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Abstract

Combining predictive distributions is a central problem in Bayesian inference and1

machine learning. Currently, predictives are almost exclusively combined using2

linear density-mixtures such as Bayesian model averaging, Bayesian stacking,3

and mixture of experts. Nonetheless, linear mixtures impose traits that might4

be undesirable for some applications, such as multi-modality. While there are5

alternative strategies (e.g., geometric bridge or superposition), optimizing their6

parameters usually implies computing intractable normalizing constant repeatedly.7

In this extended abstract, we present two novel Bayesian model combination tools.8

They are generalizations of stacking, but combine posterior densities by log-linear9

pooling (locking) and quantum superposition (quacking). To optimize model10

weights while avoiding the burden of normalizing constants, we maximize the11

Hyvärinen score of the combined posterior predictions. We demonstrate locking12

and quacking with an illustrative example.13

1 Introduction14

A general challenge in statistics is prediction in the presence of multiple candidate models or learning15

algorithms: we are interested in some outcome y on a measurable space Y ⊂ Rd; We fit different16

models to the data, or the same model on different parts of the dataset, and obtain a set of predictive17

distributions, {π1(y), . . . , πK(y)}, where each πk(y) is a (conditional1) probabilistic density such18

that
∫
Y πk(y)dy = 1. When combining models, there are three subjective decisions to make: (1)19

individual models, (2) the “prior” assigned to each model, and (3) the form in which individual20

sampling models are combined in the predictive sampling distribution. Here, we focus on the latter.21

The combination operation binds individual sampling distributions into a larger encompassing
sampling model. A combination operator, parametrized by some parameter w, maps a sequence of
probability densities into a single probability density:

h(π1(·), . . . , πK(·)|w) = π∗(·), s.t. π∗(·) ≥ 0,Eπ∗(·) = 1.

For example, a (linear) mixture can be represented by

h(π1(·), . . . , πK(·)|w) =
∑
k

wkπk(·),
∑
k

wk = 1.

In Bayesian statistics, the mixture is the de facto combination operator to combine predictive distribu-22

tions, and used in Bayesian model averaging [11], stacking [15], hierarchical stacking [16], and as its23

name has implied, mixture-of-experts [6, 7, 17], and hypothesis testing [8]. Despite its mathematical24

convenience, mixture has a few limitations:25

1the dependence on covariate x is suppressed for brevity
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Figure 1: When combining two probabilistic predictions (panel 1), quacking combines them via superposition
and locking combines them by geometric bridges.

Mixture is linear. If only relying on mixing to combine individual sampling models, the depth of26

the combination network is restricted to one. It only examines likelihoods through their evaluations27

at realized observations. Mixture of predictive densities typically results in a multimodal posterior28

prediction, which comes with unnatural interpretation and poor interval coverage.29

In this extended abstract, we investigate two operators to combine Bayesian predictives (Figure 1):30

1. Geometric bridge (log-linear pooling),31

h(π1(·), . . . , πK(·)|w) :=
∏

k π
wk

k (·)∫ ∏
k π

wk

k (y)dy
, w ∈ Sk . (1)

2. Superposition,32

h(π1(·), . . . , πK(·)|w,α) :=
∣∣∑

k

√
wk

√
πk(·)eiαk

∣∣2∫
R
∣∣∑

k

√
wk

√
πk(y′)eiαk

∣∣2dy′ , α ∈ [0, 2π)K , w ∈ Sk .

