
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT PARAMETER–SPACE INTEGRATED GRADI-
ENTS FOR DEEP NETWORK OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We explore previously unreported properties and practical uses of integrated gra-
dients for training deep neural networks, primarily convolutional models, in the
sense of averaging gradients over a continuous range of parameter values at each
update step rather than relying solely on the instantaneous gradient. Our con-
tributions are: (a) We show that, across multiple architectures, integrated gradi-
ents yield up to 53.5% greater reduction in per-batch loss compared to baseline
optimizers. (b) We demonstrate that, for a fixed batch and models prone to ill–
conditioned curvature, a single step can approximate more than four predicted
updates. (c) We introduce an efficient approximation for ResNet–152 fine–tuning
that integrates gradients over hundreds of past training iterations on a fixed batch
at each parameter update. This variant is faster per step and easier to parallelize
than a single step of a competitive Sharpness–Aware Minimization method, with
only moderate memory overhead.
We validate the approach with first-order optimizers (RMSProp, Adam) and a
second-order method (SOAP), showing consistent gains across settings. These re-
sults suggest that integrated gradients are a promising new direction for improving
the generalization and potentially the test–time adaptation of deep models.

1 INTRODUCTION

Attribution methods known as integrated gradients (Sundararajan et al., 2017) operate in input and
feature space, but their potential for optimization remains largely unexplored. We study parame-
ter–space gradient integration for training: at each step, our approach replaces the instantaneous
gradient with an averaged (integrated) gradient (Anonymized, 2025), as formally defined in Ap-
pendix A, yielding a drop-in modification portable to both first-order and second-order optimizers.

Building on our earlier results (Anonymized, 2025), we broaden the analysis and applications
of averaged gradients. Our contributions are: (a) Batch-local efficiency: Significant improve-
ments in batch-loss minimization for first- and second-order optimization, enabling rapid test-time
adaptation on a fixed batch. (b) Generalization: On ResNet-152 fine-tuning, generalization im-
proves with lower per-step compute and simpler parallelization than Sharpness–Aware Minimiza-
tion (SAM) (Foret et al., 2021), at the expense of additional memory; most competing techniques
are not designed to integrate cleanly with modern second-order optimizers (Vyas et al., 2024; Zhang
et al., 2023; Gupta et al., 2018). (c) Multi-update approximation: Despite prior math foun-
dations (Anonymized, 2025), we show a single step of our algorithm can approximate multiple
predicted updates at a cost close to two standard updates, and we introduce a more stable, faster
variant that averages gradients for the current batch over hundreds of recent training iterations.
(d) Activation-level impact: Experiments indicate that averaging at the activation level is partic-
ularly important for training efficiency, with theoretical support. (e) Depth-related pathologies:
Our method targets depth-induced degeneracies (“singularity problems”) (Oyedotun et al., 2021).
(f) Applications: We outline additional use cases in Section 5.

As our approach necessitates modifying the backpropagation procedure, existing implementations
of various architectures could not be directly reused. Therefore, we focus on a limited set of models
primarily based on convolutional layers, as detailed in Section 6.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Momentum (EMA of gradients). Momentum (Liu et al., 2020) maintains an exponential moving
average of past gradients across successive iterations (typically over different mini-batches) and
can accelerate convergence while reducing oscillations in ill-conditioned directions. In contrast,
our approach averages the gradient for a fixed batch along a continuous path in parameter space;
momentum aggregates gradients across distinct batches rather than along a parameter trajectory.

Polyak–Ruppert averaging (parameter iterates). Averaging model parameters over many up-
dates (Polyak–Ruppert) can stabilize training and improve generalization in certain settings (Rup-
pert, 1988; Polyak & Juditsky, 1992; Merity et al., 2017; Li et al., 2023; Sun et al., 2010). This
procedure is orthogonal to update computation and can be layered atop any optimizer. Our work
instead targets the update itself by modifying backpropagation to approximate a parameter-path av-
eraged gradient.

Perturbated Unit Gradient Descent (PUGD). Let g(θ) = ∇θℓ(θ) denote the gradient of the loss
ℓ for the current batch. PUGD computes the unit-normalized sum of g(θ) and g(θ + |θ| ⊙ g(θ)),
where the perturbation is applied elementwise (Tseng et al., 2022). Unlike PUGD, our method aver-
ages the gradient along a broader, continuous path in parameter space using a distinct approximation.

Two–gradient tuning strategies. Several techniques modulate updates using exactly the two most
recent gradients and are implemented as modifications to Adam-style optimizers (Kingma & Ba,
2014). DiffGrad attenuates parameter updates when the current and previous gradients are similar
in magnitude (Dubey et al., 2019). SigSignGrad computes an elementwise scaling factor from the
sign agreement between the last two gradients, mapping it through a sigmoid or tanh to adjust the
update (Zheng et al., 2024). AngularGrad scales steps based on the angle between two consecutive
gradients to mitigate zig–zagging in the optimization trajectory (Roy et al., 2021). In contrast, our
approach changes the backpropagation rule to approximate a parameter-path averaged gradient.

Predicting future gradients. Another approach that modifies the backpropagation phase in first–
order optimization is weight prediction (Guan et al., 2024), which computes gradients at predicted
future weights rather than at the current parameters. In this method, weights are first extrapolated
forward according to several successive parameter updates, and a single backward pass is then per-
formed at these predicted weights to obtain the update.

Sharpness-aware optimization. Many of the above methods can improve generalization by im-
plicitly biasing optimization toward flatter local minima. The sharpness of a minimum is correlated
with a model’s generalization ability (Foret et al., 2021; Kim et al., 2022), and flatter minima tend to
yield greater robustness to noise in the data domain. Sharpness-Aware Minimization (SAM) explic-
itly exploits this by adding an adversarial perturbation step and requires two backpropagations per
iteration (Foret et al., 2021). SAM variants report significant generalization improvements (Foret
et al., 2021; Kim et al., 2022).

Integrated gradients in feature space. Integrated Gradients (IG) applied to feature maps are
widely used for neural network explainability (Sundararajan et al., 2017; Khorram et al., 2021; Sat-
tarzadeh et al., 2021). These methods approximate the integral of the gradient along an input or
feature-space path using a discrete Riemann sum (Hughes-Hallett et al., 2021), which is computa-
tionally inefficient for execution at every training step. To the best of our knowledge, IG has not
been used to train neural networks.

Second–order optimizers. Second–order optimizers aim to capture finer-grained curvature infor-
mation than first–order methods. Top results have been obtained by SOAP (Vyas et al., 2024) and
the lightweight Eva method (Zhang et al., 2023), in the line of work that includes Shampoo (Gupta
et al., 2018) and K–FAC (Martens & Grosse, 2015a; Grosse & Martens, 2016). See Appendix I for
more details.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Contrast with our approach. In contrast to our method, none of the cited algorithms modifies the
backpropagation procedure itself or approximates an averaged gradient in terms of model parameters
over a broader continuous range between two parameter states on a fixed training batch.

3 METHODS

3.1 COMPUTING MULTIPLE PARAMETER UPDATES AT ONCE

Let us consider n successive weight updates on a fixed training batch, excluding momentum. For
many optimizers with constant learning rate η,

∆θ(t−n+1:t) =

t∑
i=t−n+1

∆θ(i) =

t∑
i=t−n+1

−ηH(i)∇θℓ
(
θ(i)

)
≈ − ηH(t−n+1)

t∑
i=t−n+1

∇θℓ
(
θ(i)

)
≈ −n ηH(t−n+1)

∫ 1

0

∇θℓ
(
θ(t−n+1) + x(θ(t) − θ(t−n+1))

)
dx,

= −nηH(t−n+1) AVG
ϑ∈[θ(t−n+1),θ(t)]

∇ϑℓ(ϑ)

(1)
where H(i) is a slowly varying preconditioner (an inherent component of optimizers such as RM-
SProp (Tieleman & Hinton, 2012), Adam (Kingma & Ba, 2014), SOAP, Eva, K–FAC, and Shampoo;
see Appendix E, which shows that these optimizers can be expressed as matrix multiplications). We
refer to the integral as AVG(·)(·) (Appendix A). Let u be the time for one forward–backward pass;
our approximation computes ∆θ(t−n+1:t) in O(2u) time, versus O(nu) for methods requiring n
backpropagations.

3.2 GRADIENT AVERAGING

In the further equations, we assume a fixed sampled batch, thus we do not write it explicitly as
a parameter. In our algorithm, given a plain feedforward neural network, the average gradient is
approximated and propagated according to (Anonymized, 2025):

AVGϑ∈[θ,θ′]∇ϑk
ℓ(ϑ) ≈ AVGϑ∈[θ,θ′]

∂xk(ϑ)
∂ϑk

AVGϑ∈[θ,θ′]
∂xk+1(ϑ)
∂xk(ϑ)

·
AVGϑ∈[θ,θ′]

∂xk+2(ϑ)
∂xk+1(ϑ)

· . . . · AVGϑ∈[θ,θ′]
∂xn(ϑ)

∂xn−1(ϑ)
AVGϑ∈[θ,θ′]∇xn(ϑ)ℓ(ϑ)

(2)

where ℓ is the loss function, ϑk are the parameters of layer k, and (xk,xk+1, . . . ,xn) are layer
outputs, treating each activation as a distinct layer. The notation ∇xf denotes the gradient of f
with respect to x, and ∂f

∂x denotes the Jacobian matrix of the vector-valued function f , where the ith

column corresponds to the gradient vector∇xfi. The operator AVG is defined in Appendix A.

