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ABSTRACT

We explore previously unreported properties and practical uses of integrated gra-
dients for training deep neural networks, primarily convolutional models, in the
sense of averaging gradients over a continuous range of parameter values at each
update step rather than relying solely on the instantaneous gradient. Our con-
tributions are: (a) We show that, across multiple architectures, integrated gradi-
ents yield up to 53.5% greater reduction in per-batch loss compared to baseline
optimizers. (b) We demonstrate that, for a fixed batch and models prone to ill-
conditioned curvature, a single step can approximate more than four predicted
updates. (c) We introduce an efficient approximation for ResNet—152 fine—tuning
that integrates gradients over hundreds of past training iterations on a fixed batch
at each parameter update. This variant is faster per step and easier to parallelize
than a single step of a competitive Sharpness—Aware Minimization method, with
only moderate memory overhead.

We validate the approach with first-order optimizers (RMSProp, Adam) and a
second-order method (SOAP), showing consistent gains across settings. These re-
sults suggest that integrated gradients are a promising new direction for improving
the generalization and potentially the test—time adaptation of deep models.

1 INTRODUCTION

Attribution methods known as integrated gradients (Sundararajan et al.| [2017) operate in input and
feature space, but their potential for optimization remains largely unexplored. We study parame-
ter—space gradient integration for training: at each step, our approach replaces the instantaneous
gradient with an averaged (integrated) gradient (Anonymized, 2025)), as formally defined in Ap-
pendix [A] yielding a drop-in modification portable to both first-order and second-order optimizers.

Building on our earlier results (Anonymized, 2025), we broaden the analysis and applications
of averaged gradients. Our contributions are: (a) Batch-local efficiency: Significant improve-
ments in batch-loss minimization for first- and second-order optimization, enabling rapid test-time
adaptation on a fixed batch. (b) Generalization: On ResNet-152 fine-tuning, generalization im-
proves with lower per-step compute and simpler parallelization than Sharpness—Aware Minimiza-
tion (SAM) (Foret et al., |2021)), at the expense of additional memory; most competing techniques
are not designed to integrate cleanly with modern second-order optimizers (Vyas et al.l 2024; | Zhang
et al., 2023} Gupta et al., |2018). (c) Multi-update approximation: Despite prior math foun-
dations (Anonymized, 2025), we show a single step of our algorithm can approximate multiple
predicted updates at a cost close to two standard updates, and we introduce a more stable, faster
variant that averages gradients for the current batch over hundreds of recent training iterations.
(d) Activation-level impact: Experiments indicate that averaging at the activation level is partic-
ularly important for training efficiency, with theoretical support. (e) Depth-related pathologies:
Our method targets depth-induced degeneracies (“‘singularity problems”) (Oyedotun et al.| [2021).
(f) Applications: We outline additional use cases in Section 5}

As our approach necessitates modifying the backpropagation procedure, existing implementations
of various architectures could not be directly reused. Therefore, we focus on a limited set of models
primarily based on convolutional layers, as detailed in Section [6]
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2 RELATED WORK

Momentum (EMA of gradients). Momentum (Liu et al.,2020) maintains an exponential moving
average of past gradients across successive iterations (typically over different mini-batches) and
can accelerate convergence while reducing oscillations in ill-conditioned directions. In contrast,
our approach averages the gradient for a fixed batch along a continuous path in parameter space;
momentum aggregates gradients across distinct batches rather than along a parameter trajectory.

Polyak—-Ruppert averaging (parameter iterates). Averaging model parameters over many up-
dates (Polyak—Ruppert) can stabilize training and improve generalization in certain settings (Rup-
pert, |1988; |Polyak & Juditsky, [1992} [Merity et al., [2017; L1 et al.l 2023; Sun et al.l 2010). This
procedure is orthogonal to update computation and can be layered atop any optimizer. Our work
instead targets the update itself by modifying backpropagation to approximate a parameter-path av-
eraged gradient.

Perturbated Unit Gradient Descent (PUGD). Let g(6) = Vy£(6) denote the gradient of the loss
¢ for the current batch. PUGD computes the unit-normalized sum of g(6) and g(0 + 0| © g(0)),
where the perturbation is applied elementwise (Tseng et al.|[2022). Unlike PUGD, our method aver-
ages the gradient along a broader, continuous path in parameter space using a distinct approximation.

Two-gradient tuning strategies. Several techniques modulate updates using exactly the two most
recent gradients and are implemented as modifications to Adam-style optimizers (Kingma & Bal
2014). DiffGrad attenuates parameter updates when the current and previous gradients are similar
in magnitude (Dubey et al.| 2019). SigSignGrad computes an elementwise scaling factor from the
sign agreement between the last two gradients, mapping it through a sigmoid or tanh to adjust the
update (Zheng et al.l 2024). AngularGrad scales steps based on the angle between two consecutive
gradients to mitigate zig—zagging in the optimization trajectory (Roy et al., [2021). In contrast, our
approach changes the backpropagation rule to approximate a parameter-path averaged gradient.

Predicting future gradients. Another approach that modifies the backpropagation phase in first—
order optimization is weight prediction (Guan et al.l [2024)), which computes gradients at predicted
future weights rather than at the current parameters. In this method, weights are first extrapolated
forward according to several successive parameter updates, and a single backward pass is then per-
formed at these predicted weights to obtain the update.

Sharpness-aware optimization. Many of the above methods can improve generalization by im-
plicitly biasing optimization toward flatter local minima. The sharpness of a minimum is correlated
with a model’s generalization ability (Foret et al.||[2021; |Kim et al.|[2022), and flatter minima tend to
yield greater robustness to noise in the data domain. Sharpness-Aware Minimization (SAM) explic-
itly exploits this by adding an adversarial perturbation step and requires two backpropagations per
iteration (Foret et al., 2021). SAM variants report significant generalization improvements (Foret
et al.l [2021; |[Kim et al.||2022).

Integrated gradients in feature space. Integrated Gradients (IG) applied to feature maps are
widely used for neural network explainability (Sundararajan et al.,2017; |Khorram et al.| 2021} |Sat-
tarzadeh et al., |2021). These methods approximate the integral of the gradient along an input or
feature-space path using a discrete Riemann sum (Hughes-Hallett et al., [2021)), which is computa-
tionally inefficient for execution at every training step. To the best of our knowledge, IG has not
been used to train neural networks.

Second-order optimizers. Second—order optimizers aim to capture finer-grained curvature infor-
mation than first-order methods. Top results have been obtained by SOAP (Vyas et al.| [2024)) and
the lightweight Eva method (Zhang et al., [2023)), in the line of work that includes Shampoo (Gupta
et al.l [2018) and K-FAC (Martens & Grosse, 2015a; |Grosse & Martens, [2016)). See Appendix[I]for
more details.
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Contrast with our approach. In contrast to our method, none of the cited algorithms modifies the
backpropagation procedure itself or approximates an averaged gradient in terms of model parameters
over a broader continuous range between two parameter states on a fixed training batch.

