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ABSTRACT

Federated learning allows multiple parties to train collaboratively while only Fed-
erated learning allows multiple parties to train collaboratively while only sharing
gradient updates. However, recent work has shown that it is possible to exactly
reconstruct private data such as text and images from gradients for both fully con-
nected and transformer layers in the honest-but-curious setting. In this work, we
present GRAIN, the first exact reconstruction attack on graph-structured data that
recovers both the structure of the graph and the associated node features. Con-
cretely, we focus on Graph Convolutional Networks (GCN), a powerful frame-
work for learning on graphs. Our method first utilizes the low-rank structure of
GCN layer updates to efficiently reconstruct and filter building blocks, which are
subgraphs of the input graph. These building blocks are then joined to complete
the input graph. Our experimental evaluation on molecular datasets shows that
GRAIN can perfectly reconstruct up to 70% of all molecules, compared to at most
20% correctly positioned nodes and 32% recovered node features for the baseline.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) have shown a great promise in learning on graph-structured
data like social networks, traffic flows, molecules, as well as, healthcare and income data. Many of
these applications, however, require large quantities of private data, which can be hard to collect due
to privacy regulations and the reluctance of users to share their data due to fear of losing competitive
advantage. This has naturally led to widespread use GCNs alongside Federated Learning (FL) which
promises to protect the sensitive data of users (Xie et al., 2021; |Zhang et al.,[2021;|Zhu et al., |2022;
Lee et al.|[2022;|Lou et al., 2021} |Peng et al., 2022).

However, the privacy of client data in FL for different domains including images (Zhang et al.,
2023)), text (Petrov et al.,|2024), and tabular data (Vero et al.| 2023)) was recently shown to be severely
violated by the introduction of gradient inversion attacks in the honest-but-curious setting (Zhu et al.,
2019). In these attacks, the federated server infers the client data based on passively observed client
gradients and the model weights on which they were computed. Unfortunately, no prior work has
investigated the vulnerability of GCNs to such attacks.

This work: Gradient inversion attack on graphs In this work, we introduce the first gradi-
ent inversion attack on graphs called Graph Reconstruction Algorithm for Inversion of Gradients
(GRAIN), specifically designed to attack Graph Convolutional Networks by reconstructing both,
the graph structure and the node features. At the core of our method is an efficient filtering mech-
anism to correctly identify possible subgraphs, which are then pieced together to reconstruct the
entire graph. In particular, we leverage span checks to exploit the rank-deficiency of GCN layer
updates and recover the discrete set of node features at each layer, as well as the subgraph adjacency
matrices. We then reconstruct the client input by applying a depth-first search-based (DFS-based)
traversal algorithm to piece together the full graph from the recovered subgraphs.

We evaluate our attack on a real-world chemical dataset for molecule property prediction, where
molecules are represented as graphs with nodes denoting atoms. We show that in the graph classi-
fication setting we can reconstruct up to 70% of all molecules exactly and achieve a reconstruction
accuracy up to 85% when considering partial graph reconstructions. Further, even in the harder node
classification setting we exactly reconstruct 66% of the molecules when node labels are known.
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Main Contributions Our main contributions are:

* The first gradient inversion attack on Graph Neural Networks, recovering the graph struc-
ture and node features.

* An efficient filtering mechanism that correctly identifies client subgraphs as well as a graph
reconstruction algorithm, building the input graph from the subgraphs.

* A new set of evalution metrics designed to measure the similarity between reconstructed
graphs and the client data, enabling efficient evaluation of graph gradient inversion attacks.

* A thorough evaluation of GRAIN on real-world chemical datasets showing GCNs do not
preserve client data privacy in realistic GCN applications.

We believe this work is a promising first step to understanding and quantifying the privacy risks
associated with using graph data in federated learning.

2 RELATED WORK

Gradient inversion attacks (Zhu et al.,[2019), are attacks to Federated Learning that aim to infer the
client’s private data from the FL updates clients share with the federated server. As such, they assume
knowledge of the updates themselves, as well as, the model weights on which the updates were
computed. Depending on the attack model, gradient inversion attacks are either malicious (Boenisch
et al., 2021} |Fowl et al., 2022ba; (Chu et al., 2023} |Wen et al.| [2022) if the attacker can additionally
manipulate the model weights sent to the clients, or honest-but-curious (Zhu et al., [2019; Phong
et al., 2018; Zhao et al., [2020; \Geiping et al., | 2020; |Geng et al., 2021} |[Zhang et al., [2023} [Li et al.}
2022; Deng et al., 2021; [Balunovic et al., 2022; |Dimitrov et al., 2024; |Petrov et al.,2024; Vero et al.}
2023)) if the attack is executed passively by just observing model weights and updates.

In this work, we focus on the harder setting of honest-but-curious gradient inversion attacks. Most
existing honest-but-curious attacks formulate gradient inversion as an optimization problem (Zhao
et al.l 2020; |Geiping et al.| [2020; Yin et al.} 2021} |Geng et al., 2021; [Zhang et al.| 2023} |Li et al.,
2022; Deng et al., 2021} |Balunovic et al., 2022) where the attacker tries to obtain the data which
corresponds to a client update that matches the observed one best. While, this approach is effective
in many domains like images (Geiping et al.|,[2020; |Yin et al., 2021} |Geng et al., 2021; Zhang et al.,
2023; L1 et al.| |2022) where the client data is continuous, it has been shown that the associated opti-
mization problem is much harder to solve for domains where client inputs are discrete. Some prior
works have attempted to alleviate this issue by relying on various continuous relaxation (Balunovic
et al., [2022; |Vero et al.,|2023) to the discrete optimization problem with some success.