See Appendix B for the details about efficient approximation of each averaging term of Eq. 2. How-
ever, the calculations will be introduced also further in pseudocode.

The average gradients are propagated in the same manner as gradients in the standard backpropa-
gation algorithm. Computation based on Eq. 2 is fast and memory-efficient because the procedure
mirrors standard backpropagation, which is performed as:

∇θkℓ =
∂xk

∂θk
· ∂xk+1

∂xk
· . . . · ∂xn

∂xn−1
· ∇xnℓ, (3)

where “·” denotes standard matrix multiplication.

We use multiple algorithm versions for different purposes: (a) AG–1: the averaging range is be-
tween the parameter state before an update and the state after a single update forecasted by the base
optimizer (Alg. 2, Appendix C). The sign of the parameter update matches the sign of the average
gradient. This variant was introduced in (Anonymized, 2025). We use it to assess whether the av-
eraged gradient efficiently minimizes the loss for a given batch. Since the averaging range is not
spanned by the final applied update, this evaluates how universal the averaged-gradient direction
is for batch loss reduction. (b) AG–2: identical to AG–1, but the step uses the averaged gradient
(magnitude and direction), rather than only its sign (Alg. 2, Appendix C). Other properties remain

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

consistent with AG–1. (c) Linear variants: methods with “linear” in the name use Eq. 11 (in
Appendix B) instead of Eq. 10, to approximate the averaged gradient through linear layers (fully
connected, convolutional) more accurately. (d) AG–3: the averaging range spans multiple past
updates (Alg. 1). Each new step refines several previous updates using broader loss–landscape in-
formation, in contrast to standard gradient descent which optimizes only at the current parameters
without explicitly accounting for earlier updates. (e) AG–3–1: the AG–3 variant in which the av-
eraging range is spanned by the most recent weight update.
The source code for this project is publicly available on GitHub at [ANONYMIZED for ICLR2026
review].

Algorithm 1 Single step in the AG–3 variant for a plain feedforward neural network.

Input: Model with n layers f = (f1, f2, . . . , fn), Parameters of the model θ(t), optimizer’s state s(t),
Number of iterations corresponding to the minimal width of the averaging range d

Output: θ(t+1), s(t+1)

1: Sample a batch B(t).
2: (x

(t)
1 ,x

(t)
2 , . . . ,x(t)

n) = f(θ(⌊t/d⌋·d−d), B(t)) {Compute outputs of each layer of the model.
Assume that xi is a vector. Use the saved weights from iteration number (⌊t/d⌋ · d− d) to
retrieve parameters from d to 2d iterations prior. If (⌊t/d⌋ · d− d) < 0, then use θ(0).}

3: (x
′(t)
1 ,x

′(t)
2 , . . . ,x′(t)

n) = f(θ(t), B(t)) {Compute the same for θ(t).}
4: G

′(t)
x,n ← ∇x′

n
ℓ(x′

n, B
(t)) {Compute the gradient of the last layer using new weights}

5: for i← n to 1 step −1 do {Iterate over layers to compute estimated average gradient.}
6: if fi is an activation then {G′(t)

θ,i = ∅}

7: G
′(t)
x,i−1 ←

x
′(t)
i − x

(t)
i

x
′(t)
i−1 − x

(t)
i−1

◦G′(t)
x,i {Local approximation of the average gradient

(Equation 8). If (x′(t)
i−1,j = x

(t)
i−1,j), then G

′(t)
x,(i−1,j) ←

∂x
′(t)
i,j

∂x
′(t)
i−1,j

G
′(t)
x,(i,j)}

8: else {Propagate gradient backwards without averaging}

9: G
′(t)
x,i−1 ←

∂x
(t)
i

∂x
(t)
i−1

G
′(t)
x,i , G

′(t)
θ,i ←

∂x
(t)
i

∂θ
(t)
i

G
′(t)
x,i {Equation 10}

10: end if
11: end for
12: (θ(t+1), s(t+1))← optimizer(s(t), θ(t), G

′(t)
θ) {Update weights and optimizer’s state}

13: if t%d = 0 then {Once every d iterations}
14: Save θ(t) to disk and remove θ(t−2d). If t ≥ d, load θ(t−d) into host memory (CPU RAM) or

device memory (GPU VRAM) depending on the execution target.
15: end if

See Appendix F for a comparison of computational time and memory usage across the evaluated
methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We test our method on multiple model architectures based on convolutional and fully–connected
layers with different activation functions (see Tab. 1). The reasons for choosing these architectures
are: (1) Model A: Shallow CNN used to assess learning in a loss landscape with less pronounced
nonlinearity than deeper counterparts. (2) Model B: Tractable optimization task engineered to ex-
hibit Shattered Gradients (Balduzzi et al., 2017) and singularity–related effects (Oyedotun et al.,
2021; Yasrab, 2019), via repeated blocks of 10 tanh units in the linear stack. (3) Model C: Com-
putationally tractable NLP optimization task exhibiting singularity–related phenomena (Oyedotun
et al., 2021; Yasrab, 2019). (4) ResNet–152: Selected due to: (a) Implementation practicality:
Significantly easier than Vision Transformers (ViTs) (Dosovitskiy et al., 2021) to implement from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

scratch within our framework for modifying backpropagation logic (see Section 6). (b) Depth sen-
sitivity: High layer count complicates optimization (Oyedotun et al., 2021), motivating methods
that scale robustly with depth. (c) Baseline strength: ResNets often outperform ViTs (Dosovitskiy
et al., 2021) when training from scratch or without large–scale pretraining; in such settings, ViTs
“yield modest accuracies of a few percentage points below ResNets of comparable size” (Doso-
vitskiy et al., 2021; Chen et al., 2022b). (d) Headroom for generalization: SAM typically yields
smaller generalization gains on ResNets than on ViTs (Chen et al., 2022a), underscoring the need
for complementary methods. (e) Maturity: Well–established and well–understood architecture.

Table 1: All model architectures investigated in this study.

Model Architecture Summary Datasets
Parameter

Count

Model A
6×Convolution 2D + ELU

1×Linear
MNIST,

Fashion MNIST 17 506

Model B

2×Convolution 2D + ELU
2×Max Pooling 2D
28×Linear + Tanh

MNIST,
Fashion MNIST 8 228

Model C
41×Convolution 2D + Tanh

5×Linear + Tanh
IMDb

(Maas et al., 2011) 14 397

ResNet–152
ResNet–152–GELU
ResNet–152–SiLU
ResNet–152–Sig

151×Convolution 2D + ReLU/GELU/
SiLU/Sigmoid (with Batch Normalization)
1×Max Pooling 2D, 1×Avg Pooling 2D

1×Linear

Imagenet–OOD
(Yang et al., 2023)

Fine–Tuning 60 192 808

We implemented our method in multiple optimizers: (a) SOAP, a promising second–order method
that maintains a higher–dimensional empirical Fisher information matrix (eFIM; see Appendix I)
approximation than Eva, at higher computational cost (Zhang et al., 2023; Vyas et al., 2024). Al-
though SOAP was evaluated primarily on LLM training in the original paper (Vyas et al., 2024), we
observed strong generalization across most of our experiments. (b) Adam. (c) RMSProp.

We conducted extensive learning–rate searches for baseline methods and selected variants, targeting
average training–loss minimization to assess sample efficiency. Importantly, we report all tested
models rather than cherry–picking best–performing ones. For ResNet–152, we additionally tuned
SOAP using test–loss minimization to verify consistency with the training–loss search. Unless stated
otherwise, our algorithms use learning rates optimal for the gradient direction, biasing comparisons
in favor of gradient baselines. Final trainings were repeated up to 200 times per (model, dataset,
optimizer) combination.

The main metrics we compute are: (a) Relative sample efficiency: For two algorithms, divide the
best-loss epoch of one by the matching-loss epoch of the other. Compute this ratio for both mean and
median losses, and report the geometric mean of the two ratios. Repeat over all contiguous epoch
ranges that start at epoch 1 and report the arithmetic average of the resulting ratios. (b) Relative
batch-loss minimization improvement: For each training step, compare batch-loss improvement
across two optimizers at the same parameters on a fixed batch, by constraining the L1 norm of the
parameter update vector (∥∆θ∥1) to be equal for both. (c) Accuracy.

Experiments ran on NVIDIA RTX 3070 8GB, NVIDIA A100 80GB, and NVIDIA H100 96GB
GPUs; 80GB VRAM is sufficient for all experiments. See Appendix J for further details on experi-
mental settings.

All error bars and ± values indicate standard errors of the mean (SEM), computed across indepen-
dent runs for each configuration.

4.2 RESULTS

Variants utilizing forward–looking updates, AG–1 and AG–2, achieved strong batch-loss minimiza-
tion improvements compared to all tested gradient–based optimizers across all tested deep models
(see the “Relative Batch–Loss Minimization Improvement” column in Tabs. 2, 3, and 4). After
switching ReLU activations to sigmoid on ResNet–152, these improvements were preserved for AG–
1 and AG–2 (Tab. 5, Appendix D). Across all deep models, improvements range from (2.23±0.01)%

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

to (38.5± 4.7)%, measured at matched update step lengths, as indicated by the “Relative Avg. Step
Length” column in Tabs. 2, 3, 4, and 5.