3 METHODS

3.1 COMPUTING MULTIPLE PARAMETER UPDATES AT ONCE

Let us consider n successive weight updates on a fixed training batch, excluding momentum. For
many optimizers with constant learning rate 7,
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where H(") is a slowly varying preconditioner (an inherent component of optimizers such as RM-
SProp (Tieleman & Hinton,[2012), Adam (Kingma & Ba,2014)), SOAP, Eva, K-FAC, and Shampoo;
see Appendix [E| which shows that these optimizers can be expressed as matrix multiplications). We
refer to the integral as AVG.y(-) (Appendix . Let u be the time for one forward—backward pass;

our approximation computes A§¢—"+1:4) in O(2u) time, versus O(nu) for methods requiring 7
backpropagations.

3.2 GRADIENT AVERAGING

In the further equations, we assume a fixed sampled batch, thus we do not write it explicitly as
a parameter. In our algorithm, given a plain feedforward neural network, the average gradient is
approximated and propagated according to (Anonymized, 2025):
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where / is the loss function, ¥, are the parameters of layer k, and (xg, €11, ...,x,) are layer

outputs, treating each activation as a distinct layer. The notation V f denotes the gradient of f
with respect to x, and g—i denotes the Jacobian matrix of the vector-valued function f, where the 4t
column corresponds to the gradient vector V, f;. The operator AVG is defined in Appendix [A]

See Appendix Blfor the details about efficient approximation of each averaging term of Eq.[2] How-
ever, the calculations will be introduced also further in pseudocode.

The average gradients are propagated in the same manner as gradients in the standard backpropa-

gation algorithm. Computation based on Eq. [2]is fast and memory-efficient because the procedure

mirrors standard backpropagation, which is performed as:
oxy, awk_H oz,
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where “.”” denotes standard matrix multiplication.

Va, 3)

We use multiple algorithm versions for different purposes: (a) AG-1: the averaging range is be-
tween the parameter state before an update and the state after a single update forecasted by the base
optimizer (Alg. [2] Appendix [C). The sign of the parameter update matches the sign of the average
gradient. This variant was introduced in (Anonymized, |[2025). We use it to assess whether the av-
eraged gradient efficiently minimizes the loss for a given batch. Since the averaging range is not
spanned by the final applied update, this evaluates how universal the averaged-gradient direction
is for batch loss reduction. (b) AG-2: identical to AG-1, but the step uses the averaged gradient
(magnitude and direction), rather than only its sign (Alg. 2] Appendix [C). Other properties remain
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consistent with AG—1. (c) Linear variants: methods with “linear” in the name use Eq. (in
Appendix [B) instead of Eq. [I0] to approximate the averaged gradient through linear layers (fully
connected, convolutional) more accurately. (d) AG-3: the averaging range spans multiple past
updates (Alg.[T). Each new step refines several previous updates using broader loss—landscape in-
formation, in contrast to standard gradient descent which optimizes only at the current parameters
without explicitly accounting for earlier updates. (e) AG-3-1: the AG-3 variant in which the av-
eraging range is spanned by the most recent weight update.

The source code for this project is publicly available on GitHub at [ANONYMIZED for ICLR2026
review].

Algorithm 1 Single step in the AG-3 variant for a plain feedforward neural network.

Input: Model with n layers f = (f1, f2, ..., fn), Parameters of the model ("), optimizer’s state s(*),

Number of iterations corresponding to the minimal width of the averaging range d
Output: (1) 5(t+1)

1: Sample a batch B®).
2: (wY), a:ét), L a®) = felt/dd=d) B®Y {Compute outputs of each layer of the model.
Assume that x; is a vector. Use the saved weights from iteration number (|¢/d] - d — d) to
retrieve parameters from d to 2d iterations prior. If (|t/d] - d — d) < 0, then use #(*).}
(x; e, /(t) Lz ) = £, B®) {Compute the same for ().}
G’(t) — V 6( , B®) {Compute the gradient of the last layer using new weights}
fori < ntol step —1 do {Iterate over layers to compute estimated average gradient. }

if f; is an activation then {G;)(ti =0}
") _ m(t)

B A S
(6 _ p®
L1~ Ty

AN AN

oG, ( ¢ {Local approximation of the average gradient
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8:  else {Propagate gradient backwards without averaging}

P (t o (t)
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10:  endif

11: end for

12: (00D WDy o optimizer(s®), 00 G;(t)) {Update weights and optimizer’s state}

13: if t%d = 0 then {Once every d iterations}

14:  Save 0 to disk and remove 8“2 _If t > d, load #*~% into host memory (CPU RAM) or
device memory (GPU VRAM) depending on the execution target.

15: end if

See Appendix [F] for a comparison of computational time and memory usage across the evaluated
methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We test our method on multiple model architectures based on convolutional and fully—connected
layers with different activation functions (see Tab.[T)). The reasons for choosing these architectures
are: (1) Model A: Shallow CNN used to assess learning in a loss landscape with less pronounced
nonlinearity than deeper counterparts. (2) Model B: Tractable optimization task engineered to ex-
hibit Shattered Gradients (Balduzzi et al., [2017) and singularity—related effects (Oyedotun et al.,
2021} |Yasrabl, |2019), via repeated blocks of 10 tanh units in the linear stack. (3) Model C: Com-
putationally tractable NLP optimization task exhibiting singularity-related phenomena (Oyedotun
et al., 2021} Yasrabl 2019). (4) ResNet-152: Selected due to: (a) Implementation practicality:
Significantly easier than Vision Transformers (ViTs) (Dosovitskiy et al., 2021) to implement from
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scratch within our framework for modifying backpropagation logic (see Section[6).  (b) Depth sen-
sitivity: High layer count complicates optimization (Oyedotun et al.l |2021), motivating methods
that scale robustly with depth. (c) Baseline strength: ResNets often outperform ViTs (Dosovitskiy
et al., |2021)) when training from scratch or without large—scale pretraining; in such settings, ViTs
“yield modest accuracies of a few percentage points below ResNets of comparable size” (Doso-
vitskiy et al., 2021; |Chen et al.| 2022b). (d) Headroom for generalization: SAM typically yields
smaller generalization gains on ResNets than on ViTs (Chen et al.| [2022a), underscoring the need
for complementary methods. (e) Maturity: Well-established and well-understood architecture.

Table 1: All model architectures investigated in this study.

Parameter
Model Architecture Summary Datasets Count
6x Convolution 2D + ELU MNIST,
Model A 1xLinear Fashion MNIST 17506
2x Convolution 2D + ELU
2xMax Pooling 2D MNIST,
Model B 28 x Linear + Tanh Fashion MNIST 8228
41 xConvolution 2D + Tanh IMDb
Model C 5xLinear + Tanh (Maas et al., 2011) 14397

ResNet—152 151 xConvolution 2D + ReLU/GELU/
ResNet—152—GELU SiLU/Sigmoid (with Batch Normalization) Imagenet—-OOD
ResNet—152-SiLU 1xMax Pooling 2D, 1xAvg Pooling 2D (Yang et al.,2023)
ResNet—152-Sig 1 xLinear Fine-Tuning 60192 808

We implemented our method in multiple optimizers: (a) SOAP, a promising second—order method
that maintains a higher—dimensional empirical Fisher information matrix (eFIM; see Appendix [I)
approximation than Eva, at higher computational cost (Zhang et al.l [2023; |Vyas et al.,[2024). Al-
though SOAP was evaluated primarily on LLM training in the original paper (Vyas et al.|[2024), we
observed strong generalization across most of our experiments. (b) Adam. (c) RMSProp.