In contrast to such approaches, a recent line of work showed that gradient inversion can be solved
exactly for both continuous (Dimitrov et al.,|2024)) and discrete inputs (Petrov et al.,2024) for certain
neural network architectures. In particular, our work builds upon the work of |Petrov et al.| (2024),
where the authors show that when there are very large but countable number of options for the client
input data, one can exploit the low-rank structure of the gradient updates of fully connected layers to
efficiently test all possibilities and keep only those that match the true input data. Similar to |Petrov
et al.| (2024), our attack exploits the low-rankness of GCN layers resulting in exact reconstruction of
both the graph structure and the node features. To the best of our knowledge we are the first attack
specifically tackling this issue.

3  BACKGROUND AND NOTATION
In this section, we provide the background and notation necessary for understanding our method.

Graph Terminology First, we introduce the graph notation utilized in this work. For an undirected
graph G = (V, E) with node set V of size n = |V| and edge set E, we denote the degree of any node
v € V with degg(v). Further, for a pair of vertices v,,v. € V, the distance dist(vs,v.) denotes
the number of edges in the shortest path connecting v, to v.. Finally, we introduce the notion of a
degree-k neighborhood of a node v, defined by the subgraph N&(v) = (V,}, EX) C G consisting

v

of all nodes V¥ = {v' € V | dist(v,v’) < k} in the graph at a distance < k from v and the edges
between them EX = {e = (v1,v2) € E | v1 € V(NF ' (v)),v2 € VF} with NG (v) = {v}.
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Graph Convolutional Networks (GCNs) GCNs are a class of neural networks that operate on
graph-structured data through a message-passing mechanism utilizing the graph edges E. In partic-
ular, the i™ GCN layer takes as an input a matrix X* € R"*¢ of d-dimensional node features for
each node in V' and performs a combination of messages passing and non-linearity to produce the
node features of the next layer X **1:

Xt = g(Z) =0 (AX"Wi) , (1)

where A € R™ ™ is the normalized adjacency matrix, W' € R4 is the weight matrix and o is

an activation function. The normalized adjacency is given by A = D~/2AD~1/2 where A is the
adjacency matrix of the graph and D is the degree matrix. Further, we index the ¢-th layer input
feature of a given node v as X f, In our case, we concatenate L GCN layers, which are then followed
by a feed forward neural network to perform the readout. We denote by f; fori =0,1,2,..., L —1
the function that maps the input graph to the output of the i GCN layer.

Gradient Filtering in Linear Layers Recently, Petrov et al.|(2024) showed that one can leverage
the gradients of the network loss £ w.r.t. the weights W of the i linear layer a%i to search for
the correct set of inputs X to the layer among a discrete set of possibilities via filtering enabled by
the low-rankness of the weight updates. We restate the theoretical findings below:

Theorem 3.1. If n < d and if the matrix é?ZQ is of full rank (rank n), then rowspan(X*) =

colspan(35-).

To verify whether some input vector z could have been part of the client input, [Petrov et al.| (2024)
performs a spancheck. Specifically, the distance between z and the subspace spanned by the column

L - .
vectors of 577 is measured:

d(z, 2E:) = |}z — proj(z, colspan( &) .

We assume z to have been part of the i-th layer input if d(z, %) < 7 for a chosen threshold .

4 OVERVIEW OF GRAIN

In this section, we provide a high-level overview of our method GRAIN, a gradient inversion attack
specifically designed to reconstruct graph-structured client training data in the Federated Learning
setting assuming an honest-but-curious adversary. GRAIN has two phases.

In the first phase, we iteratively create a proposal set, 7;, for each GCN layer [ in the network. This
set contains all degree-! building blocks, which are subgraphs of degree .

We then filter out nodes that are incompatible with the gradient according to Lemma which is
based on Theorem [3.1] (Petrov et al., [2024). We finish the filtering by removing degree-L building
blocks that do not pass a consistency check. Finally, using the elements of this set, we reconstruct
the input graph via a tree-search-based approach.

Setting We apply GRAIN on the GCN architecture, where each GCN layer applies a single mes-
sage passing operation between neighbors in the graph. The nodes are characterized by a set of f
discrete features F = Fy X Fp X --- X F.

In Fig.|l| we present an overview of GRAIN which we now elaborate on.

Filtering We begin from a proposal set containing all possible nodes 7y. Using Lemma [5.1| we
remove all nodes that are not compatible with the gradient via a span check, resulting in 75° C 7.
These degree-0 building blocks can then be combined to one another to form degree-1 building
blocks, constituting the set 7;. As before, we can use Lemma [5.1] on the next GCN layer, dropping
impossible degree-1 building blocks, resulting into 7;* C 7;. This procedure can be extended to
iteratively build degree-/ building blocks 7; by gluing degree-1 building blocks 7;*, which can then
be filtered as before to obtain 7;*. As a last step, we filter out building blocks that cannot be used to
form a single larger building block, leaving us with the final set of degree-L building blocks 7.
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Figure 1: Overview of GRAIN. GRAIN first recovers the input nodes 7;* by filtering through all
possibilities 7y. 7o is the cross-product of all possible feature values. Visualized are the sets of
possible values for the atom type (F7) and the number of bonds (F3). It then iteratively combines
and filters them to produce larger and larger building blocks up to a degree L. Finally, GRAIN
reconstructs the input graph by combining building blocks from the filtered set 7,5 in a depth-first
manner.