Table 2: Comparison of training efficiencies of various algorithms on Model B (fully connected deep
neural network with Tanh activations). ± values indicate SEM across independent runs.

Dataset
Training

Algorithm

Relative1

Batch–Loss
Minimization
Improvement

Relative1 Sample
Efficiency and

Baseline Algorithm

LR
Optimized

For

Relative1 Avg.
Step Length
L1 and L2

MNIST

RMSProp AG–1 (11.3± 1.8)% 444% (of RMSProp) AG–1 100% 100%
393% (of Adam)

RMSProp AG–1 Linear (38.5± 4.7)% 67.2% (of RMSProp) AG–1 100% 100%
RMSProp AG–2 (30.0± 2.8)% 399% (of RMSProp) AG–1 100% 99.7%

Soap AG–2 (11.9± 0.2)% 132% (of Soap) Gradient 100% 98.9%
1213% (of Adam)

Soap AG–2 Linear (53.5± 0.1)% 24.9% (of Soap) Gradient 100% 98.0%

Fashion
MNIST

RMSProp AG–1 (15.0± 1.7)% 474% (of RMSProp) AG–1 100% 100%
436% (of Adam)

RMSProp AG–1 Linear (18.0± 3.1)% 0% (of RMSProp) AG–1 100% 100%
RMSProp AG–2 (23.2± 2.2)% 439% (of RMSProp) AG–1 100% 99.7%

Soap AG–2 (4.76± 0.08)% 83.7% (of Soap) Gradient 100% 99.0%
Soap AG–2 Linear (26.4± 0.8)% 32.8% (of Soap) Gradient 100% 98.6%

Table 3: Efficiency comparison of training algorithms for Model C (a deep convolutional neural
network with Tanh activations trained on the IMDb dataset). ± denotes SEM across runs.

Training
Algorithm

Relative1

Batch–Loss
Minimization
Improvement

Relative1 Sample
Efficiency and

Baseline Algorithm

LR
Optimized

For

Relative1 Avg.
Step Length
L1 and L2

RMSProp AG–1 (3.94± 0.53)% 135% (of RMSProp) AG–1 100% 100%
109% (of Adam)

RMSProp AG–1 Linear (7.34± 1.99)% 71.6% (of RMSProp) AG–1 100% 100%
RMSProp AG–2 (3.99± 0.62)% 81.5% (of RMSProp) AG–1 100% 100%

Soap AG–2 (4.47± 1.87)% 31.7% (of Soap) Gradient 100% 101%
Soap AG–2 Linear (32.9± 6.1)% 11.2% (of Soap) Gradient 100% 98.6%

Table 4: Efficiency comparison of training algorithms for ResNet–152. ± denotes SEM across runs.

Training
Algorithm

Relative1

Batch–Loss
Minimization
Improvement

Relative1 Sample
Efficiency and

Baseline Algorithm

LR
Optimized

For

Relative1 Avg.
Step Length
L1 and L2

RMSProp AG–1 (2.23± 0.01)% 69.9% (of RMSProp) Gradient 100% 100%
RMSProp AG–1 Linear (7.07± 0.08)% 0% (of RMSProp) Gradient 100% 100%

RMSProp AG–2 (3.92± 0.02)% 0% (of RMSProp) Gradient 100% 99.8%
RMSProp AG–2 Linear (8.06± 1.30)% 0% (of RMSProp) Gradient 100% 99.4%

Adam AG–2 (3.02± 0.01)% 99.7% (of Adam) Gradient 100% 100%
Adam AG–2 Linear (3.50± 0.01)% 98.1% (of Adam) Gradient 100% 100%

Soap AG–1 (11.4± 0.0)% 27.9% (of Soap) Gradient 100% 100%
Soap AG–1 Linear (6.16± 0.14)% 0% (of Soap) Gradient 100% 100%

Soap AG–2 (5.32± 0.01)% 36.6% (of Soap) Gradient 100% 100%
Soap AG–2 Linear (13.8± 0.62)% 0% (of Soap) Gradient 100% 102%

1All relative metrics are reported relative to gradient–based counterpart methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) SOAP AG–3 variant. (b) SOAP AG–3 variant preconditioned ev-
ery batch.

(c) SOAP AG–3 without momentum. (d) Adam AG–3 and RMSProp AG–3.

Figure 1: Test accuracy plots of ResNet–152 with confidence ranges (SEM). Each plot includes
Adam and RMSProp as additional baseline algorithms. In all presented experiments, learning rates
are optimized for gradient-based optimizers.

For shallow Model A on MNIST and Fashion MNIST, the AG–1, AG–2, AG–3–1, and AG–3 vari-
ants using RMSProp or SOAP achieved performance comparable to gradient-based counterparts
across all measured metrics.

Sample efficiency indicates the speed of loss minimization over the full training dataset. Forward–
looking updates (AG–1, AG–2) yielded mixed outcomes across experiments. High sample–
efficiency gains were observed for several RMSProp runs on Models B and C (Tabs. 2, 3). For
example, on Model B with RMSProp, AG–1 improved sample efficiency by more than 4.5× on
average, exceeding Adam by over 4× (Tab. 2; Figs. 2a, 2c), at approximately 2× the per–epoch
compute relative to gradient–based RMSProp (see Appendix F for computational and memory com-
parisons). For Model B on MNIST, SOAP’s sample efficiency improved by 32% (Tab. 2; Fig. 2a),
with a corresponding reduction in test loss (Fig. 2b). In other settings, SOAP with AG–2 under-
performed its baseline. Despite this variability, the forward–looking variants consistently meet their
mathematical objective: efficient batch–loss minimization at matched step lengths.

Backward–looking updates (AG–3) tend to improve generalization on ResNet–152 (ReLU) across
all tested optimizers and experimental setups (see Fig. 1). Accuracy gains of about 0.4% were
achieved for SOAP AG–3 (Fig. 1a) and for AG–3 paired with SOAP preconditioning applied every
batch (Fig. 1b). Although the improvement may appear modest, it is nearly equal to the gain pro-
vided by momentum in Adam (Fig. 1d); note that Adam without adaptive momentum corresponds to
RMSProp (Kingma & Ba, 2014; Tieleman & Hinton, 2012). Moreover, the improvement is roughly
one third of the accuracy gap between first–order and second–order optimization observed in our
experiments, despite using the optimal learning rate for the gradient.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Higher generalization improvements on ResNet–152 occur when momentum is paired with our gra-
dient averaging, and they are also more pronounced with SOAP. These experiments suggest that the
approximation of averaged gradients preserves acceptable accuracy across a wide range of 300–600
past updates. In the respective experiments, we also observed modest sample–efficiency improve-
ments ranging from 0.6% to 2.9%, all statistically significant.

Despite our averaged–gradient implementation not being computationally optimized, SOAP with
AG–3 preconditioned at every batch is approximately 21% slower than its gradient–based counter-
part on ResNet–152 (see Appendix F for additional comparisons). Notably, this configuration has
been reported as a strong generalization setting for SOAP on certain large language models (Vyas
et al., 2024).

Using standard gradients, we fine–tuned ResNet–152 with Adam and RMSProp (each with separate
learning–rate searches) under SiLU and GELU activations, both of which generally preserve non–
zero gradients across their domains. In these models, the test accuracy of gradient–based Adam
matched that of the ReLU–based ResNet–152. By contrast, replacing ReLU with either SiLU or
GELU increased the test accuracy of gradient–based RMSProp, although the results did not sur-
pass Adam across any of the three activation functions when using standard gradients. This sug-
gests that preserving non–zero gradients may not provide additional benefit when training with the
strongest first–order optimizer, Adam. Nevertheless, these experiments are not fully conclusive,
since ResNet–152 was pretrained with ReLU, which may bias fine–tuning performance in favor of
ReLU activations.

For other models, AG–3 maintained stable learning and did not visibly worsen performance relative
to gradient baselines, except when the averaging range was excessively wide. AG–3–1 improved
sample efficiency in selected scenarios—for example, with RMSProp on Model B (see Fig. 2, Ap-
pendix G).

Across all experiments, despite the “Linear” variants achieving more efficient batch–loss minimiza-
tion, they yielded worse overall performance on the full dataset (see Tabs. 2, 3, 4, 5).

5 DISCUSSION

Across all deep models tested, our forward–looking AG–1 and AG–2 variants consistently delivered
significant batch-loss improvements over gradient-based baselines with both first– and second–order
optimizers. These results indicate that the averaged gradient encodes useful local structure of the
loss landscape that remains informative even when the update step is modified (as in our algorithms).
Within short–horizon objectives, where the goal is to reduce loss in one or a few steps, our method
can outperform Adam and SOAP under matched step lengths with learning rates tuned for gradient
baselines.

This short–term advantage has practical implications. After reaching full context length in an in–
context learning task (Wies et al., 2023) without solving the prompt, a single or a few training
updates can be applied to correct errors accumulated across the context, improving immediate ac-
curacy without full retraining. Similarly, efficient batch–loss reduction relative to step length makes
the approach suitable for test–time adaptation to new tasks (Finn et al., 2017; Nichol et al., 2018;
Raghu et al., 2020), where limited updates are available and rapid improvement is critical.