We conducted extensive learning—rate searches for baseline methods and selected variants, targeting
average training—loss minimization to assess sample efficiency. Importantly, we report all tested
models rather than cherry—picking best—performing ones. For ResNet—152, we additionally tuned
SOAP using test—loss minimization to verify consistency with the training—loss search. Unless stated
otherwise, our algorithms use learning rates optimal for the gradient direction, biasing comparisons
in favor of gradient baselines. Final trainings were repeated up to 200 times per (model, dataset,
optimizer) combination.

The main metrics we compute are: (a) Relative sample efficiency: For two algorithms, divide the
best-loss epoch of one by the matching-loss epoch of the other. Compute this ratio for both mean and
median losses, and report the geometric mean of the two ratios. Repeat over all contiguous epoch
ranges that start at epoch 1 and report the arithmetic average of the resulting ratios. (b) Relative
batch-loss minimization improvement: For each training step, compare batch-loss improvement
across two optimizers at the same parameters on a fixed batch, by constraining the L1 norm of the
parameter update vector (]| A||1) to be equal for both. (c) Accuracy.

Experiments ran on NVIDIA RTX 3070 8GB, NVIDIA A100 80GB, and NVIDIA H100 96GB
GPUs; 80GB VRAM is sufficient for all experiments. See Appendix [J]for further details on experi-
mental settings.

All error bars and + values indicate standard errors of the mean (SEM), computed across indepen-
dent runs for each configuration.

4.2 RESULTS

Variants utilizing forward—looking updates, AG—1 and AG-2, achieved strong batch-loss minimiza-
tion improvements compared to all tested gradient—based optimizers across all tested deep models
(see the “Relative Batch-Loss Minimization Improvement” column in Tabs. 2] 3] and f). After
switching ReLU activations to sigmoid on ResNet—152, these improvements were preserved for AG—
1 and AG-2 (Tab. Appendix@]). Across all deep models, improvements range from (2.23+0.01)%
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to (38.5 + 4.7)%, measured at matched update step lengths, as indicated by the “Relative Avg. Step
Length” column in Tabs. 2] 3] 4] and 3]

Table 2: Comparison of training efficiencies of various algorithms on Model B (fully connected deep
neural network with Tanh activations). &+ values indicate SEM across independent runs.

Blzfclﬁt_liiﬂs S Relative! Sample LR Relative! Avg.

Training Minimization Efficiency and Optimized Step Length

Dataset Algorithm Improvement  Baseline Algorithm For L1 and L2
(11.3 +1.8)% 444% (of RMSProp) 100% 100%

RMSProp AG-1 393% (of Adam)

MNIST RMSProp AG—1 Linear (38.5 £4.7)% 67.2% (of RMSProp) AG-1 100% 100%

RMSProp AG-2 (30.0 £ 2.8)% 399% (of RMSProp) AG-I 100% 99.7%

Soap AG-2 (11.9£0.2)%  132% (of Soap)  Gradient 100% 98.9%
1213% (of Adam)

Soap AG-2 Linear  (53.5+£0.1)%  24.9% (of Soap)  Gradient 100% 98.0%

RMSProp AG-1 (15.0+1.7% 474% (of RMSProp) 100% 100%
Fashion 436% (of Adam)

MNIST RMSProp AG-1 Linear (18.0 +3.1)% 0% (of RMSProp) AG-T 100% 100%

RMSProp AG-2 (23.2£2.2)% 439% (of RMSProp) AG-I  100% 99.7%

Soap AG-2 (4.76 £ 0.08)% 83.7% (of Soap)  Gradient 100% 99.0%

Soap AG-2 Linear  (26.4 +0.8)%  32.8% (of Soap)  Gradient 100% 98.6%

Table 3: Efficiency comparison of training algorithms for Model C (a deep convolutional neural
network with Tanh activations trained on the IMDb dataset). 4= denotes SEM across runs.

el
Bl:gﬁEE%SS Relative! Sample LR Relative' Avg.
Training Minimization Efficiency and Optimized  Step Length
Algorithm Improvement Baseline Algorithm For L1 and L2
(3.94 +0.53)% 135% (of RMSProp) 100% 100%

RMSProp AG-1 109% (of Adam)
RMSProp AG-1 Linear (7.34 £1.99)% 71.6% (of RMSProp) AG-1 100% 100%
RMSProp AG-2 (3.99 £0.62)% 81.5% (of RMSProp) AG-1 100% 100%
Soap AG-2 (447 £1.87)%  31.7% (of Soap) Gradient 100% 101%
Soap AG-2 Linear (329+6.1)% 11.2% (of Soap) Gradient 100% 98.6%

Table 4: Efficiency comparison of training algorithms for ResNet—152. + denotes SEM across runs.

Relative'

. Batch—Loss Relati\./e1 Sample LR Relative! Avg.
Training Minimization Efficiency and Optimized  Step Length
Algorithm Improvement Baseline Algorithm For L1 and L2

RMSProp AG-1 2.23+0.01)% 69.9% (of RMSProp) Gradient 100% 100%
RMSProp AG-1 Linear (7.07 £0.08)% 0% (of RMSProp)  Gradient 100% 100%
RMSProp AG-2 3.92+0.02)% 0% (of RMSProp) Gradient 100% 99.8%
)%
)%

(
E
RMSProp AG-2 Linear (8.06 + 1.30 0% (of RMSProp)  Gradient 100% 99.4%
(
(

Adam AG-2 3.02+£0.01 99.7% (of Adam) Gradient 100% 100%
Adam AG-2 Linear 3.50£0.01)%  98.1% (of Adam) Gradient 100% 100%
Soap AG-1 (11.4+£0.0)% 27.9% (of Soap) Gradient 100% 100%
Soap AG-1 Linear  (6.16 £ 0.14)% 0% (of Soap) Gradient 100% 100%
Soap AG-2 (5.32+£0.01)%  36.6% (of Soap) Gradient 100% 100%
Soap AG-2 Linear  (13.8 £0.62)% 0% (of Soap) Gradient 100% 102%

'All relative metrics are reported relative to gradient-based counterpart methods.
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Figure 1: Test accuracy plots of ResNet—152 with confidence ranges (SEM). Each plot includes
Adam and RMSProp as additional baseline algorithms. In all presented experiments, learning rates
are optimized for gradient-based optimizers.

For shallow Model A on MNIST and Fashion MNIST, the AG-1, AG-2, AG-3-1, and AG-3 vari-
ants using RMSProp or SOAP achieved performance comparable to gradient-based counterparts
across all measured metrics.

Sample efficiency indicates the speed of loss minimization over the full training dataset. Forward—
looking updates (AG—1, AG-2) yielded mixed outcomes across experiments. High sample—
efficiency gains were observed for several RMSProp runs on Models B and C (Tabs. [2} B). For
example, on Model B with RMSProp, AG-1 improved sample efficiency by more than 4.5x on
average, exceeding Adam by over 4x (Tab. [2} Figs. [24] [2c), at approximately 2x the per—epoch
compute relative to gradient-based RMSProp (see Appendix |F|for computational and memory com-
parisons). For Model B on MNIST, SOAP’s sample efficiency improved by 32% (Tab. 2} Fig. [2a)),
with a corresponding reduction in test loss (Fig. [2b). In other settings, SOAP with AG-2 under-
performed its baseline. Despite this variability, the forward—looking variants consistently meet their
mathematical objective: efficient batch—loss minimization at matched step lengths.

