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Abstract

In federated learning (FL), the multi-step update
and data heterogeneity among clients often lead
to a loss landscape with sharper minima, degen-
erating the performance of the resulted global
model. Prevalent federated approaches incorpo-
rate sharpness-aware minimization (SAM) into lo-
cal training to mitigate this problem. However, the
local loss landscapes may not accurately reflect
the flatness of global loss landscape in heteroge-
neous environments; as a result, minimizing local
sharpness and calculating perturbations on client
data might not align the efficacy of SAM in FL
with centralized training. To overcome this chal-
lenge, we propose FedLESAM, a novel algorithm
that locally estimates the direction of global per-
turbation on client side as the difference between
global models received in the previous active and
current rounds. Besides the improved quality,
FedLESAM also speed up federated SAM-based
approaches since it only performs once backprop-
agation in each iteration. Theoretically, we prove
a slightly tighter bound than its original FedSAM
by ensuring consistent perturbation. Empirically,
we conduct comprehensive experiments on four
federated benchmark datasets under three parti-
tion strategies to demonstrate the superior perfor-
mance and efficiency of FedLESAM1.

1Cooperative Medianet Innovation Center, Shanghai Jiao
Tong University, China; 2Shanghai AI Laboratory, China;
3RIKEN AIP, Japan; 4The University of Tokyo, Japan.
Correspondence to: Jiangchao Yao and Yanfeng Wang
<{sunarker,wangyanfeng}@sjtu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1Our code is available at: https://github.com/
MediaBrain-SJTU/FedLESAM

0 5 10 15 20
0

5

10

15

20

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

(a) Centralized

0 5 10 15 20
0

5

10

15

20

0.9

1.3

1.7

2.1

2.5

2.9

3.3

(b) Federated (0.6)

0 5 10 15 20
0

5

10

15

20

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

(c) Federated (0.06)

(d) SAM in Local

flat and low
loss area

(e) Conflicts

...

...

(f) FedLESAM

Figure 1. Figures 1(a)-1(c) illustrate the loss surface for centralized
training and federated training under Dirichlet distributions with
coefficients of 0.6 and 0.06. Figure 1(d) depicts the local update
process of FedSAM, including calculating perturbation based on
client data and updating the local model using the gradient of the
model after perturbation. Figure 1(e) highlights the sharpness mini-
mizing conflicts due to discrepancies between local and global loss
landscapes caused by data heterogeneity. Figure 1(f) demonstrates
our locally estimating global perturbation (opposite direction of
red arrow) via global update (opposite direction of black arrow).

1. Introduction
Federated Learning (FL) enables clients to collaboratively
train a global model with a server without sharing their
private data. As a representative paradigm in FL, Fe-
dAvg (McMahan et al., 2017) reduces the parameter trans-
mission cost by increasing local training steps, which has
drawn considerable attention in many fields such as med-
ical diagnosis (Guo et al., 2021; Park et al., 2021) and
autonomous driving (Hu et al., 2022; Liang et al., 2019).
However, challenges arise due to data heterogeneity and
multi-step local updates (Fan et al., 2022; 2023a; Jin et al.,
2023; Li et al., 2022; 2020), which often forms a sharper
global loss landscape and leads the global model to con-
verge to a sharp local minimum (Caldarola et al., 2022;
Dai et al., 2023; Qu et al., 2022; Sun et al., 2023a). It is
widely observed that such a sharp minimum tends to behave
poor generalization ability (Dinh et al., 2017; Hochreiter &

1

https://github.com/MediaBrain-SJTU/FedLESAM
https://github.com/MediaBrain-SJTU/FedLESAM


Title Suppressed Due to Excessive Size

Table 1. Summary of federated SAM-based algorithms for solving data heterogeneity, focusing on base algorithm, sharpness minimization
target, perturbation calculation strategies, and extra computation introduced by SAM. In FedSMOO, µi and s are dual variable and
correction to perturbations. In FedLESAM, wold

i is the global model received at previous active round. Refer Sec. 2.1 for other notations.

Research work Base Algorithm Minimizing Target Local Perturbation Extra Computation

FedSAM (ECCV22, ICML22) FedAvg Local Sharpness ρ
∇Fi(w

t
i,k)

∥∇Fi(w
t
i,k

∥ ✓

MofedSAM (ICML22) FedAvg with Momentum Local Sharpness ρ
∇Fi(w

t
i,k)

∥∇Fi(w
t
i,k

∥ ✓

FedGAMMA (TNNLS23) Scaffold Local Sharpness ρ
∇Fi(w

t
i,k)

∥∇Fi(w
t
i,k

∥ ✓

FedSMOO (ICML23) FedDyn Local Sharpness with Correction ρ
∇Fi(w

t
i,k)−µi−s

∥∇Fi(w
t
i,k

)−µi−s∥ ✓

FedLESAM (Ours) FedAvg, Scaffold, FedDyn Global Sharpness ρ
wold

i −wt

∥wold
i −wt∥ ×

Schmidhuber, 1994; Li et al., 2018; Zhang et al., 2023a). As
depicted in Figure 1(a)-1(c), the loss surface in centralized
training is substantially flatter compared to that in federated
training and an increase in data heterogeneity sharpens the
loss landscape, exacerbating performance degradation.

To address this challenge, recent innovations have lever-
aged sharpness-aware minimization (SAM) (Foret et al.,
2021) to find a flat minimum for better generalization by
minimizing the loss of the model after perturbation. Cal-
darola et al. (2022) and Qu et al. (2022) pioneered SAM
in FL and proposed FedSAM. Qu et al. (2022) proposed a
variant of FedSAM called MoFedSAM by adding local mo-
mentum. Dai et al. (2023) proposed FedGAMMA, which
enhanced FedSAM by integrating variance reduction of
Scaffold (Karimireddy et al., 2020). Nevertheless, a com-
mon limitation persists: they all compute perturbations to
minimize sharpness based on client data. In heterogeneous
scenarios, the local loss surfaces may not accurately reflect
the flatness of the global loss surface. Therefore, minimiz-
ing local sharpness in these manners may not effectively
guide the aggregated model to a global flat minimum.

In the process of minimizing local sharpness, as FedSAM il-
lustrated in Figure 1(d), clients follow a two-step procedure:
1) calculate local perturbations based on local gradients; 2)
update their models using gradients computed on the model
after perturbation. However, the discrepancy between local
and global loss surfaces becomes evident under heteroge-
neous data. As depicted in Figure 1(e), the local perturba-
tions, tailored to client data, guide client models toward their
respective local flat minima (w∗

1 and w∗
2), which may signifi-

cantly diverge from the global flat minimum (w∗). Sun et al.
(2023a) noticed the difference and proposed FedSMOO to
both correct local updates and the local perturbations. How-
ever, like other SAM-based methods, FedSMOO introduces
many computational overheads, increasing the expenses
of clients. We have summarized all SAM-based federated
methods for solving data heterogeneity in Table 1.

In this study, we analyze that, to align the efficacy of SAM in
FL with centralized training, it is essential to ensure the con-
sistency between local and global updates and between local
and global perturbations. The former guarantees to mini-
mize an upper bound of global sharpness and can be solved
by incorporating previous research for eliminating client
drifts (Acar et al., 2020; Karimireddy et al., 2020). There-
fore, the challenge remains in correctly estimating global
perturbation, the direction of which is parallel with global
gradient. As illustrated in Figure 1(f), the global gradi-
ent (red arrow) can be inferred from the global update (black
arrow), a strategy also employed in Scaffold to correct client
updates. Inspired by this, we propose FedLESAM, a novel
and efficient approach that Locally Estimates global pertur-
bation for SAM as the difference between global models
received in the previous active and current rounds with-
out extra computational overheads. Empirically, we vali-
date the local estimation of global perturbation and conduct
comprehensive experiments to show the performance and
efficiency. Theoretically, we provide the convergence guar-
antee of FedLESAM and prove a slightly tighter bound than
FedSAM. Our contributions are threefold:

• We rethink existing federated SAM-based algorithms for
handling heterogeneous data, dissect the conflicts when
minimizing local sharpness and analyze the conditions
under which SAM is effective in FL (Sec. 3).

• We present FedLESAM, a novel and efficient algorithm
that minimizes global sharpness and reduces computa-
tional demand by locally estimating the global perturba-
tion at the client level (Sec. 4). Theoretically, we provide
the convergence guarantee of FedLESAM and prove a
slightly tighter bound than its original FedSAM (Sec. 5).

• Empirically, we conducted comprehensive experiments
on four benchmark datasets under three partition strate-
gies to show the superior performance and the efficiency
and ability to minimize global sharpness (Sec. 6).
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2. Preliminaries
This section shows basic notations, definitions of SAM, and
FedAvg. See Appendix A for the detailed related works.

2.1. Basic Notations

The basic notations used in the paper are outlined as follows:

• i, k, t: Sequence number of client, local iteration within
a round and the communication round, respectively.

• ηl, ηg: Local and global learning rate, respectively.

• P (x, y), Pi(x, y): Data distributions of the global and
the i-th client, and satisfies P (x, y) = EiPi(x, y).

• ξ, ξi: One random variable (x, y) sampled from P (x, y)
or Pi(x, y), respectively.

• w, wt, wt
i,k: Model weights and weights of the global and

local models of i-th client at k-th iteration in t-th round.

• L,L(w, ξ): Loss function and specific loss of a sample.

• F (w), Fi(w): Expected loss under w in the global distri-
bution and in the client distribution, respectively.

• δ, ρ: Perturbation towards to the sharpest point near the
neighborhood of w, and the pre-defined magnitude of δ.

2.2. Sharpness and SAM

Sharpness. Sharpness (Keskar et al., 2017) at w with a loss
function L and data distribution P (x, y) can be defined as

s(w,P ) ≜ max
∥δ∥2≤ρ

Eξ∼P (x,y)[L(w + δ; ξ)− L(w; ξ)].

SAM. Many studies (Dinh et al., 2017; Hochreiter &
Schmidhuber, 1994; Li et al., 2018) have demonstrated that
a flat minimum tends to exhibit superior generalization abil-
ity in deep learning models and Foret et al. (2021) proposed
a sharpness-aware minimization (SAM) as

min
w

F SAM(w) = min
w

max
∥δ∥2≤ρ

Eξ∼P (x,y)L(w + δ; ξ).

SAM minimizes both the sharpness and loss in two steps:
1) calculate perturbation as δ = ρ ∇F (w)

∥∇F (w)∥ ; 2) update the
model with the gradient calculated after perturbation as
w = w − η∇F (w + δ), where η is the learning rate.