Backward–looking gradient averaging (AG–3) yields accuracy improvements on ResNet–152.
These gains are noteworthy given that, across our ResNet–152 trainings, total accuracy increased by
35 absolute percentage points (pp), primarily via knowledge transfer (fine–tuning). Thus, a 0.4 pp
gain during second–order fine–tuning may be broadly comparable in magnitude under differing set-
tings to the 1.2–1.9 pp improvements reported for SAM on ResNet–152 under first–order ImageNet
training (Foret et al., 2021). Moreover, fine–tuning tasks typically exhibit smaller error reductions
with SAM than full ImageNet training (Foret et al., 2021), and improvements over second–order
baselines are generally harder to obtain.

Relative to SAM, AG–3 is less computationally demanding because it avoids the per–step pertur-
bation overhead (i.e., the extra backward pass needed to compute weight perturbation); see Ap-
pendix F. Furthermore, AG–3 admits efficient parallelization: the averaging step (second line of
Alg. 2) can be computed on upcoming batches in parallel with the main training loop, leaving the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

remaining procedure computationally equivalent to a typical update. The main trade–off is memory:
maintaining an averaged gradient over past updates increases the memory footprint, which can be
reduced by accumulating the averaged gradient iteratively over sub–batches.

The averaged gradient over multiple past updates captures local sharpness along the recent opti-
mization trajectory. AG–3 can be interpreted as minimizing the trajectory-averaged loss over a
short horizon, which encourages flatter slopes and, consequently, can bias updates toward flatter
local minima—an effect broadly linked to improved generalization (Foret et al., 2021).

On ResNet–152, the per–batch preconditioned SOAP AG–3 (non–optimized) variant is approxi-
mately 21% slower than its gradient–based counterpart, and has been reported as a strong general-
ization setting for SOAP on some large language models (Vyas et al., 2024). In high–dimensional
regimes or with computationally intensive second–order preconditioning, this additional averaging
overhead remains modest in practice.

There are two interesting avenues for future work related to SAM: (a) Compute the average gradient
over the range of SAM perturbations, thereby estimating the “true” average sharpness of the sur-
rounding loss–landscape geometry. Importantly, incorporating the average gradient into SAM does
not increase computational cost relative to SAM itself, though it does increase memory requirements
(see Appendix F). (b) Compute the average gradient over the range between two perturbed param-
eter values originating from different training iterations, which could provide a trajectory–aware
measure of sharpness and potentially stabilize optimization across steps.

Both forward–looking (AG–1, AG–2) and backward–looking (AG–3) updates achieved more than a
4× reduction in the number of epochs on two datasets for Model B under first–order optimization.
These results support Eq. 1, indicating that multiple updates can be approximated by a single step
using an averaged gradient estimated via a procedure based either on two backpropagations (Alg. 1)
or a single backpropagation (Alg. 2). For Model B, the optimally implemented AG–3–1 in first–
order experiments is estimated to require roughly 3× less wall–clock time to convergence, with a
modest memory overhead (see Appendix F) that can be mitigated via online gradient accumulation.
Model B proved the most difficult to optimize among our tested architectures due to attenuated
singularity issues (Oyedotun et al., 2021). Notably, we also observe significant sample–efficiency
gains in first–order optimization for Model C.

Variants of our method that focus solely on gradient averaging at activations achieved better full–
dataset performance across all experiments compared to the “Linear” variants. A plausible mecha-
nism is that averaging gradients across multiple parameter vectors (equivalently, taking the elemen-
twise average of per–layer diagonal activation Jacobians) can turn diagonal entries that are zero at
a given vector into positive values in the average, thereby increasing algebraic rank (each newly
nonzero diagonal entry in a diagonal matrix adds one to the rank) and mitigating singularity prob-
lems (Oyedotun et al., 2021) such as rank deficiency and severe ill–conditioning. At the activation
layer, elementwise averaging in the backward pass preserves every coordinate retained by any in-
dividual diagonal Jacobian. Equivalently, its kernel is the intersection of the individual kernels, so
more coordinate directions survive. Consequently, the chained Jacobian factors in Eq. 3 transmit
signal along more directions unless later layers annihilate those coordinates. This effect depends
on the involved parameter vectors inducing complementary activation patterns and on the absence
of near–exact cancellation; the latter holds automatically at the diagonal stage for activations with
nonnegative derivatives (e.g., ReLU, sigmoid, tanh).

For the shallow Model A, the gradient is approximately equal to the average gradient, thereby ac-
counting for the comparable performance observed across methods.

6 LIMITATIONS

A primary limitation of our work is the implementation complexity required to ensure computa-
tional efficiency and portability across diverse architectures. We did not reimplement attention
layers (Vaswani et al., 2017) within our framework or extend to full Transformer models, owing
to the need to reconstruct the gradient–computation graph for each architecture and the absence of
tooling to automate that process. Such extensive reimplementations are time–consuming and may
affect reproducibility due to potential algorithmic and model divergences, as well as implementation
instability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998. doi:10.1162/089976698300017746.

Anonymized. Towards enhancing rmsprop with forward-looking gradient updates for complex loss
landscapes, 2025. under review, details omitted for double-blind review.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian
McWilliams. The shattered gradients problem: If resnets are the answer, then what is the
question? In International conference on machine learning, pp. 342–350. PMLR, 2017.
doi:10.48550/arXiv.1702.08591.

Richard H Byrd, Jorge Nocedal, and Robert B Schnabel. Representations of quasi-newton matrices
and their use in limited memory methods. Mathematical Programming, 63(1):129–156, 1994.
doi:10.1007/BF01582063.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. In International Conference on Learning Rep-
resentations, 2022a. URL https://openreview.net/forum?id=LtKcMgGOeLt.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. In International Conference on Learning Rep-
resentations, 2022b. URL https://openreview.net/forum?id=LtKcMgGOeLt.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi:10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Shiv Ram Dubey, Soumendu Chakraborty, Swalpa Kumar Roy, Snehasis Mukherjee, Satish Kumar
Singh, and Bidyut Baran Chaudhuri. diffgrad: an optimization method for convolutional neural
networks. IEEE transactions on neural networks and learning systems, 31(11):4500–4511, 2019.
doi:10.48550/arXiv.1909.11015.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
mization for efficiently improving generalization. Proceedings of the 9th International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
6Tm1mposlrM.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convo-
lution layers. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 573–582, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/grosse16.html.

Lei Guan, Dongsheng Li, Yanqi Shi, and Jian Meng. Xgrad: Boosting gradient-based optimizers
with weight prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(10):
6731–6747, 2024. doi:10.1109/TPAMI.2024.3387399.

10

https://doi.org/10.1162/089976698300017746
https://doi.org/10.48550/arXiv.1702.08591
https://doi.org/10.1007/BF01582063
https://openreview.net/forum?id=LtKcMgGOeLt
https://openreview.net/forum?id=LtKcMgGOeLt
https://doi.org/10.1109/CVPR.2009.5206848
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.48550/arXiv.1909.11015
http://jmlr.org/papers/v12/duchi11a.html
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://proceedings.mlr.press/v48/grosse16.html
https://doi.org/10.1109/TPAMI.2024.3387399

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor op-
timization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
1842–1850. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
gupta18a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016. doi:10.1109/CVPR.2016.90.

Deborah Hughes-Hallett, Andrew M Gleason, Patti Frazer Lock, and Daniel E Flath. Applied cal-
culus. John Wiley & Sons, 2021. URL https://books.google.com/books/about/
Applied_Calculus.html?id=TtxCEAAAQBAJ.

Nikhil Ketkar. Stochastic gradient descent. Deep learning with Python: A hands-on introduction,
pp. 113–132, 2017. doi:10.1007/978-1-4842-2766-4_8.

Saeed Khorram, Tyler Lawson, and Li Fuxin. igos++ integrated gradient optimized saliency by
bilateral perturbations. In Proceedings of the Conference on Health, Inference, and Learning, pp.
174–182, 2021. doi:10.48550/arXiv.2012.15783.

Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
and sharpness aware minimisation. In International Conference on Machine Learning, pp. 11148–
11161. PMLR, 2022. doi:10.48550/arXiv.2206.04920.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014. doi:10.48550/arxiv.1412.6980.

Xiang Li, Wenhao Yang, Jiadong Liang, Zhihua Zhang, and Michael I. Jordan. A statistical analysis
of polyak-ruppert averaged q-learning. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de
Meent (eds.), Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, volume 206 of Proceedings of Machine Learning Research, pp. 2207–2261. PMLR,
25–27 Apr 2023. URL https://proceedings.mlr.press/v206/li23b.html.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent
with momentum. Advances in Neural Information Processing Systems, 33:18261–18271, 2020.
doi:10.48550/arXiv.2007.07989.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human language technologies, pp. 142–150. Association
for Computational Linguistics, 2011. URL https://aclanthology.org/P11-1015/.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015a.
doi:10.48550/arXiv.1503.05671.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
2408–2417, Lille, France, 07–09 Jul 2015b. PMLR. URL https://proceedings.mlr.
press/v37/martens15.html.

James Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pp. 735–742,
2010. doi:10.5555/3104322.3104425.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017. doi:10.48550/arXiv.1708.02182.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms, 2018.
URL https://arxiv.org/abs/1803.02999.