Backward—looking updates (AG-3) tend to improve generalization on ResNet—152 (ReLU) across
all tested optimizers and experimental setups (see Fig. . Accuracy gains of about 0.4% were
achieved for SOAP AG-3 (Fig.[Ta) and for AG-3 paired with SOAP preconditioning applied every
batch (Fig. [Ib). Although the improvement may appear modest, it is nearly equal to the gain pro-
vided by momentum in Adam (Fig. [Id); note that Adam without adaptive momentum corresponds to
RMSProp (Kingma & Bal 2014} Tieleman & Hinton, |[2012). Moreover, the improvement is roughly
one third of the accuracy gap between first—order and second—order optimization observed in our
experiments, despite using the optimal learning rate for the gradient.
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Higher generalization improvements on ResNet—152 occur when momentum is paired with our gra-
dient averaging, and they are also more pronounced with SOAP. These experiments suggest that the
approximation of averaged gradients preserves acceptable accuracy across a wide range of 300-600
past updates. In the respective experiments, we also observed modest sample—efficiency improve-
ments ranging from 0.6% to 2.9%, all statistically significant.

Despite our averaged—gradient implementation not being computationally optimized, SOAP with
AG-3 preconditioned at every batch is approximately 21% slower than its gradient-based counter-
part on ResNet—152 (see Appendix [H for additional comparisons). Notably, this configuration has
been reported as a strong generalization setting for SOAP on certain large language models (Vyas
et al.l [2024).

Using standard gradients, we fine—tuned ResNet—152 with Adam and RMSProp (each with separate
learning-rate searches) under SiLU and GELU activations, both of which generally preserve non—
zero gradients across their domains. In these models, the test accuracy of gradient-based Adam
matched that of the ReLU-based ResNet—152. By contrast, replacing ReLU with either SiLU or
GELU increased the test accuracy of gradient-based RMSProp, although the results did not sur-
pass Adam across any of the three activation functions when using standard gradients. This sug-
gests that preserving non—zero gradients may not provide additional benefit when training with the
strongest first—order optimizer, Adam. Nevertheless, these experiments are not fully conclusive,
since ResNet—152 was pretrained with ReLU, which may bias fine—tuning performance in favor of
ReLU activations.

For other models, AG—-3 maintained stable learning and did not visibly worsen performance relative
to gradient baselines, except when the averaging range was excessively wide. AG-3-1 improved
sample efficiency in selected scenarios—for example, with RMSProp on Model B (see Fig. 2] Ap-

pendix [G).
Across all experiments, despite the “Linear” variants achieving more efficient batch—loss minimiza-
tion, they yielded worse overall performance on the full dataset (see Tabs. 2] 3] [ [5).

5 DISCUSSION

Across all deep models tested, our forward—looking AG-1 and AG-2 variants consistently delivered
significant batch-loss improvements over gradient-based baselines with both first— and second—order
optimizers. These results indicate that the averaged gradient encodes useful local structure of the
loss landscape that remains informative even when the update step is modified (as in our algorithms).
Within short-horizon objectives, where the goal is to reduce loss in one or a few steps, our method
can outperform Adam and SOAP under matched step lengths with learning rates tuned for gradient
baselines.

This short-term advantage has practical implications. After reaching full context length in an in—
context learning task (Wies et al) |2023) without solving the prompt, a single or a few training
updates can be applied to correct errors accumulated across the context, improving immediate ac-
curacy without full retraining. Similarly, efficient batch—loss reduction relative to step length makes
the approach suitable for test-time adaptation to new tasks (Finn et al.| |2017; Nichol et al., 2018;
Raghu et al.| 2020), where limited updates are available and rapid improvement is critical.

Backward—looking gradient averaging (AG-3) yields accuracy improvements on ResNet—152.
These gains are noteworthy given that, across our ResNet—152 trainings, total accuracy increased by
35 absolute percentage points (pp), primarily via knowledge transfer (fine—tuning). Thus, a 0.4 pp
gain during second—order fine—tuning may be broadly comparable in magnitude under differing set-
tings to the 1.2—1.9 pp improvements reported for SAM on ResNet—152 under first—order ImageNet
training (Foret et al., 2021). Moreover, fine—tuning tasks typically exhibit smaller error reductions
with SAM than full ImageNet training (Foret et al.| [2021)), and improvements over second—order
baselines are generally harder to obtain.

Relative to SAM, AG-3 is less computationally demanding because it avoids the per—step pertur-
bation overhead (i.e., the extra backward pass needed to compute weight perturbation); see Ap-
pendix [F| Furthermore, AG-3 admits efficient parallelization: the averaging step (second line of
Alg. [2) can be computed on upcoming batches in parallel with the main training loop, leaving the
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remaining procedure computationally equivalent to a typical update. The main trade—off is memory:
maintaining an averaged gradient over past updates increases the memory footprint, which can be
reduced by accumulating the averaged gradient iteratively over sub—batches.

The averaged gradient over multiple past updates captures local sharpness along the recent opti-
mization trajectory. AG-3 can be interpreted as minimizing the trajectory-averaged loss over a
short horizon, which encourages flatter slopes and, consequently, can bias updates toward flatter
local minima—an effect broadly linked to improved generalization (Foret et al., 2021}).

On ResNet-152, the per—batch preconditioned SOAP AG-3 (non-optimized) variant is approxi-
mately 21% slower than its gradient—based counterpart, and has been reported as a strong general-
ization setting for SOAP on some large language models (Vyas et al., [2024). In high—dimensional
regimes or with computationally intensive second—order preconditioning, this additional averaging
overhead remains modest in practice.

There are two interesting avenues for future work related to SAM: (a) Compute the average gradient
over the range of SAM perturbations, thereby estimating the “true” average sharpness of the sur-
rounding loss—landscape geometry. Importantly, incorporating the average gradient into SAM does
not increase computational cost relative to SAM itself, though it does increase memory requirements
(see Appendix[F). (b) Compute the average gradient over the range between two perturbed param-
eter values originating from different training iterations, which could provide a trajectory—aware
measure of sharpness and potentially stabilize optimization across steps.

Both forward—looking (AG-1, AG-2) and backward-looking (AG-3) updates achieved more than a
4x reduction in the number of epochs on two datasets for Model B under first—order optimization.
These results support Eq. |1} indicating that multiple updates can be approximated by a single step
using an averaged gradient estimated via a procedure based either on two backpropagations (Alg.[I))
or a single backpropagation (Alg. 2). For Model B, the optimally implemented AG-3-1 in first—
order experiments is estimated to require roughly 3x less wall-clock time to convergence, with a
modest memory overhead (see Appendix [F)) that can be mitigated via online gradient accumulation.
Model B proved the most difficult to optimize among our tested architectures due to attenuated
singularity issues (Oyedotun et al., 2021). Notably, we also observe significant sample—efficiency
gains in first-order optimization for Model C.

