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ABSTRACT

A/B testing is widely used in the internet industry. For online marketplaces (such
as advertising markets), standard approaches to A/B testing may lead to biased
results when buyers have budget constraints, as budget consumption in one arm
of the experiment impacts performance of the other arm. This is often addressed
using a budget-split design. Yet such splitting may degrade statistical performance
as budgets become too small in each arm. We propose a parallel budget-controlled
A/B testing design where we use market segmentation to identify submarkets in the
larger market, and we run parallel budget-split experiments in each submarket. We
demonstrate the effectiveness of this approach on real experiments on advertising
markets at Meta. Then, we formally study interference that derives from such
experimental designs, using the first-price pacing equilibrium framework as our
model of market equilibration. We propose a debiased surrogate that eliminates
the first-order bias of FPPE, and derive a plug-in estimator for the surrogate and
establish its asymptotic normality. We then provide an estimation procedure for
submarket parallel budget-controlled A/B tests. Finally, we present numerical
examples on semi-synthetic data, confirming that the debiasing technique achieves
the desired coverage properties.

1 INTRODUCTION

Online A/B testing is widely used in the internet industry to inform decisions on new feature roll-
outs. For online marketplaces (such as advertising markets), standard approaches to A/B testing may
lead to biased results when buyers operate under a budget constraint, as budget consumption in one
arm of the experiment impacts performance of the other arm. To counteract this interference, one
can use a budget-split design where the budget constraint operates on a per-arm basis and each arm
receives an equal fraction of the budget, leading to “budget-controlled A/B testing,” see e.g. Basse
et al. (2016); Liu et al. (2021).

Despite clear advantages of budget-controlled A/B testing, companies are extremely constrained by
the number of such experiments they can run. While it’s possible to create more budget splits, this
will lower the budget per group substantially, which could lead to different equilibrium outcomes
and may disproportionately affect smaller buyers. Additionally, a common approach to increase
experimentation throughput is to run orthogonal experiments (with their own orthogonal random-
ization), but this would either suffer from the same interference as the vanilla A/B test setup, or also
require further budget splits.

In this paper, we propose a parallel budget-controlled A/B test design where we use market seg-
mentation to identify submarkets in the larger market, and we run parallel experiments on each sub-
market. When the overall market can be divided into several relatively isolated submarkets, budget-
controlled A/B tests can be conducted in parallel within these submarkets. However, this method
also presents some challenges. First, submarkets are rarely completely isolated; certain items may
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attract buyers from multiple submarkets, resulting in interference across submarkets when conduct-
ing tests in parallel. Second, submarkets differ in terms of buyer (and user) composition, which
might cause the local treatment effect estimates to not be representative of the global treatment ef-
fect where all buyers are included in the market. The second challenge is relatively easy to address
in practice by imposing balancing constraints in the clustering algorithm used to define submarkets,
while the first challenge is more fundamentally important and requires deeper understanding.

Before the theoretical exposition, we consider a comparison of results for paired experiments be-
tween a parallel budget-controlled A/B test setup, and that of a traditional budget-split design; where
the latter is considered the gold standard. Sec. 1 on the left shows comparisons of 99 experiments
where the point estimate and CIs are plotted on the vertical axis for the parallel design, and on the
horizontal axis for the budget-split design. The most important feature is whether the two experi-
ments agree between (negative, neutral, positive), as a change would result in a launch reversal. The
two experiment designs agree in 75% of cases (at 90% confidence level, hence the optimal agree-
ment is 81.5%), which increases to 79% after the introducing a guardrail metric, see Sec. 1 on the
right. These results are quite satisfactory, but do point at the existence of remaining interference
bias. In the remainder of this paper, correcting the interference bias is the main objective.

Contributions:

1. We formally define market interference in first-price auction markets using the first price
pacing equilibrium (FPPE) framework (Conitzer et al., 2022a) (Sec. 3)

2. We propose a debiased surrogate that eliminates the first-order bias of FPPE, and derive a
plug-in estimator for the surrogate and establish its asymptotic normality. (Sec. 4)

3. We run semi-synthetic experiments, confirming that the debiasing technique achieves the
desired coverage properties. (Sec 5).

1.1 PARALLEL A/B TESTING IN PRACTICE

In this section we describe the real-world problem of A/B testing with congestion that we wish to
model, and our proposed solution of parallel A/B tests in carefully balanced submarkets. We start
by describing the market environment. There is a set of n advertisers, and each advertiser i has a
budget bi. Whenever a user shows up on the platform an impression opportunity occurs, and an
auction is conducted in order to determine which ad will be shown to the user. Each advertiser i
has some stated value vi(θ) of being shown to a particular impression opportunity θ. The advertiser
submits a bid which is determined based on vi(θ), as well as the expenditure of the advertiser
so far. For example, in multiplicative pacing Balseiro et al. (2017); Conitzer et al. (2022b), the
platform adaptively learns a pacing multiplier βi ∈ [0, 1] such that the bid is formed as βivi(θ).
The budget-management system then adaptively controls βi over time, in order to ensure the correct
rate of budget expenditure on behalf of the advertiser. We consider first-price auctions, which is the
predominant way display advertising is sold online.

Figure 1: Parallel vs. standard budget-controlled A/B test, daily treatment effect. We denote
neutral treatment effects with a value of 1.0. Red crosses indicate instances of sign inconsistencies.
Left are all datapoints, on the right, datapoints that fail a guardrail metric are removed.
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Now that we have discussed budget management, we describe the A/B testing problem. Suppose
that a platform wants to run K A/B tests, which may affect, e.g., the valuations that advertisers
have for impression slots, revenue, etc. We construct the market-segmented experimental setup as
follows: We first define a bipartite graph between advertisers and users based on targeting criteria.
Subsequently, we cluster the advertisers into K clusters, where the objective is to minimize the sum
of weighted edges between clusters subject to traffic balancing constraints to make the resulting
clusters as similar to the whole market as possible. The edge weight between a pair of advertisers
is the number of impressions (or users) where they are both within the top-k bids. The choice of k
is a parameter that must be chosen based on experience with the specific application setting. If the
clustering achieves a small objective function value, then each cluster is a mostly isolated submarket,
in the sense that each user will mostly receive bids from advertisers in a single cluster. Then, we
run an A/B test within each of the K submarkets. Every user is randomly assigned to either “A” or
“B” in each submarket. The main challenge is that while submarkets are relatively isolated, there is
remaining interference from users who are targeted by advertisers from different submarkets, leading
to a slightly different equilibrium. Our main contribution is to define a framework for analyzing
such interference, and giving an estimator that removes the bias from these users. We survey related
works in App. D.

2 REVIEW OF FPPE THEORY

Notation. For a measurable space (Θ, dθ), we let Lp (and Lp
+, resp.) denote the set of (nonnegative,

resp.) Lp functions on Θ w.r.t the base measure dθ for any p ∈ [1,∞] (including p = ∞). Given
x ∈ L∞ and v ∈ L1, we let 〈v, x〉 =

∫
Θ
v(θ)x(θ) dθ. We treat all functions that agree on all but a

measure-zero set as the same. For a sequence of random variables {Xn}, we say Xn = Op(1) if for
any ϵ > 0 there exists a finite Mϵ and a finite Nϵ such that P(|Xn| > Mϵ) < ϵ for all n ≥ Nϵ. We
say Xn = op(1) if Xn converges to zero in probability. For a subset Θ′ ⊂ Θ, let 1Θ′(·) : Θ → {0, 1}
be the indicator function of Θ′. Convergence in distribution and probability is denoted by d→ and
p→ . Given a vector a = [a1, . . . , an]

T, let Diag(a) denote the diagonal matrix with (i, i)-th entry
being ai; sometimes we write Diag(ai) when it is convenient to define each ai inline. Let A† denote
the Moore–Penrose inverse of the matrix A, ej the j-th unit vector, and [n] = {1, . . . , n}.

bi, vi
θτ

Θ

bi, vi

s( ⋅ )

ΘbadΘ2

Θ3

Θ1

Figure 2: Left: Finite FPPE (left) and limit FPPE (right). In a finite FPPE, there are a finite
number of items; in a limit FPPE, the item set is a continuum. Right: The interference model —
Left (M̂α): the observed market where interference is present among submarkets. Middle (Mα):
the limit market with interference from bad item set. Right (M0): the limit market with perfectly
separated submarkets. We use data from the left panel to make inferences about the market in the
right panel.