2.3. Federated Learning via FedAvg

As shown in Algorithm 1, the vanilla FL via FedAvg (McMa-
han et al., 2017) consists of four steps: 1) In round t,
the server distributes the global model wt to active K
clients; 2) Active clients receive and continue to train the
model, e.g., the i-th client conducts the local training as
wt

i,k+1 ← wt
i,k − ηl∇L(wt

i,k, b
t
i,k), where bti,k is a batch of

data and k = 0, ..., E − 1; 3) After E steps, the updated

models are then communicated to the server; 4) The server
performs the aggregation to acquire a new global model
as wt+1 ← wt − ηg

1
K

∑K
i=1(w

t − wt
i,E), where K is the

number of active clients in round t. When maximal round
T reaches, we will have the final optimized model wT .

3. Rethink SAM in FL
This section delves into the analysis on when SAM works
in FL, related works, a verification on the sharpness mini-
mizing discrepancy, and our motivation.

3.1. When SAM Works in FL and Recent Works

Given i-th client data distribution Pi(x, y) and global distri-
bution P (x, y) with the relationship P (x, y) = EiPi(x, y),
the SAM objective in centralized training is defined as fol-
lows (Foret et al., 2021):

max
∥δ∥≤ρ

Eξ∼PL(w + δ; ξ) = max
∥δ∥≤ρ

EiEξi∼Pi
L(w + δ; ξi).

(1)
Constrained by the communication during the multi-step
local updates, prevalent federated approaches integrate SAM
into the local training (Caldarola et al., 2022; Dai et al.,
2023; Qu et al., 2022; Sun et al., 2023a). The SAM objective
in FL is then formulated as

Ei max
∥δi∥≤ρ

Eξi∼PiL(wi + δi; ξi), (2)

where δi and wi are i-th client’s perturbation and model
weights. When client models are aligned in local updates,
the objective of Equation 2 is an upper bound of Equation 1:

Ei max
∥δi∥≤ρ

Eξi∼Pi
L(w+δi; ξi) ≥ max

∥δ∥≤ρ
EiEξi∼Pi

L(w+δ; ξi),

where the inequality is from Jensen’s inequality, specifically
E[max(x)] ≥ max(E[x]). However, as the number of local
updates and the degree of data heterogeneity increase, it
becomes more difficult to maintain consistency of the global
model with the client models. In this case, minimizing local
sharpness can not effectively achieve a global flat minimum.

Recent works, FedSAM (Caldarola et al., 2022; Qu et al.,
2022), MoFedSAM (Qu et al., 2022), and FedGAMMA (Dai
et al., 2023), all did not address this intrinsic discrepancy
while MoFedSAM and FedGAMMA might mitigate this
by introducing local momentum and variance reduction to
prevent client drifts. FedSMOO (Sun et al., 2023a) noticed
the difference and added a regularizer as FedDyn (Acar
et al., 2020) to correct both client updates and perturbations.

3.2. Verification and Motivation.

To demonstrate the conflicts with heterogeneous data, we
conducted experiments on CIFAR10 under the Dirichlet dis-
tribution with a coefficient of 0.1 and traced the global sharp-
ness. As shown in the right panel of Figure 2, compared
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Figure 2. Illustration of perturbation drift (left) ranged from 0 to 1
and global sharpness (right) during federated training. The experi-
ment was conducted on CIFAR10 under the Dirichlet distribution
with coefficient of 0.1 with 100 clients and active ratio of 10%.

to FedAvg, FedSAM could not achieve satisfactory global
flatness while MoFedSAM, FedGAMMA and FedSMOO
obtained smaller sharpness but are still far away from our
FedLESAM and the centralized training. To further align the
efficacy in FL (Equation 2) with centralized training (Equa-
tion 1), aside from increasing communication frequency
(which raises communication costs), strategies for effec-
tively minimizing global sharpness in FL involve reducing
inconsistencies in client updates and estimating global per-
turbations in clients. The former that guarantees to minimize
an upper bound of the global sharpness can be achieved by
incorporating previous research such as Scaffold (Karim-
ireddy et al., 2020) and FedDyn (Acar et al., 2020). There-
fore, the challenge remains in correctly estimating the global
perturbation in clients. FedSMOO (Sun et al., 2023a) at-
tempted to address this by correcting local perturbations, but
it introduces many computational overheads as other SAM-
based algorithms, which increases the expenses of clients in
the federation. To effectively optimize global sharpness and
reduce the computational burden on clients, we propose a
novel and efficient algorithm called FedLESAM and design
two effective variants based on the frameworks Scaffold
and FedDyn. FedLESAM locally estimates the direction
of global perturbation on the client side as the difference
between global models received in the previous active and
the current rounds without extra computation.

4. Method: FedLESAM
This section introduces our method FedLESAM with some
primary analysis on the reasonableness, and demonstrates
the total framework followed by two enhanced variants.

4.1. Efficiently Estimate Global Perturbation on Client

As motivated above, our goal is to efficiently estimate global
perturbation at each client without incurring additional com-
putation overheads. To realize this, we first recall the defini-
tion of global sharpness-aware minimization in FL:

min
w

max
∥δ∥2≤ρ

{
F (w + δ) =

1

N

N∑
i=1

Fi(w + δ)

}
,

where N is the number of clients. Without considering the
communication frequency of local model weights between
clients, we can obtain the virtual global perturbation δtg,k at
the k-th iteration in round t as follows:

δtg,k = ρ
∇F (wt

g,k)

∥∇F (wt
g,k)∥

= ρ

∑N
i=1∇Fi(w

t
g,k)

∥
∑N

i=1∇Fi(wt
g,k)∥

,

where wt
g,k = wt − ηg

1
N

∑N
i=0(w

t − wt
i,k) is the virtual

global model. However, we can neither share weights nor
gradients of clients during the local training. An alternative
way is to estimate the global gradient at clients. As illus-
trated in Figure 1(f), we can estimate the global gradient in
red color as the global updates in black color between two
communication rounds wt−wt−1. Such estimation strategy
is also applied in Scaffold (Karimireddy et al., 2020) as a
global update to correct client updates, which is introduced
in Appendix D. Under straggler situations, clients might not
be active at all rounds and obtain wt−1. Since the communi-
cation with server for wt−1 increases communication cost,
clients can utilize the global model received in the previ-
ous active round, denoted as wold

i . Therefore, the global
perturbation can be approximately calculated as follows:

δtg,k = ρ
∇F (wt

g,k)

∥∇F (wt
g,k)∥

≈ ρ
wold

i − wt

∥wold
i − wt∥

. (3)

Notably, here we utilize wold
i − wt to estimate the direc-

tion of global gradient and the scaling issue from previous
iteration to current iteration is addressed in the calculation
of perturbation wold

i −wt

∥wold
i −wt∥ . Under full participation or per-

mitted to communicate last-round global model with server,
wold will be equal to wt−1. For practical, we forbid such
communication in the experiments. Finally, we define the
update of our FedLESAM that locally estimates global per-
turbation for SAM as

wt
i,k+1 = wt

i,k − ηl∇Fi(w
t
i,k + ρδtg,k).

Reasonableness. Our estimation is possible, if the direc-
tion of ascent step on data sampled from general distribu-
tion P can be inferred by global updates: ∇F (wt

g, ξ ∈
P ) ≈ C∆wt

g = C ′(wt−1 − wt) ≈ C ′′(wold − wt), where
C, C’ and C” are constant values. This strategy is also
applied in Scaffold to estimate global desent step. To
show the reasonableness of the estimation on global per-
turbation, here we provide some primary analysis. In Sec-
tion 5.3, we provide the estimation bias under one local
update and full participation. The error can be bounded
and influenced by the smoothness of the global loss func-
tion, learning rates, data heterogeneity, and sampling in
stochastic gradient. To reduce the bias, we could set proper
global and local learning rates. Empirically, we conducted
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an experiment on CIFAR10 and traced the global sharp-
ness and perturbation drifts (PD). A PD is value to esti-
mate bias between local and global perturbations defined
as PDt = 1

2KE

∑E−1
k=0

∑K
i=1 ∥δtg,k − δti,k∥, where K is the

number of active clients, δtg,k is the global perturbation,
and δti,k is the local perturbation. As shown in Figure 2,
the PD value and global sharpness of our FedLESAM are
much smaller than others, which verifies the effectiveness
of our method in estimating the global perturbation and the
superior ability to minimize global sharpness.

4.2. Total Framework

The overall framework is summarized in Algorithm 1. At the
perturbation stage, clients use the difference between global
model received in the last active round wold

i and newly
received global model wt as the direction of the global per-
turbation throughout the local training. Then, all selected
clients calculate the gradient after perturbation and perform
local updates. At the end of local training, all local clients
update the wold

i as the originally received global model. The
key distinction between FedAvg, FedSAM, and FedLESAM
lies in the perturbation stage, highlighted in Algorithm 1.
Unlike FedAvg, FedSAM calculates the perturbations as
local gradients, while our FedLESAM leverages wold

i to
estimate global perturbation, reducing computational de-
mands. Other parts in FedSAM and FedLESAM such as
aggregation and communication are the same as FedAvg.

4.3. Enhanced Variants

The global perturbation in our method is estimated as the
difference between global models received in the previous
active and the current rounds throughout the local train-
ing. When the global update is changing fast or the local
models are far away from each other, the estimated per-
turbation might not be accurate. Therefore, to eliminate
the inconsistencies for better estimation and a fair compari-
son with FedGAMMA and FedSMOO, we incorporate the
variance reduction of Scaffold and dynamic regularizer of
FedDyn into FedLESAM and propose two variants named
FedLESAM-S and FedLESAM-D. In Appendix D, we in-
troduce them in detail and provide concrete algorithms.

5. Theoretical Analysis
Generalization results proposed by Qu et al. (2022) and Sun
et al. (2023a) are both suitable for our FedLESAM. Here we
mainly focus on the convergence results of FedLESAM com-
pared to its original FedSAM with an independent pertur-
bation magnitude. The convergence results of our variants
FedLESAM-S and FedLESAM-D can be easily extended.

Algorithm 1 FedAvg, FedSAM and FedLESAM
Input:(K, ρ,w0, E, T, ηl, ηg, ∀i wold

i = 0)

for t = 0, 1, . . . , T − 1 do
for sampled n active client i = 1, 2, . . . , n do

receive wt, wt
i,0 ← wt

for k = 0, 1, ..., E − 1 do
sample a batch of data bti,k

▷ perturbation stage

FedAvg: δti,k = 0

FedSAM: δti,k = ρ
∇L(wt

i,k;b
t
i,k)

∥∇L
(
wt

i,k
;bt

i,k

)
∥

FedLESAM: δti,k = ρ
wold

i −wt

∥wold
i −wt∥

wt
i,k+1 ← wt

i,k − ηl∇L(wt
i,k + δti,k; b

t
i,k)

end for
FedLESAM: store wold

i = wt

submit wt
i,E .

end for
wt+1 ← wt − ηg

∑K
i=1 w

t − wt
i,E .

end for
Output:wT .