Variants of our method that focus solely on gradient averaging at activations achieved better full-
dataset performance across all experiments compared to the “Linear” variants. A plausible mecha-
nism is that averaging gradients across multiple parameter vectors (equivalently, taking the elemen-
twise average of per—layer diagonal activation Jacobians) can turn diagonal entries that are zero at
a given vector into positive values in the average, thereby increasing algebraic rank (each newly
nonzero diagonal entry in a diagonal matrix adds one to the rank) and mitigating singularity prob-
lems (Oyedotun et al.l |2021)) such as rank deficiency and severe ill-conditioning. At the activation
layer, elementwise averaging in the backward pass preserves every coordinate retained by any in-
dividual diagonal Jacobian. Equivalently, its kernel is the intersection of the individual kernels, so
more coordinate directions survive. Consequently, the chained Jacobian factors in Eq. [3] transmit
signal along more directions unless later layers annihilate those coordinates. This effect depends
on the involved parameter vectors inducing complementary activation patterns and on the absence
of near—exact cancellation; the latter holds automatically at the diagonal stage for activations with
nonnegative derivatives (e.g., ReLU, sigmoid, tanh).

For the shallow Model A, the gradient is approximately equal to the average gradient, thereby ac-
counting for the comparable performance observed across methods.

6 LIMITATIONS

A primary limitation of our work is the implementation complexity required to ensure computa-
tional efficiency and portability across diverse architectures. We did not reimplement attention
layers (Vaswani et al., [2017) within our framework or extend to full Transformer models, owing
to the need to reconstruct the gradient—computation graph for each architecture and the absence of
tooling to automate that process. Such extensive reimplementations are time—consuming and may
affect reproducibility due to potential algorithmic and model divergences, as well as implementation
instability.
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A DEFINITION OF AVERAGE GRADIENT/JACOBIAN

Let us define the average gradient of a function f : R™ — R over a parameter range [a, b], with
a,b € R™, via the mapping g : R™ — R", by

fel[vgmv g(@)f = / Vg(a+t-(b—a)) [ dt S

which can alternatively be written by switching the integration variable to any component x; of x,
viaz; = a; +t- (b; — a;), yielding

AVG Vo) f =

x€la,b]

However, any case in which a vector component would cause division by zero should be handled
via Eq.
If f(z) : R® — R/, then by applying Eq. E]component-wise we get

of
VG V@) f1, AV V@) fa,---, AVG Vg
me[a b] ag( ) [mE agb 9( )fl g g )f2 z€la gb] )fl]

/ Vg(a+tt-(b—a))f1 dt/ Vg(att-(b— a))f2 dt, . / Vglatt-(b—ay)fi dt] (6)
0

dt

/ 3ga+t (b—a))
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or, alternatively, using Eq. [5}

of
= AVQV /1, AVG Voo fo, .. AVQV
ze[ab] dg(z) [ 9l )flb_ clab) /> zla.b) =i
= r— / \Y% (m)f1 dl‘z,/ g(ac)fZ da:i,...,/. Vg(a:)fl dz;] (7)

1 " of
b —ay o; 0g(x)

which holds for every i. However, if b; = a;, Eq. @must be used instead.

dl‘i

B COMPUTING AVERAGE GRADIENT

Our aim is to compute Eq. ] efficiently and, where possible, with high precision. The calculations
up to Eq. [T0] were introduced in our previous work (Anonymized, 2025).

Assume that the averaging interval is [0, 6']; see Appendix@ for the formal definition, which aligns
with the intuitive notion of averaging across parameter values. The averaged derivatives of each
scalar, nonlinear activation are computed as follows:

Oy (V) /1 Oxp (0 +t- (0 —0)) &
9e)0,0] OTk—1,:(F) 0 Ozp_1,(0+1t-(0"—0))
1 dxpi(0+t-(6'—0)) 1 9z z(9+t (9'-9))
fo Oxkkl,(Oth o= e))dt f =t dt

f01 zn_1. 1(984215 @=0) 3

where 23,1 ; and x, ; are the input and output of an activation, respectively. Both variables depend
on the complete set of model parameter values, denoted by ¥.

We approximate x;_1,;(6+t- (6’ —0)) as an affine (first-order) function of ¢, i.e. £5_1 ;(60 +¢- (6’ —

6)) ~ at + B, which implies az%tl L = o = const and therefore fo aw’étl L dt = fol adt =a =
8:”’5 L Finally, this constant can be carried into the remaining integral fo 80“ . dt yielding:

1 Ozp,i(0+-(0'=0))  dzp—1,:(84t-(8'-6))
Oxy (V) o axkil,i(eﬂ.(eua))' ST dt

5e0,0] 6$k_17(19) ~ fol azk_l,i(eggt.(e/,o))dt ®
1 Bay, s (0+t-(0'—0
I %dt vy (0) — 21.,:(0)

= f01 8$k—1,i(95’t_t'(0/_0))dt @1, (0) — wp-1,(0)

The main advantage of our approximation versus alternative schemes is that we never linearize the

partial derivative da‘” ‘in 0, &', or t; consequently, it captures the true dynamics of the gradients

more accurately. Moreover, the calculation is computationally efficient. Division—-by—zero cases are
handled as described in Algorithms [[|and 2]

We assume that each activation is represented as a distinct Eh layer, i.e., fi, : R™ — R™, where m
is the length of both representations x;_; and xj. Its input is the output from the (k — 1)th layer,
given by xy_1(0) = [zr—11(9),2k—1,2(F), ..., ZL—1,» ()] which depends on the model parameters
1. Then the average gradient of layer fy, is given by:

AVgﬁe[g 0'] aiki(]()) = dlag([.AVQgE 6,0'] 62:’“711(11?)19)7 .AVQ%[@’Q/] 62:%12(;?)19)’ ceey

©)
AVGoecio.0n 7axkk 1"“?39)])

where each term AVG . (-) is approximated in Eq. [§ l and diag(-) denotes a diagonal matrix con-
structed from the input vector.

For method variants without “linear” in their names, we do not alter Jacobian terms associated with
affine or convolutional layers; instead, our modifications apply only to the backward pass through

14



Under review as a conference paper at ICLR 2026

activation functions. Assuming that the k™ layer is a pointwise activation and that the (k—1)th layer
is either fully connected or convolutional, we extend the approximation of Eq. [2]accordingly:

oz (9) . Oxp_1(6) oz, (9)
Avg%[é’ﬁ’] 8£ki21§19) ~aa§’;,;9<9> Avg%[&@’] gmkiﬁw)
AVGyepo.0) 8:;,;(7) ~ malZ);(l ) AVGoeio,01 amffg(%)

1

(10)

This equation intuitively moves the approximated values closer to the gradient. Our goal is to obtain
an approximation of the average gradient that is more accurate than using the gradient directly as an
estimate. Therefore, if the precision of the approximation remains between that of the gradient and
our current estimate in Eq.[2} it satisfies our objective.

Oxp_1 Oxp_1

As an alternative to the unaveraged Jacobian terms in Eq. Vo and 50, the average gradient
for affine-parameterized layers can be approximated as:

Oxp_1(9) __ Oxy,—1(0) Oz —1(0")
AVG (0.0 Gayat0) ~ %(Bmz,;(ﬁ) + Bm:,;((f’))

dmp_1(9) _ 1(0zk_1(0) | Bmp_1(0")
Avgﬂe[fw'] albk_ NE( alg)kil + E;G;il )

1

(1)

which is used by the variants labeled “linear”.