Graph Reconstruction Having arrived at a filtered set of degree- L building blocks, we iteratively
glue together members of 7} at vertices that have not yet enough neighbors to match their feature
degree. Here we leverage that the degree of a node is a widely used node feature for training GCNs
(Hamilton et al.| 2017;|Xu et al., 2018 |Cui et al.,|2022)), and is thus accessible by the attacker at this
point. We explore all possible gluing options using a depth-first search. When we cannot extend the
given graph further, we compute the gradients using it as an input and compare them to the observed
gradients. If they do not match, we backtrack and try a different path. Otherwise, we can terminate
our procedure successfully and return the reconstructed graph.

5 SUBGRAPH FILTERING AND GRAPH RECONSTRUCTION

We now present the technical details of Algorithm 1 The GRAIN algorithm
GRAIN. First, in Section [5.I we de-
function GRAIN(To, 25, 7, f.Y)

scribe the key operation of gluing two
graphs together. Then, building on The- T, <~CREATEBBS(7, %, 7, )
Tp < {}

1:
2
orem [3.1] (Petrov et al.| [2024), we present 3
Lemmal5.1|adapting Theorem[3.1]to GCN 4 for G € 7, do
layers, allowing us to efficiently remove  5: if Ag == 0 then
6.
7
8

proposal elements of 7;, which fail the return G
span check and hence cannot be a sub- CanGlue + True
graph of the input. Further, we detail how for v € V do

we construct 75 by utilizing consistency  9: if 1I9G5 € T .glue(G, G, v) then
checks on 7;. Finally, in Section 10: CanGlue < False

we propose the end-to-end graph recon- 11: break

struction algorithm, which iteratively con- 12: if CanGlue then

structs the entire graph from the filtered set  13: Th < T U{G}

of possible subgraphs. 14:  return RECONSTRUCTGRAPH(T}, 25, Y)

5.1 EFFICIENT FILTERING THROUGH SPANCHECKS

We first describe the process of gluing a degree [ building block GZ = (VB E®) to a graph G =
(V, E) ata vertex v € V resulting into G = glue(G, G2, v) if v is the center of GZ and the degree-I
neighborhood of v in G overlaps with GZ, that is ./\/'é (v) € GB. The resulting graph G is then the
extension of the graph G by the building block G? at vertex v, by attaching the non-overlapping
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parts of G B to G at v, as shown in Section Formally, the result of the gluing operation is then
G=(WVUVB EUEP).

Span check for GCN layers We now state our main
Lemma, building on Theorem [3.1] from [Petrov et al.
(2024) to be applied on GCNs. The proof can be found in
Section[Al

Lemma 5.1. For 321 of full-rank, d < n, and a possi-
bly normalized adjacency matrix at layer i, A € R"*",
X € CE)lspan( B%f,i) if and only ifA;F ¢ colspan(A;),
where Aj denotes the matrix A with its j-th column re-
moved.

glue(G,GB,v)
AV

g
el

Center of GB

Figure 2: Visualization of the gluing op-
eration.

Next, we begin our attack with the creation of the degree-L building blocks and reduce the search
space via the span check mechanism. We start with the set of all possible nodes 7y and apply
Lemma [5.1]to filter out the nodes that cannot be part of the input graph to get 7.

Creating degree-1 building blocks 7;* We first define the extension ext(v) of a node v to be
the set of all possible graphs that can be constructed by attaching deg(v) nodes from 7" to v. We
note, that we do not attach nodes w € 7" to v if the feature degree of w is 0, that is deg(w) = 0.
The set of all possible degree-1 building blocks 7; = UveTo* ext(v) is then defined as the set of

all possible graphs that can be constructed by extending node from 7;*. We can then filter 77 by

applylng Lemma! on 3W ~2=1 to achieve the reduced set of degree-1 building blocks 7;*, as shown
in Algorithm[2]

Creating degree-/ building blocks 7,*
G € T;*, we define the dangling nodes dang(G) as the

For a graph  Algorithm 2 Filtering using the spancheck

set of all nodes v € G such that deg(v) is greater than ¢ function FILTER(T;, 5357, 7, fi-1)
the number of its neighbors. We extend the degree- 2 T« {}

! building blocks G € 7;* by calculating all possible 3 for G in 7, do

gluings of degree-1 building blocks G’ € T;* to all 4 v <+ center(G)

dangling nodes of G. This is shown in linesPHI5of Al- 5 if d(f1-1(G)w, vf, ) < 7 then
gorithm 3] The resulting set is then called 7;11, which ¢ T+ T u{G}

is then filtered by applying Lemma on % to 4 return 7;*

achieve the reduced set of degree-/ + I building blocks

*
+1

Additional structure-based filtering and Algorithm 3 Creating the degree-L building blocks
likelihood ordering We repeat the process
explained above until we reach the desired
degree L. To further restrict the proposal

set of building blocks, we perform a con-

: function CREATEBBS(7o, 2%, 7, f)
To', Ti  FILTER(To, 755 7, Ao. X D), {}
for v in 7" do

sistency check to further rule out building
blocks that cannot be part of the ground truth
graph. Specifically, we for every G € T,
and for every vertex v € G there exist a
building block in 7;* that we can glue at v

1
2
3
4: T1 + T1 Uext(v, T)

5 T «<FILTER(TL, 35, 7 fo)
6 for! < 2,...,Ldo
7 T« {}

8 for Gin 7", do

to G. If this is not the case, we know that g. S+ {G}
either G is the input graph, or it cannot be (. for v in dang(G) do
part of the ground truth graph and remove ;. S’
it from 7;. The resulting set is then called 5. for G/, GB in S x T do
T5. For small input graphs, it is possible 3. S' ¢+ §' U glue(G', G5B, v)
that we already find the input graph during 14: S g
the creation of 7;* and therefore cannot glue s T
1 . . : 1+ TUS
any building block to it. Thus, if we cannot . or
glue any building block to a graph in 7;*, we 16: T, « FILTER(T,, w0 T fien)
check if the input graph could have gener- 17: return 7

ated the observed gradient using the gradient
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distance Ag = minycy || 6%(5[,’9) — % || =, where Y is the set of all possible labels and || - || 7 is the
standard Frobenius norm. If Ag = 0, GRAIN returns G. This is shown in lines BHI3|of Algorithm ]

5.2 GRAPH RECONSTRUCTION

We now take the filtered set of building blocks 7 and explore in a depth-first manner the set of
graphs we can create by combining them. In order to speed up the search procedure, we order the
building blocks in 7} by a score S(GP). We first define the score S, (G?) to be equal to the lowest
span check distance d(G, a?}V—LL) of a building block G that can be glued to GE at v. The score for
the entire block is then calculated as the sum of the vertex scores S(GP) = > S, (G5).

