
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAIN: EXACT GRAPH RECONSTRUCTION FROM
GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning allows multiple parties to train collaboratively while only Fed-
erated learning allows multiple parties to train collaboratively while only sharing
gradient updates. However, recent work has shown that it is possible to exactly
reconstruct private data such as text and images from gradients for both fully con-
nected and transformer layers in the honest-but-curious setting. In this work, we
present GRAIN, the first exact reconstruction attack on graph-structured data that
recovers both the structure of the graph and the associated node features. Con-
cretely, we focus on Graph Convolutional Networks (GCN), a powerful frame-
work for learning on graphs. Our method first utilizes the low-rank structure of
GCN layer updates to efficiently reconstruct and filter building blocks, which are
subgraphs of the input graph. These building blocks are then joined to complete
the input graph. Our experimental evaluation on molecular datasets shows that
GRAIN can perfectly reconstruct up to 70% of all molecules, compared to at most
20% correctly positioned nodes and 32% recovered node features for the baseline.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) have shown a great promise in learning on graph-structured
data like social networks, traffic flows, molecules, as well as, healthcare and income data. Many of
these applications, however, require large quantities of private data, which can be hard to collect due
to privacy regulations and the reluctance of users to share their data due to fear of losing competitive
advantage. This has naturally led to widespread use GCNs alongside Federated Learning (FL) which
promises to protect the sensitive data of users (Xie et al., 2021; Zhang et al., 2021; Zhu et al., 2022;
Lee et al., 2022; Lou et al., 2021; Peng et al., 2022).

However, the privacy of client data in FL for different domains including images (Zhang et al.,
2023), text (Petrov et al., 2024), and tabular data (Vero et al., 2023) was recently shown to be severely
violated by the introduction of gradient inversion attacks in the honest-but-curious setting (Zhu et al.,
2019). In these attacks, the federated server infers the client data based on passively observed client
gradients and the model weights on which they were computed. Unfortunately, no prior work has
investigated the vulnerability of GCNs to such attacks.

This work: Gradient inversion attack on graphs In this work, we introduce the first gradi-
ent inversion attack on graphs called Graph Reconstruction Algorithm for Inversion of Gradients
(GRAIN), specifically designed to attack Graph Convolutional Networks by reconstructing both,
the graph structure and the node features. At the core of our method is an efficient filtering mech-
anism to correctly identify possible subgraphs, which are then pieced together to reconstruct the
entire graph. In particular, we leverage span checks to exploit the rank-deficiency of GCN layer
updates and recover the discrete set of node features at each layer, as well as the subgraph adjacency
matrices. We then reconstruct the client input by applying a depth-first search-based (DFS-based)
traversal algorithm to piece together the full graph from the recovered subgraphs.

We evaluate our attack on a real-world chemical dataset for molecule property prediction, where
molecules are represented as graphs with nodes denoting atoms. We show that in the graph classi-
fication setting we can reconstruct up to 70% of all molecules exactly and achieve a reconstruction
accuracy up to 85% when considering partial graph reconstructions. Further, even in the harder node
classification setting we exactly reconstruct 66% of the molecules when node labels are known.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Main Contributions Our main contributions are:

• The first gradient inversion attack on Graph Neural Networks, recovering the graph struc-
ture and node features.

• An efficient filtering mechanism that correctly identifies client subgraphs as well as a graph
reconstruction algorithm, building the input graph from the subgraphs.

• A new set of evalution metrics designed to measure the similarity between reconstructed
graphs and the client data, enabling efficient evaluation of graph gradient inversion attacks.

• A thorough evaluation of GRAIN on real-world chemical datasets showing GCNs do not
preserve client data privacy in realistic GCN applications.

We believe this work is a promising first step to understanding and quantifying the privacy risks
associated with using graph data in federated learning.

2 RELATED WORK

Gradient inversion attacks (Zhu et al., 2019), are attacks to Federated Learning that aim to infer the
client’s private data from the FL updates clients share with the federated server. As such, they assume
knowledge of the updates themselves, as well as, the model weights on which the updates were
computed. Depending on the attack model, gradient inversion attacks are either malicious (Boenisch
et al., 2021; Fowl et al., 2022b;a; Chu et al., 2023; Wen et al., 2022) if the attacker can additionally
manipulate the model weights sent to the clients, or honest-but-curious (Zhu et al., 2019; Phong
et al., 2018; Zhao et al., 2020; Geiping et al., 2020; Geng et al., 2021; Zhang et al., 2023; Li et al.,
2022; Deng et al., 2021; Balunovic et al., 2022; Dimitrov et al., 2024; Petrov et al., 2024; Vero et al.,
2023) if the attack is executed passively by just observing model weights and updates.

In this work, we focus on the harder setting of honest-but-curious gradient inversion attacks. Most
existing honest-but-curious attacks formulate gradient inversion as an optimization problem (Zhao
et al., 2020; Geiping et al., 2020; Yin et al., 2021; Geng et al., 2021; Zhang et al., 2023; Li et al.,
2022; Deng et al., 2021; Balunovic et al., 2022) where the attacker tries to obtain the data which
corresponds to a client update that matches the observed one best. While, this approach is effective
in many domains like images (Geiping et al., 2020; Yin et al., 2021; Geng et al., 2021; Zhang et al.,
2023; Li et al., 2022) where the client data is continuous, it has been shown that the associated opti-
mization problem is much harder to solve for domains where client inputs are discrete. Some prior
works have attempted to alleviate this issue by relying on various continuous relaxation (Balunovic
et al., 2022; Vero et al., 2023) to the discrete optimization problem with some success.

In contrast to such approaches, a recent line of work showed that gradient inversion can be solved
exactly for both continuous (Dimitrov et al., 2024) and discrete inputs (Petrov et al., 2024) for certain
neural network architectures. In particular, our work builds upon the work of Petrov et al. (2024),
where the authors show that when there are very large but countable number of options for the client
input data, one can exploit the low-rank structure of the gradient updates of fully connected layers to
efficiently test all possibilities and keep only those that match the true input data. Similar to Petrov
et al. (2024), our attack exploits the low-rankness of GCN layers resulting in exact reconstruction of
both the graph structure and the node features. To the best of our knowledge we are the first attack
specifically tackling this issue.

3 BACKGROUND AND NOTATION

In this section, we provide the background and notation necessary for understanding our method.

