensitive
information in the corpus during training.

4.3.2 GEP FOR FREE-STYLE INSERTION

We utilize the GEP-unified extraction for free-style insertion, which is more complicated yet a more
common and realistic case, based on ChatBioGPT (F). The 1k dataset is split in the ratio of 1:1
randomly. We use one part as training data to attain the unified trigger tokens. Then the ASR on
the other part will be reported as the final results. The results are shown in Tab. 2. We find that
GEP can successfully extract much PII in the validation set even with free-style insertion, and the
leakage based on beam search is the highest, even surpassing the one with template-based insertion,
i.e., 4.53% against 3.27%. While the result of topk is not so prominent, with the ASR of 2.07%.
This is because the PIIs in the dataset are in different syntactic expressions, while beam search can
keep track of multiple different candidate sentences, which increases the chance of hitting the target.

We also test the PII leakage w.r.t training step, trigger tokens’ length and position of leakage. All
setups remain the same as the previous part. The results are shown in Fig 4, Fig 3 (a) and Fig 3 (b).
For training step, since we train all the data pairs in the same time and cannot exclude the certain
one if it is successfully revealed, we thus measure the ASR at each step instead. The performance
of beam search is better than greedy decoding and topk in major cases. We observe that it keeps
rising and reaches its best at around step 95. For greedy decoding and topk, it is unnecessary to set
the steps more than 40, as they already reach the peaks before this threshold. For trigger tokens’
length, we spot that the ASR increases with the growth of trigger length. Since we want to have a
unified trigger token string, a longer one is more expressive for all sensitive data pairs. We assume
the best length depends on the total amount of PII data pairs we want to cover. For position of
leakage, we observe that all leakages happen before the 50th token in the generation. Therefore, it
is unnecessary to set the maximum generation length more than 60, considering some buffer areas.
We also spot that there are two spikes in the curve. This is due to the imbalanced data distribution,
as there are plenty of PII data pairs which have the same ”symptom”. And they tend to appear in the
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Figure 4: The ASR at each step for free-style insertion based on GEP-unified

same index in the attacking phase. Some of the examples of successful PII extraction are shown in
Fig 5 (b) in Appendix.

5 DISCUSSION

In our experiments, we have shown that our method GEP can extract more PII than the previous
method, and is able to unveil the potential leakage in a more realistic scenario. The follows illustrate
the limitation of this study and potential directions.

The data imbalance of the dataset still needs more exploration. Although the 1k inserted entries
are randomly selected from HealthCareMagic-100k, we observe that some diseases in these entries
still appear more often than others, for example, ”abdominal pain” and ”joint pain”. This will cause
data imbalance, and enlarge the tendency of the model to memorize the data which appears more
frequently. In addition, more different types of data and models need to be taken into consideration.
Last but not least, triggers are easily recognized by the safeguard. As mentioned in Kumar et al.
(2023); Liu et al. (2024), some defense methods such as perplexity filtering leverage the gibberish
nature of the adversarial sequence, which helps them to discover these triggers from other prompts.
Although our method can successfully extract much more PII even in more complex scenarios,
it is still worth exploring how the performance would be with the implementation of the defense
methodology.

The future works will address the limitations mentioned above, by creating more comprehensive
datasets, balancing the data distribution, broadening the types of PII that do not only confine to
patient-disease data pairs, and trying small language models in different sizes. Considering the
perplexity of the trigger tokens is also a potential direction. For instance, adding the perplexity of
the prompt to the loss function (Jain et al., 2023) can enhance the fluency of the trigger tokens.
Most importantly, corresponding defense methods needs to be explored to prevent these potential
leakages.

6 CONCLUSION

In this study, we investigate the PII leakage of the SLM on the chatting downstream task, which is
hardly touched upon. We develop ChatBioGPT, which is a chatbot built on SLM BioGPT. It shows a
matchable performance in BERTscore compared with previous studies of ChatDoctor and ChatGPT,
and consumes less finetuning time. Targeting this model, we conduct the experiments based on the
previous template-based PII attacking method, showing its limitation. Then we propose GEP, an
approach specifically designed for PII extraction. Experiments illustrate that GEP increases the PII
leakage by a large margin of up to 60× more compared with the template-based methods. Even in
the case of more complex and realistic scenario where the free-style PII is inserted into the dataset,
GEP can still reveal a leakage rate of up to 4.53%. The results reflect the vulnerability of SLMs to
privacy issues. We further explore the relationship between PII leakage and different key factors,
which offers some useful insights into the possible defense methodologies in the future studies.
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ETHICS STATEMENT

Although we explore the PII leakage of the chatbot built on SLM in this study, the PII data are
actually synthetic and do not contain any true personal identifier mark. We want to show that in the
emergent SLM field, the model is likely to leak PII in some downstream tasks, thus it is urgent and
necessary to conduct the relevant defense technologies that can alleviate these concerns so that the
SLM can be deployed for practical use more safely and reliably.