5.1. Basic Assumptions

We first introduce some basic assumptions on clients’ loss
functions F1, · · · , FN and their gradients, which are the
same as FedSAM (Qu et al., 2022). Assumptions 1-2 charac-
terize the smoothness, bound on the variance of unit stochas-
tic gradients, and the bound on the gradient difference be-
tween local and global objectives, while Assumption 3-4
cares more about the bounds under averaged situations.

Assumption 1 (L-smooth and bounded variance of unit
stochastic gradients). F1, · · · , FN are all L-smooth:

∥∇Fi(u)−∇Fi(v)∥ ≤ L∥u− v∥,

and the variance of unit stochastic gradients is bounded:

E
∥∥∥∥ ∇Fi (u, ξi)

∥∇Fi (u, ξi)∥
− ∇Fi(u)

∥∇Fi(u)∥

∥∥∥∥2 ≤ σ2
l .

Assumption 2 (Bounded heterogeneity). The gradient dif-
ference between F (u) and Fi(u) is bounded:

∥∇Fi (u)−∇F (u)∥2 ≤ σ2
g

Assumption 3 (Bounded unit variance). Variance of unit
averaged stochastic gradients is bounded:

E

∥∥∥∥∥∥
∑N

i=1∇Fi (u, ξi)∥∥∥∑N
i=1∇Fi (u, ξi)

∥∥∥ −
∑N

i=1∇Fi (u)∥∥∥∑N
i=1∇Fi (u)

∥∥∥
∥∥∥∥∥∥
2

≤ σ′2
l .

5
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Assumption 4 (Bounded unit difference). The variance
of unit averaged gradient difference between F (u) and∑N

i=1 Fi(u) is bounded:∑N
i=1∇Fi (u)∥∥∥∑N
i=1∇Fi (u)

∥∥∥ − ∇F (u)

∥∇F (u) ∥
≤ σ′2

g .

5.2. Convergence Results and Trade-off

Theorem 1. Let Assumption 1-2 hold, with an independent
ρ under full participation, if choosing ηl = 1√

TEL
and

ηg =
√
EN , the sequence of {wt} generated by FedSAM

and FedLESAM in Algorithm 1 satisfies:

1

T

T∑
t=1

E
[∥∥∇F (wt+1

)∥∥] ≤ 10L(F
(
w0
)
− F ∗)

C
√
TEN

+
90L2ρ2σ2

g

CTE
+

180L2ρ2

CT
+∆+

L2σ2
l ρ

2

C
√
TEN

,

where C ≥ ( 12 − 30E2L2η2l ) ≥ 0. For FedSAM, ∆ =
120L2ρ2

CET 2 + 2L2ρ2

CT , while for our FedLESAM, ∆ = 0.

As shown in Figure 1(e), local perturbations might guide
the aggregated global model far away from the global flat
minimum. Therefore, we keep ρ as an independent constant
and provide the updated convergence results of FedSAM
and our FedLESAM under full client participation as shown
in Theorem 1. It can be seen that, by replacing the local
perturbation of FedSAM with our locally estimated global
perturbation, the convergence bound can be reduced by a
rate of ∆ = 120L2ρ2

CET 2 + 2L2ρ2

CT . The complete proof is pro-
vided in Appendix B. Notably, the independent perturbation
magnitude ρ will influence the largest term O

(
1√
T

)
in the

convergence bound as L2σ2
l ρ

2

C
√
TEN

. To mitigate the influence,
all existing convergence theorems (Dai et al., 2023; Qu
et al., 2022; Sun et al., 2023a) require the perturbation mag-
nitude ρ be a scale of total rounds like O

(
1√
T

)
. However,

as generalization results analyzed by Foret et al. (2021), Qu
et al. (2022), and Sun et al. (2023a), ρ is highly related to
the generalization error bound. Note that, those generaliza-
tion results are commonly suitable for federated SAM algo-
rithms, including our FedLESAM. Therefore, the chosen of
ρ will be a significant trade-off between the generalization
and convergence. In the ablation study of Sec. 6 and as
shown in Figure 4, we empirically verify the relationships.

5.3. Estimation Error

Theorem 2. Assume local update is one step and follows As-
sumptions 3- 4. Under full participation and Lg-smoothness
of F with global and local learning rates ηg and ηl, the esti-

mation bias is bounded as

∥ wt−1 − wt

∥wt−1 − wt∥
− ∇F (wt)

∥∇F (wt)∥
∥ ≤ 3σ′2

l +3σ′2
g +3L2

gη
2
gη

2
l .

As shown in Theorem 2, we provide the estimation error
bound under one step local update and full participation.
With Assumption 3-4, the estimation error can be bounded
and is influenced by learning rates ηg and ηl, smoothness
of global function Lg, sampling in stochastic gradient (σ′2

l )
and data heterogeneity (σ′2

g ). With this insights, we can
reduce the error by providing proper learning rates. The
detailed proof is provided in Appendix B.

6. Experiments
This section introduces some experimental setups including
baselines, datasets, splits, and experimental details. Then we
show the main results on benchmark datasets followed by
extensive further analysis such as ablation and visualization.

6.1. Experimental Setups

Baselines. We compare our FedLESAM with Fe-
dAvg (McMahan et al., 2017) and existing federated SAM
methods for sloving data heterogeneity including Fed-
SAM (Caldarola et al., 2022; Qu et al., 2022), MoFed-
SAM (Qu et al., 2022), FedGAMMA (Dai et al., 2023),
and FedSMOO (Sun et al., 2023a). We also compare our
method with classical federated optimization methods in-
cluding Scaffold (Karimireddy et al., 2020), FedDyn (Acar
et al., 2020), FedAdam (Reddi et al., 2020), and FedCM (Xu
et al., 2021). Since FedGAMMA and FedSMOO respec-
tively draw spirits from Scaffold and FedDyn, for a fair
comparison and better minimizing global sharpness, we de-
sign two variants named FedLESAM-S and FedLESAM-D
based on Scaffold and FedDyn. We introduce them in detail
in Appendix D and show the ablation in Sec 6.3.

Dataset and Splits. We adopt four popular federated bench-
mark datasets: CIFAR10/100 (Krizhevsky et al., 2009), Of-
ficeHome (Venkateswara et al., 2017) and DomainNet (Peng
et al., 2019). For CIFAR10/100, we follow Hsu et al. (2019),
Dai et al. (2023), and Sun et al. (2023a;c; 2024) and use
Dirichlet and Pathological splits to simulate Non-IID. For
OfficeHome and DomainNet, we adopt leave-one-domain-
out strategy that selects one domain for test and all other
domains for training. To simulate straggler situations and
large scale of clients, we divide CIFAR10/100 into 100
clients with an active ratio of 10% and 200 clients with an
active ratio of 5%. Each domain in OfficeHome and Do-
mainNet is divided into 1 client with an active ratio of 100%
and 10 clients with an active ratio of 20%. See Appendix C
for more details.

Experimental Details. For a fair comparison on CI-
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Table 2. Test accuracy on CIFAR10/100 after 800 rounds under Dirichlet distribution and Pathological splits. β is the Dirichlet coefficient
selected from {0.1, 0.6} and α is the Pathological coefficient, which is the number of active categories in each client. The two datasets
are divided into 100 clients and 10% of them are active at each round in the upper part, while 200 and 5% in the lower part.

Method CIFAR10 CIFAR100
#Partition Dirichlet Pathological Dirichlet Pathological
#Coefficient β = 0.6 β = 0.1 α = 6 α = 3 β = 0.6 β = 0.1 α = 20 α = 10

FedAvg 79.52±0.13 76.00±0.18 79.91±0.17 74.08±0.22 46.35±0.15 42.64±0.22 44.15±0.17 40.23±0.31

FedAdam 77.08±0.31 73.41±0.33 77.05±0.26 72.44±0.29 48.35±0.17 40.77±0.31 41.26±0.30 32.58±0.22

SCAFFOLD 81.81±0.17 78.57±0.14 83.07±0.10 77.02±0.18 51.98±0.23 44.41±0.15 46.06±0.22 41.08±0.24

FedCM 82.97±0.21 77.82±0.16 83.44±0.17 77.82±0.19 51.56±0.20 43.03±0.26 44.94±0.14 38.35±0.27

FedDyn 83.22±0.18 78.08±0.19 83.18±0.17 77.63±0.14 50.82±0.19 42.50±0.28 44.19±0.19 38.68±0.14

FedSAM 80.10±0.12 76.86±0.16 80.80±0.23 75.51±0.24 47.51±0.26 43.43±0.12 45.46±0.29 40.44±0.23

MoFedSAM 84.13±0.13 78.71±0.15 84.92±0.14 79.57±0.18 54.38±0.22 44.85±0.25 47.42±0.26 41.17±0.22

FedGAMMA 82.64±0.14 78.95±0.15 83.24±0.19 78.81±0.14 53.41±0.20 46.39±0.19 48.41±0.14 43.24±0.22

FedSMOO 84.55±0.14 80.82±0.17 85.39±0.21 81.58±0.16 53.92±0.18 46.48±0.13 48.87±0.17 44.10±0.19
FedLESAM 81.04±0.19 76.93±0.16 81.37±0.17 77.30±0.22 47.92±0.19 44.48±0.20 46.19±0.21 41.20±0.18

FedLESAM-D 84.27±0.14 80.08±0.19 85.62±0.18 83.00±0.22 53.27±0.17 46.42±0.23 48.26±0.18 43.26±0.18

FedLESAM-S 84.94±0.12 79.52±0.17 85.88±0.19 83.18±0.15 54.61±0.20 48.07±0.19 50.26±0.18 44.42±0.17

FedAvg 75.90±0.21 72.93±0.19 77.47±0.34 71.86±0.34 44.70±0.22 40.41±0.33 38.22±0.25 36.79±0.32

FedAdam 75.55±0.38 69.70±0.32 75.24±0.22 70.49±0.26 44.33±0.26 38.04±0.25 35.14±0.16 30.28±0.28

SCAFFOLD 79.00±0.26 76.15±0.15 80.69±0.21 74.05±0.31 50.70±0.18 41.83±0.29 39.63±0.31 37.98±0.36

FedCM 80.52±0.29 77.28±0.22 81.76±0.24 76.72±0.25 50.93±0.31 42.33±0.19 42.01±0.17 38.35±0.24

FedDyn 80.69±0.23 76.82±0.17 82.21±0.18 74.93±0.22 47.32±0.18 41.74±0.21 41.55±0.18 38.09±0.27

FedSAM 76.32±0.16 73.44±0.14 78.16±0.27 72.41±0.29 45.98±0.27 40.22±0.27 38.71±0.23 36.90±0.29

MoFedSAM 82.58±0.21 78.43±0.24 84.46±0.20 79.93±0.19 53.51±0.25 42.22±0.23 42.77±0.27 39.81±0.21

FedGAMMA 80.72±0.19 76.41±0.17 81.81±0.17 76.58±0.21 50.61±0.19 43.77±0.19 43.35±0.24 38.46±0.22

FedSMOO 82.94±0.19 79.76±0.19 84.82±0.18 81.01±0.19 53.45±0.19 45.83±0.18 44.70±0.21 43.41±0.22
FedLESAM 77.74±0.18 73.73±0.22 78.44±0.20 74.53±0.19 45.00±0.16 41.87±0.23 42.14±0.18 39.32±0.24

FedLESAM-D 82.53±0.19 79.56±0.27 85.04±0.21 81.10±0.19 51.14±0.20 45.09±0.24 43.97±0.26 42.63±0.29

FedLESAM-S 83.22±0.22 78.69±0.17 85.02±0.24 80.57±0.17 52.26±0.18 44.82±0.20 45.68±0.19 43.89±0.23

Table 3. Accuracy of the target domain on OfficeHome and DomainNet after 400 rounds under leave-one-domain-out strategy. Each
training domain is divided into 1 client and 100% of them are active at each round in the upper part while 10 and 20% in the lower part.