Graph Terminology First, we introduce the graph notation utilized in this work. For an undirected
graph G = (V,E) with node set V of size n = |V | and edge set E, we denote the degree of any node
v ∈ V with degG(v). Further, for a pair of vertices vs, ve ∈ V , the distance dist(vs, ve) denotes
the number of edges in the shortest path connecting vs to ve. Finally, we introduce the notion of a
degree-k neighborhood of a node v, defined by the subgraph N k

G (v) = (V k
v , Ek

v) ⊂ G consisting
of all nodes V k

v = {v′ ∈ V | dist(v, v′) ≤ k} in the graph at a distance ≤ k from v and the edges
between them Ek

v = {e = (v1, v2) ∈ E | v1 ∈ V (N k−1
G (v)), v2 ∈ V k

v } with N 0
G(v) = {v}.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Graph Convolutional Networks (GCNs) GCNs are a class of neural networks that operate on
graph-structured data through a message-passing mechanism utilizing the graph edges E. In partic-
ular, the ith GCN layer takes as an input a matrix Xi ∈ Rn×d of d-dimensional node features for
each node in V and performs a combination of messages passing and non-linearity to produce the
node features of the next layer Xi+1:

Xi+1 = σ(Zi) = σ
(
ÃXiW i

)
, (1)

where Ã ∈ Rn×n is the normalized adjacency matrix, W i ∈ Rd×d′
is the weight matrix and σ is

an activation function. The normalized adjacency is given by Ã = D−1/2AD−1/2, where A is the
adjacency matrix of the graph and D is the degree matrix. Further, we index the i-th layer input
feature of a given node v as Xi

v . In our case, we concatenate L GCN layers, which are then followed
by a feed forward neural network to perform the readout. We denote by fi for i = 0, 1, 2, . . . , L− 1
the function that maps the input graph to the output of the ith GCN layer.

Gradient Filtering in Linear Layers Recently, Petrov et al. (2024) showed that one can leverage
the gradients of the network loss L w.r.t. the weights W i of the ith linear layer ∂L

∂W i to search for
the correct set of inputs Xi to the layer among a discrete set of possibilities via filtering enabled by
the low-rankness of the weight updates. We restate the theoretical findings below:

Theorem 3.1. If n < d and if the matrix ∂L
∂Zi is of full rank (rank n), then rowspan(Xi) =

colspan(∂L
∂W i).

To verify whether some input vector z could have been part of the client input, Petrov et al. (2024)
performs a spancheck. Specifically, the distance between z and the subspace spanned by the column
vectors of ∂L

∂W i is measured:

d(z, ∂L
∂W i) := ∥z − proj(z, colspan(∂L

∂W i))∥2.

We assume z to have been part of the i-th layer input if d(z, ∂L
∂W i) < τ for a chosen threshold τ .

4 OVERVIEW OF GRAIN

In this section, we provide a high-level overview of our method GRAIN, a gradient inversion attack
specifically designed to reconstruct graph-structured client training data in the Federated Learning
setting assuming an honest-but-curious adversary. GRAIN has two phases.

In the first phase, we iteratively create a proposal set, Tl, for each GCN layer l in the network. This
set contains all degree-l building blocks, which are subgraphs of degree l.

We then filter out nodes that are incompatible with the gradient according to Lemma 5.1, which is
based on Theorem 3.1 (Petrov et al., 2024). We finish the filtering by removing degree-L building
blocks that do not pass a consistency check. Finally, using the elements of this set, we reconstruct
the input graph via a tree-search-based approach.

Setting We apply GRAIN on the GCN architecture, where each GCN layer applies a single mes-
sage passing operation between neighbors in the graph. The nodes are characterized by a set of f
discrete features F = F1 ×F2 × · · · × Ff .

In Fig. 1 we present an overview of GRAIN which we now elaborate on.

Filtering We begin from a proposal set containing all possible nodes T0. Using Lemma 5.1 we
remove all nodes that are not compatible with the gradient via a span check, resulting in T ∗

0 ⊆ T0.
These degree-0 building blocks can then be combined to one another to form degree-1 building
blocks, constituting the set T1. As before, we can use Lemma 5.1 on the next GCN layer, dropping
impossible degree-1 building blocks, resulting into T ∗

1 ⊆ T1. This procedure can be extended to
iteratively build degree-l building blocks Tl by gluing degree-1 building blocks T ∗

1 , which can then
be filtered as before to obtain T ∗

l . As a last step, we filter out building blocks that cannot be used to
form a single larger building block, leaving us with the final set of degree-L building blocks T ∗

B .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview of GRAIN. GRAIN first recovers the input nodes T ∗
0 by filtering through all

possibilities T0. T0 is the cross-product of all possible feature values. Visualized are the sets of
possible values for the atom type (F1) and the number of bonds (F2). It then iteratively combines
and filters them to produce larger and larger building blocks up to a degree L. Finally, GRAIN
reconstructs the input graph by combining building blocks from the filtered set T ∗

B in a depth-first
manner.

Graph Reconstruction Having arrived at a filtered set of degree-L building blocks, we iteratively
glue together members of T ∗

B at vertices that have not yet enough neighbors to match their feature
degree. Here we leverage that the degree of a node is a widely used node feature for training GCNs
(Hamilton et al., 2017; Xu et al., 2018; Cui et al., 2022), and is thus accessible by the attacker at this
point. We explore all possible gluing options using a depth-first search. When we cannot extend the
given graph further, we compute the gradients using it as an input and compare them to the observed
gradients. If they do not match, we backtrack and try a different path. Otherwise, we can terminate
our procedure successfully and return the reconstructed graph.

5 SUBGRAPH FILTERING AND GRAPH RECONSTRUCTION

Algorithm 1 The GRAIN algorithm

1: function GRAIN(T0, ∂L
∂W , τ , f , Y)

2: T ∗
L ←CREATEBBS(T0, ∂L

∂W , τ , f)
3: T ∗

B ← {}
4: for G ∈ T ∗

L do
5: if ∆G == 0 then
6: return G
7: CanGlue← True
8: for v ∈ V do
9: if !∃GB ∈ T ∗

L .glue(G,GB , v) then
10: CanGlue← False
11: break
12: if CanGlue then
13: T ∗

B ← T ∗
B ∪ {G}

14: return RECONSTRUCTGRAPH(T ∗
B , ∂L

∂W , Y)

We now present the technical details of
GRAIN. First, in Section 5.1, we de-
scribe the key operation of gluing two
graphs together. Then, building on The-
orem 3.1 (Petrov et al., 2024), we present
Lemma 5.1 adapting Theorem 3.1 to GCN
layers, allowing us to efficiently remove
proposal elements of Tl, which fail the
span check and hence cannot be a sub-
graph of the input. Further, we detail how
we construct T ∗

B by utilizing consistency
checks on T ∗

L . Finally, in Section 5.2
we propose the end-to-end graph recon-
struction algorithm, which iteratively con-
structs the entire graph from the filtered set
of possible subgraphs.

5.1 EFFICIENT FILTERING THROUGH SPANCHECKS

We first describe the process of gluing a degree l building block GB = (V B , EB) to a graph G =

(V,E) at a vertex v ∈ V resulting into Ĝ = glue(G,GB , v) if v is the center of GB and the degree-l
neighborhood of v in G overlaps with GB , that is N l

G(v) ⊆ GB . The resulting graph Ĝ is then the
extension of the graph G by the building block GB at vertex v, by attaching the non-overlapping

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

parts of GB to G at v, as shown in Section 5.1. Formally, the result of the gluing operation is then
Ĝ = (V ∪ V B , E ∪ EB).

Figure 2: Visualization of the gluing op-
eration.