Starting from the first block in the given order, we generate all possible graphs that can be created
by gluing a building block GZ € T} to a dangling node v € G of the current graph G, resulting
in a new graph G = glue(G,G%,v). After every step, we enumerate all sets S of pairs (vy,v2)
of vertices of G such that the features of v; and v, match. For every such set S, we additionally
consider for exploration the graph G= overlap(G, S) created by overlapping each pair of vertices in
S. Whenever the graph has no more dangling nodes, we compute Ag, successfully terminating if it
is found to be 0, and keeping the graph with the lowest Ag otherwise. The skeleton of the algorithm
is seen in Algorithm [4] with each step detailed in Algorithm[5] The finalized GRAIN algorithm is
then shown in Algorithm [I]

6 EVALUATION

In this section we evaluate GRAIN’s perfor- Algorithm 4 Reconstructing the full graph

mance compared to prior work in the gradi- I function RECONSTRUCTGRAPH(T?, 2£.Y)
ent leakage field. We introduce a new set 5. G < 0 ow
of metrics, capturing the distance in node 3 dbeSt oo
features and adjacency matrices. GRAIN Sbiit T
shows significant improvements over exist- s. for B iﬁ 7= do
ing attacks. Further, we show that GRAIN ’ B . Or
remains effective across a wide range of 6: flcuchurr «DODFS(Tg, 5w B, Y)
changes to the architecture. 7 if deur = 0 then

8 return 0, Geyrr

9 if deyrr < dpese then
6.1 EXPERIMENTAL SETUP 10: dests Gvest < deurrs Geurr

11: return dpege, Gpest

Next, we describe the architecture, introduce
the datasets and describe 2 baseline algo-
rithms we evaluate GRAIN against.

Architecture details We apply our attack on a 2-layer GCN (L = 2) with a hidden embedding
dimension d’ = 300 and a ReLU activation. The network also features a 2-layer feedforward
network for performing the readout, as this is a common depth [Kipf & Welling| (2016)). Given
the depth restrictions, we recover building blocks up to a degree of 2, with the first readout layer
being used for the relevant filtering of the largest blocks. Furthermore, in Table [3] we show that our
attack is robust with respect to changes in the architecture parameters.

Data and datasets We evaluate on molecule property prediction data, where molecules are rep-
resented as graphs and each nodes represents an atom. We follow the common convention to omit
hydrogen atoms in the graphs. Each node is embedded via concatenating the one-hot encodings of
8 different features (Xu et al.| 2018} Wu et al., |2020), namely the atom type, formal charge, number
of bonds, chirality, number of bonded hydrogen atoms, atomic mass, aromaticity and hybridization
(Rong et al., 2020). We evaluate GRAIN on 100 samples of 3 well-known chemical datasets, namely
Clintox, Tox21 and BBBP, introduced by the MoleculeNet benchmark (Wu et al., 2018)).

Computational details We provide an efficient GPU imlementation, where each experiment has
been run on a NVIDIA L4 Tensor Core GPU with less than 40GB of CPU memory.
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6.2 BASELINE ATTACKS

We adapt the DLG attack (Zhu et al., 2019), a standard continuous attack, and TabLeak, an attack
purposefully designed for recovering discrete tabular data. As described in (Vero et al., 2023, all
input features are first passed through an initial sigmoid layer to ensure they are in the interval (0,
1). Similarly, we ensure the adjacency matrix A is symmetric by optimizing over the upper triangle,
and apply a softmax operation over the dummy labels to convert them to probabilities. Finally,
we generate a prediction graph by connecting all nodes v;,v; corresponding to o(A); ; = 0.5.
Additionally, we test both baselines when they are given the correct adjacency matrix A. In all cases
we provide the attack with the correct number of nodes to ensure that X and A have the correct
shape. We demonstrate that, even when the baselines have a significant amount of prior knowledge,
GRAIN significantly outperforms them (see Fig.|3|and Table|l).

6.3 EVALUATION METRIC

We introduce a set of metrics designed to evaluate the similarity of a pair of graphs G = (V, A, X)),
G = (V, A, X) under the common name GRAPH-N. We define GRAPH-N (G, G) under a set of
functions F' = {F;}_,, where forall k F}, : G — RIVI¥? i5 a function that aggregates the feature
vectors for each k-degree neighborhood. This allows us to measure the similarites in features across
increasingly larger subgraphs, which capture the structure around each node. In our case we utilise
arandomly initialised > k-layer GCN to achieve such a mapping.