(2)
where SK is the k-dimensional simplex.33

Compared with to mixture, these new operators have appealing features: When individual sampling34

models are log-concave, so is their geometric bridge, hence preserving the unimodality. Moreover,35

in superposition, when the phases α are uniformly distributed, we get back a mixture of densities.36

Even when there is only one single model, depending on the phase, the superposition and geometric37

bridge can make the combined distributions spikier, or flatter— approximately a power transforma-38

tion, thereby automatically calibrating the prediction confidence. Finally, unlike the mixture, the39

superposition and geometric bridge can create a middle mode, leading to more flexible predictions.40

The remaining question is then how to optimize the weights w such that the combined predictions can41

better fit the data. This is challenging because of the intractable normalizing constant, and existing42

log-linear pooling techniques rely on some non-testable normal approximation [1, 4, 10, 12]. In the43

next section, we provide a practical solution that incorporates the Hyvärinen score [5] and Bayesian44

posterior predictions.45

2 Operator-oriented model averaging46

2.1 Scoring rules and Hyvärinen score47

In methods like stacking and mixture of experts, we need a scoring rule Gneiting and Raftery [2]48

to evaluate the combined prediction, in which the logarithmic scoring rule is the de facto choice49

for it is the only continuous proper local scoring rule. However, the log score does not apply to50

log-linear pooling and superposition: unless in trivial cases, the combined predictive densities contain51

an unknown normalization constant in the denominator.52

To bypass the normalizing constant, we use the Hyvärinen score [5] to evaluate the unnormalized
combined predictive density. In general, given an unnormalized density q, how good it fits the
observed data y is quantified by

H(y, p) = 2∆y log p(y) + ||∇y log p(y)||2.
The Hyvärinen score can be interpreted as the L2 norm of the difference between the score of the53

prediction and the true data generating process.54
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2.2 Importance weighted estimate of the score function55

Another distinctive feature of the full Bayesian prediction is that the posterior prediction itself is a56

mixture of conditional sampling distributions. That is, in the k-th model, the posterior parameter57

inference given observed data D is pk(θ|D), and the predictive density for future data ỹ is πk(ỹ) =58 ∫
Θ
f(ỹ|θ)pk(θ|D) dθ. To compute the Hyvärinen score of this posterior prediction, we need the59

pointwise score function60

∂

∂y
log πk(y) =

π′
k(y)

πk(y)
=

∫
Θ

∂
∂yf(y|θ)pk(θ|D) dθ∫

Θ
f(y|θ)pk(θ|D) dθ

. (3)

We will typically use Markov chain Monte Carlo (MCMC) methods for individual model inference,61

such that we have S simulation draws {θsk, 1 ≤ s ≤ S} from the model k posterior pk(θ|D). The62

score function (3) is a ratio of integrals. We compute both the denominator and numerator by Monte63

Carlo sum, and a plug-in estimate of the score function is64

∂

∂y
log πk(y) ≈ gk(y) :=

∑S
s=1

∂
∂yf(y|θks)∑S

s=1 f(y|θks)
. (4)

There is no worry that the denominator and numerator are estimated using the same draws: We can65

view (4) as self-normalized importance sampling with a proposal density pk(θ|D), target density66

f(y|θ)pk(θ|D), and a function h(θ) = ∂
∂yf(y|θ)/f(y|θ)

2. The usual convergence theory of self-67

normalized importance sampling [e.g., 9] guarantees the consistency and asymptotically normality of68

our score function estimate (4).69

Similarly, for the second derivative, the Monte Carlo estimate given each model is also consistent,70

∂2

∂y2
log πk(y) =

πk(y)π
′′
k (y)− [π′

k]
2

[πk(y)]2
≈ hik :=

∑S
s=1 f

′′(y|θks)∑S
s=1 f(y|θks)

− [gik]
2
.

2.3 Proposed method: optimizing the Hyvärinen score of the combined posterior densities71

Our general model combination method contains five steps as follows:72

Step 1: fit each model to the data and obtain K predictive densities. In practice the pos-73

teriors pk(θ|D) are represented by Monte Carlo draws, θk1, . . . , θkS , leading to the estimate74

πk(·) := 1
S

∑S
s=1 pk(·|θks). Step 2: express the unnormalized predictive density via the combination75

operator. For example, in locking we have q(·|w) :=
∏

k π
wk

k (·). Step 3: evaluate ∇y log q(·|w) and76

∆y log q(·|w) at every observed yi points. They come in closed form functions of ∇yπk(yi|θks) and77