See Algorithms 2] and [T]for details on computing the average gradient.

C PSEUDOCODE FOR FORWARD-LOOKING ALGORITHM VARIANTS
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Algorithm 2 Single step of the forward—looking variants of our algorithm assuming a plain feedfor-
ward neural network. Different algorithm settings are marked in colors ( (Anonymized, [2025)),
AG-2, and Linear).

Input: Model with n layers f = (f1, f2, ..., fn), Parameters of the model #(), optimizer’s state s(*)
Output: §(t+1) | 5(t+1)
1: Sample a batch B(®).

2: (wgt), ét), L x®) = £(00, B {Compute outputs of each layer of the model. Assume
that x; is a vector. }

3 (G, G0 = Voo zo) (@), BY) {Calculate gradients.}
4 (0’0 DY optimizer(s® 01, Gét)) {Estimate the next update. }
5. ( /(t) /(t) . w/(t ) _ f(al (t) B(t )
6: G’(t) — V E(:c , B®) {Compute the gradient of the last layer using new weights}
7: fori < ntol step —1 do {Iterate over layers to compute estimated average gradient.}
8: if f; is an activation then {G;)(? =0}
() ®
z, —x,
9 G/m(i-ll — W o G/( {Equatlon If (x;(tlj = acl 1 j)» then
i—1
(®)
O e 9% o )
x,(i—1 t x, (1,
»J O E )17] J
10:  else { f; is a parameterized layer}
11: if Algorithm variant is “Linear” then {Calculate average gradient of a parameterized
layer}
o (1) 9./(1)
. 1(t) 10z " 0z
12 Gai1 ¢ Q(Hmf”l + 0:1:/(” )G {Equation|11}}
10 (t) ) /(1)
13: G’w —( L i )G (e {Equation (I 1{}
2 de“” o0
14: if Algorlthm variant is AG—2 Linear then
15: Scale 0 _, and 0 ) to match the gradient length (H (,3 and
1 1 2
o respectively)
06" ||, ’
16: end if
17: else {Propagate gradient backwards without averaging}
oz oz"
18: G;Etl) — ;r: thi) , Gg(t‘) — — /(t) {Equation |10[}
, P (t) , i aogt)
i—1 4
19: end if
20:  endif
21: end for

22: if Algorithm variant is AG—1 then

24: else { Algorithm variant is AG-2}

25: 0"® «— optimizer(s®,0®), G/“ ) {Update weights, but without modifying optimizer’s
state }

26:  Scale the update A9 = 0”®) — 9(*) to match the gradient update length Hﬁ’m —6® H1

27: 0D 9 1 A9

28: end if
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D RESULTS FOR FORWARD-LOOKING ALGORITHM VARIANTS ON
RESNET-152 USING SIGMOID ACTIVATIONS

Table 5: Efficiency comparison of training algorithms on ResNet-152 with sigmoid activations in-
stead of ReLU. A single empirically tuned learning rate is held constant across all experiments. All
relative metrics are reported relative to gradient—based counterpart methods. & values indicate SEM
across independent runs.

. Bigila_t}jlg ss Relatiye Sample Relative Avg.
Training Minimization Efficiency and Step Length
Algorithm Improvement Baseline Algorithm L1 and L2
RMSProp AG-1 (2.68 +0.07)% 58.7% (of RMSProp) 100% 100%
RMSProp AG-2 (224+£1.1)% 27.9% (of RMSProp) 100% 100%
RMSProp AG-2 Linear (—65.3£0.7)% 5.82% (of RMSProp) 100% 99.7%
Soap AG-2 (753 £091)% 28.1% (of RMSProp) 100% 100%

Soap AG-2 Linear  (—4.58 £1.46)% 10.7% (of RMSProp) 100% 100%

E PRECONDITIONING MATRICES OF DIFFERENT OPTIMIZERS

In Eq. [T we assume that model-parameter updates of typical optimizers (RMSProp (Tieleman &
Hinton| [2012), Adam (Kingma & Bal [2014), SOAP (Vyas et al., 2024)), Eva (Zhang et al. [2023),
K-FAC (Martens & Grossel [2015a), and Shampoo (Gupta et al.|, 2018)) admit the unified form
A0 = —p H Vg, ie., apreconditioner H exists:

+ Adam/RMSProp (diagonal inverse square root): H = diag((E[(Vgl) o (Vol)] +
e)’l/ 2), where the square root and division are elementwise, ¢ > 0 stabilizes the scal-
ing, and o denotes Hadamard multiplication.

* K-FAC (structured inverse): H = (F + AI)~1, where F is a low—dimensional
Kronecker—factored surrogate of the empirical Fisher F' = E[(Vf)(Vgf) "] and A > 0
provides damping.

* Eva (spectral/diagonal inverse square root): H ~ (13‘ +€l)™1, where F is a structured
(spectral or diagonal) second—moment/Fisher surrogate; Eva uses AdaGrad—style normal-
ization rather than a full inverse.

e Shampoo (low-dimensional Fisher surrogate, inverse square root): Shampoo con-
structs a low—dimensional surrogate Fof F (e.g., via Kronecker—structured contractions
of E[(V¢l)(Vf) ] along parameter dimensions) and applies inverse—square-root precon-
ditioning: H ~ (3, F) + eI)~'/2. The standard power is —3, yielding second-order
normalization consistent with AdaGrad—style scaling.

* SOAP (Adam in a structured eigenbasis):

H = Q diag (\/IE [(QTVal)o (QTVel)] + e) - Q.

where @ holds eigenvectors of a slowly varying structured surrogate of F'; SOAP performs
Adam-style second-moment normalization per eigen—direction.

F COMPUTATIONAL AND MEMORY EFFICIENCY COMPARISON
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Table 6: Notation for time and memory (per training step, per batch).

Symbol Meaning

Trwa Forward pass time (wall--clock).

Thwd Backward pass (backpropagation) time (wall--clock).

Topt Optimizer step time, including the amortized per--step cost of any infrequent optimizer
procedures (e.g., preconditioner updates).

Tsal Time to compute a norm-based scaling factor and apply it to all parameters or all gra-
dient entries (same size). This comprises a reduction to compute the chosen norm (e.g.,
Ly or L) and a subsequent scaling pass over the tensor(s).

Tort SAM perturbation time (norm reduction over gradients followed by a scaling pass).
For commonly used model sizes on modern accelerators these low-intensity operations
are bandwidth-bound, so T}, is of the same order as T, for plain SGD; it is smaller
for SGD with momentum and strictly smaller for stateful or preconditioned optimizers
(e.g., Adam, Shampoo/K-FAC).

My Memory for model parameters only.

M, Activation/graph memory for one batch (intermediate tensors retained for backprop),
excluding parameters and optimizer state. Note that typically M, > Mjy; however, M,
can be reduced when accumulating gradients over a fraction of a batch.

Moyt Memory for optimizer state (e.g., moments, statistics, preconditioners).

Mt Memory for stored activation inputs only under recomputation (checkpointing) poli-

cies; otherwise refers to inputs and outputs. In all cases, M, < M.