Method Officehome DomainNet

#Target domain Art Clipart Product Real World Clipart Infograph Painting Quickdraw Real World Sketch

FedAvg 79.21±0.17 60.60±0.11 86.22±0.14 87.65±0.14 54.70±0.11 81.59±0.14 36.27±0.27 76.49±0.11 87.52±0.10 87.31±0.13

FedAdam 79.23±0.23 61.21±0.19 86.00±0.14 87.69±0.12 56.77±0.25 81.33±0.12 40.14±0.24 78.43±0.11 87.46±0.10 88.22±0.17

SCAFFOLD 80.35±0.14 62.41±0.13 86.42±0.14 88.39±0.11 55.38±0.17 82.28±0.09 41.01±0.24 77.26±0.13 89.09±0.10 87.11±0.14

FedCM 80.10±0.17 61.10±0.19 86.55±0.17 87.40±0.17 55.30±0.21 81.75±0.17 38.98±0.29 78.78±0.11 88.09±0.14 88.15±0.14

FedDyn 79.89±0.17 56.27±0.19 84.97±0.17 86.78±0.16 54.92±0.21 80.72±0.14 34.71±0.27 77.69±0.11 85.22±0.14 87.66±0.16

FedSAM 79.85±0.14 62.25±0.17 86.71±0.13 88.18±0.16 55.36±0.14 82.20±0.11 39.19±0.20 77.53±0.11 88.41±0.14 88.38±0.09

MoFedSAM 80.51±0.14 62.47±0.19 86.80±0.14 88.24±0.11 55.47±0.17 82.33±0.13 40.18±0.26 78.43±0.17 88.96±0.10 89.16±0.16

FedGAMMA 80.63±0.17 62.68±0.19 86.82±0.14 88.32±0.17 55.45±0.20 82.55±0.14 41.10±0.23 77.30±0.11 89.17±0.09 87.54±0.14

FedSMOO 80.42±0.17 57.77±0.21 85.43±0.16 87.84±0.19 53.61±0.24 81.99±0.17 37.29±0.34 77.92±0.19 86.73±0.14 87.82±0.19

FedLESAM 79.55±0.19 60.57±0.16 86.49±0.21 87.30±0.14 55.47±0.17 82.04±0.16 39.86±0.12 77.42±0.20 87.63±0.19 86.94±0.11

FedLESAM-D 78.85±0.15 57.34±0.12 85.62±0.11 86.99±0.10 54.75±0.18 82.24±0.16 37.98±0.27 77.54±0.22 87.12±0.19 87.54±0.17

FedLESAM-S 81.10±0.14 62.86±0.16 87.34±0.14 89.04±0.10 57.24±0.19 83.15±0.14 43.49±0.17 79.31±0.10 89.26±0.09 89.61±0.14

FedAvg 78.41±0.13 59.63±0.17 85.31±0.14 86.89±0.21 54.15±0.19 80.70±0.17 35.97±0.27 75.98±0.14 86.56±0.11 85.75±0.17

FedAdam 79.03±0.27 59.78±0.23 85.09±0.27 87.41±0.22 55.21±0.25 80.99±0.27 38.69±0.31 77.10±0.19 86.53±0.14 87.09±0.17

SCAFFOLD 80.21±0.19 60.39±0.11 85.99±0.13 87.27±0.21 55.86±0.24 81.17±0.11 38.61±0.19 76.57±0.11 88.26±0.14 86.87±0.13

FedCM 80.06±0.17 59.56±0.14 85.20±0.19 86.69±0.17 55.95±0.21 81.84±0.11 37.89±0.25 77.84±0.17 87.33±0.13 85.98±0.14

FedDyn 77.01±0.17 56.24±0.22 83.98±0.24 87.31±0.16 52.48±0.19 81.52±0.14 33.10±0.29 76.16±0.24 85.47±0.13 86.22±0.09

FedSAM 79.22±0.14 60.18±0.22 86.06±0.09 86.94±0.11 55.23±0.20 81.76±0.13 38.90±0.26 77.37±0.14 87.33±0.11 86.04±0.16

MoFedSAM 79.81±0.12 60.62±0.13 86.46±0.06 87.70±0.17 56.37±0.19 82.28±0.10 40.83±0.21 77.94±0.17 87.18±0.13 87.91±0.11

FedGAMMA 80.51±0.11 60.59±0.14 86.35±0.17 87.68±0.13 55.38±0.20 81.83±0.11 40.19±0.23 77.30±0.14 88.83±0.09 87.04±0.12

FedSMOO 78.70±0.21 57.11±0.19 85.43±0.11 87.22±0.16 53.44±0.31 81.96±0.17 36.20±0.29 76.94±0.11 86.07±0.10 86.65±0.09

FedLESAM 79.55±0.19 60.57±0.16 86.49±0.21 87.30±0.14 55.47±0.17 82.04±0.16 39.86±0.12 77.42±0.20 87.63±0.19 86.94±0.11

FedLESAM-D 78.85±0.15 57.34±0.12 85.62±0.11 86.99±0.10 54.75±0.18 82.24±0.16 37.98±0.27 77.54±0.22 87.12±0.19 87.54±0.17

FedLESAM-S 80.73±0.14 62.13±0.17 87.42±0.19 87.79±0.11 57.03±0.14 82.49±0.13 42.25±0.22 78.95±0.17 88.93±0.09 88.74±0.09

FAR10/100, we follow all settings in FedSMOO. Back-
bone is ResNet-18 (He et al., 2016) with Group Normaliza-
tion (Wu & He, 2018) and SGD, total rounds T = 800, local

learning rate ηl = 0.1, global learning rate ηg = 1 expect
for FedAdam which adopts 0.1, and perturbation magnitude
ρ = 0.1 expect for FedSAM and FedLESAM which adopts
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Table 4. Ablation study of variants on the averaged test accuracy
on the four datasets. FedLESAM with A, S, and D respectively
represent variants based on FedAvg, Scaffold, and FedDyn.

Method CIFAR10 CIFAR100 OfficeHome DomainNet

FedAvg 75.96 41.69 77.99 70.25
FedLESAM 77.641.68%↑ 43.521.83↑ 78.900.91↑ 71.981.73↑
Scaffold 78.80 44.21 78.93 71.62
FedLESAM-S 82.633.83↑ 48.003.79↑ 79.800.87↑ 73.371.75↑
FedDyn 79.60 43.11 76.56 69.66
FedLESAM-D 82.653.05↑ 46.783.67↑ 77.530.97↑ 71.301.64↑

0.01. On the CIFAR10, batchsize is 50, and the local epoch
is 5. On the CIFAR100, batchsize equals to 20, and the local
epoch equal to 2. For OfficeHome and DomainNet, we use
the pre-trained model ViT-B/32 (Dosovitskiy et al., 2020;
Xu et al., 2023) as the backbone. The optimizer is SGD
with a local learning rate 0.001 and a global learning rate 1
expect for FedAdam which adopts 0.1. See Appendix E for
more details.

6.2. Main Results

General Performance. As shown in Table 2, our method
performs the best or second best in the most cases on CI-
FAR10/100. Specifically, in the upper part of Table 2 on
CIFAR100, FedLESAM-S outperforms all baselines and
achieves averaged improvements of 6% to FedAvg and 1%
to the best baseline. As shown in Table 3, we conduct
experiments on OfficeHome and DomainNet under leave-
one-domain-out strategy. It can be seen that, FedDyn and
FedSMOO meet the overfitting problem on unseen domain
while our method outperforms all baselines on all settings.
Especially in the target domain ”Painting” shown in the
upper part of Table 3, our method achieves improvements
of 2.39% to the best baseline and 7.22% to FedAvg.

Heterogeneity, Scalability, and Straggler. To verify the
performance under different levels of data heterogeneity,
straggler situations and the scalability to the number of
clients, we adopt multiple split strategies. As shown in
Table 2, we split CIFAR10/100 into 100 clients and 10% of
them are active at each round in the upper part while 200
and 5% in the lower part under different coefficient values
of Dirichlet and Pathological strategies. For DomainNet and
OfficeHome, we adopt leave-one-domain-out strategy and
each training domain is divided into 1 client and 100% of
them are active at each round in the upper part while 10 and
20% in the lower part shown in Table 3. It can be seen that,
compared under all settings, our FedLESAM-S performs
well with comprehensive improvement to all baselines.

6.3. Further Analysis

Ablation of ρ. Since perturbation magnitude ρ critically in-
fluences the convergence and performance of SAM-based al-

Table 5. Total communication rounds, computational time (min-
utes) and communication costs (gigabytes of parameters) to
achieve 68% and 74% test accuracy under Dirichlet distribution
with coefficient of 0.1, 100 clients and 10% active ratio on CI-
FAR10 of FedAvg, SAM-based methods and our two variants.