∆yπk(yi|θks). In locking:78

q′i(w) := ∇y log q(yi|w) =
K∑

k=1

wk∇y log (πk(yi)) ≈
K∑

k=1

wk

∑S
s=1 ∇ypk(yi|θks)∑S
s=1 pk(yi|θks)

, (5)

q′′i (w) := ∆y log q(yi|w) ≈
K∑

k=1

wk

S

S∑
s=1

(∆y log pk(yi|θks)) . (6)

The quacking derivatives also come in closed form expression (functions of weight w and phase α),79

but we omit them here.80

Step 4: optimize model weight vector w by the constrained optimization81

ŵopt = min
w

(
n∑

i=1

(
2q′′i (w) + |q′i(w)|2

)
− log prior(w)

)
, s.t.

K∑
i=1

wk = 1, wi ≥ 0. (7)

We use an non-informative prior Dirichlet (1.01) for weight regularization.82

2Rewrite the score funciton into (3) into
∫
Θ
h(θ) f(y|θ)pk(θ|D)∫

Θ f(y|θ)pk(θ|D)dθ
dθ admits the self-normalized importance

sampling estimate.
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Figure 2: Log predictive scores. For each method, we show the overall predictive log score,
∑Npred

j=1 log π∗(yj)
. Our method (Hyvärinen model averaging, green) achieves higher log-scores in all four scenarios.

Complexity. The key blessing of applying scoring matching to Bayesian predictions is that the83

Mote Carlo integral is linear, and is exchangeable with gradient operators. Hence, all we need is to84

compute and store the gradient and hessian of the log likelihood (with respect to data) at the sampled85

parameters once, that is ∇yπk(yi|θks) and ∆yπk(yi|θks). In particular, the score functions have86

already been computed in gradient-based MCMC sampler, such as in dynamic Hamiltonian Monte87

Carlo [e.g., 3], hence nearly free. The summation in the objective function 7 contains nKS gradient88

evaluations in total, and can be computed in parallel.89

3 Example90

To manifest the flexibility of our new approach, in this section we run experiments and compare the91

locking method to other state of the art model averaging and selection tools. We adapt the experiment92

setting from Shao et al. [13]. Consider two normal belief models.93

M1 : Yi ∼ Normal(θ1, 1), θ1 ∼ Normal(0, v0),

M2 : Yi ∼ Normal(0, θ2), θ2 ∼ Inverse-χ2(ν0, τ0).

Following Shao et al. [13], we picked v0 = 10, ν0 = 0.1 and τ0 = 1. We simulate Ntrain data points94

from a true data generating process: a normal distribution with mean µ⋆ and variance v⋆. We also95

generate a Ntest independent test samples. We consider four scenarios: (1) µ⋆ = 1 and v⋆ = 196

meaning that M1 is correctly specified but M2 is not; (2) µ⋆ = 0 and v⋆ = 5 meaning that M297

is correctly specified but M2 is not; (3) µ⋆ = 4 and v⋆ = 3, a situation in which neither model98

is correctly specified and (4) µ⋆ = 0 and v⋆ = 1, in which both are correctly specified. We ran99

M = 100 replications of each scenario, with Ntrain = 200 and Ntest = 50.100

We compare six methods in total, (1) model selection using marginal likelihood, (2) Bayesian101

model averaging (3) model selection using leave-one-out log predictive densities [LOO-elpd, 14],102

(4) Bayesian stacking [15], (5) model selection using Hyvarinen score [13], and (6) locking (ours).103

We evaluate predictive performance of the learned combined model. To make the comparison fair,104

we pick a metric that we do not directly optimize over: the log predictive density on test data. As105

shown in Figure 2, our new locking method outperforms all its alternatives in terms of log-scores.106

We show that the Hyvärinen stacking (i.e. first optimising the weights using the Hyvärinen score107

on held-out data then forming a log-pool with the optmised weights) leads to higher log-predictive108

densities overall.109
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