We note that a precise evaluation of the metric requires for us to match the 2 graphs as accurately
as possible. Since exact matching of graphs is an NP-complete problem (Fortinl [1996), we match
the graph nodes by applying the Hungarian matching algorithm (Franki [2005) for minimizing a cost
function C that captures the feature difference across degree-(0-5) neighborhoods:

2 d

k=0m=1

We can hence define:

GRAPH-N;(G, ) — Fg-Score(FN(g)lFN(g)) %f Fn(G) - dlscr.ete
R*(Fn(G), Fn(9)) if Fv(G) - continuous

We utilise 3 separate instances of the metric - namely for N = 0,1, 2, where neighborhoods of
higher degree are used to capture more structural information. It is important to note that all mea-
min(|V],|V])
max(|V[,|V]) )
further report the percentage of exactly reconstructed graphs for each method, denoted by FULL in
the result tables.

surements are scaled by a factor of to penalize reconstructions of incorrect size. We

6.4 EXPERIMENTAL RESULTS

Next, we evaluate the baselines and GRAIN and show that GRAIN outperforms the existing base-
lines across all defined metrics. Further, GRAIN is applicable across a variety of settings, including
being depth- and width-agnostic. In all measurements we quote the mean value of the metric, as
well as the 95% confidence interval around it, measured by generating 10,000 random sample sets
via bootstrapping.

Main experiments We first apply the algorithms DLG, TabLeak and GRAIN to the 3 datasets.
We observe in Table [I| that GRAIN achieves a much higher partial reconstruction rate (between
70-85%) compared to any baseline. This remains true even when the baseline is informed about the
input adjacency matrix A. When A is not given the metrics tend to decrease with neighborhood size,
showing the baselines’ inability to recover the structure. Not only do we observe much higher results
on partial reconstruction, we also see we are able to recover between 35-70% of the dataset exactly,
while the baselines can achieve this only in the case of very small molecules. For visual inspection,
we also include a comparison of reconstructed molecules in Fig.|3| In this set of examples, the first
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Table 1: Results (in %) of main experiments on 3 biochemical datasets — Tox21, Clintox, BBBP.
Here "+ A" refers to the baseline attack with the input adjacency matrix given.

GRAPH-0 GRAPH-1 GRAPH-2 FULL

GRAIN 869732 839732 826757 680+1.7
DLG 31.8%745  203%5%  228T%¢ 10402
Tox21 DLG +A 547739 601755 767738 1.0+0.2
TabLeak 251752 124755 108755 1.0+02
TabLeak +A  55.6739  57.71%5 738738 1.0+0.2
GRAIN 73.775T  68.475T 668770 36.0L£1.2
DLG 24.073% 103738 122755 1.0+02
Clintox DLG +A4 525732 52671 723732 1.0+02
TabLeak 17.673% 6.0759 54732 1.0+0.2
TabLeak +4  54.0733 520735 628733  1.0+0.2
GRAIN 717752 66.8752  64.9712 38.0+1.2
DLG 22.613°5 8.8739  10.073%  0.0+0.0
BBBP DLG +A4 51.675¢  50.1%3% 706731 0.0+£0.0
TabLeak 17.6755 6.3753 4755 0.0£0.0

TabLeak +4  59.175%F 594735 719722 0.0+0.0

Figure 3: Examples of molecule reconstructions. We note that both GRAIN and DLG do not recover
the multivalent interactions, as this is an edge property that is not considered for GCNs.

Original S e Ve S I
‘
S N N
GRAIN Got o o
DLG

HH HH HH

H HH by " HH HH
TabLeak wtSm  “Flr i 4

\H{_‘ p o )H‘\i}»uﬁ " HO/H\H— CHHH
M 74 HH 'mn/—\w ,
H HHH H

4 columns show the exact reconstruction of the input. We also highlight that in cases where GRAIN
does not managed to recover the entire graph, the attack can reconstruct subgraphs of the input (5th
column), and a more realistic approximation otherwise (6th column).

Effect of graph size on reconstruction In Table [§|we show how GRAIN performs on molecules
of different sizes. The molecules are divided into groups where the number of nodes satisfy n < 15,
16 < n < 25 and n > 26 respectively, aggregated across all 3 datasets. We notice that GRAIN
significantly outperforms the baselines for smaller graphs, but the performance decreases on the
largest group. This limitation here stems from a time out (15 minutes) on the graph reconstruction
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Table 2: Results (in %) of GRAIN and baselines in cases of different number of nodes n

n<15 16<n<25 26<n
GRAPH-0 GRAPH-2  FULL GRAPH-0 GRAPH-2  FULL GRAPH-0 GRAPH-2  FULL

GRAIN 93.07%% 916735 81.9+17 817159 748735 436+1.1 50.1%9% 392130 51+06
DLG 27.4%5% 13340 1.0+02 255859 16.7H% 09402 254155 14.8T5%  0.0£0.0
DLG +A4 521750 713735 1.0£0.2 53.7752 753730 0.9+02 53.0003 726734 0.0£0.0
TabLeak 30.3t§;§ 15.4t§;§ 1.9+0.3 15.7%‘_%9 2.1%@ 0.0+0.0 13.0t§;§ 2.8f§é 0.0+0.0
TabLeak +A  53.9775  72.9%33 1.940.3 57134 714737 00400 56.172%  74.4%2%  00+00
Table 3: Results (in %) of GRAIN and the baselines in cases of different model parameters. Here L

is the number of GCN layers and d’ is the model’s width. L = 2, d" = 300 is the original setting