Method Commu. Round Commu. Cost Compu. Time

#Target Acc. 68% 74% 68% 74% 68% 74%

FedAvg 259 (1x) 786 (1x) 56 (1x) 170 (1x) 28 (1x) 88 (1x)
FedSAM 1.02x 0.83x 1.02x 0.83x 1.96x 1.56x
MoFedSAM 0.47x 0.51x 0.94x 1.02x 1.08x 1.16x
FedGAMMA 0.76x 0.44x 1.51x 0.89x 1.70x 0.96x
FedSMOO 0.51x 0.29x 1.02x 0.58x 1.15x 0.63x

FedLESAM-S 0.57x 0.38x 1.14x 0.77x 0.81x 0.53x
FedLESAM-D 0.46x 0.31x 0.92x 0.60x 0.83x 0.30x

gorithms, here we tune ρ on the four datasets of FedLESAM-
S and compare the averaged test accuracy to FedAvg. As
shown in Figure 4, test accuracy initially increases with
ρ, benefiting from minimizing global sharpness, but then
sharply declines as larger perturbations hinder convergence.
Notably, our FedLESAM-S outperforms FedAvg across a
broad range of ρ

ηl
, especially wider than a range from 10e-2

to 10e2 under OfficeHome and DomainNet. Empirically, we
recommend setting ρ to approximately 0.1 times the local
learning rate ηl when starting with a randomly initialized
model, as depicted in the left two panels of Figure 4, to
prevent model breakdown. While for pre-trained model as
shown in the right two panels of Figure 4, ρ can be set larger
and about 10 times of ηl to better minimize sharpness.

Ablation on Variants. We design FedLESAM under Fe-
dAvg and two enhanced methods under Scaffold and Fed-
Dyn named FedLESAM-S and FedLESAM-D, respectively.
Therefore, here we show the averaged performance on CI-
FAR10/100, OfficeHome and DomainNet of all variants. As
shown in Table 4, all variants achieve extensive improve-
ment to their base methods, especially a notable 3.83% im-
provement on CIFAR10 of FedLESAM-S. Generally speak-
ing, FedLESAM-S performs the best.

Computation and Communication. Computational time
and communication bottleneck are major concerns in FL.
Therefore, as shown in Table 5, we compare the total com-
munication rounds, communication costs and computational
times of all clients to achieve the target 68% and 74% test
accuracy of FedAvg, SAM-based algorithms and our two
variants. As can be seen that our method achieves competing
communication efficiency and slightly smaller communica-
tion costs, and greatly reduces the computation.

Visualization of Global Loss Surface. As shown in Fig-
ure 3, we conduct experiment on CIFAR10 and visualize
the global loss surface. Compared to FedAvg, FedSAM and
FedGAMMA can not achieve desirable flatness. FedSMOO
achieves much flatter loss landscape while our FedLESAM-
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(a) FedAvg (b) FedSAM (c) FedGAMMA (d) FedSMOO (e) FedLESAM-D

Figure 3. Visualization of the global loss surface on CIFAR10 under Dirichlet distribution with coefficient 0.1 of FedAvg, FedSAM,
FedGAMMA, FedSMOO and our FedLESAM-D. We divide the dataset into 100 clients and in each round 10% clients are active.
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Figure 4. Ablation study on log ρ
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, where ηl is local learning rate. From left to right, we show the test accuracy on CIFAR10 and
CIFAR100 (ηl = 0.1) and the averaged test accuracy of all target domains on OfficeHome and DomainNet (ηl = 0.001) with different ρ.

D further minimizes the global sharpness.

7. Conclusion
In this work, we rethink the sharpness-aware minimiza-
tion (SAM) in federated learning (FL) and study the discrep-
ancy between minimizing local and global sharpness under
heterogeneous data. To align the efficacy of SAM in FL with
centralized training and reduce the computational overheads,
we propose a novel and efficient method named FedLESAM
and design two effective variants. FedLESAM locally es-
timates the global perturbation in clients as the difference
between the global models received in the last active and
current rounds. Theoretically, we provide the convergence
guarantee of FedLESAM and prove a slightly tighter bound
than its original FedSAM. Empirically, we conducted exten-
sive experiments on four benchmark datasets under three
data splits to show the superior performance and efficiency.
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A. Related Works
Federated Learning. Federated learning (FL) has drawn the considerable attention due to the increasing concerns in
collaboration learning (Hu et al., 2024; Shokri & Shmatikov, 2015; Zhu & Han, 2020). Its base framework, FedAvg (McMa-
han et al., 2017), allows clients keeping their private data in the local and cooperatively train a global model, however
suffering from the data distribution shifts among clients. Recently, many optimization based methods are proposed to
solve the problem. FedAdam (Reddi et al., 2020) designs an efficient adaptive optimizer in the server to improve the
performance. Scaffold (Karimireddy et al., 2020) designs a variance reduction approach to achieve a stable and fast local
update. FedDyn (Acar et al., 2020) introduces a dynamic regularizer for each client at each round to align global and local
objectives. FedCM (Xu et al., 2021) maintains the consistency of local updates with a momentum term. Our method is also
optimization based and orthogonal to these methods. In the experiments for a fair comparison to FedGAMMA (Dai et al.,
2023) and FedSMOO (Sun et al., 2023a) and better minimize global sharpness, we design two effective variants based on
the frameworks Scaffold and FedDyn, named FedLESAM-S and FedLESAM-D, respectively.

Sharpness-aware Minimization. Many studies (Dinh et al., 2017; Hochreiter & Schmidhuber, 1994; Li et al., 2018) have
demonstrated that a flat minimum tends to exhibit superior generalization performance in deep learning models. To minimize
both the sharpness metric (Keskar et al., 2017) and the training loss, Foret et al. (2021) proposes the sharpness-aware
minimization (SAM) and many works are proposed to improve it from the views of generalizability (Andriushchenko &
Flammarion, 2022; Kwon et al., 2021; Li & Giannakis, 2024; Mueller et al., 2024; Wang et al., 2023; Zhang et al., 2023b;
Zhao et al., 2022; Zhuang et al., 2022) and the efficiency (Du et al., 2022a;b; Mi et al., 2022). Specifically, SAM’s adversary
captures the sharpness of only a specific minibatch of data, and VaSSO (Li & Giannakis, 2024) aims to address this ”friendly
adversary” problem. Our FedLESAM may also help solve this problem to some extent by treating the global update
(accumulated average gradients from many batches of data) as the perturbation. Furthermore, m-sharpness (Andriushchenko
& Flammarion, 2022) can be considered closely related to federated sharpness minimization. m-sharpness quantifies the
sharpness across batches of m training points, and the corresponding optimization method, mSAM, averages the updates
generated by adversarial perturbations across multiple disjoint shards of a mini-batch. In federated learning settings, if
client models align with global model in the local training, the optimization of FedSAM is similar to mSAM. Additionally,
FedLESAM calculates perturbations based on wold

i − wt, which are the accumulated adversaries from many clients’ batch
data, also reflecting the principle of minimizing m-sharpness. Our method is an efficient federated SAM algorithm and
orthogonal to existing SAM methods. Therefore in the paper, we use the original SAM (Foret et al., 2021) as the base
algorithm. We leave the combination of our FedLESAM with other enhanced SAM algorithms to the future work.

Sharpness-aware Minimization in FL. To utilize the generalization and sharpness minimizing ability of SAM in federated
learning, Qu et al. (2022) and Caldarola et al. (2022) proposed FedSAM by adding sharpness optimization into local
training. Qu et al. (2022) proposed a momentum variant of FedSAM named MoFedSAM. FedGAMMA (Dai et al., 2023)
learned from Scaffold and introduced variance reduction to FedSAM. With the similar spirit of FedDyn (Acar et al., 2020),
FedSMOO (Sun et al., 2023a) adopts a dynamic regularizer to guarantee the local optima towards the global objective and
add a correction to local perturbations to search for the consistent flat minima. We summarize them in the Table 1 from the
views of how to calculate perturbation in local clients, target of the local sharpness optimization (target on the local or global
sharpness) and their base federated algorithms. As can be seen that, FedSAM, MoFedSAM and FedGAMMA calculate local
perturbations and optimize the sharpness on the client data, which might not direct global model to a global flat minimum.
Although FedSMOO notices the conflicts and add a correction, which still need to calculate the local perturbations. All
above algorithms introduce extra computational burden on the local, which might increase the expenses of clients in the
federation. Therefore, we propose an efficient algorithm that Locally-Estimating Global perturbation for SAM (FedLESAM),
that can both optimize global sharpness and reduce the computation.

B. Implementation of Theoretical Analysis
Before start our proof for Theorem 2 and Theorem 1, we first pre-define some notations, assumptions, and key lemmas used
in the proof.

B.1. Notations and Assumptions

Assumption 1 (L-smooth and bounded variance of unit stochastic gradients). F1, · · · , FN are all L-smooth:

∥∇Fi(u)−∇Fi(v)∥ ≤ L∥u− v∥,
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and the variance of unit stochastic gradients is bounded:

E
∥∥∥∥ ∇Fi (u, ξi)

∥∇Fi (u, ξi)∥
− ∇Fi(u)

∥∇Fi(u)∥

∥∥∥∥2 ≤ σ2
l .

Assumption 2 (Bounded heterogeneity). The gradient difference between F (u) and Fi(u) is bounded:

∥∇Fi (u)−∇F (u)∥2 ≤ σ2
g

Assumption 3 (Bounded unit variance). Variance of unit averaged stochastic gradients is bounded:

E

∥∥∥∥∥∥
∑N

i=1∇Fi (u, ξi)∥∥∥∑N
i=1∇Fi (u, ξi)

∥∥∥ −
∑N

i=1∇Fi (u)∥∥∥∑N
i=1∇Fi (u)

∥∥∥
∥∥∥∥∥∥
2

≤ σ′2
l .

Assumption 4 (Bounded unit difference). The variance of unit averaged gradient difference between F (u) and
∑N

i=1 Fi(u)
is bounded: ∑N

i=1∇Fi (u)∥∥∥∑N
i=1∇Fi (u)

∥∥∥ − ∇F (u)

∥∇F (u) ∥
≤ σ′2

g .

Assumption 5 (Lg-smooth). Global objective F is Lg-smooth:

∥∇F (u)−∇F (v)∥ ≤ Lg∥u− v∥,

We use i, k, t to denote the client id, the number of iterations in a round and the number of communication rounds,
respectively. For example, wt

i,k means model weights of i-th client in k-th iterations at t-th rounds. Given local loss function
Fi, global function F , N clients and E pre-defined local iterations at round t, the update of local models in FedSAM and
FedLESAM can be defined as follows:

w̃t
i,k = wt

i,k−1 + ρδti,k

wt
i,k = wt

i,k−1 − ηt
∇Fi(w̃

t
i,k−1, ξ

t
i,k)

∇Fi(w̃t
i,k−1, ξ

t
i,k)

,

where ξti,k is randomly sampled in the local dataset, ρ is the pre-defined perturbation magnitude and ηl is local learning
rate. After E steps, the local clients submit their trained local models to the server, and in the sever, all local models are
aggregated to a new global model as following:

wt+1 = wt − ηg
1

N

N−1∑
i=0

(wt
i,E−1 − wt),

where ηg is the global learning rate. The difference of FedSAM and FedLESAM is the definition of perturbation. In
FedSAM, the perturbation is calculated as:

δti,k =
∇Fi(w

t
i,k−1, ξ

t
i,k)

∥∇Fi(wt
i,k−1, ξ

t
i,k)∥

,

where ξti,k is randomly sampled in the local dataset. However, the perturbation in our FedLESAM under full participation is
defined as follows:

δti,k =
wt−1 − wt

∥wt−1 − wt∥
.