Span check for GCN layers We now state our main
Lemma, building on Theorem 3.1 from Petrov et al.
(2024) to be applied on GCNs. The proof can be found in
Section A.
Lemma 5.1. For ∂L

∂Zi of full-rank, d < n, and a possi-
bly normalized adjacency matrix at layer i, A ∈ Rn×n,
Xi

j ∈ colspan(∂L
∂W i) if and only if AT

j /∈ colspan(Āj),
where Āj denotes the matrix A with its j-th column re-
moved.

Next, we begin our attack with the creation of the degree-L building blocks and reduce the search
space via the span check mechanism. We start with the set of all possible nodes T0 and apply
Lemma 5.1 to filter out the nodes that cannot be part of the input graph to get T ∗

0 .

Creating degree-1 building blocks T ∗
1 We first define the extension ext(v) of a node v to be

the set of all possible graphs that can be constructed by attaching deg(v) nodes from T ∗
0 to v. We

note, that we do not attach nodes w ∈ T ∗
0 to v if the feature degree of w is 0, that is deg(w) = 0.

The set of all possible degree-1 building blocks T1 =
⋃

v∈T ∗
0

ext(v) is then defined as the set of
all possible graphs that can be constructed by extending node from T ∗

0 . We can then filter T1 by
applying Lemma 5.1 on ∂L

∂W 1 to achieve the reduced set of degree-1 building blocks T ∗
1 , as shown

in Algorithm 2.

Algorithm 2 Filtering using the spancheck

1: function FILTER(Tl, ∂L
∂W l , τ , fl−1)

2: T ∗
l ← {}

3: for G in Tl do
4: v ← center(G)
5: if d(fl−1(G)v, ∂L

∂W l) < τ then
6: T ∗

l ← T ∗
l ∪ {G}

7: return T ∗
L

Creating degree-l building blocks T ∗
l For a graph

G ∈ T ∗
l , we define the dangling nodes dang(G) as the

set of all nodes v ∈ G such that deg(v) is greater than
the number of its neighbors. We extend the degree-
l building blocks G ∈ T ∗

l by calculating all possible
gluings of degree-1 building blocks G′ ∈ T ∗

1 to all
dangling nodes of G. This is shown in lines 9–15 of Al-
gorithm 3. The resulting set is then called Tl+1, which
is then filtered by applying Lemma 5.1 on ∂L

∂W l+1 to
achieve the reduced set of degree-l+1 building blocks
T ∗
l+1.

Algorithm 3 Creating the degree-L building blocks

1: function CREATEBBS(T0, ∂L
∂W , τ , f)

2: T ∗
0 , T1 ← FILTER(T0, ∂L

∂W0
, τ, λv.X0

v), {}
3: for v in T ∗

0 do
4: T1 ← T1 ∪ ext(v, T ∗

0)

5: T ∗
1 ←FILTER(T1, ∂L

∂W1
, τ, f0)

6: for l← 2, . . . , L do
7: Tl ← {}
8: for G in T ∗

l−1 do
9: S ← {G}

10: for v in dang(G) do
11: S′ ← {}
12: for G′,GB in S × T ∗

1 do
13: S′ ← S′ ∪ glue(G′,GB , v)
14: S ← S′

15: Tl ← Tl ∪ S

16: T ∗
l ← FILTER(Tl, ∂L

∂Wl
, τ, fl−1)

17: return T ∗
L

Additional structure-based filtering and
likelihood ordering We repeat the process
explained above until we reach the desired
degree L. To further restrict the proposal
set of building blocks, we perform a con-
sistency check to further rule out building
blocks that cannot be part of the ground truth
graph. Specifically, we for every G ∈ T ∗

L
and for every vertex v ∈ G there exist a
building block in T ∗

L that we can glue at v
to G. If this is not the case, we know that
either G is the input graph, or it cannot be
part of the ground truth graph and remove
it from T ∗

L . The resulting set is then called
T ∗
B . For small input graphs, it is possible

that we already find the input graph during
the creation of T ∗

L and therefore cannot glue
any building block to it. Thus, if we cannot
glue any building block to a graph in T ∗

L , we
check if the input graph could have gener-
ated the observed gradient using the gradient

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

distance ∆G = miny∈Y ∥∂L(G,y)
∂W − ∂L

∂W ∥F , where Y is the set of all possible labels and ∥ · ∥F is the
standard Frobenius norm. If ∆G = 0, GRAIN returns G. This is shown in lines 3–13 of Algorithm 1.

5.2 GRAPH RECONSTRUCTION

We now take the filtered set of building blocks T ∗
B and explore in a depth-first manner the set of

graphs we can create by combining them. In order to speed up the search procedure, we order the
building blocks in T ∗

B by a score S(GB). We first define the score Sv(GB) to be equal to the lowest
span check distance d(G, ∂L

∂WL) of a building block G that can be glued to GB at v. The score for
the entire block is then calculated as the sum of the vertex scores S(GB) =

∑
v Sv(GB).

Starting from the first block in the given order, we generate all possible graphs that can be created
by gluing a building block GB ∈ T ∗

B to a dangling node v ∈ G of the current graph G, resulting
in a new graph Ḡ = glue(G,GB , v). After every step, we enumerate all sets S of pairs (v1, v2)
of vertices of Ḡ such that the features of v1 and v2 match. For every such set S, we additionally
consider for exploration the graph Ĝ = overlap(Ḡ, S) created by overlapping each pair of vertices in
S. Whenever the graph has no more dangling nodes, we compute ∆G , successfully terminating if it
is found to be 0, and keeping the graph with the lowest ∆G otherwise. The skeleton of the algorithm
is seen in Algorithm 4, with each step detailed in Algorithm 5. The finalized GRAIN algorithm is
then shown in Algorithm 1.

6 EVALUATION

Algorithm 4 Reconstructing the full graph

1: function RECONSTRUCTGRAPH(T ∗
B , ∂L

∂W ,Y)
2: Gbest ← ∅
3: dbest ←∞
4: S ← T ∗

B
5: for B in T ∗

B do
6: dcurr, Gcurr ←DODFS(T ∗

B , ∂L
∂W , B, Y)

7: if dcurr = 0 then
8: return 0,Gcurr

9: if dcurr < dbest then
10: dbest,Gbest ← dcurr,Gcurr

11: return dbest,Gbest

In this section we evaluate GRAIN’s perfor-
mance compared to prior work in the gradi-
ent leakage field. We introduce a new set
of metrics, capturing the distance in node
features and adjacency matrices. GRAIN
shows significant improvements over exist-
ing attacks. Further, we show that GRAIN
remains effective across a wide range of
changes to the architecture.

6.1 EXPERIMENTAL SETUP

Next, we describe the architecture, introduce
the datasets and describe 2 baseline algo-
rithms we evaluate GRAIN against.

Architecture details We apply our attack on a 2-layer GCN (L = 2) with a hidden embedding
dimension d′ = 300 and a ReLU activation. The network also features a 2-layer feedforward
network for performing the readout, as this is a common depth Kipf & Welling (2016). Given
the depth restrictions, we recover building blocks up to a degree of 2, with the first readout layer
being used for the relevant filtering of the largest blocks. Furthermore, in Table 3 we show that our
attack is robust with respect to changes in the architecture parameters.