Limit FPPE. We first introduce our notion of a limit market and two regularity conditions on the
market, which models the underlying market structure that we sample from. We have n buyers and a
possibly continuous set of items Θ with an integrating measure dθ. For example, one could take Θ =
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[0, 1] and dθ = the Lebesgue measure on [0, 1]. Each buyer has a budget bi; let b = (b1, . . . , bn).
The valuation for buyer i is a function vi ∈ L1

+ such that buyer i has valuation vi(θ) for one unit of
item θ ∈ Θ; let v : Θ → Rn, v(θ) = [v1(θ), . . . , vn(θ)]. We assume v̄ = maxi supθ vi(θ) < ∞.
The supplies of items are given by a function s ∈ L∞

+ , i.e., item θ ∈ Θ has s(θ) units of supply.
Without loss of generality, we assume a unit total supply

∫
Θ
s dθ = 1. Given g : Θ → R, we let

E[g] =
∫
g(θ)s(θ) dθ and V ar[g] = E[g2] − (E[g])2. Given t i.i.d. draws {θ1, . . . , θt} from s, let

Ptg(·) = 1
t

∑t
τ=1g(θ

τ ).

Next we introduce the market equilibrium concept that is the foundation of our study. For that
we leverage the first-price pacing equilibrium (FPPE) (Conitzer et al., 2022a). FPPE models equi-
librium outcomes under budget-management systems employed in several practical settings. Each
buyer is assigned a pacing multiplier βi, which is used to control their budget expenditure. For
each individual auction θ, the buyer bids βivi(θ), which can be seen as their adjusted valuation after
factoring in their budget constraint (in practice, the valuation vi(θ) may not be the buyer’s true val-
uation, but instead their unscaled bid reported to the platform). The goal of the budget management
system is to achieve an equilibrium, meaning that it must ensure that buyers spend their budget ex-
actly by appropriately choosing βi. If the budget cannot be fully spent, then no pacing must occur
(i.e., βi = 1). Below we formally define the pacing equilibrium concept in the continuous setting
(see Fig 2, right), and give the finite version in the next section (Fig 2, left).
Definition 1 (Limit FPPE, Gao & Kroer (2022); Conitzer et al. (2022a)). A limit FPPE, denoted as
FPPE(b,v, s,Θ), is the unique tuple (β, p(·)) ∈ [0, 1]n×L1

+(Θ) such that there exist an allocation
xi : Θ → [0, 1] for all i ∈ [n] such that,

1. (First-price) Prices and allocations are determined by first price auctions: for all items
θ ∈ Θ, p(θ) = maxi βivi(θ), and only the highest bidders obtain items: for all i and θ,
xi(θ) > 0 implies βivi(θ) = maxk βkvk(θ)

2. (Feasiblity, market clearing) Budget are respected: for all i,
∫
xi(θ)p(θ)s(θ) dθ ≤ bi.

There is no overselling: for all θ,
∑n

i=1xi(θ) ≤ 1. Items with nonzero price are fully
allocated: for all θ, p(θ) > 0 implies

∑n
i=1xi(θ) = 1.

3. (No unnecessary pacing) For all i,
∫
xi(θ)p(θ)s(θ) dθ < bi implies βi = 1.

Let β∗ and p∗ be the equilibrium pacing multipliers and prices. Revenue in the limit FPPE is
REV ∗ =

∫
p∗(θ)s(θ) dθ . It measures the profitability of the auction platform. The leftover budgets

for buyers are denoted by δ∗i = bi −
∫
p∗(θ)s(θ)x∗

i (θ) dθ.

The first two conditions simply describe the possible outcomes of a first-price auction system that
uses pacing as the budget management strategy. The last condition, no unnecessary pacing, ensures
that we only scale down a buyer’s bids in case their budget constraint is binding. FPPE has many
nice properties, including that they are competitive equilibria and that they are revenue-maximizing
among budget-feasible pacing multipliers (Conitzer et al., 2022a).

In a pacing auction market M = FPPE(b,v, s,Θ) the following two regularity conditions are
important for the study of its statistical properties.
Definition 2 (SMO). We say the smoothness condition holds if the map β 7→ Es[maxi βivi(θ)] is
twice continuously differentiable in a neighborhood of β∗.
Definition 3 (SCS). We say strict complementary slackness holds if, whenever a buyer is unpaced
(β∗

i = 1), then her leftover budget is strictly positive (δ∗i > 0).

The condition SMO ensures that in the limit market, items that incur a tie are measure zero. The
condition SCS rules out degenerate buyers that spend their budget exactly at β∗

i . See Liao & Kroer
(2023) and Liao et al. (2023) for an extensive discussion about these conditions.

Finite FPPE. Next we introduce the finite FPPE, which models the auction data we observe in
practice. Let γ = (θ1, . . . , θt) be a sequence of items. Assume each item has the same supply of
σ ∈ R+ units. A finite FPPE is a limit FPPE where the supply is a discrete measure supported on
the observed items γ. Let vτi = vi(θ

τ ).

Definition 4 (Finite FPPE, informal). A finite FPPE, F̂PPE(b,v, σ, γ), is a limit FPPE where the
item set is the finite set of observed items γ. See App. C for the full definition.
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In Liao & Kroer (2023), it is shown that if γ consists of t i.i.d. draws from distribution s, and one
takes σ = 1/t, then the pacing multiplier in F̂PPE(b,v, 1/t, γ) converge to the pacing multiplier in
FPPE(b,v, s,Θ) in probability. Also, note that the FPPE F̂PPE(tb,v, 1, γ) converges to the same
limit FPPE FPPE(b,v, s,Θ) because the pacing multipliers of a finite FPPE do not change when
budgets and supplies are multiplied by the same scalar.

The Eisenberg-Gale Program. Both the limit FPPE and the finite FPPE have convex program
characterizations (Chen et al., 2007; Conitzer et al., 2022a; Gao & Kroer, 2022). We define the dual
Eisenberg-Gale (EG) objective for a single item θ as

F (θ,β) = f(θ,β)−
n∑

i=1

bi log βi , f(θ,β) = max
i∈[n]

βivi(θ) . (1)

The population and sample (dual) EG objectives are then defined as

H(β) = E[F (θ,β)] , Ht(β) =
1

t

t∑
τ=1

F (θτ ,β) . (2)

We say H is the Hessian of market M when H = ∇2
ββ

∫
F (θ,β)s dθ|β=β∗ .

The equilibrium pacing multipliers β∗ in FPPE(b,v, s,Θ) can be recovered through the population
dual EG program

β∗ = argmin
β∈(0,1]n

H(β) . (3)

The pacing multiplier vector β∗ is the unique solution to Eq. (3). Let βγ be the equilibrium pacing
multiplier in F̂PPE(b,v, 1/t, γ). Then βγ solves the sample analogue of Eq. (3):

βγ = argmin
β∈(0,1]n

Ht(β) . (4)

Let us briefly comment on the differential structure of f , since it plays a role in later sections. The
function f(β, θ) is a convex function of β and its subdifferential ∂βf(β, θ) is the convex hull of
{viei : index i such that βivi(θ) = maxk βkvk(θ)}, with ei being the base vector in Rn. When
maxi βivi(θ) is attained by a unique i∗, the function f(·, θ) is differentiable. In that case, all entries
of ∇βf(β, θ) are zero expect that the i∗-th entry is filled with the value vi∗(θ).

3 INTERFERENCE AS CONTAMINATION

In this section, we discuss how to estimate market equilibria when there is contamination in the
supply, meaning that items are generated from a mixture of two distributions, when in reality we
wish to estimate equilibrium quantities from one of the two distributions. Then, we show that
interference from other markets can be viewed as a form of contamination, and so the problem of
removing interference bias can be analyzed via our contamination framework.

3.1 FPPE WITH CONTAMINATED SUPPLY

We assume that we are in the same FPPE setting as before: there are n buyers, each with budget
bi, and an item set Θ which is now partitioned in to Θbad and Θgood. However, now we assume
that the supply s is contaminated by s′, another supply distribution. We define the α-contaminated
market as Mα = FPPE(b,v, sα,Θ) and the uncontaminated market as M0 = FPPE(b,v, s,Θ),
where sα = αs′ + (1 − α)s, distribution s′ is supported on Θbad, and s on Θgood. Our goal is to
perform inference about FPPE properties in the limit FPPE with the supply s. However, we are given
access to finite FPPEs sampled from sα instead. In particular, let γ be t i.i.d. draws from sα and let
M̂α = F̂PPE(b,v, 1/t, γ). We assume α is known throughout the paper. In practice, this can often
be estimated from historical data; in the parallel A/B test setting, this can be estimated directly from
the sampled set of items, since we know whether an item is drawn from s or s′. Let β∗ and β∗

α be
the limit pacing multipliers in M0 and Mα, respectively. Let βγ

α be the pacing multipliers in the
sampled market M̂α and let Hα,t(β) =

1
t

∑t
τ=1F (θτ ,β) be the sample EG objective.
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If we wanted to make inferences about Mα then we could use existing statistical inference theory on
how to use data in a finite FPPE M̂α to make inferences about the limit FPPE Mα (Liao & Kroer,
2023). However, the supply contamination prevents the application of these tools to our problem.

Our central research question is then on how to use data in the finite contaminated market M̂α to
make inferences about the uncontaminated limit market M0.