Table 7: Computational and memory efficiency comparison (per training step, per batch). See Ta-

ble [6] for notation.
Training algorithm Computational time Memory requirements
SGD, RMSProp, Adam, SOAP,

Eva, Shampoo, K-FAC Ttwa + Towd + Topt My + M, + Mopt

Sharpness—Aware Minimization 27¢wq + 2Thwd + Topt + Tpre  2Me + My + Moy
AG-3 2Thwd + T q + Topt 2M + My + Myer + Moy,
AG-1 2Thwa + 2T} g + 2Tops 2My + My, + Mgy + Mops
AG-1 (Linear) 2hva + 3Ty + 2Tops 2My + 2M,, + Moy
AG-2 W rwd + 2713 g+ 2Tops +2Tect 2Mpg + My + Moes + Moy
AG-2 (Linear) 2T kwa + 3T§W a2 +2T5c1 2Mp 4 2My + Moyt
SAM incorporating AG-3 Same as SAM when the averaging range in AG-3 matches

the perturbation range in SAM.

t Averaged backpropagation in AG=3 is implemented to run in roughly the time of one backpropagation.
 Excludes additional Mjy associated with disk usage.
% Averaged backpropagation in “Linear” variants is two times slower due to the utilization of Eq.

G PLOTS OF MODEL B
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Training Loss

Training Loss

0.30
= RMSProp (mean of 50)
——— RMSProp AG-1 (mean of 8)
0.25 - ~—— RMSProp AG-3-1 (mean of 50)
——— Adam (mean of 15)
—— Soap (mean of 50)
0.20 1 = Soap AG-3-1 (mean of 50)
' —— Soap AG-2 (mean of 30)
0.15 A
0.10 A
0.05 A
0.00 T T T T T T
0 20 40 60 80 100 120

Epoch

(a) Training losses on MNIST dataset.

0.7
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(c) Training losses on Fashion MNIST dataset.
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Test Loss

0.30
= RMSProp (mean of 50)
——— RMSProp AG-1 (mean of 8)
~—— RMSProp AG-3-1 (mean of 50)
0.25 ——— Adam (mean of 15)
—— Soap (mean of 50)
= Soap AG-3-1 (mean of 50)
—— Soap AG-2 (mean of 30)
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(b) Test losses on MNIST dataset.

0.60
\1 = RMSProp (mean of 50)

——— RMSProp AG-1 (mean of 8)

~—— RMSProp AG-3-1 (mean of 50)
0551 —— Adam (mean of 15)

—— Soap (mean of 50)

= Soap AG-3-1 (mean of 50)
0.50 = Soap AG-2 (mean of 30)

A}
0.40 A
0.35
0 20 40 60 80 100 120
Epoch

(d) Test losses on Fashion MNIST dataset.

Figure 2: Plots of Model B with confidence ranges (SEM). The optimizers for which the learning
rates are optimized are presented in Tab. El

H TRAINING AND TEST L0OSS CURVES FOR MODEL C
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(a) AG—1 improves sample—efficiency. (b) Comparison between RMSProp AG—-1 and Adam.
0.70

= RMSProp (mean of 30)
RMSProp AG-1 (mean of 30)
Adam (mean of 15)

= Soap (mean of 50)

0.65 A

0.60

Test Loss

0.55 A

Wi
0.50 WMM/"\M

0.45 A

T T T
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(c) Test loss comparison. A rare case in which
second-order optimization yielded worse generaliza-
tion despite significantly better training performance.
Our method exhibits a similar pattern: strong training
performance but poor generalization.

Figure 3: Model C plots with confidence ranges (SEM). The objectives used for learning rate tuning
are listed in Tab. 3]

I SECOND—ORDER OPTIMIZATION

The fundamental problem of second—order optimization is that computing all second—order deriva-
tives requires O(n?) computational time for n model parameters. Here, O(-) denotes Landau’s big—
O notation for asymptotic upper bounds. For comparison, a first-order optimization step has com-
plexity O(n). Moreover, in general case, the practical computational cost of inverting the Hessian
matrix is significantly higher, reaching O(n?). There are three major interesting research directions,
that avoid high computational and memory complexity:

Hessian—free methods (Martens et al.,2010; |[Martens & Grosse, | 2015b)) use the conjugate gradient
algorithm to iteratively perform the Newton step (Polyak, [2007) search. The procedure solves for p
in V20(0) p = —V£(6) (0 refers to model parameters and / is a loss function). This requires only
Hessian—vector products, computed in O(n) time each, and thus avoiding the explicit O(n?) inver-
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sion of the Hessian. In practice, a small number of conjugate gradient iterations is often sufficient
to obtain an adequate search direction.

L-BFGS variants (Zocco & McLoonel 2020} |Byrd et al.| [1994) approximate the Newton step by
constructing a low-rank inverse Hessian estimate from a constant number m of recent parameter
and gradient differences. Storing these m pairs requires 2mn floating—point numbers, which can
become a considerable limitation for deep models with very large n.

Approaches utilizing the empirical Fisher information matrix (empirical Fisher; eFIM), a prac-
tical, dataset—based approximation of the true Fisher Information Matrix (FIM). The FIM quantifies
curvature of the log-likelihood.

Let D = {(u;,v;)}Y, be a supervised dataset. We define the per-example negative log-likelihood
(NLL) as £(u;,v; | 0) = —logpg(v; | u;), where v; is the ground-truth class index. For classi-
fication with one-hot targets, this is equivalent to the standard cross-entropy loss. The population
(“true”) FIM is the expected outer product of the score (the gradient of the log-likelihood), with
expectations taken over the data-generating distribution ¢(u) and the model’s predictive distribution

po(- [ u):

X X T
F(0) = Eymqu) Eompy(|u) [(Ve log po (0 | ) (Vg logpe (0 | u)) } (12)
Equivalently, since Vgl(u,? | ) = —Vglogpg(¥ | u), we can write
X X T
F(0) = Eyg(u) Eompo(-u) {(Vef(u,v 16))(Vol(u, | 0)) } (13)

Under standard regularity conditions (support of pg(v | u) independent of 6; pg(v | u) > 0 on its
support; and interchange of differentiation and expectation), this equals the expected Hessian of the
NLL:

F(0) = Epogtu) Bompy (o) [V3L(u, 9 | 0)]. (14)

The empirical Fisher is a widely used approximation of Eq. equation ??. It replaces the expectation
over ¢(u) with a sample average over D, and replaces the inner expectation over py(- | u) with the
observed ground-truth labels:

N
F() = %Z (Vol(ui,vi | 0)) (Vol(ui,v; | 6)) . (15)

The eFIM is symmetric and positive semidefinite by construction. For stable inversion, it is often
damped as F'(0) + A\I, where A > 0.

Crucially, Egs. |13| and [14] show that the expected Hessian can be obtained efficiently from the ex-
pected outer product of gradients, allowing fast estimation of curvature information using Eq. [T3]
without explicitly computing second derivatives.

In practice, 13‘(9) is used to precondition gradients in natural-gradient methods (Amari, |1998)), with
scalable implementations via structured factorizations such as Kronecker-factored blocks (Martens
& Grosse, |2015a). Gradient “correlations” can be tracked cumulatively across training iterations
(u(®), v(t)) drawn from the training stream that approximates ¢, as in Shampoo (Gupta et al., [2018))
(Eq. [I5] for n equal to the iteration number) or via an exponential moving average (EMA) that
emphasizes recent curvature, as in K-FAC (Grosse & Martens, |2016):

M, = BM; 1 + (1= B)(Vol(u®,v® | 6,)) (Vot(u®,0® 6,))", Bel0,1).