Data and datasets We evaluate on molecule property prediction data, where molecules are rep-
resented as graphs and each nodes represents an atom. We follow the common convention to omit
hydrogen atoms in the graphs. Each node is embedded via concatenating the one-hot encodings of
8 different features (Xu et al., 2018; Wu et al., 2020), namely the atom type, formal charge, number
of bonds, chirality, number of bonded hydrogen atoms, atomic mass, aromaticity and hybridization
(Rong et al., 2020). We evaluate GRAIN on 100 samples of 3 well-known chemical datasets, namely
Clintox, Tox21 and BBBP, introduced by the MoleculeNet benchmark (Wu et al., 2018).

Computational details We provide an efficient GPU imlementation, where each experiment has
been run on a NVIDIA L4 Tensor Core GPU with less than 40GB of CPU memory.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

6.2 BASELINE ATTACKS

We adapt the DLG attack (Zhu et al., 2019), a standard continuous attack, and TabLeak, an attack
purposefully designed for recovering discrete tabular data. As described in (Vero et al., 2023), all
input features are first passed through an initial sigmoid layer to ensure they are in the interval (0,
1). Similarly, we ensure the adjacency matrix A is symmetric by optimizing over the upper triangle,
and apply a softmax operation over the dummy labels to convert them to probabilities. Finally,
we generate a prediction graph by connecting all nodes vi, vj corresponding to σ(A)ij ≥ 0.5.
Additionally, we test both baselines when they are given the correct adjacency matrix A. In all cases
we provide the attack with the correct number of nodes to ensure that X and A have the correct
shape. We demonstrate that, even when the baselines have a significant amount of prior knowledge,
GRAIN significantly outperforms them (see Fig. 3 and Table 1).

6.3 EVALUATION METRIC

We introduce a set of metrics designed to evaluate the similarity of a pair of graphs G = (V,A,X),
Ĝ = (V̂, Â, X̂) under the common name GRAPH-N. We define GRAPH-NF (G, Ĝ) under a set of
functions F = {Fk}Nk=1, where for all k Fk : G → R|V|×d is a function that aggregates the feature
vectors for each k-degree neighborhood. This allows us to measure the similarites in features across
increasingly larger subgraphs, which capture the structure around each node. In our case we utilise
a randomly initialised ≥ k-layer GCN to achieve such a mapping.

We note that a precise evaluation of the metric requires for us to match the 2 graphs as accurately
as possible. Since exact matching of graphs is an NP-complete problem (Fortin, 1996), we match
the graph nodes by applying the Hungarian matching algorithm (Frank, 2005) for minimizing a cost
function C that captures the feature difference across degree-(0-5) neighborhoods:

Cij =

2∑
k=0

d∑
m=1

(Fk(G)− Fk(Ĝ))2m

We can hence define:

GRAPH-NF (G, Ĝ) =

{
F1-Score(FN (G), FN (Ĝ)) if FN (G) - discrete
R2(FN (G), FN (Ĝ)) if FN (G) - continuous

We utilise 3 separate instances of the metric - namely for N = 0, 1, 2, where neighborhoods of
higher degree are used to capture more structural information. It is important to note that all mea-
surements are scaled by a factor of min(|V|,|V̂|)

max(|V|,|V̂|) to penalize reconstructions of incorrect size. We
further report the percentage of exactly reconstructed graphs for each method, denoted by FULL in
the result tables.

6.4 EXPERIMENTAL RESULTS

Next, we evaluate the baselines and GRAIN and show that GRAIN outperforms the existing base-
lines across all defined metrics. Further, GRAIN is applicable across a variety of settings, including
being depth- and width-agnostic. In all measurements we quote the mean value of the metric, as
well as the 95% confidence interval around it, measured by generating 10,000 random sample sets
via bootstrapping.

Main experiments We first apply the algorithms DLG, TabLeak and GRAIN to the 3 datasets.
We observe in Table 1 that GRAIN achieves a much higher partial reconstruction rate (between
70-85%) compared to any baseline. This remains true even when the baseline is informed about the
input adjacency matrix A. When A is not given the metrics tend to decrease with neighborhood size,
showing the baselines’ inability to recover the structure. Not only do we observe much higher results
on partial reconstruction, we also see we are able to recover between 35-70% of the dataset exactly,
while the baselines can achieve this only in the case of very small molecules. For visual inspection,
we also include a comparison of reconstructed molecules in Fig. 3. In this set of examples, the first

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results (in %) of main experiments on 3 biochemical datasets – Tox21, Clintox, BBBP.
Here "+A" refers to the baseline attack with the input adjacency matrix given.

GRAPH-0 GRAPH-1 GRAPH-2 FULL

Tox21

GRAIN 86.9+4.2
−5.7 83.9+5.2

−6.9 82.6+5.7
−7.4 68.0± 1.7

DLG 31.8+4.5
−4.3 20.3+5.5

−4.8 22.8+6.6
−5.6 1.0± 0.2

DLG +A 54.7+3.9
−4.2 60.1+4.6

−5.2 76.7+3.6
−4.8 1.0± 0.2

TabLeak 25.1+5.1
−4.3 12.4+5.5

−4.3 10.8+5.6
−3.9 1.0± 0.2

TabLeak +A 55.6+3.9
−3.9 57.7+4.1

−4.6 73.8+2.8
−3.5 1.0± 0.2

Clintox

GRAIN 73.7+5.7
−6.5 68.4+6.7

−7.8 66.8+7.0
−7.6 36.0± 1.2

DLG 24.0+4.1
−3.8 10.3+4.8

−3.6 12.2+5.5
−4.2 1.0± 0.2

DLG +A 52.5+3.2
−3.6 52.6+4.1

−4.7 72.3+3.2
−3.9 1.0± 0.2

TabLeak 17.6+3.7
−2.8 6.0+4.0

−2.4 5.4+4.2
−2.5 1.0± 0.2

TabLeak +A 54.0+3.4
−3.3 52.0+3.8

−4.2 62.8+3.3
−4.2 1.0± 0.2

BBBP

GRAIN 71.7+5.9
−6.8 66.8+6.9

−7.7 64.9+7.2
−8.0 38.0± 1.2

DLG 22.6+3.6
−3.3 8.8+4.9

−3.2 10.0+5.3
−3.7 0.0± 0.0

DLG +A 51.6+3.1
−3.6 50.1+3.8

−4.5 70.6+3.1
−4.2 0.0± 0.0

TabLeak 17.6+3.8
−2.8 6.3+3.8

−2.5 4.7+3.7
−2.3 0.0± 0.0

TabLeak +A 59.1+3.1
−3.6 59.4+3.6

−4.3 71.9+2.9
−4.0 0.0± 0.0

Figure 3: Examples of molecule reconstructions. We note that both GRAIN and DLG do not recover
the multivalent interactions, as this is an edge property that is not considered for GCNs.

4 columns show the exact reconstruction of the input. We also highlight that in cases where GRAIN
does not managed to recover the entire graph, the attack can reconstruct subgraphs of the input (5th
column), and a more realistic approximation otherwise (6th column).