In Sec. 4 we propose an estimator for this problem and derive its properties. The results there apply
to general item space Θ and supplies s and s′. By imposing structure on Θ, s and s′, we show that
the contamination model captures the interference among FPPEs.

3.2 APPLICATION: MODELING INTERFERENCE AMONG FPPES

Now we show how the contamination model from the previous section can be used to model inter-
ference. Consider K separate auction markets, which together form a global market. In the global
market there are n buyers, each with budget bi, and an item set Θ, partitioned into Θgood and Θbad.
Let C1, . . . , CK be a partition of the buyers, Θ1, . . . ,ΘK be a partition of the good item set Θgood,
and s1, . . . sK be a set of supply functions, supported on Θ1, . . . ,ΘK respectively. The k-th sub-
market consists of buyers in Ck, the item set Θk and supply sk. Let s = 1

K

∑
k sk be the average

mixture and s′ be a supply supported on Θbad. Let the contaminated supply be sα = αs′+(1−α)s.

By imposing structure on Θgood and Θbad the contamination model can capture interference among
auction markets. We assume that submarkets are separated, which models the ideal case where there
is no interference. A buyer i ∈ Ck is only interested in items from the submarket he belongs to:
vi(θ) = 0 for θ ∈ Θk′ , k′ 6= k. Next, we let Θbad represent items that cause outbound edges from
submarkets; see the green edges in Fig 2 left panel. An item is referred to as bad if it has positive
values for buyers from at least two different submarkets. Formally, θ ∈ Θbad if there exist i ∈ Ck,
j ∈ Ck′ , k 6= k′, such that vi(θ) > 0 and vj(θ) > 0. Combining these assumptions, we have
that a buyer i from submarket k has positive values only for items from the sets Θk and possibly
Θbad. Now we have fully specified a contaminated market setup: we wish to make inferences on the
market consisting of only Θgood (which is really K fully separate submarkets), but we observe an
actual market containing items from Θgood∪Θbad. With this setup, we can use the results developed
in the following section to model interference in parallel submarkets.

In Fig 2 we present an example of interference among K = 3 submarkets. The market of interest
is the perfectly separated market (right). This is because, in parallel A/B testing, submarkets are
explicitly created such that each submarket resembles the global market. Then when a submarket
receives a treatment, the observed quantities in that submarket, such as revenues and social welfare,
are considered surrogates for the treatment effect in the global market. However, in practice we only
observe the interfered finite market (left), which converges to the interfered limit market (middle).
In App. F we show how to analyze parallel A/B testing using this framework.

4 A DEBIASED ESTIMATOR AND ITS PROPERTIES

This section develops a methodology for making inferences about the uncontaminated limit FPPE.
Since the interference setting is a special case of the contamination setting, we develop theories
for the latter. We introduce a surrogate for pacing multipliers, based on the notion of directional
derivatives, and establish its debiasing property in Sec. 4.1. Then, we focus on estimating this
surrogate quantity in Sec. 4.2, and develop asymptotic normality results in Sec. 4.3. Secondly, we
consider estimating revenue, which can be thought of as a smooth function of pacing multipliers. We
discuss debiased revenue estimation and inference based on our pacing multiplier results in App. E.

4.1 A DEBIASED SURROGATE FOR PACING MULTIPLIERS

If we view β∗
α as a function of the level of contamination α, then one can imagine that under

sufficient regularity conditions, the pacing multipliers in the perfectly separated market, β∗
0 , can be

approximated by some form of Taylor expansion of α 7→ β∗
α at α. This can be made rigorous by the
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notion of directional derivatives. We define

dβ∗(α) = lim
ϵ→0+

β∗
α−ϵ − β∗

α

ϵ
. (5)

if the limit exists. We will show in Thm. 1 that β∗
α + α dβ∗(α) serves as a good approximation to

β∗ = β∗
0 .

Thanks to the convex program characterization of FPPE, the directional derivative dβ∗(α) has a
closed-form expression under certain regularity conditions (the conditions are given in Thm. 1; the
full proof is given in the appendix). We need a few notations for this expression. Define δα =∫
∇f(θ,β∗

α)(s− s′) dθ. Let Hα = ∇2
ββ

∫
F (θ,β∗

α)sα dθ be the Hessian matrix in the market Mα

and Pα = Diag(1(β∗
α,i < 1)). Then, under the regularity conditions given in Thm. 1 below,

dβ∗(α) = −(PαHαPα)
†δα . (6)

We present a heuristic derivation in App. G. Given the closed-form expression of dβ∗(α), we define
the following debiased pacing multiplier

β̃∗ = β∗
α + α · (−(PαHαPα)

†δα) . (7)

Theorem 1 (Analysis of Bias). Suppose that in the market M0 conditions SMO and SCS hold, and
assume that β 7→ ∇2

∫
F (θ,β)s′ dθ is twice continuously differentiable in a neighborhood of β∗.

Then the directional derivative dβ∗(·) is well-defined in a neighborhood of zero, and is given by
Eq. (6). Moreover, as α ↓ 0,

‖β̃∗ − β∗‖2 = o(α) .

The proof is given in App. B.1. Thm. 1 indicates that the debiased surrogate β̃∗ removes first-order
bias caused by contamination. The limit pacing multipliers β∗

α of the contaminated market Mα will
have bias of order β∗

α − β∗ = Θ(α). In contrast, Thm. 1 shows that the debiased surrogate only
incurs a bias of order o(α).

4.2 THE ESTIMATOR

In this section we introduce a plug-in estimator for the debiased surrogate β̃∗ and introduce a con-
sistency theorem. The next section discusses constructing confidence intervals.

To estimate dβ∗(α) in Eq. (6) we need estimates of its three components: the Hessian Hα =
∇2

ββ

∫
F (θ,β∗

α)sα dθ, the diagonal matrix Pα and the vector δα =
∫
∇f(θ,β∗

α)(s− s′) dθ.

The Hessian. For simplicity in our theoretical results, we will simply assume a generic Hessian
estimator Ĥα such that for some ηt ↓ 0 we have Ĥα −Hα = Op(ηt). Hong et al. (2015) discuss
the estimation of the derivative in detail. Different kinds of statistical guarantees require different
rate conditions on ηt; see Theorems 2 and 3. We then introduce two Hessian estimators: one is
applicable for general FPPE, while the other requires an extra market regularity condition. The first
Hessian estimator is the finite difference method. Let ei, ej be basis vectors and εt be a step-size.
Then the estimator is

Ĥα[i, j] = [Hα,t(β
γ
++)−Hα,t(β

γ
+−)−Hα,t(β

γ
−+) +Hα,t(β

γ
−−)]/(4ε

2
t ) ,

where βγ
±± = βγ

α ± eiεt ± ejεt, and Hα,t(β) = 1
t

∑t
τ=1F (θτ ,β), with {θτ}τ being the items

in M̂α. In practice, a diagonal approximation of the Hessian suffices. The second method relies
on an additional regularity condition, in which case we derive a simplified formula for the Hessian,
thereby enabling a simpler estimation procedure (see Thm. 3).

The vector δα. Let g be the Radon-Nikodym ratio g(θ) = (d(s − s′)/ dsα)(θ) =
1

1−α1Θgood
(θ) −

1
α1Θbad

(θ). With the ratio g, the true vector δα can be written as δα =
∫
g(θ)∇f(θ,β∗

α)sα(θ) dθ,
which is easy to estimate given i.i.d. draws from sα. In particular, our estimator is then δ̂α =
1
t

∑t
τ=1g(θ

τ )µτ . Here µτ = [xτ
1v

τ
1 , . . . , x

τ
nv

τ
n]

T is a subgradient of f(θτ ,βγ
α) w.r.t. β.

The diagonal matrix Pα. Recall Pα = Diag(1(β∗
α,i < 1)). So a natural estimator is P̂α =

Diag(1(βγ
α,i < 1− ιt)), where the slackness ιt � 1√

t
.
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With all three components estimated, using βγ
α is the pacing multiplier in the market M̂α we define

the plug-in estimator for dβ∗(α) in Eq. (6) as

β̂ = βγ
α − α · (P̂αĤαP̂α)

†δ̂α . (8)

Theorem 2 (Consistency). Suppose that in the market Mα conditions SMO and SCS hold. If the
Hessian estimation error satisfies ηt = o(1), then β̂

p→ β̃∗. The proof is in App. B.2.