Then, we will introduce the some basic assumptions on loss functions F1, F2, · · · , FN of all clients and their gradient
functions∇F1,∇F2, · · · ,∇FN , which are the same as FedSAM (Qu et al., 2022). In Assumption 1 and Assumption 2, we
characterize the smoothness, the bound on the variance of unit stochastic gradients, and the bound on the gradient difference
between local and global objectives induced by data heterogeneity. In Assumption 5, we assume the smoothness of the
global objective F for proving reasonableness of the perturbation estimation under a naive case.
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B.2. Key Lemmas

Here we introduce some lemmas proofed by previous research (Qu et al., 2022) and use them as intermediate results in our
proof. For the convenience of the reading, we provide the proof of some lemmas and update the results of our FedLESAM
in Lemma 2.

Lemma 1 (Intermediate results). Let Assumption 1 hold,
〈
∇F (w̃t) ,E

[
1
N

∑N
i=0(w

t
i,E−1 − wt) + ηlE∇F (w̃t)

]〉
can be

bounded as:〈
∇F

(
w̃t
)
,E

[
1

N

N∑
i=0

(wt
i,E−1 − wt) + ηlE∇F

(
w̃t
)]〉

≤ ηlE

2
∥∇F

(
w̃t
)
∥2 + EηlL

2 1

N

N∑
i=0

E
[∥∥wt

i,k − wt
∥∥2]

+ EηlL
2 1

N

N∑
i=0

E
[∥∥δti,k − δti,0

∥∥2]− ηl
2EN2

E∥
∑
i,k

∇Fi (w̃i,k) ∥2

Proof.〈
∇F

(
w̃t
)
,Et

[
1

N

N∑
i=0

(wt
i,E−1 − wt) + ηlE∇F

(
w̃t
)]〉

( a)
=

ηlE

2
∥∇F

(
w̃t
)
∥2 + ηl

2KN2
Et∥

∑
i,E

∇Fi

(
w̃t

i,k

)
−∇Fi

(
w̃t
) ∥∥∥2 − ηl

2EN2
Et

∥∥∥∑
i,k

∇fi
(
w̃t

i,k

)
∥2

( b)
≤ ηlE

2
∥∇f

(
w̃t
)
∥2 + ηl

2N

∑
i,k

Et∥∇Fi

(
w̃t

i,E

)
−∇Fi

(
w̃t
) ∥∥∥2 − ηl

2EN2
Et

∥∥∥∑
i,k

∇fi
(
w̃t

i,k

)
∥2

( c)
≤ ηlK

2
∥∇F

(
w̃t
)
∥2 + ηlβ

2

2N

∑
i,k

Et∥w̃t
i,k − w̃t

i,0∥2 −
ηl

2EN2
Et∥

∑
i,k

∇Fi

(
w̃t

i,k

)
∥2

( d)
≤ ηlE

2
∥∇F

(
w̃t
)
∥2 + ηlL

2

N

∑
i,k

Et∥wt
i,k − wt

i,0∥2 +
ηlL

2

N

∑
i,k

Et∥δti,k − δti,0∥2 −
ηl

2EN2
Et∥

∑
i,k

∇fi
(
w̃t

i,k

)
∥2,

where (a) are because ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥2) with a =
√
ηlE∇F (w̃t) and b = −

√
ηl

N
√
E

∑
i,k(∇Fi(w̃

t
i,k)−

∇Fi(w̃
t
i,0)); (b) and (d) is because, for random variables x1, ..., xn, E

[
∥x1 + · · ·+ xn∥2

]
≤ nE

[
∥x1∥2 + · · ·+ ∥xn∥2

]
;

(c) is from Assumption 1.

Lemma 2 (Bounded perturbation difference). Let Assumption 1 and 2 hold, given local perturbations δti,k (k = 0, 1, ..., E−
1) at any step and local perturbation δti,0 at the first step, the variance of perturbation difference in FedSAM can be bounded
as:

1

N

∑
i

E
[∥∥δti,k − δti,0

∥∥2] ≤ 2K2L2η2l ρ
2.

However in our FedLESAM, it is zero since the perturbation is consistent during the local training within a round:

1

N

∑
i

E
[∥∥δti,k − δti,0

∥∥2] = 0

Lemma 3 (Bounded variance of gradient difference after perturbation). Let Assumption 1 and 2 hold, the variance of
gradient difference after perturbation can be bounded as:

∥∇Fi (w + δi)−∇F (w + δ)∥2 ≤ 3σ2
g + 6L2ρ2.
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Proof.

∥∇fi(w̃)−∇f(w̃)∥2 = ∥∇Fi (w + δi)−∇F (w + δ)∥2

= ∥∇Fi (w + δi)−∇Fi(w) +∇Fi(w)−∇F (w) +∇F (w)−∇F (w + δ)∥2

(a)
≤ 3 ∥∇Fi (w + δi)−∇Fi(w)∥2 + 3 ∥∇Fi(w)−∇F (w)∥2 + 3∥∇F (w)−∇F (w + δ)∥2

(b)
≤ 3σ2

g + 6L2ρ2,

where (a) is because, for random variables x1, ..., xn, E
[
∥x1 + · · ·+ xn∥2

]
≤ nE

[
∥x1∥2 + · · ·+ ∥xn∥2

]
and b is from

Assumption 1 and Assumption 2.

Lemma 4 (Bounded iteration difference). Suppose local functions satisfy Assumptions 1-2. Then, if learning rate satisfy
ηl ≤ 1

10EL , the update difference at any iterations within a round can be bounded as

1

N

∑
i∈[N ]

E
∥∥wt

i,k − wt
∥∥2≤5Eη2l

2L2ρ2σ2
l + 6E

(
3σ2

g + 6L2ρ2
)
+ 6E∥∇F (w̃)∥2 + 12EL2η2l

1

N

∑
E∥

∥∥δti,k − δti,0
∥∥2 .

Lemma 5 (Bounded update difference). The squared norm of averaged update difference can be bounded as:

E

∥∥∥∥∥ 1

N

N∑
i=0

(wt
i,E−1 − wt)

∥∥∥∥∥
2
 ≤ Kη2l L

2ρ2

N
σ2
l +

η2l
N2


∥∥∥∥∥∥
∑
i,k

∇fi
(
w̃t

i,k

)∥∥∥∥∥∥
2
 .

Lemma 6 (Descent Lemma). Let Assumption 1-2 hold, the loss function at any round satisfies the following relationship:

E
[
F
(
wt+1

)]
≤ F

(
w̃t
)
− Eηgηl

(
1

2
− 30E2L2η2l

)
∥∇F

(
w̃t
)
∥2 + 10E2L4η3l ρ

2σ2
l + 90E3L2η3l σ

2
g + 180E3L4η3l ρ

2

+
EL2ηl
N

(60η2l + 1)

N∑
i=0

E
∥∥δti,k − δti,0

∥∥2 + 1

2N
η2gEη2l L

3ρ2σ2
l .

Proof.

E
[
F
(
wt+1

)]
= E

[
F
(
w̃t+1

)]
≤ F

(
w̃t
)
+ E

〈
∇F

(
w̃t
)
, w̃t+1 − w̃t

]〉
+

L

2
Et

[∥∥w̃t+1 − w̃t
∥∥2]

(a)
= F

(
w̃t
)
+ Et

〈
∇F

(
w̃t
)
,− 1

N

N∑
i=0

(wt
i,E−1 − wt) +Kηgηl∇F

(
w̃t
)
− Eηgηt∇F

(
w̃t
)〉

+
L

2
η2gE

∥∥∥∥∥ 1

N

N∑
i=0

(wt
i,E−1 − wt)

∥∥∥∥∥
2


(b)
= F

(
w̃t
)
− Eηgηl

∥∥∇F (w̃t
)∥∥2 + ηg

〈
∇F

(
w̃t
)
,E

[
− 1

N

N∑
i=0

(wt
i,E−1 − wt)− wt) + Eηl∇F

(
w̃t
)]〉

+
L

2
η2gE

∥∥∥∥∥ 1

N

N∑
i=0

(wt
i,E−1 − wt)

∥∥∥∥∥
2
 ,

where (a) is from the client update defined in Algorithm 1; (b) is from the unbiased estimators. Combining the results
shown in Lemma 1, we have:

E
[
F
(
wt+1

)]
≤ F

(
w̃t
)
− Eηgηl

∥∥∇F (w̃t
)∥∥2 + ηg

ηlE

2
∥∇f

(
w̃t
)
∥2 + EηlηgL

2 1

N

N∑
i=0

E
[∥∥wt

i,k − wt
∥∥2]

+ EηgηlL
2 1

N

N∑
i=0

E
[∥∥δti,k − δti,0

∥∥2]− ηgηl
2EN2

E∥
∑
i,k

∇Fi (w̃i,k) ∥2 +
L

2
η2gE

∥∥∥∥∥ 1

N

N∑
i=0

(wt
i,E−1 − wt)

∥∥∥∥∥
2
 .
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Combining the results in Lemma 4, we have:

Er
[
F
(
wt+1

)]
≤ F

(
w̃t
)
− Eηgηl

∥∥∇F (w̃t
)∥∥2 + ηg

ηlE

2
∥∇f

(
w̃t
)
∥2

+ EηlηgL
25Eη2l

(
2L2ρ2σ2

l + 6E
(
3σ2

g + 6L2ρ2
)
+ 6E∥∇f(w̃)∥2

)
+ 60E2L4η3l ηg

1

N

∑
E∥

∥∥δti,k − δti,0
∥∥2

+ EηlηgL
2 1

N

N∑
i=0

E
[∥∥δti,k − δti,0

∥∥2]− ηlηg
2EN2

E∥
∑
i,k

∇Fi

(
w̃t

i,k

)
∥2 + L

2
η2gE

∥∥∥∥∥ 1

N

N∑
i=0

(wt
i,E−1 − wt)

∥∥∥∥∥
2
 .