Effect of graph size on reconstruction In Table 8 we show how GRAIN performs on molecules
of different sizes. The molecules are divided into groups where the number of nodes satisfy n ≤ 15,
16 ≤ n ≤ 25 and n ≥ 26 respectively, aggregated across all 3 datasets. We notice that GRAIN
significantly outperforms the baselines for smaller graphs, but the performance decreases on the
largest group. This limitation here stems from a time out (15 minutes) on the graph reconstruction

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Results (in %) of GRAIN and baselines in cases of different number of nodes n

n ≤ 15 16 ≤ n ≤ 25 26 ≤ n

GRAPH-0 GRAPH-2 FULL GRAPH-0 GRAPH-2 FULL GRAPH-0 GRAPH-2 FULL

GRAIN 93.0+3.4
−5.4 91.6+3.8

−6.3 81.9± 1.7 81.7+3.9
−4.8 74.8+5.8

−6.3 43.6± 1.1 50.1+6.8
−7.1 39.2+8.5

−7.7 5.1± 0.6

DLG 27.4+4.2
−3.8 13.3+5.7

−4.6 1.0± 0.2 25.5+3.9
−3.5 16.7+5.2

−4.4 0.9± 0.2 25.4+4.8
−4.3 14.8+6.4

−5.3 0.0± 0.0

DLG +A 52.1+3.1
−3.3 71.3+3.1

−3.9 1.0± 0.2 53.7+3.2
−3.5 75.3+3.0

−3.7 0.9± 0.2 53.0+4.3
−4.8 72.6+4.1

−5.8 0.0± 0.0

TabLeak 30.3+5.0
−4.4 15.4+5.8

−4.8 1.9± 0.3 15.7+3.0
−2.2 2.1+2.2

−1.1 0.0± 0.0 13.0+3.3
−2.3 2.8+4.1

−1.9 0.0± 0.0

TabLeak +A 53.9+4.0
−4.2 72.9+3.4

−3.9 1.9± 0.3 57.1+3.1
−3.5 71.4+2.9

−3.6 0.0± 0.0 56.1+2.9
−3.3 74.4+2.3

−3.1 0.0± 0.0

Table 3: Results (in %) of GRAIN and the baselines in cases of different model parameters. Here L
is the number of GCN layers and d′ is the model’s width. L = 2, d′ = 300 is the original setting

GRAPH-0 GRAPH-1 GRAPH-2 FULL

L = 2,
d′ = 300
(default)

GRAIN 86.9+4.2
−5.7 83.9+5.2

−6.9 82.6+5.7
−7.4 68.0± 1.7

DLG 31.8+4.5
−4.3 20.3+5.5

−4.8 22.8+6.6
−5.6 1.0± 0.2

DLG +A 54.7+3.9
−4.2 60.1+4.6

−5.2 76.7+3.6
−4.8 1.0± 0.2

TabLeak 25.1+5.1
−4.3 12.4+5.5

−4.3 10.8+5.6
−3.9 1.0± 0.2

TabLeak +A 55.6+3.9
−3.9 57.7+4.1

−4.6 73.8+2.8
−3.5 1.0± 0.2

L = 3,
d′ = 300

GRAIN 82.5+5.7
−7.7 80.7+6.3

−7.7 80.4+6.2
−7.8 63.0± 1.6

DLG 20.3+4.3
−3.4 7.8+5.1

−3.3 8.2+5.3
−3.4 1.0± 0.2

DLG +A 43.0+3.7
−3.6 48.0+4.3

−4.5 66.0+3.7
−4.6 1.0± 0.2

TabLeak 16.5+3.8
−2.9 8.8+4.4

−3.1 8.0+4.3
−3.0 1.0± 0.2

TabLeak +A 47.5+4.0
−4.2 48.1+4.8

−5.0 62.9+4.3
−4.4 1.0± 0.2

L = 4,
d′ = 300

GRAIN 83.9+5.5
−7.4 82.8+5.9

−7.7 82.8+6.0
−7.9 64.0± 1.6

DLG 14.1+3.8
−2.8 4.0+4.7

−2.2 4.8+4.9
−2.6 1.0± 0.2

DLG +A 39.1+3.7
−3.8 37.0+5.3

−5.4 55.6+5.0
−5.7 1.0± 0.2

TabLeak 12.0+3.4
−1.9 2.1+4.3

−1.4 3.4+4.0
−1.7 1.0± 0.2

TabLeak +A 30.0+4.7
−4.0 27.3+5.9

−5.1 51.1+4.9
−5.3 1.0± 0.2

L = 2,
d′ = 200

GRAIN 84.6+4.6
−6.4 81.4+5.8

−6.9 80.5+5.9
−7.2 62.0± 1.6

DLG 30.8+4.5
−4.1 18.9+5.8

−4.9 22.2+6.7
−5.4 1.0± 0.2

DLG +A 50.3+4.2
−4.2 53.4+5.3

−5.9 68.7+4.9
−6.1 3.0± 0.4

TabLeak 22.1+4.8
−3.7 10.3+5.3

−3.6 8.9+5.5
−3.6 1.0± 0.2

TabLeak +A 55.0+4.8
−5.0 62.1+4.9

−5.9 76.7+3.6
−4.7 1.0± 0.2

L = 2,
d′ = 400

GRAIN 85.2+4.6
−6.1 81.5+5.4

−7.1 80.1+6.1
−7.5 63.0± 1.6

DLG 35.1+4.9
−4.7 26.1+6.4

−5.6 25.0+6.9
−6.0 1.0± 0.2

DLG +A 57.6+3.9
−4.3 61.7+4.7

−5.5 72.5+4.3
−5.5 2.0± 0.3

TabLeak 28.5+4.5
−4.0 17.1+5.4

−4.4 12.9+5.4
−4.0 1.0± 0.2

TabLeak +A 61.7+3.6
−3.7 62.6+3.6

−4.4 76.3+2.9
−3.3 1.0± 0.2

While this is a result of the computational limitations of our algorithm, the chemical setting is
inherently difficult as is discussed in Section 7. Further, our work still manages to reconstruct a
fraction of the large graphs exactly, which is impossible for the baseline models.

Effect of Model Parameters on Reconstruction Quality In Table 3 we demonstrate the perfor-
mance of GRAIN under modifying the model parameters. We observe that neither changing in the
number of layers nor the hidden dimension size of the GCN substantially affects the performance of
GRAIN, while reaffirming the significant improvement over the baselines, even when they are given
the graph connections as prior knowledge. We note that we only utilise the first 2 GCN layers even
when L > 2, showing the robustness of our method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results (in %) of GRAIN in the following cases: Row 1 – the original setting, Row 2 –
the activation function GELU instead of ReLU, Row 3 – in the gradients shared are from a trained
model instead of the first epoch, Row 4 – results of GRAIN in node classification task

GRAPH-0 GRAPH-1 GRAPH-2 FULL

GRAIN (default) 86.9+4.2
−5.7 83.9+5.2

−6.9 82.6+5.7
−7.4 68.0± 1.7

σ = GELU 82.0+5.3
−6.7 79.1+6.0

−7.4 78.4+6.2
−8.0 61.0± 1.6

Pre-trained GCN 73.5+6.4
−7.4 70.0+7.3

−7.7 68.6+7.6
−8.3 49.0± 1.4

Node classification 88.0+3.8
−5.4 85.5+4.6

−6.5 84.9+5.0
−6.6 66.0± 1.6

Additional experiments We provide additional experiments showcasing GRAIN’s performance
in different miscellaneous settings in Table 10. First, we replace the ReLU activation function in
the GCN by a GELU and report that GRAIN achieves similar results, showing our flexibility with
respect to different activations. Furthermore, while prior work has shown that gradient inversion
becomes significantly more difficult on pre-trained models (Geiping et al., 2020), GRAIN still man-
ages to reconstruct around 50% of molecules exactly. Finally, we observe consistently good results
when changing our task to a node classification one. We clarify that in this setting we additionally
assume knowledge of the ground-truth labels, as they can be easily recovered with methods, such as
the one described by Zhao et al. (2020).