4.3 ASYMPTOTIC NORMALITY AND INFERENCE

We present two asymptotic normality results. In the first result, we require a stronger condition on
the Hessian error rate ηt. In particular, as will be shown in Thm. 3, the rate condition ηt = o(1/

√
t)

is sufficient for normality. One could use a separate large historical dataset to obtain a good estimate
of the Hessian matrix. In the second result, we impose an additional condition on market structure
which simplifies the Hessian expression and facilitates efficient Hessian estimation. To describe
the additional market structure, we define the gap between the highest and the second-highest bid
for an item θ under pacing β by bidgap(β, θ) = max{βivi(θ)} − secondmax{βivi(θ)} , where
secondmax is the second-highest entry potentially equal to the highest; e.g., secondmax([1, 1, 2]) =
1. When there is a tie for an item θ under pacing β, we have bidgap(β, θ) = 0. When there is no tie
for an item θ, the gap bidgap(β, θ) is strictly positive.

For any g : Θ → R, let Eα[g] =
∫
gsα dθ and Covα(g) = Eα[(g−Eα[g])(g−Eα[g])

T]. Recall β̃∗

is the debiased surrogate in Eq. (7) and β̂ is its estimator defined in Eq. (8).

We need to introduce a few more notations to describe the normality results. First, let dα =
−(PαHαPα)

†∇f(·,β∗
α) . As mentioned previously, the pacing multipliers in the contaminated

market converge to the limit counterpart and have the representation

√
t(βγ

α − β∗
α) =

1√
t

t∑
τ=1

(dα(θ
τ )− Eα[dα(θ

τ )]) + op(1) .

In the statistics literature, the function dα(·)−E[dα] is called the influence function (van der Vaart,
2000). For our debiased estimators, we need the following (uncentered) influence functions.

d1(θ) =
(

1
1−α1Θgood

(θ)
)
dα(θ) , d2(θ) = d1(θ)− 2αDiag(β∗

α,iδα,ib
−1
i )dα(θ) .

Theorem 3. Let SCS and SMO hold in Mα.

1. Asymptotic Normality in a General Market. It holds that β̂ − β̃∗ = zt + Op(ηt) + op(
1√
t
),

where
√
tzt

d→N (0,Σ1) with Σ1 = Covα(d1), and ηt is the Hessian estimation error.

2. Asymptotic Normality under a Bid Gap Condition. If in addition Eα[1/bidgap(β
∗
α, θ)] < ∞,

then Hα = Diag(bi/(β
∗
α,i)

2). Suppose we estimate Hα with Ĥα = Diag(bi/(β
γ
α,i)

2). Then
√
t(β̂ − β̃∗)

d→N (0,Σ2) where Σ2 = Covα(d2). The proof is in App. B.3.

Thm. 3 part 1 shows how the error of the Hessian estimate affects the distribution of the estimator
β̂. If ηt = o(1/

√
t), then the decomposition becomes

√
t(β̂ − β̃∗) =

√
tzt + op(1), implying

asymptotic normality, i.e.
√
t(β̂− β̃∗)

d→N (0,Σ1), in which case one can construct an ellipsoidal
confidence region for β̃∗. Thm. 3 part 2 shows direct asymptotic normality under the extra condition,
with a simpler Hessian estimator that avoids finite differences.

To perform inference, we need to construct a consistent estimate of the covariance ma-
trix. Now we describe a plug-in estimate of Σ1. Let the estimator d̂1

τ
be d̂1

τ
=

−
(

1
1−α1Θgood

(θτ )
)
(P̂αĤαP̂α)

†µτ , where µτ = [xτ
1v

τ
1 , . . . , x

τ
nv

τ
n]

T, and P̂α, Ĥα have been de-

fined in Sec. 4.2. The plug-in estimator is Σ̂1 = 1
t

∑t
τ=1(d̂1

τ
− d1)(d̂1

τ
− d1)

T with d1 =
1
t

∑t
τ=1d̂1

τ
. By similar arguments as in Liao et al. (2023), the plug-in estimates of Σ1 and Σ2 are

consistent. Algorithm 1 summarizes the debiasing procedure.

In App. E we present a similar debiased estimator for revenue and its bias and variance properties.
In App. F we specialize the debiased estimator to parallel budget-controlled A/B testing.
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Figure 3: Normalized bias (in percent of true value) as a function of α in semi-synthetic

experiments. β̃∗ and R̃EV
∗

are the debiased surrogates for pacing multiplier and revenue in the
limit market with interference Mα.

5 SEMI-SYNTHETIC EXPERIMENT

To evaluate our proposed framework and debiased estimator, we run semi-synthetic simulations to
check if the proposed estimator for beta and revenue are indeed less biased, and we test the coverage
of the proposed estimator. Fully synthetic experiments are presented in App. H.

In the semi-synthetic experiments, we simulate 40 buyers and 10000 good items in two submarkets,
with a varying number of bad items (up to 5000) in order to study the effect of the contamination
parameter α. For each α, we randomly sample a budget for each buyer, and compute β∗ and
REV ∗ from the limit pure market M0 with a value function in each submarket. Both the budget
and values are sampled from historical bidding data, making the budget and value distributions
heavy-tailed as in the real-world applications. More specifically, we first sample a certain number
of auctions. For each auction, we sample a given number of advertisers with their per-impression
bids. Advertisers that are sampled across different auctions are treated as the same buyers and their
budgets are determined by aggregating their values over auctions up to a scalar to calibrated to get
the percentage of budget-constrained buyers equal to what was observed in the real-world auction
market, along the same lines as the experiments of Conitzer et al. (2022b).

To check if the debiased surrogate reduces bias, we compute β∗
α and REV ∗

α from the limit market

with interference Mα and their surrogates, β̃∗ and R̃EV
∗

(β̃∗ is defined Eq. (7), R̃EV
∗

is defined
in App. E. We look at the normalized bias for the surrogate, defined as ‖β̃∗−β∗‖2/‖β∗‖2 for pacing

multipliers and as |R̃EV
∗
/REV ∗ − 1| for revenue, and similarly defined for the limit quantities.

Fig 3 shows the normalized bias curves as a function of α. The magnitude of the bias increases with
α, for both the variables in the limit market with interference Mα and their debiased surrogates. The
bias of the debiased surrogates is indeed much smaller than the contaminated limit quantities.

Next, we check the coverage of the proposed variance estimator. For each α and each budget sample,
we run 100 simulations in the following way: We sample items (or their values for each buyer)
considering two submarkets and bad items. We then run the finite FPPE with bad items and obtain
a baseline estimate for pacing multiplier and revenue without applying the debiasing procedure.
Then, we apply the debiasing procedure to compute the debiased estimates. For each simulation, we
check if the debiased surrogate is within the confidence interval of the debiased estimator. Finally,
we aggregate them to compute the estimated coverage of the estimator. The results for both pacing
multiplier and revenue are shown in Table 1. For the coverage of β̂, we first compute the coverage
of each component and report only the average in the table. For revenue, we construct the CI using
the two approaches as mentioned in App. E: one based on Eq. (22) and the other using parametric
bootstrap based on the estimated asymptotic distribution of β̂ (with "(b)" in the column names).

Firstly, Fig 4 shows that both CIs converges to the true value from the limit market with interfrence
Mα as the number of items goes to infinity. Then, in Table 1, we show that the coverage for
β̂ is slightly smaller than the nominal level (95%), as well as the coverage of the bootstrap CI of

9
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Figure 4: Revenue confidence intervals as a function of the number of items in semi-synthetic
experiments. The analytic CI comes from Eq. (22). The true value is the debiased surrogates for
revenue in the limit market with interference Mα.

revenue. The under-coverage for β̂ is mainly driven by the under-estimation of the variance of β̂,
while the under-coverage of the bootstrap CI for revenue can also be partially attributed to the higher
dimensionality (with 40 buyers), making the bootstrap resampling harder to explore the whole space.

Although the proposed variance estimator has good asymptotic properties, the results from our syn-
thetic experiments suggest that it can perform badly, in either direction, for finite markets. Construct-
ing more accurate variance estimators for our debiased estimator in finite settings would certainly
mitigate the over- or under-coverage issues that we observe here and deserve more future research.
One promising alternative is to construct the CI for β̂ and R̂EV by directly bootstrapping the ob-
served value matrix, though this might work best for independent valuations across buyers.

β̂ R̂EV

α coverage CI width CI width (b) coverage coverage (b)

1000/11000 0.877 0.244 0.044 1.0 0.95
2000/12000 0.849 0.225 0.043 1.0 0.87
3000/13000 0.852 0.210 0.041 1.0 0.81
4000/14000 0.828 0.200 0.040 1.0 0.90
5000/15000 0.826 0.191 0.039 1.0 0.90

Table 1: Coverage of β̂ and revenue estimates in the semi-synthetic experiments. All quantities are
averaged over 100 simulations for each α (the ratio of the number of bad items and the total items).
The coverage of β̂ is averaged over all components of β̂. For revenue estimates, the columns with
"(b)" represent the quantities from the bootstrap CI, while the columns without "(b)" are for the CI
from Eq. (22). The CI widths are normalized by the revenue from the limit market Mα.