At the population level, the natural-gradient update direction (Amaril [1998)) is:
Af o F(0)~tVaeL(), (16)
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where L(6) = E (. 0)~q(u,0) [((u, v | 0)].

Moreover, the natural gradient can also be derived from a trust-region formulation. In supervised
learning (loss minimization), consider

n&ign L(0+ Af) IIAlion (L(6) + VoL(0) T AG)

%

= ngien VoL(0)T A0 subjectto 3 A0TF(0)Af <e, (17)

whose solution is the natural-gradient direction with a step size chosen to satisfy the constraint:

2¢e
VoL(0)T F(0)"1VeL(0)

AG* = —a F(0)"'VyL(0), a = \/

Here, the quadratic form %AF)TF(F))AH is the second-order expansion of the KL divergence be-
tween the model at 6 and 6 + Af:

DKL(p9(~ | u) || porna(- | u)) ~ %AGTF(G) Af  (averaged over u ~ q(u)).
Thus, the trust-region radius ¢ enforces a bound on the local KL change, so each update corresponds
to a fixed-length step (on average over u ~ ¢(u)) in the space of predictive distributions py(- | u),

independent of the particular parameterization of the model.

The Fisher F' can be efficiently approximated by tracking “gradient correlations” restricted to the
layer level via Kronecker-factored blocks, substantially reducing memory and computation (Martens
& Grossel [2015a)). These ideas are instantiated in K-FAC (Grosse & Martens, [2016; [Martens &
Grossel [2015a), which has demonstrated improved sample efficiency and, in some settings, faster
time-to-target than stochastic gradient descent optimizer (Zhang et al., |2023; |Vyas et al., [2024).
A related approach, Shampoo (Gupta et al., [2018), applies structured, per-mode preconditioners to
tensor-shaped parameters, achieving strong sample-efficiency gains compared to first-order optimiz-
ers such as Adam (Kingma & Bal [2014)), Adagrad (Duchi et al.| |2011)), and SGD (Ketkar, |2017)),
with competitive throughput on ResNet (He et al.l |2016), Inception (Szegedy et al., |2015), and
Transformer architectures (Vaswani et al.,2017). Building on this line of work, the SOAP optimizer
(Vyas et al.l 2024) extends the Shampoo algorithm (Gupta et al., [2018)) by integrating curvature—
aware momentum, thereby enhancing its adaptability to diverse curvature geometries. SOAP reports
further improvements in sample efficiency and generalization on large language models, with faster
time-to-target than Adam (Kingma & Bal [2014) in reported experiments.

A key challenge for second-order optimizers is the computational cost of inverting the approxi-
mate eFIM. Methods like K-FAC (Grosse & Martens}, |2016), Shampoo (Gupta et al., 2018), and
SOAP (Vyas et al.L[2024) tackle this by using structured approximations. More recently, Eva (Zhang
et al., 2023) introduced a more compact eFIM representation and leverages the Sherman—Morrison
formula (Sherman & Morrison, |1950) to accelerate the matrix inversion, thereby avoiding the costly
eigenvalue decomposition required by SOAP (Vyas et al., [2024). Although the asymptotic ratio
between the bottleneck operation’s complexity (inversion or decomposition) and the compressed
eFIM’s size is similar across these methods (Grosse & Martens, 20165 |Gupta et al., 2018 |Vyas
et al., |2024; [Zhang et al) [2023), Eva has demonstrated significantly shorter wall-clock training
times than both SGD (Ketkar, [2017) and other second—order optimizers (Grosse & Martens, 2016;
Gupta et al.} 2018]). Notably, these speedups are achieved while matching the generalization perfor-
mance of K-FAC and Shampoo on a range of computer vision benchmarks.

Within the scope of our review, the second—order methods that appear most promising based on
reported wall—clock efficiency and generalization performance are SOAP (Vyas et al., [2024) and
Eva (Zhang et al.| [2023). SOAP has been reported to deliver substantial wall-clock speedups with
strong generalization on large language models (LLMs) (Vyas et al.|[2024)). Eva (Zhang et al., 2023)
is a lightweight method that maintains competitive generalization and strong sample—efficiency, as
demonstrated on computer—vision benchmarks, while exhibiting asymptotically favorable computa-
tional and memory scaling that is comparable, up to constant factors, to first—order optimizers.

J DETAILS ON EXPERIMENT SETTINGS

Across all experiments, we set some common generally well-performing optimizer hyperparameters
(see Table[3).
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Table 8: Optimizer hyperparameters, that are common across experiments. p denotes number of
batches, every which SOAP computes preconditioning matrices.

Optimizer Hyperparameters
SOAP 61 = 0.95,ﬂ2 = 0.95,ﬁ1 = 0.95,62 = 0.95,p =10
SOAP AG-3  d = 300,08, = 0.95, 52 = 0.95, 81 = 0.95, 52 = 0.95,p = 10
Adam B1 =0.9, 8, =0.999
Adam AG-3 d=45,61=0.9, 5, =0.999
RMSProp 8 =0.99
RMSProp AG-3 d=45,8=0.99

We used cross—entropy loss, which aligns with theoretical foundations of eFIM used by SOAP (Vyas
et al., [2024), and the batch size of 128 across all experiments, except for ResNet—152, where we
decreased batch size to 64. We used ResNet—152, which was pretrained on ImageNet—1K dataset
(Deng et al.,|2009)), and we mapped classes to Imagenet—OOD (Yang et al.,[2023) to have about 18%
accuracy before beginning the fine—tuning.

We omitted some training runs involving optimizers with momentum, like Adam, and forward—
looking updates, AG—1 and AG-2. In this scenarios AG-2 modifies a small fraction of an actual
update, that is not related to the momentum, limiting the potential of forward—looking concept.
AG-1 might negate momentum direction, which also is undesired.

To determine, whether the performance is highly dependent on activation functions, we performed
additional experiments after changing ReLU to different activation functions.

K DISCLOSURE OF LARGE LANGUAGE MODEL ASSISTANCE

We disclose and delimit the roles played by large language models (LLMs) in the preparation of this
manuscript. All LLM-assisted outputs were reviewed and edited by the authors; technical content
and decisions remain authorial.

LLMs were used to generate and refine sentence—level phrasing and for localized rewording of
paragraphs to improve clarity and concision. Al assistance aided in correcting grammar, improving
readability, and harmonizing tone across sections while preserving technical content and author
intent. LLMs were consulted to flag potential inconsistencies in notation and equation formatting;
all mathematical derivations, identities, and proofs were authored, verified, and finalized by the
authors. All LLM-suggested text and equation—formatting changes were reviewed line-by-line by
the authors.

LLMs assisted in identifying a minority of potentially relevant papers that did not appear in our
initial manual queries. Al tools were used to obtain brief summaries and to triage candidate works
for subsequent human evaluation. Final inclusion decisions and categorization were made by the
authors after reading the original papers. Citations, summaries, and positioning in the related—work
section are based on the original sources. LLM outputs were used only to broaden the candidate set
and prioritize reading order.

LLMs were not used to run, tune, or select experiments, nor to generate tables or figures beyond
minor wording edits in captions.
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