7 LIMITATIONS

GRAIN is the first algorithm to make progress in the field of gradient inversion of GNN updates
and, as such, we recognize significant potential for expanding upon our work further. Currently,
our attack method is focused only on GCNs and depends on the assumption that the FL protocol
uses the node degree as a node feature. While these assumptions apply to many GNN architectures,
relaxing them is an important avenue for future work. Another key item for future work is reducing
the computational complexity of GRAIN, to enable its scale to larger graphs. We believe this is a
promising direction of research, as we believe that many further optimizations can be explored to
improve the efficiency of our algorithm. Further, as described in Section 5, GRAIN requires that
n < d′ to maintain the low-rank nature of the gradient updates. Although this is a limitation of our
work, we believe that this assumption is satisfied for many practical settings, thereby exposing real
client updates to considerable privacy risk. Finally, we leave the exploration of possible defenses
against GRAIN to future work.

8 CONCLUSION

We introduced GRAIN, the first gradient inversion attack for Graph Neural Networks that is able
to accurately recover graphs from gradients shared by the server. By leveraging the rank-deficiency
of the GCN layers, we developed an efficient framework for extracting and filtering subgraphs of
the input graph. We then presented an algorithm capable of reconstructing the original graph by
iteratively combining the filtered subgraphs.

Our results showed GRAIN achieves an exact reconstruction rate up to 70% of the graphs in chem-
ical datasets trained for graph classification. Additionally, we introduced new metrics to evaluate
partial graph reconstructions and demonstrated that GRAIN significantly outperforms prior work.
Finally, we showed that GRAIN maintains high reconstruction quality across different network sizes
and depths, and settings.

In summary, our paper is the first to demonstrate that GCN training in a federated learning setting
poses data privacy risks. We believe that this is a promising initial step towards identifying these
vulnerabilities and developing effective defense mechanisms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović, and Martin Vechev. Lamp: Extracting text
from gradients with language model priors. Advances in Neural Information Processing Systems,
35:7641–7654, 2022.

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and
Nicolas Papernot. When the curious abandon honesty: Federated learning is not private. arXiv,
2021.

Hong-Min Chu, Jonas Geiping, Liam H Fowl, Micah Goldblum, and Tom Goldstein. Panning
for gold in federated learning: Targeted text extraction under arbitrarily large-scale aggregation.
ICLR, 2023.

Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph neu-
ral networks on non-attributed graphs. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pp. 3898–3902, 2022.

Jieren Deng, Yijue Wang, Ji Li, Chao Shang, Hang Liu, Sanguthevar Rajasekaran, and Caiwen Ding.
Tag: Gradient attack on transformer-based language models. arXiv preprint arXiv:2103.06819,
2021.

Dimitar I Dimitrov, Maximilian Baader, Mark Niklas Müller, and Martin Vechev. Spear: Exact
gradient inversion of batches in federated learning. arXiv preprint arXiv:2403.03945, 2024.

Scott Fortin. The graph isomorphism problem. 1996.

Liam Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojtek Czaja, Micah Goldblum, and Tom
Goldstein. Decepticons: Corrupted transformers breach privacy in federated learning for language
models. ICLR, 2022a.

Liam H. Fowl, Jonas Geiping, Wojciech Czaja, Micah Goldblum, and Tom Goldstein. Robbing the
fed: Directly obtaining private data in federated learning with modified models. In ICLR, 2022b.

András Frank. On kuhn’s hungarian method—a tribute from hungary. Naval Research Logistics
(NRL), 52(1):2–5, 2005.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937–16947, 2020.

Jiahui Geng, Yongli Mou, Feifei Li, Qing Li, Oya Beyan, Stefan Decker, and Chunming Rong.
Towards general deep leakage in federated learning. arXiv, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Harlin Lee, Andrea L Bertozzi, Jelena Kovačević, and Yuejie Chi. Privacy-preserving federated
multi-task linear regression: A one-shot linear mixing approach inspired by graph regularization.
In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 5947–5951. IEEE, 2022.

Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learn-
ing via generative gradient leakage. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10132–10142, 2022.

Guannan Lou, Yuze Liu, Tiehua Zhang, and Xi Zheng. Stfl: A temporal-spatial federated learning
framework for graph neural networks. arXiv preprint arXiv:2111.06750, 2021.

Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. Fedni: Federated graph
learning with network inpainting for population-based disease prediction. IEEE Transactions on
Medical Imaging, 42(7):2032–2043, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ivo Petrov, Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, and Martin T. Vechev.
DAGER: exact gradient inversion for large language models. CoRR, abs/2405.15586, 2024.
doi: 10.48550/ARXIV.2405.15586. URL https://doi.org/10.48550/arXiv.2405.
15586.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics
Secur., (5), 2018.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in neural information
processing systems, 33:12559–12571, 2020.

Mark Vero, Mislav Balunović, Dimitar Iliev Dimitrov, and Martin Vechev. Tableak: Tabular data
leakage in federated learning. In Proceedings of the 40th International Conference on Machine
Learning, volume 202, pp. 35051–35083. PMLR, 2023.

Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing for user data
in large-batch federated learning via gradient magnification. In ICML, 2022.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Han Xie, Jing Ma, Li Xiong, and Carl Yang. Federated graph classification over non-iid graphs.
Advances in neural information processing systems, 34:18839–18852, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In CVPR, 2021.

Chenhan Zhang, Shuyu Zhang, JQ James, and Shui Yu. Fastgnn: A topological information pro-
tected federated learning approach for traffic speed forecasting. IEEE Transactions on Industrial
Informatics, 17(12):8464–8474, 2021.

Chi Zhang, Zhang Xiaoman, Ekanut Sotthiwat, Yanyu Xu, Ping Liu, Liangli Zhen, and Yong Liu.
Generative gradient inversion via over-parameterized networks in federated learning. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 5126–5135, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-
mation processing systems, 32, 2019.

Wei Zhu, Jiebo Luo, and Andrew D White. Federated learning of molecular properties with graph
neural networks in a heterogeneous setting. Patterns, 3(6), 2022.

12

https://doi.org/10.48550/arXiv.2405.15586
https://doi.org/10.48550/arXiv.2405.15586

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL TECHNICAL DETAILS

A.1 TABLE OF NOTATIONS

For convenience, we add a table of notations containing brief definitons for all symbols used in our
work.