6 CONCLUSION

We have proposed a practical experimental design for performing concurrent A/B tests in large-scale
ad auction markets, using a submarket clustering approach, and showed that in production exper-
iments, this submarket clustering approach leads to strong sign consistency performance, as com-
pared to A/B testing on the full market, while allowing significantly-higher A/B test throughput. In
order to model the potential for interference between submarket A/B tests, we introduced a theo-
retical model of statistical inference in first-price pacing equilibrium problems, under settings with
supply contamination. We showed how one can perform statistical inference in such a setting using
a debiased estimation procedure, and studied the statistical properties of this procedure. We then
showed how our model of statistical inference in FPPE with contamination can be used to model the
submarket clustering parallel A/B test design, and gave theoretical performance guarantees. Finally,
we presented numerical experiments on fully synthetic and semi-synthetic data derived from Meta
ad auctions. The experiments showed that our proposed debiased estimator achieves smaller biases
and its statistical coverage on realistic data is generally in line with the predictions from our theory.
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A TECHNICAL LEMMAS

A.1 A PERTURBATION RESULT FOR CONSTRAINED STOCHASTIC PROGRAMS

We introduce a theorem from Shapiro (1990). Theorem 1 in that paper handles the case where
the constraints are also defined as expectations of some random functions, and constraints are also
perturbed in the analysis. For simplicity we specialize the theorem to deterministic constraints and
do not perturb constraints. Note that Theorem 7.27 from Shapiro et al. (2021) can also be used to
prove our Thm. 1.

Let Θ be a probability space equipped with an appropriate σ-algebra. Consider F : Θ × Rn → R
and a set B ⊂ Rn, given by

B = {β : gi(β) = 0, i ∈ I; gi(β) ≤ 0, i ∈ J} .

where I and J are finite index sets. Let P and Q be two probability measures on Θ. Let ϕ(β, α) =
(P + α(Q− P ))F (·,β) and ϕ(β) = ϕ(β, 0). Here minB ϕ is the main program of interest and Q
is a perturbation measure. The amount of perturbation is measured by α ∈ [0, 1].

Let β∗ be the unique minimizer of ϕ(β) over B. Let J∗ ⊂ J be the inequality constraints active at
β∗, meaning gi(β

∗) = 0 for all i ∈ J∗. Let β∗(α) be the unique optimal solution to minB ϕ(·, α).
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Lemma 1 (Theorem 1 from Shapiro (1990)). Define the Lagrangian function by L(β, λ, α) =
ϕ(β, α) +

∑
i∈I∪J λigi(β) and L0(β, λ) = L(β, λ, 0). Let Λ0 be the set of optimal Lagrangian

multipliers 1. Define the critical cone C = {u : uT∇gi(β
∗) = 0, i ∈ I;uT∇gi(β

∗) ≤ 0 for
i ∈ J∗;uT∇ϕ(β∗) ≤ 0}. Define Λ∗

0 = argmaxλ∈Λ0

∑
i∈I∪J λigi(β

∗). Assume the following
conditions.

1. Differentiability. The functions ϕ(·, 0), ϕ(·, 1), and gi, i ∈ I ∪J , are continuously differen-
tiable in a neighborhood of β∗.

2. Constraint Qualification. The gradients ∇gi(β
∗), i ∈ I are linearly independent. And

there exists b ∈ Rn such that bT∇gi(β
∗) = 0 for i ∈ I and bT∇gi(β

∗) < 0 for i ∈ J∗.

3. Differentiability. The functions ϕ(·, 0), gi, i ∈ I ∪ J∗ are twice continuously differentiable
in a neighbourhood of β∗.

4. Second-order sufficient condition. Assume for all nonzero u ∈ C,
maxλ∈Λ∗

0
uT∇2

xxL0(β
∗, λ)u > 0.

Define the function b and the set Σ by

b(u) = max
λ∈Λ∗

0

uT∇2
xtL0(β

∗, λ) +
1

2
uT∇2

xxL0(β
∗, λ)u (9)

Σ = argminuT∇ϕ(β∗) (10)
s.t. uT∇gi(β

∗) = 0, i ∈ I;uT∇gi(β
∗) ≤ 0, i ∈ J∗;

Then (i) there exists a positive K such that ‖β∗(α) − β∗‖ ≤ Kα for all positive α in a neigh-
borhood of zero. (ii) If, in addition, the function b has a unique minimizer u over Σ, then the limit
limα↓0(β

∗(α)− β∗)/α exists and equals to u.

B PROOFS

B.1 PROOF OF CLOSED-FORM EXPRESSION FOR BIAS AND THM. 1

Now we prove Thm. 1.

To begin with, we define directional derivatives. For a probability measure P on the item
set Θ, let β(P ) be the unique optimal solution to the Eisenberg-Gale program: β(P ) =
minβ∈(0,1]n

∫
F (θ,β) dP (θ). Let P and Q be two measures. When exists, the directional derivative

is defined as

dβ(P ;Q− P ) = lim
t↓0

β(P + t(Q− P ))− β(P )

t
.

Step 1. Show there exist K > 0 and ᾱ1 > 0 such that ‖β∗
α − β∗‖ ≤ Kα for α ∈ [0, ᾱ1]. And

dβ(s; s− s′) = −(PH0P )†δ0.

We apply lemma 1 with F (θ,β) = maxi vi(θ)βi −
∑

i bi log(βi), gi(β) = βi − 1, B = (0, 1]n,
dP = s dθ, d(Q− P ) = (s− s′) dθ.

By SCS in the market M0, the set Σ (defined in Eq. (10)) becomes the plane {u : ui = 0, i ∈ I+}
where we recall I+ = {i : β∗

i = 0}. By SMO in M0, we know the Lagrangian multiplier of the EG
program in M0 is unique, and thus b(·) defined in Eq. (9) becomes b(u) = uTδ0 +

1
2u

TH0u. We
conclude the directional derivative is dβ(s; s − s′) = limϵ→0+(β

∗
0 − β∗

−ϵ)/ϵ = −(PH0P )†δ0,
where P = Diag(1(β∗

i < 1)) and δ0 =
∫
∇f(·,β∗)(s− s′) dθ

Step 2. For all α ≥ 0 small enough, it holds Iα = I , where we recall Iα = {i : β∗
α,i = 1} and

I = {i : β∗
i = 0}.

First we show I ⊆ Iα, i.e., {i : β∗
i = 1} ⊆ {i : β∗

α,i = 1} for α small enough. This is saying,
if a constraint βi ≤ 1 is strongly active in the EG program of M0, then it is also strongly active

1λ ∈ Λ0 iff ∇xL0 (β0, λ) = 0 and λi ≥ 0, i ∈ J∗ and λi = 0 for all j ∈ J \ J∗.
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in the EG program of the market Mα. This holds by Lemma 2.2 from Shapiro (1988) and the
SCS condition in M0. Next, we show, for small α, Iα ⊆ I by showing [n] \ I ⊆ [n] \ Iα, i.e.,
{i : β∗

i < 1} ⊆ {i : β∗
α,i < 1}. This holds by ‖β∗

α − β∗‖ ≤ Kα for all α ≤ ᾱ1.

Step 3. For all α ≥ 0 small enough, the directional derivative dβ(sα; s − s′) = limϵ→0+(β
∗
α−ϵ −

β∗
α)/ϵ exists and α 7→ dβ(sα; s− s′) is continuous.

Applying lemma 1 with dP = sα dθ and d(Q − P ) = (s − s′) dθ shows that the directional
derivative exists for all α small enough. Now we find an expression for dβ(sα; s − s′). By SMO

in M0, twice continuously differentiability of β 7→ ∇2
∫
F (β, θ)s′ dθ in a neighborhood of β∗,

and the Lipschitzness result from step 1, we know β → ∇2
∫
F (θ,β)sα dθ is twice continuously

differentiable at β∗
α, which implies uniqueness of Lagrangian multiplier in the market Mα, for

all α small enough (Lemma 2.2 from Shapiro (1988)). And thus b(·) defined in Eq. (9) becomes
b(u) = uTδα + 1

2u
THαu. Next, the SCS condition in the market M0 implies SCS in Mα for

all α small enough. The set Σ (defined in Eq. (10)) becomes the plane {u : ui = 0, i ∈ Iα}.
The quadratic program minΣ b has a closed-form solution: u = −(PαHαPα)

†δα where Pα =
Diag(1(β∗

α,i < 1)), δα =
∫
∇f(·,β∗

α)(s − s′) dθ. And we apply Iα = I for all α small enough
from step 2, and so Pα = P . We conclude

dβ(sα; s− s′) = −(PHαP )†δα

for all α small enough.