11

https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
https://doi.org/10.1109/CVPR.2016.90
https://books.google.com/books/about/Applied_Calculus.html?id=TtxCEAAAQBAJ
https://books.google.com/books/about/Applied_Calculus.html?id=TtxCEAAAQBAJ
https://doi.org/10.1007/978-1-4842-2766-4_8
https://doi.org/10.48550/arXiv.2012.15783
https://doi.org/10.48550/arXiv.2206.04920
https://doi.org/10.48550/arxiv.1412.6980
https://proceedings.mlr.press/v206/li23b.html
https://doi.org/10.48550/arXiv.2007.07989
https://aclanthology.org/P11-1015/
https://doi.org/10.48550/arXiv.1503.05671
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://doi.org/10.5555/3104322.3104425
https://doi.org/10.48550/arXiv.1708.02182
https://arxiv.org/abs/1803.02999

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Oyebade Oyedotun, Kassem Al Ismaeil, and Djamila Aouada. Training very deep neu-
ral networks: Rethinking the role of skip connections. Neurocomputing, 441, 02 2021.
doi:10.1016/j.neucom.2021.02.004.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992. doi:10.1137/0330046.

B.T. Polyak. Newton’s method and its use in optimization. European Jour-
nal of Operational Research, 181(3):1086–1096, 2007. ISSN 0377-2217.
doi:https://doi.org/10.1016/j.ejor.2005.06.076.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml, 2020. URL https://arxiv.org/abs/
1909.09157.

Swalpa Kumar Roy, Mercedes Eugenia Paoletti, Juan Mario Haut, Shiv Ram Dubey, Purbayan Kar,
Antonio Plaza, and Bidyut B Chaudhuri. Angulargrad: A new optimization technique for an-
gular convergence of convolutional neural networks. arXiv preprint arXiv:2105.10190, 2021.
doi:10.48550/arXiv.2105.10190.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical re-
port, Cornell University Operations Research and Industrial Engineering, 1988. URL https://
ecommons.cornell.edu/items/9a14790e-66a6-4460-9280-e9fb146fd02d.

Sam Sattarzadeh, Mahesh Sudhakar, Konstantinos N Plataniotis, Jongseong Jang, Yeonjeong Jeong,
and Hyunwoo Kim. Integrated grad-cam: Sensitivity-aware visual explanation of deep convolu-
tional networks via integrated gradient-based scoring. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1775–1779. IEEE, 2021.
doi:10.48550/arXiv.2104.02637.

Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127, 1950.
doi:10.1214/aoms/1177729893.

Xu Sun, Hisashi Kashima, Takuya Matsuzaki, and Naonori Ueda. Averaged stochastic gradient
descent with feedback: An accurate, robust, and fast training method. In 2010 IEEE international
conference on data mining, pp. 1067–1072. IEEE, 2010. doi:10.1109/ICDM.2010.26.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep net-
works. In International conference on machine learning, pp. 3319–3328. PMLR, 2017.
doi:10.48550/arXiv.1703.01365.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1–9, 2015. doi:10.1109/CVPR.2015.7298594.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5 – rmsprop: Divide the gradient by a running av-
erage of its recent magnitude, 2012. URL https://www.cs.toronto.edu/~hinton/
coursera_lectures.html. Lecture slides for Neural Networks for Machine Learning
(Coursera).

Ching-Hsun Tseng, Hsueh-Cheng Liu, Shin-Jye Lee, and Xiaojun Zeng. Perturbed gradients up-
dating within unit space for deep learning. In 2022 International Joint Conference on Neural
Networks (IJCNN), pp. 01–08. IEEE, 07 2022. doi:10.1109/IJCNN55064.2022.9892245.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 30, 2017. doi:10.48550/arXiv.1706.03762.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham M. Kakade. Soap: Improving and stabilizing shampoo using adam. ArXiv, abs/2409.11321,
2024. URL https://api.semanticscholar.org/CorpusID:272694107.

12

https://doi.org/10.1016/j.neucom.2021.02.004
https://doi.org/10.1137/0330046
https://doi.org/https://doi.org/10.1016/j.ejor.2005.06.076
https://arxiv.org/abs/1909.09157
https://arxiv.org/abs/1909.09157
https://doi.org/10.48550/arXiv.2105.10190
https://ecommons.cornell.edu/items/9a14790e-66a6-4460-9280-e9fb146fd02d
https://ecommons.cornell.edu/items/9a14790e-66a6-4460-9280-e9fb146fd02d
https://doi.org/10.48550/arXiv.2104.02637
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1109/ICDM.2010.26
https://doi.org/10.48550/arXiv.1703.01365
https://doi.org/10.1109/CVPR.2015.7298594
https://www.cs.toronto.edu/~hinton/coursera_lectures.html
https://www.cs.toronto.edu/~hinton/coursera_lectures.html
https://doi.org/10.1109/IJCNN55064.2022.9892245
https://doi.org/10.48550/arXiv.1706.03762
https://api.semanticscholar.org/CorpusID:272694107

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 36637–36651. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/73950f0eb4ac0925dc71ba2406893320-Paper-Conference.pdf.

William Yang, Byron Zhang, and Olga Russakovsky. Imagenet-ood: Deciphering mod-
ern out-of-distribution detection algorithms. arXiv preprint arXiv:2310.01755, 2023.
doi:10.48550/arXiv.2310.01755.

Robail Yasrab. Srnet: a shallow skip connection based convolutional neural network design
for resolving singularities. Journal of Computer Science and Technology, 34:924–938, 2019.
doi:https://doi.org/10.1007/s11390-019-1950-8.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=_Mic8V96Voy.

Hongye Zheng, Bingxing Wang, Minheng Xiao, Honglin Qin, Zhizhong Wu, and Lianghao Tan.
Adaptive friction in deep learning: Enhancing optimizers with sigmoid and tanh function. In
2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS),
pp. 809–813. IEEE, 2024. doi:10.48550/arXiv.2408.11839.

Federico Zocco and Seán McLoone. An adaptive memory multi-batch l-bfgs algorithm
for neural network training. IFAC-PapersOnLine, 53(2):8199–8204, 2020. ISSN 2405-
8963. doi:10.1016/j.ifacol.2020.12.1996. URL https://www.sciencedirect.com/
science/article/pii/S2405896320326276. 21st IFAC World Congress.

A DEFINITION OF AVERAGE GRADIENT/JACOBIAN

Let us define the average gradient of a function f : Rn → R over a parameter range [a, b], with
a, b ∈ Rm, via the mapping g : Rm → Rn, by

AVG
x∈[a,b]

∇g(x)f =

∫ 1

0

∇g(a+t·(b−a))f dt (4)

which can alternatively be written by switching the integration variable to any component xi of x,
via xi = ai + t · (bi − ai), yielding

AVG
x∈[a,b]

∇g(x)f =
1

bi − ai
·
∫ bi

ai

∇g(x)f dxi (5)

However, any case in which a vector component would cause division by zero should be handled
via Eq. 4.

If f(x) : Rn → Rl, then by applying Eq. 4 component-wise we get

AVG
x∈[a,b]

∂f

∂g(x)
= [AVG

x∈[a,b]
∇g(x)f1, AVG

x∈[a,b]
∇g(x)f2, . . . , AVG

x∈[a,b]
∇g(x)fl]

= [

∫ 1

0

∇g(a+t·(b−a))f1 dt,

∫ 1

0

∇g(a+t·(b−a))f2 dt, . . . ,

∫ 1

0

∇g(a+t·(b−a))fl dt]

=

∫ 1

0

∂f

∂g(a+ t · (b− a))
dt

(6)

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/73950f0eb4ac0925dc71ba2406893320-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73950f0eb4ac0925dc71ba2406893320-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2310.01755
https://doi.org/https://doi.org/10.1007/s11390-019-1950-8
https://openreview.net/forum?id=_Mic8V96Voy
https://doi.org/10.48550/arXiv.2408.11839
https://doi.org/10.1016/j.ifacol.2020.12.1996
https://www.sciencedirect.com/science/article/pii/S2405896320326276
https://www.sciencedirect.com/science/article/pii/S2405896320326276

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

or, alternatively, using Eq. 5:

AVG
x∈[a,b]

∂f

∂g(x)
= [AVG

x∈[a,b]
∇g(x)f1, AVG

x∈[a,b]
∇g(x)f2, . . . , AVG

x∈[a,b]
∇g(x)fl]

=
1

bi − ai
· [
∫ bi

ai

∇g(x)f1 dxi,

∫ bi

ai

∇g(x)f2 dxi, . . . ,

∫ bi

ai

∇g(x)fl dxi]

=
1

bi − ai

∫ bi

ai

∂f

∂g(x)
dxi

(7)

which holds for every i. However, if bi = ai, Eq. 6 must be used instead.

B COMPUTING AVERAGE GRADIENT

Our aim is to compute Eq. 2 efficiently and, where possible, with high precision. The calculations
up to Eq. 10 were introduced in our previous work (Anonymized, 2025).