Table 5: Table of notations used in the technical description of GRAIN.

Symbol Definition Symbol Definition

G = (V,E) Graph with nodes V and edges E n # of nodes in the graph
A The adjacency matrix Ã The normalized adj. matrix
dist(vs, ve) # edges in shortest path connecting

nodes vs, ve ∈ V
N k

G (v) Degree-k neighborhood in graph G
with center node v

degG(v) Degree of node v in graph G deg(v) Degree of node v as given by its
feature

Xi Input to the ith GNN layer Xi
v i-th layer input feature of node v

L Loss W i Weights of the i-th layer
d′ Hidden dimension size L Number of GCN layers
fi Function mapping the input graph

to the output of the i-th layer
f # features

Fi Set of values for the i-th feature F F1 × · · · × Ff - set of all possible
feature combinations

τ Span check distance threshold D Degree matrix (diagonal)
Tl Proposal set of degree-l building

blocks
T ∗
l Filtered set of degree-l building

blocks
T ∗
B Final set of filtered building blocks σ Activation function

∆G Distance between the gradients of
G and observed gradients

dbest Gradient distance of the best re-
constructed graph

GRAPH-
N(G, Ĝ)

Similarity between degree-N
neighborhoods of G and Ĝ

Gbest The best reconstructed graph.

A.2 DEFERRED PROOFS

Here we show the proof of Lemma 5.1, which we restate here for convenience:

Lemma 5.1. For ∂L
∂Zi of full-rank, d < n, and a possibly normalized adjacency matrix at layer i,

A ∈ Rn×n, Xi
j ∈ colspan(∂L

∂W i) if and only if AT
j /∈ colspan(Āj), where Āj denotes the matrix

A with its j-th column removed.

Proof. We separate the proof in 3 steps:

• Step 1: AT
i /∈ colspan(Āi) is equivalent to null(ĀT

i) ̸⊆ null(AT
i)

• Step 2: There is a vector xi, such that xiA = ei if and only if null(ĀT
i) ̸⊆ null(AT

i).

• Step 3: Xi ∈ colspan(∂L
∂W) if and only if there is a vector xi, such that xT

i A = ei, where
ei is the i-th standard basis vector.

Step 1: (AT
i /∈ colspan(Āi) ⇐⇒ null(ĀT

i) ̸⊆ null(AT
i)) First of all, the statement is equivalent

to negating both sides, or AT
i ∈ colspan(Āi) ⇐⇒ null(ĀT

i) ⊆ null(AT
i), which can be shown by

the following steps:

null(ĀT
i) ⊆ null(AT

i) ⇐⇒ null(ĀT
i) ⊆ null(AT

i)

⇐⇒ rowspan(AT
i) ⊆ rowspan(ĀT

i)

⇐⇒ colspan(Ai) ⊆ colspan(Āi)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

⇐⇒ Ai ∈ colspan(Āi)

Here we used that the complenetary subspace of the null space of matrix is the rowspan of the
matrix null(M)C = rowspan(M). The last step follows from that the fact that Ai is a single
common vector, and therefore all vectors in colspan(Ai) are of the form λAi.

Step 2 (null(ĀT
i) ̸⊆ null(AT

i) ⇐⇒ ∃xi.x
T
i A = ei): First, for both directions of the proof, we

can separate xiA = ei into 2 different requirements:

xT
i Āi = 0 (2)

xT
i Ai = 1 (3)

(⇒) First of all, we note that AT
i ∈ R1×n has rank(AT

i) = 1, as for a GCN A contains self-loops,
meaning that Ai contains a non-zero entry. Therefore, AT

i has nullity(AT
i) = n − 1 due to the

rank-nullity theorem. null(ĀT
i) ̸⊆ null(AT

i) implies that there exists an x‘
i ∈ null(ĀT

i), such that
x‘
i /∈ null(AT

i) (since nullity(AT
i) = n − 1 < n this set is non-empty). For that xi, the following

hold:
x‘
i

T
Āi = 0

x‘
i

T
Ai = c

Therefore, if we take xi =
1
cx

‘
i, xi would satisfy both (1) and (2), giving us a valid solution.

(⇐) Assuming the existence of xi with xT
i A = ei, we know that (1) and (2) hold. Equivalently

to (1), xi ∈ null(ĀT
i). If we assume the converse of null(ĀT

i) ̸⊆ null(AT
i), which is null(ĀT

i) ⊆
null(AT

i), then xi is also in null(AT
i). This would imply that xT

i Ai = 0, which contradicts (2).
Therefore, by contradiction null(ĀT

i) ̸⊆ null(AT
i) holds, concluding the proof of this step.

Step 3 (∃xi.x
T
i A = ei ⇐⇒ Xi ∈ colspan(∂L

∂W)): (⇒) Assuming the existence of such an xi

implies that we can multiply both sides of the equation by X to obtain xT
i AX = Xi. This implies

that Xi ∈ rowspan(AX). Applying Theorem DAGER(TODO: change) on ∂L
∂W = (AX) ∂L∂Z ,

implies that rowspan(AX) = colspan(∂L
∂W), and therefore Xi ∈ colspan(∂L

∂W).

(⇐) Applying Theorem DAGER(TODO: change) on ∂L
∂W = (AX) ∂L∂Z , or rowspan(AX) =

colspan(∂L
∂W), implying that Xi ∈ rowspan(AX). This can be rewritten as ∃xi.x

T
i AX = Xi.

Assuming X ∈ Rn×d is full-rank, then there exists a right-inverse X−R, as rank(X) = d < n.

xT
i AXX−R = XiX

−R ⇒ xiA = ei

It is notable that X not being full-rank still allows for all nodes with feature vectors in X will pass
the span check, however it is possible that some hallucinated inputs might also pass the check. This
concludes our proof.

A.3 DEPTH-FIRST SEARCH IMPLEMENTATION

B ADDITIONAL EXPERIMENTS

Here we present additional experiments that are not part of the main text.

B.1 HUMAN EVALUATION FOR THE GRAPH SET OF METRICS

We performed a human evaluation, where 3 experts in Graph Theory and Chemistry were shown 120
sample reconstructions of molecules, as given by DLG and GRAIN. The samples were shuffled, and
the participants were tasked to assign a score from 0 to 10, with the following instructions:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 5 Depth-first search reconstruction

1: function DODFS(T ∗
B , ∂L

∂W , G0, Y)
2: Gtop ← ∅
3: dtop ←∞
4: S∗

new ← {}
5:
6: if |dang(G0)| == 0 then
7: d0 ← min

y∈Y
∥ ∂L
∂W −

∂L(G0,y)
∂W ∥F

8: return d0,G0
9:

10: v = dang(G0)[0]
11: for G1 in T ∗

B do
12: if ∃G2 = glue(G0,G1, v) then
13: S∗

new ← S∗
new ∪ {G2}

14: for S ⊆ {V (G2) \ V (G0)} × V (G0) do
15: S∗

new ← S∗
new ∪ {overlap(G2, S)}

16:
17: for G in S∗

new do
18: d′,G′ ←DODFS(T ∗

B , ∂L
∂W ,G)

19: if d′ == 0 then
20: return 0,G′
21: else if dTOP > d′ then
22: dTOP,GTOP ← d′,G′
23:
24: return dTOP,GTOP

"Thank you for agreeing to participate in this study on the quality of graph reconstructions! We have
gathered a set of graphs, coupled with the best-effort reconstruction. Please give each pair a score
of 0-10, where 0 is a complete lack of similarity, and 10 is a perfect match. When assigning a score,
take into account the structure of the two graphs, as well as the atom type for matching atoms, and
also be wary that 2 graphs might be isomorphic, but have different pictures. Please disregard the
connections between atoms, as the methods we used do not recover any edge properties. Give your,
as best as possible, score on how similar the graphs are with respect to these properties."