Due to the results in Lemma 5, it satisfies:

E
[
F
(
wt+1

)]
≤ F

(
w̃t
)
− Eηgηl

∥∥∇F (w̃t
)∥∥2 + ηg

ηlE

2
∥∇f (w̃) ∥2

+ EηgηlL
25Eη2l

(
2L2ρ2σ2

l + 6E
(
3σ2

g + 6L2ρ2
)
+ 6E∥∇F (w̃)∥2

)
+ 60E2L4ηgη

3
l

1

N

∑
E∥

∥∥δi,k − δti,0
∥∥2

+ EηgηlL
2 1

N

N∑
i=0

E
[∥∥δti,k − δti,0

∥∥2]− ηl
2EN2

E∥
∑
i,k

∇Fi

(
w̃t

i,k

)
∥2 + L

2
η2g

Eη2l L
2ρ2

N
σ2
l +

η2l
N2


∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̃t

i,k

)∥∥∥∥∥∥
2
 .

If ηl ≤ 1
2E , we can summarize it as following:

E
[
F
(
wt+1

)]
≤ F

(
w̃t
)
− Eηgηl

(
1

2
− 30E2L2η2l

)
∥∇F

(
w̃t
)
∥2 + 10E2L4η3l ηgρ

2σ2
l + 90E3L2η3l σ

2
g

+ 180E3L4η3l ηgρ
2 +

EL2ηlηg
N

(60EL2η2l + 1)

N∑
i=0

E
∥∥δti,k − δti,0

∥∥2 + 1

2N
η2gEη2l L

3ρ2σ2
l .

B.3. Proof of Theorem 1

Here we provide the proof of Theorem 1.
Theorem 1. Let Assumption 1-2 hold, with an independent ρ under full participation, if choosing ηl = 1√

TEL
and

ηg =
√
EN , the sequence of {wt} generated by FedSAM and FedLESAM in Algorithm 1 satisfies:

1

T

T∑
t=1

E
[∥∥∇F (wt+1

)∥∥] ≤ 10L(F
(
w0
)
− F ∗)

C
√
TEN

+
90L2ρ2σ2

g

CTE
+

180L2ρ2

CT
+∆+

L2σ2
l ρ

2

C
√
TEN

,

where C ≥ ( 12 − 30E2L2η2l ) ≥ 0. For FedSAM, ∆ = 120L2ρ2

CET 2 + 2L2ρ2

CT , while for our FedLESAM, ∆ = 0.

Proof. Summing results of Lemma 6, define C ≥ ( 12 − 30E2L2η2l ) ≥ 0, we have:

1

T

T∑
t=1

E
[∥∥∇F (wt+1

)∥∥2] = 1

T

T∑
t=1

E
[∥∥∇F (w̃t+1

)∥∥2]
≤

F (w̃t)− F
(
w̃t+1

)
CEηgηlT

+
1

C

(
10EL4η2l ρ

2σ2
l + 90E2L2η2l σ

2
g + 180E2L4η2l ρ

2 +
L2

N
(60η2l EL2 + 1)

N∑
i=0

E
∥∥δti,k − δti,0

∥∥2 + ηgηlL
3ρ2

2N
σ2
l

)

≤
F
(
w̃0
)
− f∗

CEηgηlT

+
1

C

(
10EL4η2l ρ

2σ2
l + 90E2L2η2l σ

2
g + 180E2L4η2l ρ

2 +
L2

N
(60η2l EL2 + 1)

N∑
i=0

E
∥∥δti,k − δti,0

∥∥2 + ηgηlL
3ρ2

2N
σ2
l

)
,
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if choosing ηl =
1√
TEL

and ηg =
√
EN , under the intermediate results in Lemma 2 of FedSAM we have:

1

T

T∑
t=1

E
[∥∥∇F (wt+1

)∥∥] ≤ (10L(F
(
w̃0
)
− F ∗)

C
√
TEN

+
90L2ρ2σ2

g

CTE
+

180L2ρ2

CT
+

120L2ρ2

CET 2
+

2L2ρ2

CT
+

L2σ2
l ρ

2

C
√
TEN

)

Similarity, under the situation that ηl = 1√
TEL

and ηg =
√
EN , with the intermediate results shown in Lemma 2 of

FedLESAM we have:

1

T

T∑
t=1

E
[∥∥∇F (wt+1

)∥∥] ≤ (10L(F
(
w̃0
)
− F ∗)

C
√
TEN

+
90L2ρ2σ2

g

CTE
+

180L2ρ2

CT
+

L2σ2
l ρ

2

C
√
TEN

)

B.4. Proof of Theorem 2

Here we provide the proof of Theorem 2.

Theorem 2. Assume local update is one step and follows Assumptions 3- 5. Under full participation and Lg-smoothness of
F with global and local learning rates ηg and ηl, the estimation bias is bounded as

∥ wt−1 − wt

∥wt−1 − wt∥
− ∇F (wt)

∥∇F (w)∥
∥ ≤ 3σ′2

l + 3σ′2
g + 3L2

gη
2
gη

2
l .

Proof. Under one step client updates and full participation, we have:

wt − wt−1 = ηgηl
1

N

N∑
i=1

∇Fi(w
t−1, ξi).

Then the error bound can be defined as:

error = E∥
∑N

i=1∇Fi(w
t−1, ξi)

∥
∑N

i=1∇Fi(wt−1, ξi)∥
− ∇F (wt)

∥∇F (wt)∥
∥2.

Define A =
∑N

i=1 ∇Fi(wt−1,bi)
∥∑N

i=1 ∇Fi(wt−1,bi)∥ −
∑N

i=1 ∇Fi(wt−1)
∥∑N

i=1 ∇Fi(wt−1)∥ , B =
∑N

i=1 ∇Fi(wt−1)
∥∑N

i=1 ∇Fi(wt−1)∥ −
∇F(wt−1)
∥∇F (wt−1)∥ , and C =

∇F(wt−1)
∥∇F (wt−1)∥ −

∇F (wt)
∥∇F (wt)∥ . We have:

error = ∥A+B + C∥2 ≤ 3∥A∥2 + 3∥B∥2 + 3∥C∥2.

Then we start to bound ∥C∥2. If the local and global learning rates are small and the gradient of global function ∇F (wt, b)
is small, based on the first order Hessian approximation, the expected gradient is

∇F
(
wt
)
= ∇F

(
wt−1 + ηgηlg

t−1
)
= ∇F

(
wt−1

)
+Hηgηlg

t−1 +O
(∥∥ηgηlgt−1

∥∥2) ,
where H is the Hessian at wt−1. Therefore, we have

E

[∥∥∥∥ ∇F (wt−1)

∥∇F (wt−1)∥
− ∇F (wt)

∥∇F (wt)∥

∥∥∥∥2
]
≤ ϕt,

where ϕt is the square of the angle between the unit vector in the direction of∇F (wt−1) and∇F (wt). The inequality is

because (1)
∥∥∥ ∇Fi(·)
∥∇Fi(·)∥

∥∥∥2 ≤ 1, and thus we replace δ with a unit vector in the corresponding directions and obtain the upper
bound, (2) the norm of difference between the unit vectors can be upper bounded by the square of the arc length on a unit
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circle. If the total learning rate ηgηl and the global model update∇F (wt) are small, ϕt will also be small. Based on the
first order Taylor series, i.e., tanx = x+O

(
x2
)
, we have

tanϕt =

∥∥∇F (wt−1)−∇F (wt)
∥∥2

∥∇F (wt)∥2
+O

(
(ϕt)2

)

=

∥∥∥∇F (wt−1)−Hηgηlg
t−1 −O

(∥∥ηgηlgt−1
∥∥2)−∇F (wt−1)

∥∥∥2
∥∇F (wt−1)∥2

+O
(
(ϕt)2

)
(a)
≤ η2gη

2
l L

2
g,

where (a) is due to maximum eigenvalue of H is bounded by Lg because F function is Lg-smooth.

Since ∥C∥2 is proved to be less than L2
gη

2
l η

2
g , and A and B are respectively bounded by the Assumptions 3 and 4, we have:

E∥ wt−1 − wt

∥wt−1 − wt∥
− ∇F (wt)

∥∇F (w)∥
∥ ≤ 3σ′2

l + 3σ′2
g + 3L2

gη
2
gη

2
l .

Here we complete the proof.

C. Implementation of the Experiments
This section presents some details about benchmark datasets, data split strategies and backbone models used in the
experiments.

C.1. Datasets

Table 6. A summary of CIFAR10/100, OfficeHome, and DomainNet datasets, including number of total images, number of classes,
number of domains and the size of the images in the datasets.

Dataset Total Images Class Domain Image Size

CIFAR10 60,000 10 - 3 × 32 × 32
CIFAR100 60,000 100 - 3 × 32 × 32
OfficeHome 15,588 65 4 3 × 224 × 224
DomainNet 586,575 345 6 3 × 224 × 224

CIFAR-10/100 (Krizhevsky et al., 2009), OfficeHome (Venkateswara et al., 2017) and DomainNet (Peng et al., 2019) are all
popular benchmark datasets in the field of federated learning. Data samples in CIFAR10 and CIFAR100 are colorful images
of different categories with the resolution of 32 × 32. There are 10 classes and each class has 6,000 images in CIFAR10.
For CIFAR100, there are 100 classes and each class has 600 images. Fore OfficeHome, there are 65 classes and 4 domains
with 15,588 images (resolution of 224 × 224). DomainNet is a large dataset, which has 345 classes and 6 domains with
586,575 images (resolution of 224 × 224). As shown in the Table 6, we summarize CIFAR10, CIFAR100, OfficeHome,
and DomainNet from the views of number of total images, number of classes, number of domains and the size of the images
in the datasets.

C.2. Splits

For CIFAR10 and CIFAR100, we follow the settings in Hsu et al. (2019), Dai et al. (2023), and Qu et al. (2022) and use
Dirichlet distribution and Pathological split strategies to simulate the situations of Non-IID. As shown in the Figure 5,
we provide the heatmap of data distribution among clients of CIFAR10 and CIFAR100 under Dirichlet distribution with
coefficients of 0.6 and 0.1. The two datasets are divided into 100 and 200 clients. It can be seen that, the split can generate
practical and complicated data distribution. For OfficeHome and DomainNet, we adopt the standard leave-one-domain-out
split strategy that selects one domain for test and all other domains for federated training.

19



Title Suppressed Due to Excessive Size

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
Client ID

0
1

2
3

4
5

6
7

8
9

La
be

l I
D

10

20

30

40

50

60

70

80

(a) CIFAR10, 100 Clients, β = 0.6
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(b) CIFAR10, 100 Clients, β = 0.1
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(c) CIFAR10, 200 Clients, β = 0.6
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(d) CIFAR10, 200 Clients, β = 0.1
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(e) CIFAR100, 100 Clients, β = 0.6
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(f) CIFAR100, 100 Clients, β = 0.1
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(g) CIFAR100, 200 Clients, β = 0.6
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(h) CIFAR100, 200 Clients, β = 0.1

Figure 5. Heatmap of data distribution of CIFAR10 and CIFAR100 under Dirichelet distribution with coefficients β of 0.6 and 0.1. The
two datasets are divided into 100 and 200 clients.