Assume that the averaging interval is [θ, θ′]; see Appendix A for the formal definition, which aligns
with the intuitive notion of averaging across parameter values. The averaged derivatives of each
scalar, nonlinear activation are computed as follows:

AVG
ϑ∈[θ,θ′]

∂xk,i(ϑ)

∂xk−1,i(ϑ)
=

∫ 1

0

∂xk,i(θ + t · (θ′ − θ))

∂xk−1,i(θ + t · (θ′ − θ))
dt

=

∫ 1

0
∂xk,i(θ+t·(θ′−θ))

∂xk−1,i(θ+t·(θ′−θ))dt ·
∫ 1

0
∂xk−1,i(θ+t·(θ′−θ))

∂t dt∫ 1

0
∂xk−1,i(θ+t·(θ′−θ))

∂t dt

where xk−1,i and xk,i are the input and output of an activation, respectively. Both variables depend
on the complete set of model parameter values, denoted by ϑ.

We approximate xk−1,i(θ+ t · (θ′−θ)) as an affine (first-order) function of t, i.e. xk−1,i(θ+ t · (θ′−
θ)) ≈ α t + β, which implies ∂xk−1,i

∂t = α = const and therefore
∫ 1

0
∂xk−1,i

∂t dt =
∫ 1

0
αdt = α =

∂xk−1,i

∂t . Finally, this constant can be carried into the remaining integral
∫ 1

0
∂xk,i

∂xk−1,i
dt, yielding:

AVG
ϑ∈[θ,θ′]

∂xk,i(ϑ)

∂xk−1,i(ϑ)
≈

∫ 1

0
∂xk,i(θ+t·(θ′−θ))

∂xk−1,i(θ+t·(θ′−θ)) ·
∂xk−1,i(θ+t·(θ′−θ))

∂t dt∫ 1

0
∂xk−1,i(θ+t·(θ′−θ))

∂t dt

=

∫ 1

0
∂xk,i(θ+t·(θ′−θ))

∂t dt∫ 1

0
∂xk−1,i(θ+t·(θ′−θ))

∂t dt
=

xk,i(θ
′)− xk,i(θ)

xk−1,i(θ′)− xk−1,i(θ)

(8)

The main advantage of our approximation versus alternative schemes is that we never linearize the
partial derivative ∂xk,i

∂xk−1,i
in θ, θ′, or t; consequently, it captures the true dynamics of the gradients

more accurately. Moreover, the calculation is computationally efficient. Division–by–zero cases are
handled as described in Algorithms 1 and 2.

We assume that each activation is represented as a distinct kth layer, i.e., fk : Rm → Rm, where m
is the length of both representations xk−1 and xk. Its input is the output from the (k − 1)th layer,
given by xk−1(ϑ) = [xk−1,1(ϑ), xk−1,2(ϑ), ..., xk−1,n(ϑ)] which depends on the model parameters
ϑ. Then the average gradient of layer fk is given by:

AVGϑ∈[θ,θ′]
∂xk(ϑ)

∂xk−1(ϑ)
= diag([AVGϑ∈[θ,θ′]

∂xk,1(ϑ)
∂xk−1,1(ϑ)

,AVGϑ∈[θ,θ′]
∂xk,2(ϑ)

∂xk−1,2(ϑ)
, . . . ,

AVGϑ∈[θ,θ′]
∂xk,n(ϑ)

∂xk−1,n(ϑ)
])

(9)

where each term AVG(·) (·) is approximated in Eq. 8, and diag(·) denotes a diagonal matrix con-
structed from the input vector.

For method variants without “linear” in their names, we do not alter Jacobian terms associated with
affine or convolutional layers; instead, our modifications apply only to the backward pass through

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

activation functions. Assuming that the kth layer is a pointwise activation and that the (k−1)th layer
is either fully connected or convolutional, we extend the approximation of Eq. 2 accordingly:

AVGϑ∈[θ,θ′]
∂xk(ϑ)

∂xk−2(ϑ)
≈ ∂xk−1(θ)

∂xk−2(θ)
AVGϑ∈[θ,θ′]

∂xk(ϑ)
∂xk−1(ϑ)

AVGϑ∈[θ,θ′]
∂xk(ϑ)
∂ϑk−1

≈ ∂xk−1(θ)
∂θk−1

AVGϑ∈[θ,θ′]
∂xk(ϑ)

∂xk−1(ϑ)

(10)

This equation intuitively moves the approximated values closer to the gradient. Our goal is to obtain
an approximation of the average gradient that is more accurate than using the gradient directly as an
estimate. Therefore, if the precision of the approximation remains between that of the gradient and
our current estimate in Eq. 2, it satisfies our objective.

As an alternative to the unaveraged Jacobian terms in Eq. 10, ∂xk−1

∂xk−2
and ∂xk−1

∂θk−1
, the average gradient

for affine-parameterized layers can be approximated as:

AVGϑ∈[θ,θ′]
∂xk−1(ϑ)
∂xk−2(ϑ)

≈ 1
2

(∂xk−1(θ)
∂xk−2(θ)

+ ∂xk−1(θ
′)

∂xk−2(θ′)

)
AVGϑ∈[θ,θ′]

∂xk−1(ϑ)
∂ϑk−1

≈ 1
2

(∂xk−1(θ)
∂θk−1

+ ∂xk−1(θ
′)

∂θ′
k−1

) (11)

which is used by the variants labeled “linear”.

See Algorithms 2 and 1 for details on computing the average gradient.

C PSEUDOCODE FOR FORWARD–LOOKING ALGORITHM VARIANTS

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Single step of the forward–looking variants of our algorithm assuming a plain feedfor-
ward neural network. Different algorithm settings are marked in colors (AG–1 (Anonymized, 2025),
AG–2, and Linear).

Input: Model with n layers f = (f1, f2, . . . , fn), Parameters of the model θ(t), optimizer’s state s(t)

Output: θ(t+1), s(t+1)

1: Sample a batch B(t).
2: (x

(t)
1 ,x

(t)
2 , . . . ,x(t)

n) = f(θ(t), B(t)) {Compute outputs of each layer of the model. Assume
that xi is a vector.}

3: (G
(t)
θ , G(t)

x) = ∇(θ(t),x(t))ℓ(x
(t)
n , B(t)) {Calculate gradients.}

4: (θ′(t), s(t+1))← optimizer(s(t), θ(t), G
(t)
θ) {Estimate the next update.}

5: (x
′(t)
1 ,x

′(t)
2 , . . . ,x′(t)

n) = f(θ′(t), B(t))

6: G
′(t)
x,n ← ∇x′

n
ℓ(x′

n, B
(t)) {Compute the gradient of the last layer using new weights}

7: for i← n to 1 step −1 do {Iterate over layers to compute estimated average gradient.}
8: if fi is an activation then {G′(t)

θ,i = ∅}

9: G
′(t)
x,i−1 ←

x
′(t)
i − x

(t)
i

x
′(t)
i−1 − x

(t)
i−1

◦G′(t)
x,i {Equation 8. If (x′(t)

i−1,j = x
(t)
i−1,j), then

G
′(t)
x,(i−1,j) ←

∂x
(t)
i,j

∂x
(t)
i−1,j

G
′(t)
x,(i,j)}

10: else {fi is a parameterized layer}
11: if Algorithm variant is “Linear” then {Calculate average gradient of a parameterized

layer}

12: G
′(t)
x,i−1 ←

1

2
(
∂x

(t)
i

∂x
(t)
i−1

+
∂x

′(t)
i

∂x
′(t)
i−1

)G
′(t)
x,i {Equation 11}

13: G
′(t)
θ,i ←

1

2
(
∂x

(t)
i

∂θ
(t)
i

+
∂x

′(t)
i

∂θ
′(t)
i

)G
′(t)
x,i {Equation 11}

14: if Algorithm variant is AG–2 Linear then

15: Scale G
′(t)
x,i−1 and G

′(t)
θ,i to match the gradient length (

∥∥∥∥ ∂ℓ

∂x
(t)
i−1

∥∥∥∥
2

and∥∥∥∥ ∂ℓ

∂θ
(t)
i

∥∥∥∥
2

,respectively).

16: end if
17: else {Propagate gradient backwards without averaging}

18: G
′(t)
x,i−1 ←

∂x
(t)
i

∂x
(t)
i−1

G
′(t)
x,i , G

′(t)
θ,i ←

∂x
(t)
i

∂θ
(t)
i

G
′(t)
x,i {Equation 10}

19: end if
20: end if
21: end for
22: if Algorithm variant is AG–1 then
23: θ(t+1) ← θ(t) + |θ′(t) − θ(t)| ◦ sign(G′(t)

θ)
24: else {Algorithm variant is AG–2}
25: θ′′(t) ← optimizer(s(t), θ(t), G

′(t)
θ) {Update weights, but without modifying optimizer’s

state}
26: Scale the update ∆θ = θ′′(t) − θ(t) to match the gradient update length

∥∥θ′(t) − θ(t)
∥∥
1

27: θ(t+1) ← θ(t) +∆θ
28: end if

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D RESULTS FOR FORWARD-LOOKING ALGORITHM VARIANTS ON
RESNET-152 USING SIGMOID ACTIVATIONS

Table 5: Efficiency comparison of training algorithms on ResNet-152 with sigmoid activations in-
stead of ReLU. A single empirically tuned learning rate is held constant across all experiments. All
relative metrics are reported relative to gradient–based counterpart methods. ± values indicate SEM
across independent runs.