Next, we show that the map α 7→ (PHαP )†δα is continuous for all α small enough. To see this,
note Hα = ∇2

∫
F (θ,β∗

α)sα dθ = (1−α)∇2
∫
F (·,β∗

α)s dθ+α∇2
∫
F (·,β∗

α)s
′ dθ is continuous

in α. The P matrix is fixed, and so α 7→ PHαP is continuous. Without loss of generality, suppose
Ic = {i : β∗

i < 0} = [k] are the first k buyers. Then PHαP creates a matrix with upper left
k-by-k block equal to the upper left k-by-k block of Hα, denoted Hα,IcIc , and zeros everywhere
else. Then (PHαP )† is a matrix with upper left block being (Hα,IcIc)−1 and zeros everywhere
else. Since Hα is positive definite for all small α, the submatrix Hα,IcIc must also be positive
definite. And so α 7→ (Hα,IcIc)−1 is continuous, implying continuity of α 7→ (PHαP )†. Finally,
δα =

∫
∇f(·,β∗

α)(s− s′) dθ is continuous in α.

Step 4. The desired claim: β̃∗−β∗ = o(α). Note dβ∗(α) defined in Eq. (6) is exactly dβ(sα; s−s′).
And so

β̃∗ − β∗ = β∗
α + α dβ(sα; s− s′)− β∗

= (β∗ − α dβ(s0; s− s′) + o(α)) + α dβ(sα; s− s′)− β∗

= α(dβ(sα; s− s′)− dβ(s0; s− s′)) + o(α) = o(α).

where the last line uses continuity in α of the directional derivative. This completes the proof of
Thm. 1.

B.2 PROOF OF THM. 2

Recall the estimator β̂ = βγ
α − α(P̂αĤαP̂α)

†δ̂α and the debiased surrogate is β̃∗ = β∗
α −

α(PαHαPα)
†δα. By results from Liao & Kroer (2023) we know that SCS and SMO in the mar-

ket Mα and ηt = o(1) imply βγ
α

p→β∗
α and (P̂αĤαP̂α)

† p→ (PαHαPα)
†. Finally, δ̂α

p→ δα holds
by the law of large numbers. We complete the proof of Thm. 2.

B.3 PROOF OF THM. 3

Recall the estimator β̂ = βγ
α − α(P̂αĤαP̂α)

†δ̂α and the debiased surrogate is β̃∗ = β∗
α −

α(PαHαPα)
†δα. Define

zt = βγ
α − β∗

α − α(PαHαPα)
†(δ̂α − δα) (11)

ξt = −α((P̂αĤαP̂α)
† − (PαHαPα)

†)δα (12)

ζt = −α((P̂αĤαP̂α)
† − (PαHαPα)

†)(δ̂α − δα) (13)

Then clearly β̂ − β̃∗ = zt + ξt + ζt.
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Step 1. We show
√
tzt converges to a normal distribution. By Liao & Kroer (2023), it holds

√
t(βγ

α − β∗
α) =

1√
t

t∑
τ=1

dα(θ
τ )− E[dα] + op(1) (14)

where dα(θ) = −(PαHαPα)
†∇f(θ,β∗

α) is the influence function. Next, we define the likeli-
hood ratio function g(θ) = (d(s − s′)/ dsα)(θ) = − 1

α1Θbad
(θ) + 1

1−α1Θgood
(θ). Then δα =∫

∇f(·,β∗
α)(s − s′) dθ =

∫
g(·)∇f(·,β∗

α)sα(·) dθ. Then by definition δ̂α can be written as
δ̂α = Pt(g(·)∇f(·,βγ

α)) where Pth(·) = 1
t

∑t
τ=1h(θ

τ ) and θτ are i.i.d. draws from sα. Also
let νth =

√
t(Pth−

∫
hsα dθ). By the decomposition,

√
t(δ̂α − δα) (15)

=
√
t

(
Pt

(
g(·)∇f(·,βγ

α)
)
−
∫

g(·)∇f(·,β∗
α)sα dθ

)
(16)

=
√
t

(
Pt

(
g(·)∇f(·,β∗

α)
)
−
∫

g(·)∇f(·,β∗
α)sα dθ

)
+ νt

(
g(·)(∇f(·,βγ

α)−∇f(·,β∗
α))

)
(17)

=νt(g(·)∇f(·,β∗
α)) + op(1), (18)

where the last line follows by a stochastic equicontinuity argument as in Liao & Kroer (2023).
Finally, dα(·) − αg(·)(PαHαPα)

†∇f(·,β∗
α) is exactly the influence function d1(·) defined in the

theorem.

Step 2. Show ξt = Op(ηt).

We need a matrix perturbation result.

Lemma 2 (Theorem 2.2 from Stewart (1977)). Let A and B = A + E be nonsingular square
matrices, and ‖A−1‖‖E‖ < 1. Here ‖·‖ is the operator norm. Then

‖B−1 −A−1‖ ≤ ‖A−1‖2

1− ‖E‖‖A−1‖
‖E‖. (19)

By Liao & Kroer (2023), we know P(P̂α = Pα) → 1. Without loss of generality, suppose Icα =
{i : β∗

α,i < 0} = [k] are the first k buyers. Then (PαHαPα) creates a matrix with upper left
k-by-k block equal to the upper left k-by-k block of Hα, denoted Hα,IcIc , and zeros everywhere
else. Under the event {P̂α = Pα}, the matrix (P̂αĤαP̂α) is one with upper left k-by-k block being
upper left k-by-k block of Ĥα, denoted Ĥα,IcIc , and zeros everywhere else. Now let A = Ĥα,IcIc

and B = Hα,IcIc . It is clear that ‖ξt‖2 ≤ α‖δα‖2‖A−1 −B−1‖ = Op(ηt) by lemma 2.

Step 3. Show ζt = op(
1√
t
). From previous derivation, δ̂α − δα = Op(1/

√
t) and (P̂αĤαP̂α)

† −
(PαHαPα)

† = Op(ηt) = op(1). We conclude ζt = Op(1/
√
t)op(1) = op(1/

√
t).

We complete the proof of Thm. 3 part 1.

Now we prove part 2. The claim that Hα = Diag(bi/(β
∗
α,i)

2) follows from Liao et al. (2023). Next
we derive the asymptotic distribution. We only need to handle the ξt term defined as before. Under
the event {P̂α = Pα}, we have ξt = −Diag(αδα,i1(β

∗
α,i < 1)b−1

i )(βγ
α ◦ βγ

α − β∗
α ◦ β∗

α). By Liao
& Kroer (2023) we know

√
t(βγ

α − β∗
α) =

1√
t

∑t
τ=1(dα(θ

τ ) − Eα[dα]) + op(1). So by the delta
method,

√
t(βγ

α ◦ βγ
α − β∗

α ◦ β∗
α) = Diag(2β∗

α)
1√
t

t∑
τ=1

(dα(θ
τ )− Eα[dα]) + op(1).

Summarizing,

√
tξt = −Diag(2β∗

α,iαδα,i1(β
∗
α,i < 1)b−1

i )
1√
t

t∑
τ=1

(dα(θ
τ )− Eα[dα]) + op(1)
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Note that for i such that β∗
α,i = 1, the i-th entry of dα will be zero almost surely, so the indicator

can be dropped in the diagonal matrix. Now let d2(θ) = −Diag(2αβ∗
α,iδα,ib

−1
i )dα + d1, where

we recall d1 is defined in Thm. 3. Then under the condition that Eα[
1

bidgap(β∗
α,θ) ] < ∞, we have

√
t(β̂ − β̃∗)

d→N (0,Eα[(d2 − Eα[d2])(d2 − Eα[d2])
T]).

B.4 PROOF OF THM. 4

Proof. Note ∣∣∣∣ ∫ max
i

(vi(θ)β̃
∗
i )s(θ) dθ −

∫
max

i
(vi(θ)β

∗
i )s(θ) dθ

∣∣∣∣
≤

∫
|max

i
(vi(θ)β̃

∗
i )s(θ)−max

i
(vi(θ)β

∗
i )s(θ)| dθ

≤ max
i

sup
θ

vi(θ) · ‖β∗ − β̃∗‖∞ = o(α)

as α ↓ 0.

Let Pth(·) = 1
t

∑t
τ=1h(θ

τ ) and θτ are i.i.d. draws from sα, and Ph(·) =
∫
hsα. Let g(·) =

ds/ dsα = 1
1−α1Θgood

. Also let νth =
√
t(Pth −

∫
hsα dθ). We change the measure and write

R̃EV
∗
=

∫
f(θ, β̃∗)s dθ =

∫
f(θ, β̃∗)g(θ)sα dθ. For the claim regarding asymptotic normality,

note
√
t(R̂EV − R̃EV

∗
)

=
√
t[Ptf(·, β̂)g(·)− Pf(·, β̃∗)g(·)]

=
√
t[Ptf(·, β̃∗)g(·)− Pf(·, β̃∗)g(·)] +

√
t[Pf(·, β̂)g(·)− Pf(·, β̃∗)g(·)]

+
√
t(Pt − P )(f(·, β̂)g(·)− f(·, β̃∗)g(·))

= νt(f(·, β̃∗)g(·)) + νt(Eα[g(·)∇f(·, β̃∗)]Td(·)) + op(1)

where the last line follows by the delta method and a stochastic equicontinuity argument. We com-
plete the proof of the theorem.