We report the average scores for each algorithm, multiplied by a factor of 10 to match the order of
magnitude of the GRAPH metrics, and present the results in Table 6.

Table 6: Comparison of the designed metrics with the human evaluation.

GRAPH-0 GRAPH-1 GRAPH-2 Study score
Ours 72.6 67.8 66.9 70.6
DLG 24.2 10.5 12.0 6.5

Based on these studies, we also show in Table 7 that our partial reconstructions are deemed more
significant than what the metric suggests, likely meaning that there are examples which present
significant information leakage. In contrast, high-scoring examples from the DLG attacks have been
rated as essentially uninformative.

B.2 ABLATION STUDIES

We perform additional ablation studies on various assumptions and parameters.

First, we investigate the effect of the choice for the τ threshold, used for filtering inputs using the
span check method. We measure the ratio between the number of nodes and degree-1 building
blocks that pass the filter, and the actual number of these blocks. That is done on 10 samples
from the Tox21 dataset, for τ ∈ [10−6, 0.1]. We show in Fig. 4 that any τ ∈ [10−4, 10−2] results in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Score discrepancy examples between human evaluators and the GRAPH set of metrics.
G-1 stands for the GRAPH-1 metric.

GT GRAIN G-1 Study GT DLG G-1 Study

62.0 93.3 52.7 10.0

41.3 63.3 61.0 23.3

33.5 56.7 41.0 0.0

essentially the same filtering process, and that thresholds in this interval perfectly recover the correct
degree-1 building blocks.

Additionally, we note that GRAIN is not significantly impacted by the embedding dimension d′, as
long as n < d′, consequently achieving similar scores, particularly for small graphs. We show the
exact results in Table 8.

Table 8: Results (in %) of GRAIN with different embedding dimensions across a range of graph
sizes

n ≤ 15 16 ≤ n ≤ 25 26 ≤ n

GRAPH-0 GRAPH-2 FULL GRAPH-0 GRAPH-2 FULL GRAPH-0 GRAPH-2 FULL

d = 300 93.0+3.4
−5.4 91.6+3.8

−6.3 81.9± 1.7 81.7+3.9
−4.8 74.8+5.8

−6.3 43.6± 1.1 50.1+6.8
−7.1 39.2+8.5

−7.7 5.1± 0.6

d = 128 92.1+3.2
−5.0 92.3+3.9

−5.7 79.3± 1.6 81.4+4.0
−4.8 75.1+5.7

−6.6 43.6± 1.1 49.3+7.2
−6.5 38.8+8.7

−7.6 5.1± 0.6

d = 64 92.2+3.0
−5.5 92.0+4.0

−5.9 79.3± 1.6 81.3+4.1
−4.7 75.5+5.8

−6.5 43.6± 1.1 48.6+7.4
−6.5 37.9+9.0

−7.7 5.1± 0.6

d = 32 92.2+3.0
−5.5 91.7+3.6

−6.5 79.3± 1.6 81.7+4.0
−4.4 73.8± 6.1 43.6± 1.1 15.3+2.8

−4.4 13.3+2.5
−3.9 0.0± 0.0

Further, in Fig. 5 we investigated how the rank-deficiency of the adjacency matrix A affects the
strength of the GRAIN adversary. For different sizes of A, we measure what the Monte-Carlo prob-
ability of A being full-rank, and the fraction of nodes we can recover, as computed per Lemma 5.1.
This was done for synthetic graphs, where we sampled 100,000 symmetric binary matrices with
varying probability of every 2 nodes being connected, as well as for all molecular graphs in the
chemical datasets Clintox, Tox21 and BBBP. We show that Lemma 5.1 is crucial for understanding
why GRAIN is effective, despite the probability of A being full-rank being low. In particular, we
highlight in Fig. 5 that GRAIN can recover an increasing fraction of nodes as A grows.

Finally, we compare the computational cost of GRAIN to that of the baseline attacks. We ensured
that the optimization attacks reached convergence before terminating each sample search. We ob-
serve in Table 9 that GRAIN achieves significantly better results (seen on Table 1), despite running
for time comparable to the one of Tableak.

B.3 ADDITIONAL SETTINGS

Here we present our results on different applications of GRAIN under the Graph Attention Network
(GAT) architecture on both the Tox21 chemical dataset, and the Citeseer dataset. In Table 10 we
show these additional experiments, alongside the effects of running GRAIN without knowledge of
the node degree, or without utilisation of the node uniqueness heuristic.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 4: Ablation study
on the span check filtering
threshold τ .

Figure 5: Impact of low-rankness of the adjacency matrix
on reconstructability for synthetic data (left) and molecules
(right)

Table 9: Runtime for each GRAIN and baseline experiment, given in hours.

GRAIN DLG DLG+A Tableak Tableak+A

Tox21 14.3 3.3 3.1 13.1 12.3

Clintox 24.1 3.5 3.2 15.2 14.5

BBBP 23.7 3.9 3.1 12.6 12.5

Table 10: Results (in %) of GRAIN in the following cases: Row 1 – the original setting, Row 2 –
the activation function GELU instead of ReLU, Row 3 – in the gradients shared are from a trained
model instead of the first epoch, Row 4 – results of GRAIN in node classification task

GRAPH-0 GRAPH-1 GRAPH-2 FULL

GAT, Tox21 92.9+3.8
−5.8 90.7+5.0

−7.1 89.9+5.8
−7.2 75.0± 1.8

GAT, Citeseer 79.3+4.7
−6.3 69.1+6.1

−6.4 69.6+6.2
−6.0 61.0± 1.6

GAT, Citeseer,no degree 59.7+6.8
−7.2 42.7+6.3

−6.6 43.2+6.4
−6.6 32.0± 1.1

GAT, Citeseer,no heuristic 64.6+3.5
−4.2 52.1+4.7

−5.3 52.4+4.6
−5.2 44.0± 1.3

17

	Introduction
	Related Work
	Background and Notation
	Overview of GRAIN
	Subgraph Filtering and Graph Reconstruction
	Efficient filtering through spanchecks
	Graph Reconstruction

	Evaluation
	Experimental setup
	Baseline Attacks
	Evaluation metric
	Experimental results

	Limitations
	Conclusion
	Additional technical details
	Table of Notations
	Deferred proofs
	Depth-First Search implementation

	Additional Experiments
	Human evaluation for the GRAPH set of metrics
	Ablation Studies
	Additional settings