Training
Algorithm

Relative
Batch–Loss

Minimization
Improvement

Relative Sample
Efficiency and

Baseline Algorithm

Relative Avg.
Step Length
L1 and L2

RMSProp AG–1 (2.68± 0.07)% 58.7% (of RMSProp) 100% 100%
RMSProp AG–2 (22.4± 1.1)% 27.9% (of RMSProp) 100% 100%

RMSProp AG–2 Linear (−65.3± 0.7)% 5.82% (of RMSProp) 100% 99.7%
Soap AG–2 (7.53± 0.91)% 28.1% (of RMSProp) 100% 100%

Soap AG–2 Linear (−4.58± 1.46)% 10.7% (of RMSProp) 100% 100%

E PRECONDITIONING MATRICES OF DIFFERENT OPTIMIZERS

In Eq. 1 we assume that model-parameter updates of typical optimizers (RMSProp (Tieleman &
Hinton, 2012), Adam (Kingma & Ba, 2014), SOAP (Vyas et al., 2024), Eva (Zhang et al., 2023),
K-FAC (Martens & Grosse, 2015a), and Shampoo (Gupta et al., 2018)) admit the unified form
∆θ = −µH∇θℓ, i.e., a preconditioner H exists:

• Adam/RMSProp (diagonal inverse square root): H = diag
(
(E[(∇θℓ) ◦ (∇θℓ)] +

ϵ)−1/2
)
, where the square root and division are elementwise, ϵ > 0 stabilizes the scal-

ing, and ◦ denotes Hadamard multiplication.

• K–FAC (structured inverse): H ≈ (F̂ + λI)−1, where F̂ is a low–dimensional
Kronecker–factored surrogate of the empirical Fisher F̂ = E[(∇θℓ)(∇θℓ)

⊤] and λ > 0
provides damping.

• Eva (spectral/diagonal inverse square root): H ≈ (F̂ + ϵI)−1, where F̂ is a structured
(spectral or diagonal) second–moment/Fisher surrogate; Eva uses AdaGrad–style normal-
ization rather than a full inverse.

• Shampoo (low–dimensional Fisher surrogate, inverse square root): Shampoo con-
structs a low–dimensional surrogate F̂ of F (e.g., via Kronecker–structured contractions
of E[(∇θℓ)(∇θℓ)

⊤] along parameter dimensions) and applies inverse–square-root precon-
ditioning: H ≈ (

∑
t F̂

(t) + ϵI)−1/2. The standard power is − 1
2 , yielding second-order

normalization consistent with AdaGrad–style scaling.
• SOAP (Adam in a structured eigenbasis):

H = Q diag
(√

E [(Q⊤∇θℓ) ◦ (Q⊤∇θℓ)] + ϵ

)−1

Q⊤,

where Q holds eigenvectors of a slowly varying structured surrogate of F ; SOAP performs
Adam–style second-moment normalization per eigen–direction.

F COMPUTATIONAL AND MEMORY EFFICIENCY COMPARISON

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Notation for time and memory (per training step, per batch).

Symbol Meaning
Tfwd Forward pass time (wall--clock).
Tbwd Backward pass (backpropagation) time (wall--clock).
Topt Optimizer step time, including the amortized per--step cost of any infrequent optimizer

procedures (e.g., preconditioner updates).
Tscl Time to compute a norm-based scaling factor and apply it to all parameters or all gra-

dient entries (same size). This comprises a reduction to compute the chosen norm (e.g.,
L2 or L∞) and a subsequent scaling pass over the tensor(s).

Tprt SAM perturbation time (norm reduction over gradients followed by a scaling pass).
For commonly used model sizes on modern accelerators these low-intensity operations
are bandwidth-bound, so Tprt is of the same order as Topt for plain SGD; it is smaller
for SGD with momentum and strictly smaller for stateful or preconditioned optimizers
(e.g., Adam, Shampoo/K–FAC).

Mθ Memory for model parameters only.
Mx Activation/graph memory for one batch (intermediate tensors retained for backprop),

excluding parameters and optimizer state. Note that typically Mx ≫Mθ; however, Mx

can be reduced when accumulating gradients over a fraction of a batch.
Mopt Memory for optimizer state (e.g., moments, statistics, preconditioners).
Mact Memory for stored activation inputs only under recomputation (checkpointing) poli-

cies; otherwise refers to inputs and outputs. In all cases, Mact ≤Mx.

Table 7: Computational and memory efficiency comparison (per training step, per batch). See Ta-
ble 6 for notation.

Training algorithm Computational time Memory requirements
SGD, RMSProp, Adam, SOAP,

Eva, Shampoo, K–FAC Tfwd + Tbwd + Topt Mθ +Mx +Mopt

Sharpness–Aware Minimization 2Tfwd + 2Tbwd + Topt + Tprt 2Mθ +Mx +Mopt

AG–3 2Tfwd + T †
bwd + Topt 2M‡

θ +Mx +Mact +Mopt

AG–1 2Tfwd + 2T †
bwd + 2Topt 2Mθ +Mx +Mact +Mopt

AG–1 (Linear) 2Tfwd + 3T §
bwd + 2Topt 2Mθ + 2Mx +Mopt

AG–2 2Tfwd+2T †
bwd+2Topt+2Tscl 2Mθ +Mx +Mact +Mopt

AG–2 (Linear) 2Tfwd+3T §
bwd+2Topt+2Tscl 2Mθ + 2Mx +Mopt

SAM incorporating AG–3 Same as SAM when the averaging range in AG–3 matches
the perturbation range in SAM.

† Averaged backpropagation in AG–3 is implemented to run in roughly the time of one backpropagation.
‡ Excludes additional Mθ associated with disk usage.
§ Averaged backpropagation in “Linear” variants is two times slower due to the utilization of Eq. 11.

G PLOTS OF MODEL B

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Training losses on MNIST dataset. (b) Test losses on MNIST dataset.

(c) Training losses on Fashion MNIST dataset. (d) Test losses on Fashion MNIST dataset.

Figure 2: Plots of Model B with confidence ranges (SEM). The optimizers for which the learning
rates are optimized are presented in Tab. 2.

H TRAINING AND TEST LOSS CURVES FOR MODEL C

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) AG–1 improves sample–efficiency. (b) Comparison between RMSProp AG–1 and Adam.

(c) Test loss comparison. A rare case in which
second-order optimization yielded worse generaliza-
tion despite significantly better training performance.
Our method exhibits a similar pattern: strong training
performance but poor generalization.

Figure 3: Model C plots with confidence ranges (SEM). The objectives used for learning rate tuning
are listed in Tab. 3.

I SECOND–ORDER OPTIMIZATION

The fundamental problem of second–order optimization is that computing all second–order deriva-
tives requires O(n2) computational time for n model parameters. Here, O(·) denotes Landau’s big–
O notation for asymptotic upper bounds. For comparison, a first-order optimization step has com-
plexity O(n). Moreover, in general case, the practical computational cost of inverting the Hessian
matrix is significantly higher, reaching O(n3). There are three major interesting research directions,
that avoid high computational and memory complexity:

Hessian–free methods (Martens et al., 2010; Martens & Grosse, 2015b) use the conjugate gradient
algorithm to iteratively perform the Newton step (Polyak, 2007) search. The procedure solves for p
in ∇2ℓ(θ) p = −∇ℓ(θ) (θ refers to model parameters and ℓ is a loss function). This requires only
Hessian–vector products, computed in O(n) time each, and thus avoiding the explicit O(n3) inver-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

sion of the Hessian. In practice, a small number of conjugate gradient iterations is often sufficient
to obtain an adequate search direction.

L–BFGS variants (Zocco & McLoone, 2020; Byrd et al., 1994) approximate the Newton step by
constructing a low-rank inverse Hessian estimate from a constant number m of recent parameter
and gradient differences. Storing these m pairs requires 2mn floating–point numbers, which can
become a considerable limitation for deep models with very large n.

Approaches utilizing the empirical Fisher information matrix (empirical Fisher; eFIM), a prac-
tical, dataset–based approximation of the true Fisher Information Matrix (FIM). The FIM quantifies
curvature of the log-likelihood.

Let D = {(ui, vi)}Ni=1 be a supervised dataset. We define the per-example negative log-likelihood
(NLL) as ℓ(ui, vi | θ) := − log pθ(vi | ui), where vi is the ground-truth class index. For classi-
fication with one-hot targets, this is equivalent to the standard cross-entropy loss. The population
(“true”) FIM is the expected outer product of the score (the gradient of the log-likelihood), with
expectations taken over the data-generating distribution q(u) and the model’s predictive distribution
pθ(· | u):

F (θ) = Eu∼q(u) Ev̂∼pθ(·|u)

[(
∇θ log pθ(v̂ | u)

)(
∇θ log pθ(v̂ | u)

)⊤]
. (12)

Equivalently, since∇θℓ(u, v̂ | θ) = −∇θ log pθ(v̂ | u), we can write

F (θ) = Eu∼q(u) Ev̂∼pθ(·|u)

[(
∇θℓ(u, v̂ | θ)

)(
∇θℓ(u, v̂ | θ)

)⊤]
. (13)

Under standard regularity conditions (support of pθ(v | u) independent of θ; pθ(v | u) > 0 on its
support; and interchange of differentiation and expectation), this equals the expected Hessian of the
NLL:

F (θ) = Eu∼q(u) Ev̂∼pθ(·|u)
[
∇2

θℓ(u, v̂ | θ)
]
. (14)

The empirical Fisher is a widely used approximation of Eq. equation ??. It replaces the expectation
over q(u) with a sample average over D, and replaces the inner expectation over pθ(· | u) with the
observed ground-truth labels:

F̂ (θ) :=
1

N

N∑
i=1

(
∇θℓ(ui, vi | θ)

)(
∇θℓ(ui, vi | θ)

)⊤
. (15)

The eFIM is symmetric and positive semidefinite by construction. For stable inversion, it is often
damped as F̂ (θ) + λI , where λ > 0.