GRAPH-0 GRAPH-1 GRAPH-2  FULL

GRAIN 86.9722 839752 826757 680+1.7

L=2, DLG 31.8795 20378 228788 1.0+02

d =300 DLG+A 547759 601135 767735 1.0+£02

(default)  TapLeak 251753 124755 108758 1.0+0.2

TabLeak +A  55.6759  57.774F 738728 10402

GRAIN 825737 80.7%53 804'%2Z 63.0+1.6

I DLG 20.375% 7.8%5% 82158 1.0+0.2

J — 300 DLG+A 4300570 480033 66.01%F 1.0£0.2
- +3.8 +4.4 +4.3

TabLeak 16.57558 8.8%%1 8.01733  1.0+0.2

TabLeak +A4 475779 481738 62.977% 1.04+0.2

GRAIN 83.973% 828157 8287%0 64.0+1.6

;_, DLG 141733 4.0157 48152 1.0+0.2

7 — 300 DLG+A 39.1%%0  37.073% 556739 1.0+0.2

B TabLeak 12.07%3 2.1+ 34710 1.0+02

TabLeak +A4  30.0757  27.3%39 511735 1.0+02

GRAIN 846758 81.473% 805739 620+1.6

;_o DLG 30.814% 18.9i§;§ 222187 1.0+0.2

& — 200 DPLG+A 50.3792 534733 68775 3.0+04
= +4.8 +5.3 +5.5

TabLeak 221738 10.3733 89735  1.0+0.2

TabLeak +4  55.0755 621739 767735 1.04+0.2

GRAIN 85.275% 815731 80.17%1 63.0+1.6

;_o DLG 351709 26.178%% 250785 1.0+02

J — 400 DLG+A 57.67%9  61.7TET 725733 20+03
- +4.5 +5.4 +5.4

TabLeak 285790 17aAtyT 129758 1.040.2

TabLeak +4  61.7153% 626735 763723  1.0+0.2

While this is a result of the computational limitations of our algorithm, the chemical setting is
inherently difficult as is discussed in Section [7} Further, our work still manages to reconstruct a
fraction of the large graphs exactly, which is impossible for the baseline models.

Effect of Model Parameters on Reconstruction Quality In Table 3| we demonstrate the perfor-
mance of GRAIN under modifying the model parameters. We observe that neither changing in the
number of layers nor the hidden dimension size of the GCN substantially affects the performance of
GRAIN, while reaffirming the significant improvement over the baselines, even when they are given
the graph connections as prior knowledge. We note that we only utilise the first 2 GCN layers even
when L > 2, showing the robustness of our method.
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Table 4: Results (in %) of GRAIN in the following cases: Row 1 — the original setting, Row 2 —
the activation function GELU instead of ReLU, Row 3 — in the gradients shared are from a trained
model instead of the first epoch, Row 4 — results of GRAIN in node classification task

GRAPH-0 GRAPH-1 GRAPH-2 FULL

GRAIN (default) 86.9732  83.9733 826737 68.0+1.7
o = GELU 82.075%  79.11%Y 784752 61.0+1.6
Pre-trained GCN 735154 700073 686755 49.0+1.4

Node classification ~ 88.073%  85.57¢%  84.9720 66.0+1.6

Additional experiments We provide additional experiments showcasing GRAIN’s performance
in different miscellaneous settings in Table First, we replace the ReLU activation function in
the GCN by a GELU and report that GRAIN achieves similar results, showing our flexibility with
respect to different activations. Furthermore, while prior work has shown that gradient inversion
becomes significantly more difficult on pre-trained models (Geiping et al.,|2020), GRAIN still man-
ages to reconstruct around 50% of molecules exactly. Finally, we observe consistently good results
when changing our task to a node classification one. We clarify that in this setting we additionally
assume knowledge of the ground-truth labels, as they can be easily recovered with methods, such as
the one described by Zhao et al.| (2020).

7 LIMITATIONS

GRAIN is the first algorithm to make progress in the field of gradient inversion of GNN updates
and, as such, we recognize significant potential for expanding upon our work further. Currently,
our attack method is focused only on GCNs and depends on the assumption that the FL protocol
uses the node degree as a node feature. While these assumptions apply to many GNN architectures,
relaxing them is an important avenue for future work. Another key item for future work is reducing
the computational complexity of GRAIN, to enable its scale to larger graphs. We believe this is a
promising direction of research, as we believe that many further optimizations can be explored to
improve the efficiency of our algorithm. Further, as described in Section [5} GRAIN requires that
n < d’ to maintain the low-rank nature of the gradient updates. Although this is a limitation of our
work, we believe that this assumption is satisfied for many practical settings, thereby exposing real
client updates to considerable privacy risk. Finally, we leave the exploration of possible defenses
against GRAIN to future work.

8 CONCLUSION

We introduced GRAIN, the first gradient inversion attack for Graph Neural Networks that is able
to accurately recover graphs from gradients shared by the server. By leveraging the rank-deficiency
of the GCN layers, we developed an efficient framework for extracting and filtering subgraphs of
the input graph. We then presented an algorithm capable of reconstructing the original graph by
iteratively combining the filtered subgraphs.

Our results showed GRAIN achieves an exact reconstruction rate up to 70% of the graphs in chem-
ical datasets trained for graph classification. Additionally, we introduced new metrics to evaluate
partial graph reconstructions and demonstrated that GRAIN significantly outperforms prior work.
Finally, we showed that GRAIN maintains high reconstruction quality across different network sizes
and depths, and settings.

In summary, our paper is the first to demonstrate that GCN training in a federated learning setting
poses data privacy risks. We believe that this is a promising initial step towards identifying these
vulnerabilities and developing effective defense mechanisms.

10
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A ADDITIONAL TECHNICAL DETAILS

A.1 TABLE OF NOTATIONS

For convenience, we add a table of notations containing brief definitons for all symbols used in our
work.

Table 5: Table of notations used in the technical description of GRAIN.