C.3. Model

Resnet18 backbone is commonly used in many experiments on CIFAR10 and CIFAR100 datasets (Fan et al., 2023b;
Hong et al., 2023a;b; Sun et al., 2023a;b;c; 2024; Zhou et al., 2023), here we also use it as the backbone followed with a
classification head. Following the advice of Hsieh et al. (2020) and keeping the same setting with Dai et al. (2023); Sun et al.
(2023a) to avoid the non-differentiable parameters, we replace the Batch Normalization with the Group Normalization (Wu
& He, 2018). To validate the performance of algorithms on different models, for DomainNet and OfficeHome, we adopt the
pre-trained ViT-B/32 (Dosovitskiy et al., 2020) as the backbone.

D. Variants
In this section, we show the process of an optimization method in federated learning named Scaffold (Karimireddy et al.,
2020), and introduce the procedures of our two variants based on the frameworks of FedDyn (Acar et al., 2020) and Scaffold,
named FedLESAM-D and FedLESAM-S respectively. Client loss surfaces may not align with the global loss surface,
meaning that minimizing local sharpness in FedSAM and MoFedSAM might not effectively reduce global sharpness.
Effective variance reduction through Scaffold (wt

i,k aligns wt
g,k during local training) enables FedGAMMA to reduce both

the training loss and the upper bound of global sharpness. In FedLESAM-S and FedLESAM-D, effective variance reduction
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Algorithm 2 Scaffold
Input:(K, ρ,w0, E, T, ηl, ηg,∀i Ci = 0, C = 0)

for t = 0, 1, . . . , T − 1 do
for sampled n active client i = 1, 2, . . . , n do

receive wt, wt
i,0 ← wt

for k = 0, 1, ..., E − 1 do
sample a batch of data bti,k
wt

i,k+1 ← wt
i,k − ηl∇L(wt

i,k; b
t
i,k) + ηl(C − Ci)

end for
Ci = Ci − C + 1

ηlE
(wt − wt

i,E)

submit Ci and wt
i,E .

end for
wt+1 ← wt − ηg

∑K
i=1 w

t − wt
i,E .

C = C + 1
KCi

end for
Output:wT .

combined with an accurate estimate of global perturbation leads to directly minimizing both training loss and global
sharpness. With successful estimation and variance reduction, the key difference between FedGAMMA and FedLESAM-S
is that FedGAMMA minimizes the upper bound of global sharpness, whereas FedLESAM-S directly minimizes the global
sharpness.

D.1. Scaffold and Comparison

Karimireddy et al. (2020) proposed Scaffold to reduce the client drift by introducing variance reduction. Scaffold estimates
the update direction for the server model and the update direction for each client, denoted as C and Ci, respectively. The
difference (C − Ci) is used to correct the local update. As shown in the Algorithm 2, we provide the procedure of Scaffold.
It can be seen that, under full participation case, C is equal to wt−1 − wt, which is the same in our algorithm to estimate
global gradient. However, in Scaffold, it is used as global gradient for correcting local updates, while in our FedLESAM, it
is used as global gradient to estimate global perturbation.

D.2. FedLESAM-S

Here we introduce our variant FedLESAM-S based on the framework Scaffold. As illustrated in the Algorithm 3, FedLESAM-
S locally estimates the global perturbation and incorporates variance reduction of Scaffold into the local training. Other
procedures like communication and local update correction are the same with Scaffold.

D.3. FedLESAM-D

As illustrated in the Algorithm 4, we provide the procedure of our FedLESAM-D based on the framework of FedDyn.
We incorporate the regularizer in FedDyn to correct local updates. In the experiments, we found it not stable during the
federated training and the overfitting problem is easy to happen, as well as FedDyn and FedSMOO.

Table 7. Stored memory, backpropagation in each local step and communication at each round compared to FedAvg for SAM-based
federated methods.

FedAvg FedSAM FedLESAM MoFedSAM FedSMOO FedLESAM-D FedGAMMA FedLESAM-S

Stored memory 1 × 1 × 2 × 2 × 4 × 4 × 3 × 4 ×
Communication 1 × 1 × 1 × 2 × 2 × 2 × 2 × 2 ×
Backpropagation 1 × 2 × 1 × 2 × 2 × 1 × 2 × 1 ×
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Algorithm 3 FedLESAM-S
Input:(K, ρ,w0, E, T, ηl, ηg,∀i wold

i = 0,∀i Ci = 0, C = 0)

for t = 0, 1, . . . , T − 1 do
for sampled n active client i = 1, 2, . . . , n do

receive wt, wt
i,0 ← wt

for k = 0, 1, ..., E − 1 do
sample a batch of data bti,k
▷ perturbation stage

δti,k = ρ
wold

i −wt

∥wold
i −wt∥

wt
i,k+1 ← wt

i,k − ηl∇L(wt
i,k + δti,k; b

t
i,k) + ηl(C − Ci)

end for
Ci = Ci − C + 1

ηlE
(wt − wt

i,E)

store wold
i = wt

submit wt
i,E and Ci.

end for
wt+1 ← wt − ηg

∑K
i=1 w

t − wt
i,E .

C = C + 1
KCi

end for
Output:wT .

Algorithm 4 FedLESAM-D
Input:(K, ρ,w0, E, T, ηl, β, ηg,∀i wold

i = 0,∀i λi = 0, λ = 0)

for t = 0, 1, . . . , T − 1 do
for sampled n active client i = 1, 2, . . . , n do

receive wt, wt
i,0 ← wt

for k = 0, 1, ..., E − 1 do
sample a batch of data bti,k
▷ perturbation stage

δti,k = ρ
wold

i −wt

∥wold
i −wt∥

wt
i,k+1 ← wt

i,k − ηl∇L(wt
i,k + δti,k; b

t
i,k)− ηl(λi +

1
β

(
wt

i,k − wt
)
)

end for
store wold

i = wt

submit wt
i,E .

λi = λi − 1
β

(
wt

i,k − wt
)

end for
wt+1 ← wt − ηg

∑K
i=1 w

t − wt
i,E .

λt+1 = λt − 1
βK

∑K
i=1

(
wt

i,K − wt
)

end for
Output:wT .

E. More Information in the Experiments
E.1. Hyper-prarameter choosing

For a fair comparison on CIFAR10 and CIFAR100, we follow all the settings in FedGAMMA (Dai et al., 2023) and
FedSMOO (Sun et al., 2023a). Backbone is ResNet-18 (He et al., 2016) with the Group Normalization (Wu & He, 2018)
and SGD, total rounds T = 800, initial local learning rate ηl = 0.1, global learning rate ηg = 1 except for FedAdam which
adopts 0.1, perturbation magnitude ρ equals to 0.1 for FedGAMMA, FedSMOO and the corresponding variants of our
FedLESAM-S and FedLESAM-D, ρ = 0.01 for FedSAM and our original FedLESAM, weight decay equals to 1e-3, and
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Figure 6. Visualization of the global loss surface on CIFAR10 under Pathological distribution with coefficient 3 of FedAvg, FedSAM,
FedGAMMA, MoFedSAM, FedSMOO and our FedLESAM-D. We divide the dataset into 100 clients and in each round 10% clients are
active.

Table 8. Wall clock time (times including training, loading and evaluation) on one GeForce RTX 3090 between two communications on
CIFAR10 under dirichlet distribution with coefficient β = 0.6, 0.1 and 100 clients. The active ratio is 10%.

FedAvg FedSAM MoFedSAM FedGAMMA FedSMOO FedLESAM FedLESAM-S FedLESAM-D

wall clock time 20.34s 25.71s 28.73s 29.88s 29.67s 20.99s 25.81s 25.70s

Table 9. Total communication rounds, computational time (minutes) and communication costs (gigabytes of parameters) to achieve 68%
and 74% test accuracy under Pathological split with coefficient of 3, 100 clients and 10% active ratio on CIFAR10 of FedAvg, SAM-based
methods, and our two variants.

Method Commu. Round Commu. Cost Compu. Time

#Target Acc. 68% 74% 68% 74% 68% 74%

FedAvg 246 (1x) 723 (1x) 53 (1x) 156 (1x) 27 (1x) 80 (1x)
FedSAM 253 604 1.03x 0.84x 1.97x 1.60x
MoFedSAM 116 298 0.94x 0.82x 1.08x 0.95x
FedGAMMA 176 422 1.43x 1.17x 1.57x 1.28x
FedSMOO 144 194 1.17x 0.54 1.32x 0.61x

FedLESAM-S 159 332 1.29x 0.92x 0.92x 0.65x
FedLESAM-D 141 182 1.15x 0.50x 1.03x 0.45x

learning rate decreases by 0.998× exponentially except for FedDyn, FedSMOO and FedLESAM-D which adopt 0.9995×
for the proxy term. On the CIFAR10, batchsize is 50, and the local epochs is 5. On the CIFAR100, batchsize equals to 20,
and the local epochs equal to 2. For OfficeHome and DomainNet, we use the pre-trained model ViT-B/32 (Dosovitskiy
et al., 2020) as the backbone to verify the robustness of algorithms on different models. The optimizer is SGD with local
learning rate 0.001 and global learning rate 1 except for FedAdam which adopts 0.1. For all methods, ρ is tuned from
{0.05, 0.01, 0.005, 0.001, 0.0005}, local epochs is 5, batchsize is 32 and total communication rounds equal to 400.
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E.2. More Loss Surface Visualization

Here we show more visualizations of the global loss surfaces. As shown in Figure 6, we conduct experiments on CIFAR10
under Pathological splits with a coefficient of 3 and visualize the global loss surface of FedAvg, FedSAM, FedGAMMA,
MoFedSAM, FedSMOO and our FedLESAM-D. Among all algorithms, our FedSMOO and FedLESAM-D achieve the
much flatter loss landscape.

E.3. Communication and Computation

As shown in Table 7, we provide the communication at each round, memory stored in clients and backpropagation performed
in each local step compared to FedAvg. Our variants’ storing and communication are comparable to FedSMOO and
we reduce much computation. Compared to FedAvg and FedSAM, FedLESAM and MoFedSAM doubles the memory.
Compared to FedSMOO, our FedLESAM-D maintains the same memory level. Compared to FedGAMMA, our FedLESAM-
S requires an additional 33% memory. As shown in Table 8, we provide the wall-clock time comparison in the average time
between two communications. It can be seen that our method greatly saves computational times. To further demonstrate
efficiency, we provide results of an additional case in the Table 9. Our method exhibits competting communication efficiency
and significantly reduces computation.
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