Crucially, Eqs. 13 and 14 show that the expected Hessian can be obtained efficiently from the ex-
pected outer product of gradients, allowing fast estimation of curvature information using Eq. 15
without explicitly computing second derivatives.

In practice, F̂ (θ) is used to precondition gradients in natural-gradient methods (Amari, 1998), with
scalable implementations via structured factorizations such as Kronecker-factored blocks (Martens
& Grosse, 2015a). Gradient “correlations” can be tracked cumulatively across training iterations
(u(t), v(t)) drawn from the training stream that approximates q, as in Shampoo (Gupta et al., 2018)
(Eq. 15 for n equal to the iteration number) or via an exponential moving average (EMA) that
emphasizes recent curvature, as in K-FAC (Grosse & Martens, 2016):

Mt = βMt−1 + (1− β)
(
∇θℓ(u

(t), v(t) | θt)
)(
∇θℓ(u

(t), v(t) | θt)
)⊤

, β ∈ [0, 1).

At the population level, the natural–gradient update direction (Amari, 1998) is:

∆θ ∝ F (θ)−1∇θL(θ), (16)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where L(θ) := E(u,v)∼q(u,v)

[
ℓ(u, v | θ)

]
.

Moreover, the natural gradient can also be derived from a trust-region formulation. In supervised
learning (loss minimization), consider

min
∆θ

L(θ +∆θ) ≈ min
∆θ

(
L(θ) +∇θL(θ)

⊤∆θ
)

= min
∆θ
∇θL(θ)

⊤∆θ subject to 1
2 ∆θ⊤F (θ)∆θ ≤ ε, (17)

whose solution is the natural-gradient direction with a step size chosen to satisfy the constraint:

∆θ⋆ = −αF (θ)−1∇θL(θ), α =

√
2ε

∇θL(θ)⊤ F (θ)−1∇θL(θ)
.

Here, the quadratic form 1
2∆θ⊤F (θ)∆θ is the second-order expansion of the KL divergence be-

tween the model at θ and θ +∆θ:
DKL

(
pθ(· | u)

∥∥ pθ+∆θ(· | u)
)
≈ 1

2 ∆θ⊤F (θ)∆θ (averaged over u ∼ q(u)).
Thus, the trust-region radius ε enforces a bound on the local KL change, so each update corresponds
to a fixed-length step (on average over u ∼ q(u)) in the space of predictive distributions pθ(· | u),
independent of the particular parameterization of the model.

The Fisher F can be efficiently approximated by tracking “gradient correlations” restricted to the
layer level via Kronecker-factored blocks, substantially reducing memory and computation (Martens
& Grosse, 2015a). These ideas are instantiated in K–FAC (Grosse & Martens, 2016; Martens &
Grosse, 2015a), which has demonstrated improved sample efficiency and, in some settings, faster
time-to-target than stochastic gradient descent optimizer (Zhang et al., 2023; Vyas et al., 2024).
A related approach, Shampoo (Gupta et al., 2018), applies structured, per-mode preconditioners to
tensor-shaped parameters, achieving strong sample-efficiency gains compared to first-order optimiz-
ers such as Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), and SGD (Ketkar, 2017),
with competitive throughput on ResNet (He et al., 2016), Inception (Szegedy et al., 2015), and
Transformer architectures (Vaswani et al., 2017). Building on this line of work, the SOAP optimizer
(Vyas et al., 2024) extends the Shampoo algorithm (Gupta et al., 2018) by integrating curvature–
aware momentum, thereby enhancing its adaptability to diverse curvature geometries. SOAP reports
further improvements in sample efficiency and generalization on large language models, with faster
time-to-target than Adam (Kingma & Ba, 2014) in reported experiments.

A key challenge for second-order optimizers is the computational cost of inverting the approxi-
mate eFIM. Methods like K–FAC (Grosse & Martens, 2016), Shampoo (Gupta et al., 2018), and
SOAP (Vyas et al., 2024) tackle this by using structured approximations. More recently, Eva (Zhang
et al., 2023) introduced a more compact eFIM representation and leverages the Sherman–Morrison
formula (Sherman & Morrison, 1950) to accelerate the matrix inversion, thereby avoiding the costly
eigenvalue decomposition required by SOAP (Vyas et al., 2024). Although the asymptotic ratio
between the bottleneck operation’s complexity (inversion or decomposition) and the compressed
eFIM’s size is similar across these methods (Grosse & Martens, 2016; Gupta et al., 2018; Vyas
et al., 2024; Zhang et al., 2023), Eva has demonstrated significantly shorter wall–clock training
times than both SGD (Ketkar, 2017) and other second–order optimizers (Grosse & Martens, 2016;
Gupta et al., 2018). Notably, these speedups are achieved while matching the generalization perfor-
mance of K-FAC and Shampoo on a range of computer vision benchmarks.

Within the scope of our review, the second–order methods that appear most promising based on
reported wall–clock efficiency and generalization performance are SOAP (Vyas et al., 2024) and
Eva (Zhang et al., 2023). SOAP has been reported to deliver substantial wall–clock speedups with
strong generalization on large language models (LLMs) (Vyas et al., 2024). Eva (Zhang et al., 2023)
is a lightweight method that maintains competitive generalization and strong sample–efficiency, as
demonstrated on computer–vision benchmarks, while exhibiting asymptotically favorable computa-
tional and memory scaling that is comparable, up to constant factors, to first–order optimizers.

J DETAILS ON EXPERIMENT SETTINGS

Across all experiments, we set some common generally well–performing optimizer hyperparameters
(see Table 8).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Optimizer hyperparameters, that are common across experiments. p denotes number of
batches, every which SOAP computes preconditioning matrices.

Optimizer Hyperparameters
SOAP β1 = 0.95, β2 = 0.95, β1 = 0.95, β2 = 0.95, p = 10

SOAP AG–3 d = 300, β1 = 0.95, β2 = 0.95, β1 = 0.95, β2 = 0.95, p = 10

Adam β1 = 0.9, β2 = 0.999
Adam AG–3 d = 45, β1 = 0.9, β2 = 0.999

RMSProp β = 0.99
RMSProp AG–3 d = 45, β = 0.99

We used cross–entropy loss, which aligns with theoretical foundations of eFIM used by SOAP (Vyas
et al., 2024), and the batch size of 128 across all experiments, except for ResNet–152, where we
decreased batch size to 64. We used ResNet–152, which was pretrained on ImageNet–1K dataset
(Deng et al., 2009), and we mapped classes to Imagenet–OOD (Yang et al., 2023) to have about 18%
accuracy before beginning the fine–tuning.

We omitted some training runs involving optimizers with momentum, like Adam, and forward–
looking updates, AG–1 and AG–2. In this scenarios AG–2 modifies a small fraction of an actual
update, that is not related to the momentum, limiting the potential of forward–looking concept.
AG–1 might negate momentum direction, which also is undesired.

To determine, whether the performance is highly dependent on activation functions, we performed
additional experiments after changing ReLU to different activation functions.

K DISCLOSURE OF LARGE LANGUAGE MODEL ASSISTANCE

We disclose and delimit the roles played by large language models (LLMs) in the preparation of this
manuscript. All LLM–assisted outputs were reviewed and edited by the authors; technical content
and decisions remain authorial.

LLMs were used to generate and refine sentence–level phrasing and for localized rewording of
paragraphs to improve clarity and concision. AI assistance aided in correcting grammar, improving
readability, and harmonizing tone across sections while preserving technical content and author
intent. LLMs were consulted to flag potential inconsistencies in notation and equation formatting;
all mathematical derivations, identities, and proofs were authored, verified, and finalized by the
authors. All LLM–suggested text and equation–formatting changes were reviewed line–by–line by
the authors.

LLMs assisted in identifying a minority of potentially relevant papers that did not appear in our
initial manual queries. AI tools were used to obtain brief summaries and to triage candidate works
for subsequent human evaluation. Final inclusion decisions and categorization were made by the
authors after reading the original papers. Citations, summaries, and positioning in the related–work
section are based on the original sources. LLM outputs were used only to broaden the candidate set
and prioritize reading order.

LLMs were not used to run, tune, or select experiments, nor to generate tables or figures beyond
minor wording edits in captions.

23

	Introduction
	Related Work
	Methods
	Computing Multiple Parameter Updates at Once
	Gradient Averaging

	Experiments
	Experimental Setup
	Results

	Discussion
	Limitations
	Definition of Average Gradient/Jacobian
	Computing Average Gradient
	Pseudocode for Forward–Looking Algorithm Variants
	Results for Forward‑Looking Algorithm Variants on ResNet‑152 Using Sigmoid Activations
	Preconditioning Matrices of Different Optimizers
	Computational and Memory Efficiency Comparison
	Plots of Model B
	Training and Test Loss Curves for Model C
	Second–Order Optimization
	Details on Experiment Settings
	Disclosure of Large Language Model Assistance