C OMMITED MAINTEXT

C.1 FORMAL DEFINITION OF FINITE FPPE

Definition 5 (Finite FPPE, Conitzer et al. (2022a)). Given (b, v, σ, γ), the finite FPPE,
F̂PPE(b,v, σ, γ), is the unique tuple (β, p) ∈ [0, 1]n ×Rt

+ such that there exist xτ
i ∈ [0, 1]: (First-

price) For all τ , pτ = maxi βiv
τ
i . For all i and τ , xτ

i > 0 implies βiv
τ
i = maxk βkv

τ
k . (Supply and

budget feasible) For all i, σ
∑t

τ=1x
τ
i p

τ ≤ bi. For all τ ,
∑n

i=1x
τ
i ≤ 1. (Market clearing) For all τ ,

pτ > 0 implies
∑n

i=1x
τ
i = 1. (No unnecessary pacing) For all i, σ

∑t
τ=1x

τ
i p

τ < bi implies βi = 1.

D RELATED WORK

Pacing equilibrium. Pacing is a budget management strategy where bids are scaled down by a mul-
tiplicative factor in order to smooth out and control spending. In the first-price setting, Borgs et al.
(2007) study first price auctions with budget constraints in a perturbed model, where the limit prices
converge to those of an FPPE. Building on that work, Conitzer et al. (2022a) introduce the FPPE
framework to model autobidding in repeated auctions, and discover several properties of FPPE such
as shill-proofness monotonicity properties, and a close relationship between FPPE and the quasilin-
ear Fisher market equilibrium (Chen et al., 2007; Cole et al., 2017). Gao & Kroer (2022) propose
an infinite-dimensional variant of the quasilinear Fisher market, which lays the probability founda-
tions of the current paper. Gao et al. (2021) and Liao et al. (2022) study online computation of the
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infinite-dimensional Fisher market equilibrium, and we utilize their methods to compute equilib-
ria. In the second-price setting, a variety of models have been proposed for modeling the outcome
of budget management: Balseiro et al. (2015) study budget-management in second-price auctions
through a fluid mean-field approximation; Balseiro & Gur (2019) investigate adaptive pacing strat-
egy from buyers’ perspective in a stochastic continuous setting; and Balseiro et al. (2021b) study
several budget smoothing methods including multiplicative pacing in a stochastic context. A second-
price analogue of FPPE was explored by Conitzer et al. (2022b). Modeling statistical inference in
the second-price setting is most likely harder, due to equilibrium multiplicity issues (Conitzer et al.,
2022b), and hardness of even computing equilibria (Chen et al., 2023).

Recently, a series of papers (e.g., Aggarwal et al. (2019); Deng et al. (2021); Balseiro et al. (2021a))
investigated an “autobidding” model for value-maximizing bidders, who aim to maximize their value
subject to budget or return-on-spend constraints, which may include buying individual ad impres-
sions that have negative utility. Several extensions provide results for more general settings, such
as the quality of equilibria for generalized rationality models for bidders Babaioff et al. (2021),
non-uniform bidding strategies Deng et al. (2023), and liquid welfare guarantees when budget-
constrained buyers fail to reach equilibrium Gaitonde et al. (2023). Statistical inference for parallel
A/B testing under such models represent an interesting future direction of work.

Interference in A/B Testing for Auction Markets. Experimentation under interference has been
extensively studied in the past decade within the context of social networks Ugander et al. (2013);
Aronow & Samii (2017); Eckles et al. (2017); Athey et al. (2018); Li & Wager (2022) and two-
sided marketplaces Zigler & Papadogeorgou (2018); Wager & Xu (2021). Under interference, the
outcome of an experiment unit, either a user in a social network or a buyer in an online marketplace,
can be affected by the treatment status of other units in the networks, violating the Stable Unit
Treatment Values Assumption (SUTVA) assumption commonly employed in analyzing online A/B
tests Rosenbaum (2007). To take into account this type of interference, novel designs and analysis
approaches have been proposed, e.g., cluster randomization Ugander et al. (2013); Karrer et al.
(2021), regression-based estimators Chin (2019), and bipartite analysis Harshaw et al. (2021). A/B
testing in the presence of seller-side budget constraints has been discussed by Basse et al. (2016)
and Liu et al. (2021) where the budget-splitting design spans the full market. However, most of the
above works do not consider the particular type of interference caused by competitive equilibrium
effects. Recent work has also addressed equilibrium effects (Wager & Xu, 2021; Liao et al., 2023;
Liao & Kroer, 2024). Most relevant to our results, Liao & Kroer (2023) consider A/B testing via
budget splitting in Fisher markets and FPPE. However, none of these works consider the effects
caused by parallel A/B tests that interfere with each other. Our method builds on top of the budget-
splitting design; our approach additionally segments the full market into submarkets, where different
submarkets receive different treatment. In the formal sections of our paper we assume that the
submarket structure is known. In practice, the submarkets may not be known; Rolnick et al. (2019)
and Viviano et al. (2023) present methods to identify submarkets through clustering approaches that
aim to limit the interference between clusters.

E RESULTS FOR REVENUE

Algorithm 1: Debiasing procedure
Input. Budgets [b1, . . . , bn]. Values vτi . First-price allocation xτ

i ∈ [0, 1]. The observed
equilibrium pacing multipliers βγ

α = [βγ
1 , . . . ,β

γ
n]. Proportion of bad items α. Desired

confidence level (1− c) ∈ (0, 1).
1. Estimate the Hessian matrix Ĥα, e.g. via Ĥα = Diag(bi/(β

γ
α,i)

2), or using finite
differences.

2. Compute relevant quantities P̂α, δ̂α, µτ .
3. Compute the debiased estimator β̂ and covariance matrix Σ̂1.
4. Output confidence region: β̂ + (χn,c/

√
t)Σ̂

1/2
1 B, where χ2

n,c is the (1− c)-quantile of a
chi-square distribution with degree n, and B is the unit ball in Rn.
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The revenue in the good market is defined as REV ∗ =
∫
maxi{vi(θ)β∗

i }s(θ) dθ. We define the
debiased revenue surrogate and its estimator

R̃EV
∗
=

∫
max

i
{vi(θ)β̃∗

i }s(θ) dθ , (20)

R̂EV =
1

1− α

1

t

t∑
τ=1

1Θgood
(θτ )max

i
{vi(θτ )β̂i} . (21)

In words, we approximate REV ∗ with the revenue generated in the market where buyers bid ac-
cording to the pacing profile β̃∗, and then we estimate this via plug-in estimation on the subset of
items that are good.
Theorem 4. Let the conditions from Thm. 1 and Thm. 3 hold. The debiased revenue removes

first-order bias: R̃EV
∗
= REV ∗ + o(α). Assume that

√
t(β̂ − β̃∗) has influence function d,

i.e.,
√
t(β̂ − β̃∗) = 1√

t

∑t
τ=1d(θ

τ ) + op(1), then
√
t(R̂EV − R̃EV

∗
)

d→N (0, σ2
REV ) where

σ2
REV = Covα(dREV ), dREV (·) = 1

1−α

(
1Θgood

(·)f(·, β̃∗) + Eα[∇f(θ, β̃∗)1Θgood
(θ)]Td(·)

)
. The

proof is in App. B.4.

Examples of influence functions compatible with Thm. 4 are the influence functions in Thm. 3.

We have two methods to construct CIs for the debiased revenue surrogate in Eq. (7). The first
method is based on the asymptotic normality results in Thm. 4. In the second method, a revenue
CI is constructed based on a CI for β∗

α. Suppose CI is some confidence region for β∗
α. Then

{ 1
1−α

1
t

∑t
τ=11Θgood

(θτ )maxi vi(θ
τ )βi : β ∈ CI} serves as a CI for revenue. Another way to

utilize a pacing multiplier CI is based on the observation that revenue is a monotone function of the
pacing multiplier. Let βi = min{βi : β ∈ CI} and β̄i = max{βi : β ∈ CI}. Then another natural

(potentially wider) CI for R̃EV
∗

is [REV ,REV ], where

REV =
1

t

t∑
τ=1

1Θgood
(θτ )

1− α
max

i
vi(θ

τ )βi , REV =
1

t

t∑
τ=1

1Θgood
(θτ )

1− α
max

i
vi(θ

τ )β̄i . (22)

F PARALLEL A/B TEST UNDER INTERFERENCE

In this section, we use the theory from the previous sections to formulate a statistical inference
theory for parallel A/B tests under interference.