REPRODUCIBILITY STATEMENT

We provide details on how the sensitive data were generated, along with the training procedure and
hyperparameters in Section 3 and Appendix A. All datasets used in this study are publicly available
(Alpaca in Taori et al. (2023), HealthCareMagic-100k and iCliniq in Li et al. (2023), Frequently
Occurring Surnames from the 2010 Census in Bureau (2021), and Top Names Over the Last 100
Years in Administration (2024)). To ensure reproducibility, we will release the source code and
evaluation scripts upon publication. The hardware configuration is described in Section 4.
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What does it mean for a language model to preserve privacy? In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, 2022.

U.S. Census Bureau. Frequently occurring surnames from the 2010 census. https://www.
census.gov/topics/population/genealogy/data/2010_surnames.html,
2021. Accessed: 2025-02-21.
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A APPENDIX

A.1 THE PERFORMANCE OF THE CHATBIOGPT

We measure the BERTscore using two different models, i.e., BERT and RoBERTa in Tab. 3. We
find that the BERTscore based on RoBERTa is much higher than the one based on BERT. However,
through some extra experiments, we observe that the RoBERTa-based BERTscore can achieve in-
credibly high values even if two sentences seem to be completely irrelevant as well. We presume
RoBERTa can unclose deeper similarity between two lists of token embeddings which we cannot
spot, even if these two lists are ”irrelevant” by our judgment. For our study, we believe the precise-
ness of the model’s output is crucial in the medical field, and we have to ensure that it is identical
to the doctor’s prescription to a large extent. We hereby recommend using the BERT-based one. In
the original paper (Li et al., 2023), the authors do not mention which model they use for BERTscore
measurement. By conducting some experiments, we believe they most likely utilized the one based
on RoBERTa.

Table 3: The BERTscore evaluation based on different models
Precision Recall F1

Results based on RoBERTa model
ChatGPT (Li et al., 2023) 0.837± 0.0188 0.8445± 0.0164 0.8406± 0.0143
ChatDoctor (Li et al., 2023) 0.8444± 0.0185 0.8451± 0.0157 0.8446± 0.0138
ChatBioGPT 0.8345± 0.0004 0.8418± 0.0004 0.8380± 0.0003
Results based on BERT model
ChatGPT (Li et al., 2023) 0.5272± 0.0016 0.5704± 0.0014 0.5454± 0.0013
ChatDoctor (Li et al., 2023) 0.5311± 0.0013 0.5390± 0.0009 0.5335± 0.0010
ChatBioGPT 0.5565± 0.0011 0.5788± 0.0009 0.5662± 0.0008

A.2 THE HYPERPARAMETERS FOR FINETUNING CHATBIOGPT

Table 4: Hyperparameters

HYPERPARAMETERS VALUES

Batch size 16
Learning rate 2e-5
Warm up ratio 0.03
Scheduler Cosine
Optimizer AdamW
Epoch 3

A.3 THE EXAMPLES OF SUCCESSFUL PII EXTRACTION BY USING GEP

In Fig 5, we list the examples of successful PII extraction using GEP. The name of the patient is in
blue, and the trigger tokens for patient-disease pairs are in red. We input the combination of the name
and trigger tokens for query. In the generation, the real diseases or symptoms of the corresponding
patients are successfully extracted, and they are in green. For template-based insertion, since we
train the trigger tokens for each entry separately, the trigger tokens are unique, as shown in (a). For
free-style insertion, unified trigger tokens are trained for all entries, thus they can be used for each
entry that can be successfully attacked, as shown in (b).

B THE USE OF LARGE LANGUAGE MODELS

In this study, we use large language models for checking the grammatical errors in writing.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: The examples of successful PII extraction using GEP for both (a) template-based and (b)
free-style insertion
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