Symbol Definition Symbol Definition

G=(V,E) Graph with nodes V' and edges F n # of nodes in the graph

A The adjacency matrix A The normalized adj. matrix

dist(vs, ve) # edges in shortest path connecting N (v) Degree-k neighborhood in graph G
nodes vg, v, € V with center node v

degg (v) Degree of node v in graph G deg(v) Degree of node v as given by its

feature

X Input to the 7th GNN layer X i-th layer input feature of node v

L Loss wi Weights of the i-th layer

d’ Hidden dimension size L Number of GCN layers

fi Function mapping the input graph f # features
to the output of the ¢-th layer

Fi Set of values for the i-th feature F F1 X --- x Fy - setof all possible

feature combinations

T Span check distance threshold D Degree matrix (diagonal)

T Proposal set of degree-l building s Filtered set of degree-l building
blocks blocks

T5 Final set of filtered building blocks o Activation function

Ag Distance between the gradients of dpest Gradient distance of the best re-
G and observed gradients constructed graph

GRAPH- Similarity — between degree-N Gbest The best reconstructed graph.

N(G, 9) neighborhoods of G and ¢

A.2 DEFERRED PROOFS

Here we show the proof of Lemma 5.1} which we restate here for convenience:

Lemma 5.1. For % of full-rank, d < n, and a possibly normalized adjacency matrix at layer 1,

A e R™X7™, X; € colspan( a%,-) if and only if AjT ¢ colspan(A;), where A; denotes the matrix

A with its j-th column removed.

Proof. We separate the proof in 3 steps:

e Step 1: AT ¢ colspan(A;) is equivalent to null(A_zT) Z null(AT)
* Step 2: There is a vector ;, such that 2; A = e; if and only if null(A7) ¢ null(A7).

» Step3: X; € colspan(aa—vf,) if and only if there is a vector x;, such that z] A = e;, where
e; 1s the 7-th standard basis vector.

Step 1: (A7 ¢ colspan(4;) < null(AT) ¢ null(A7))  First of all, the statement is equivalent
to negating both sides, or A7 € colspan(4;) <= null(AT) C null(A7), which can be shown by
the following steps:

null(A;T) C null(AzT) — null(A?) C null(A;fF)

< rowspan(AT) C rowspan(AT)

<= colspan(A4;) C colspan(A4;)

13
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<= A; € colspan(4;)

Here we used that the complenetary subspace of the null space of matrix is the rowspan of the
matrix null(M)¢ = rowspan(M). The last step follows from that the fact that A; is a single
common vector, and therefore all vectors in colspan(A;) are of the form AA;.

Step 2 (null(A7) € null(AT) < Jz;.xTA = e;): First, for both directions of the proof, we
can separate x; A = e; into 2 different requirements:

xl'A; =0 2

xl A =1 3)

(=) First of all, we note that A7 € R'*" has rank(A!) = 1, as for a GCN A contains self-loops,
meaning that A; contains a non-zero entry. Therefore, A7 has nullity(A?) = n — 1 due to the
rank-nullity theorem. null(A7) Z null(AT) implies that there exists an @; € null(A7'), such that
x; ¢ null(AT) (since nullity(AT) = n — 1 < n this set is non-empty). For that x;, the following

hold: .
:I);TAl =cC

Therefore, if we take x; = iazz, x; would satisfy both (1) and (2), giving us a valid solution.

(<) Assuming the existence of x; with :cZTA = e;, we know that (1) and (2) hold. Equivalently
to (1), &; € null(AT). If we assume the converse of null(A7) ¢ null(AT), which is null(AT) C
null(AT), then x; is also in null(A7). This would imply that I A; = 0, which contradicts (2).
Therefore, by contradiction null(A_iT) ¢ null(AT") holds, concluding the proof of this step.

Step3 (Fz;.xTA=¢; &= X, € colspan( gy oL 7i7)): (=) Assuming the existence of such an x;
implies that we can multiply both sides of the equation by X to obtain x7 AX = X This implies

that X; € rowspan(AX). Applying Theorem DAGER(TODO: change) on 2= = (AX )gé,
implies that rowspan(AX) = colspan(2% ), and therefore X; € colspan( (,%,)

(<) Applying Theorem DAGER(TODO: change) on W = (AX )gé, or rowspan(4AX) =

colspan( 57 oL L), implying that X; € rowspan(AX). This can be rewritten as 3z;.x AX = X.
Assuming X € R™* is full-rank, then there exists a right-inverse X ~%, as rank(X) = d < n.

el AXX RF=X X =zA=0¢
It is notable that X not being full-rank still allows for all nodes with feature vectors in X will pass

the span check, however it is possible that some hallucinated inputs might also pass the check. This
concludes our proof.

O
A.3 DEPTH-FIRST SEARCH IMPLEMENTATION
B ADDITIONAL EXPERIMENTS
Here we present additional experiments that are not part of the main text.

B.1 HUMAN EVALUATION FOR THE GRAPH SET OF METRICS
We performed a human evaluation, where 3 experts in Graph Theory and Chemistry were shown 120

sample reconstructions of molecules, as given by DLG and GRAIN. The samples were shuffled, and
the participants were tasked to assign a score from 0 to 10, with the following instructions:

14
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Algorithm 5 Depth-first search reconstruction

1: function DODFS(T3, 9%, Go, Y)
2 Giop < 0
3 dtop <— o0
4 S« {}
5:
6: if |dang(Go)| == 0 then
- 1.0L 9L(G0,y)
7 do<—2g}|\m— s ||F
8: return dy, G
9:

10: v = dang(Go)[0]
11: for G; in T do

12: if 3G, = glue(Gy, G1,v) then

13: S:ew A SrTew U {g2}

14: for S C {V(G2) \ V(Go)} x V(Go) do
15: Sk — Sk Udoverlap(Ga, S)}
16:

17: for G in S}, do

18: d',G' +DODFS(T}, 4% ,G)

19: if d == 0 then

20: return 0, G’

21: else if drop > d’ then

22: drop, Grop < d', G’

23:

24 return dTop, gTop

"Thank you for agreeing to participate in this study on the quality of graph reconstructions! We have
gathered a set of graphs, coupled with the best-effort reconstruction. Please give each pair a score
of 0-10, where 0 is a complete lack of similarity, and 10 is a perfect match. When assigning a score,
take into account the structure of the two graphs, as well as the arom type for matching atoms, and
also be wary that 2 graphs might be isomorphic, but have different pictures. Please disregard the
connections between atoms, as the methods we used do not recover any edge properties. Give your,
as best as possible, score on how similar the graphs are with respect to these properties."