Consider K auction markets in which we want to run parallel A/B tests. There are n buyers, each
with budget bi corresponding to one unit supply of items, and an item set Θ, partitioned into Θgood

and Θbad. Let C1, . . . , CK be a partition of the buyers, Θ1, . . . ,ΘK be a partition of the good item
set Θgood, and s1, . . . sK be a set of supply functions, supported on Θ1, . . . ,ΘK respectively. The
k-th submarket consists of buyers in Ck, the item set Θk and supply sk. Let s = 1

K

∑
k sk be the

average mixture and s′ be a supply supported on Θbad.

To model treatment application we introduce the potential value functions

v(0) = (v1(0, ·), . . . , vn(0, ·)), v(1) = (v1(1, ·), . . . , vn(1, ·)) .

If item θ is exposed to treatment w ∈ {0, 1}, then its value to buyer i will be vi(w, θ).

We extend the structure on Θbad and Θgood introduced in Sec. 3.2 to A/B testing here. We assume
these submarkets are separated. This is to model the ideal case where there is no interference.
A buyer i ∈ Ck is only interested in items from the submarket he belongs to: vi(w, θ) = 0 for
θ ∈ Ck′ , k′ 6= k, and w ∈ {0, 1}. An item is called a bad item if it has positive values for buyers
from different submarkets. Formally, θ ∈ Θbad if there exist w ∈ {0, 1}, i ∈ Ck, j ∈ Ck′ , k 6= k′,
so that vi(w, θ) > 0 and vj(w, θ) > 0. A buyer i from submarket k has a (potentially) positive value
only for items in Θk ∪Θbad.

Step 1. The treatment effects. Let M (w, k) = FPPE({bi}i∈Ck
, {vi(·, w)}i∈Ck

, sk,Θk)be the
k-th limit submarket under treatment w ∈ {0, 1}, and let revenue be REV ∗

k(w). Then the treatment
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effect in the submarket k is τ∗k = REV ∗
k(1) − REV ∗

k(0). Equivalently, all K submarkets can be
formed simultaneously, M (w) = FPPE

(
1
K b,v(w), s,Θ

)
. The scaling 1/K in budgets ensures

that a buyer in Ck has budget bi/K to bid for items in Θk, whose supply in M (w) is 1
K sk. The k-th

component of M (w) corresponds to M (w, k).

Step 2. The experiment. A practical parallel A/B test scheme is as follows.

Step 2.1. Budget splitting. Decide on a budget split ratio π0, π1 satisfying π0 + π1 = 1, and split
budgets accordingly. Choose A/B test size t, the total number of impressions in each submarket
summed across treatments. Then, the budget of buyer i for treatment 0 will be π0tbi, and π1tbi for
treatment 1. This is because bi is normalized to correspond to one unit of total supply.

Step 2.2. Observe markets with interference. Draw items/impressions from αs′ + (1 − α)s. Draw
bπ0tc items for each submarket under treatment 0 and bπ1tc for treatment 1. A total of tw =
bπwtKc items are drawn for the whole market under treatment w. Since items come from the
contaminated distribution, roughly a small fraction α of the tw items cause interference.

The data observed following the described A/B test scheme can be compactly represented by two
finite FPPEs (one for each treatment) (Def. 5): M̂α(w) = F̂PPE(πwtb,v(w), 1, γ) , where γ ⊂ Θ
consists of tw = bπwtKc i.i.d. draws from the mixture αs′ + (1− α)s.

It can be shown that the observed market M̂α(w) converges to Mα(w) =
FPPE

(
1
K b,v(w), sα,Θ

)
.

Step 3. Debiasing β. Following previous section, we can debias M̂α(w) to approximate M (w).
Let β̂(w) be the debiased pacing multiplier.

Step 4. Revenue estimator. Estimate R̂EV k(w) by

1

πw(1− α)t

tw∑
τ=1

1Θk
(θτ )max

i∈Ck

vi(θ
τ )β̂i(w) .

Then τ̂k = R̂EV k(1) − R̂EV k(0) and a variance estimate can be obtained by either asymptotic
normality, confidence region of β, or bootstrap.

G HEURISTIC DERIVATION OF THE DEBIASED SURROGATE

We present a heuristic argument for Eq. (6) here; for a rigorous treatment we need a perturbation
theory result which is given in lemma 1 in the appendix. Define the contaminated EG objective
Hα(β) =

∫
F (β, θ)sα dθ. Then Hα = ∇2Hα(β

∗
α). The map (β, α) 7→ Hα(β) has gradient

[∇H(β∗),
∫
F (β∗

α, θ)(s
′ − s) dθ]T and Hessian [Hα,−δα;−δT

α, 0] at (β∗
α, α). Then we have the

following quadratic approximation of Hα−ϵ(β)

Hα−ϵ(β) ≈ Hα(β
∗
α) +

(
β − β∗

α
−ϵ

)T ( ∇Hα(β
∗
α)∫

F (β∗
α, θ)(s

′ − s) dθ

)
+
1

2

(
β − β∗

α
−ϵ

)T (
Hα −δα
−δT

α 0

)(
β − β∗

α
−ϵ

)
.

And so

β∗
α−ϵ = argmin

β∈(0,1]n
Hα−ϵ(β) ≈ argmin

β∈(0,1]n
(∇Hα(β

∗
α) + ϵδα)

Tβ

+ 1
2 (β − β∗

α)
THα(β − β∗

α) ,

where we dropped terms that do not involve β.

Next we need two observations. For ϵ small enough, we have β∗
α−ϵ,i = 1 if β∗

α,i = 1. Intuitively,
buyers in the market Mα with β∗

α,i = 1 have some nonzero leftover budget, which acts as a buffer
to small changes in supply, and thus their pacing multipliers remain one. Next, we also note β 7→
∇Hα(β

∗
α)

Tβ is constant on the set {β : βi = 1 if β∗
α,i = 1} by complementary slackness. Then we
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Figure 5: Normalized bias (in percent of true value) as a function of α in fully synthetic

experiments. β̃∗ and R̃EV
∗

are the debiased surrogates for pacing multiplier and revenue in the
limit market with interference Mα.

further simplify and obtain

β∗
α−ϵ ≈ argmin

βi=1 if β∗
α,i=1

ϵδT

αβ + 1
2 (β − β∗

α)
THα(β − β∗

α) .

The right-hand side is just a linearly constrained quadratic optimization problem, which admits a
closed-form solution β∗

α − ϵ(PαHαPα)
†δα.

H FULLY SYNTHETIC EXPERIMENTS

In the fully synthetic experiments, we simulate 10 buyers and 1000 good items in two submarkets,
with a varying number of bad items (up to 500) in order to study the effect of the contamination
parameter α. For each α, we randomly sample a budget from a uniform distribution for each buyer,
and compute β∗ and REV ∗ from the limit pure market M0 with a uniformly distributed value
function in each submarket. Fig 5 shows the normalized bias curves as a function of α for the fully
synthetic experiment, which is similar to that from semi-synthetic experiments in Fig 3.

We also check the coverage of the proposed variance estimator in fully synthetic experiments. The
coverage of β̂ and revenue are estimated in the same way as in the semi-synthetic ones. It is shown
in Fig 6 that both CIs converges to the true value from the limit market with interfrence Mα as
the number of items goes to infinity. Then, in Table 2, we show that the bootstrap CI width is
much smaller compared to that from Eq. (22). However, unlike in the semi-synthetic experiments,
both CIs are over-covered, higher than the nominal level (95%). It is expected though that the CI
from Eq. (22) is relatively large and hence conservative since it uses the min and max of each βi,
hence likely living outside of the confidence region (n-dimension ellipsoid) for β̂ and leading to
over-coverage. For the bootstrap CI, it requires enough bootstrap samples to fully explore the whole
boundary of the confidence region of β̂, as well as an accurate estimate of the asymptotic distribution
of β̂. In our fully synthetic simulation, our hypothesis is that the over-coverage of the bootstrap CI
is mainly due to the over-estimation of the variance for β̂.
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β̂ R̂EV

α coverage CI width CI width (b) coverage coverage (b)

100/1100 0.993 0.132 0.043 1.0 1.0
200/1200 0.994 0.141 0.059 1.0 1.0
300/1300 0.980 0.107 0.059 1.0 1.0
400/1400 0.983 0.098 0.064 1.0 1.0
500/1500 0.971 0.108 0.069 1.0 1.0

Table 2: Coverage of β̂ and revenue estimates in fully synthetic experiments. All quantities are
averaged over 100 simulations for each α. The coverage of β̂ is averaged over all components of β̂.
For revenue estimates, the columns with "(b)" represent the quantities from the bootstrap CI, while
the columns without "(b)" are for the CI from Eq. (22). The CI widths are normalized by the
revenue from the limit market Mα. α is expressed as the ratio of the number of bad items and the
total items.
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Figure 6: Revenue confidence intervals as a function of the number of items in fully synthetic
experiments. The analytic CI comes from Eq. (22). The true value is the debiased surrogates for
revenue in the limit market with interference Mα.
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