We report the average scores for each algorithm, multiplied by a factor of 10 to match the order of
magnitude of the GRAPH metrics, and present the results in Table [f]

Table 6: Comparison of the designed metrics with the human evaluation.

GRAPH-0 GRAPH-1 GRAPH-2 Study score
Ours 72.6 67.8 66.9 70.6
DLG 24.2 10.5 12.0 6.5

Based on these studies, we also show in Table [/| that our partial reconstructions are deemed more
significant than what the metric suggests, likely meaning that there are examples which present
significant information leakage. In contrast, high-scoring examples from the DLG attacks have been
rated as essentially uninformative.

B.2 ABLATION STUDIES

We perform additional ablation studies on various assumptions and parameters.

First, we investigate the effect of the choice for the 7 threshold, used for filtering inputs using the
span check method. We measure the ratio between the number of nodes and degree-1 building
blocks that pass the filter, and the actual number of these blocks. That is done on 10 samples
from the Tox21 dataset, for 7 € [1075,0.1]. We show in Fig.[4| that any 7 € [107*, 1072 results in

15
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Table 7: Score discrepancy examples between human evaluators and the GRAPH set of metrics.
G-1 stands for the GRAPH-1 metric.

GT GRAIN G-1 Study  GT DLG G-l Study
620 933 Al ‘/7% 527 100
CHO4,0 Mo Nd

H,0

61.0 233

41.0 0.0

essentially the same filtering process, and that thresholds in this interval perfectly recover the correct
degree-1 building blocks.

Additionally, we note that GRAIN is not significantly impacted by the embedding dimension d’, as
long as n < d’, consequently achieving similar scores, particularly for small graphs. We show the
exact results in Table

Table 8: Results (in %) of GRAIN with different embedding dimensions across a range of graph
sizes

n <15 16 <n <25 26<n
GRAPH-0 GRAPH-2  FULL GRAPH-0  GRAPH-2 FULL GRAPH-0 GRAPH-2  FULL
d=300 93.0%3%F 916755 s819+17 817759  74.8%8% 436+1.1 501755 39.2%8% 51+06
d=128 921%32 923'%2 793116 81.474% 751757 436+1.1 49.3772 388787 51406
d=64 922732 9207237 793+16 813751 755188 436+1.1 48.6772  37.9720 51406
d=32 922+30 091.7*3% 793+16 81.7149 738+6.1 43.6+1.1 153154 133735 o0.0+o0.0

Further, in Fig. [5] we investigated how the rank-deficiency of the adjacency matrix A affects the
strength of the GRAIN adversary. For different sizes of A, we measure what the Monte-Carlo prob-
ability of A being full-rank, and the fraction of nodes we can recover, as computed per Lemma[5.1]
This was done for synthetic graphs, where we sampled 100,000 symmetric binary matrices with
varying probability of every 2 nodes being connected, as well as for all molecular graphs in the
chemical datasets Clintox, Tox21 and BBBP. We show that Lemmais crucial for understanding
why GRAIN is effective, despite the probability of A being full-rank being low. In particular, we
highlight in Fig. [5|that GRAIN can recover an increasing fraction of nodes as A grows.

Finally, we compare the computational cost of GRAIN to that of the baseline attacks. We ensured
that the optimization attacks reached convergence before terminating each sample search. We ob-
serve in Table [9] that GRAIN achieves significantly better results (seen on Table[I), despite running
for time comparable to the one of Tableak.

B.3 ADDITIONAL SETTINGS

Here we present our results on different applications of GRAIN under the Graph Attention Network
(GAT) architecture on both the Tox21 chemical dataset, and the Citeseer dataset. In Table [I0] we
show these additional experiments, alongside the effects of running GRAIN without knowledge of
the node degree, or without utilisation of the node uniqueness heuristic.
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Figure 4: Ablation study
on the span check filtering
threshold 7.

, Filtered BBs Ratio
102 - ®

7 Threshold

Figure 5: Impact of low-rankness of the adjacency matrix
on reconstructability for synthetic data (left) and molecules

(right)
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Table 9: Runtime for each GRAIN and baseline experiment, given in hours.

GRAIN DLG DLG+A Tableak Tableak+A
Tox21 14.3 3.3 3.1 13.1 12.3
Clintox 24.1 3.5 3.2 15.2 14.5
BBBP 23.7 3.9 3.1 12.6 12.5

Table 10: Results (in %) of GRAIN in the following cases: Row 1 — the original setting, Row 2 —
the activation function GELU instead of ReLU, Row 3 — in the gradients shared are from a trained
model instead of the first epoch, Row 4 — results of GRAIN in node classification task

GRAPH-0 GRAPH-1 GRAPH-2 FULL

GAT, Tox21

GAT, Citeseer

GAT, Citeseer,no degree
GAT, Citeseer,no heuristic

92,9738 90.7730 899755 7504+ 1.8
793755 69.1781  69.6782  61.0+1.6
59.7785 427183 43.278% 320+ 1.1
64.67%5 521737 524735 440413
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