
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MITIGATING POSITION BIAS IN TRANSFORMERS VIA
LAYER-SPECIFIC POSITIONAL EMBEDDING SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) still struggle with the “lost-in-the-middle” prob-
lem, where critical information located in the middle of long-context inputs is
often underrepresented or lost. While existing methods attempt to address this by
combining multi-scale rotary position embeddings (RoPE), they typically suffer
from high latency or rely on suboptimal hand-crafted scaling. To overcome these
limitations, we introduce a layer-specific positional embedding scaling (LPES)
method that assigns distinct scaling factors to each layer. LPES achieves a more
balanced attention distribution without fine-tuning model parameters or increasing
inference delay. A specially designed genetic algorithm is employed to efficiently
select the optimal scaling factors for each layer by incorporating Bézier curves
to reduce the search space. Extensive experiments demonstrate that LPES ef-
fectively mitigates positional attention bias and delivers consistent improvements
across multiple long-context benchmarks, yielding up to an 11.2% accuracy gain
on the key-value retrieval dataset.

1 INTRODUCTION

Enabling large language models to effectively process long inputs is essential for supporting com-
plex tasks such as long-text summarization (Feng et al., 2021; Zhang et al., 2021), code generation
(Zheng et al., 2023; Liu et al., 2024a), and long-context question-answering (Li et al., 2024). Rotary
position embeddings (RoPE) (Su et al., 2021), widely adopted in transformer-based LLMs, were de-
signed to encode relative distances between input tokens and are expected to handle long inputs more
effectively than absolute positional embeddings (Vaswani et al., 2017). However, as context length
increases, RoPE-based LLMs still exhibit position bias, where the model fails to allocate appropri-
ate attention across different positions in the input, even when the input length is within the model’s
pre-training range. A prominent instance of this problem is the well-known “lost-in-the-middle”
phenomenon (Liu et al., 2024c), in which models disproportionately focus on the beginning and end
of the context while relatively overlooking critical information in the middle. RoPE encodes rela-
tive positions through the superposition of sine and cosine functions with varying frequencies. The
periodic and oscillatory nature of these functions causes inter-token dependencies to attenuate over
longer distances (Chen et al., 2023b; Zhang et al., 2024), which can result in imbalanced attention
distribution across the input sequence.

Several approaches have been proposed to address the position bias problem by combining multi-
ple rotary position embeddings with different bases or scaling factors (Chen et al., 2023b; Zhang
et al., 2024; Lin et al., 2024). Chen et al. (2023b) observed that RoPE with different bases induces
attention troughs at specific positions, which impairs the model’s ability to capture the correspond-
ing content. To mitigate this, they introduced a method, named Attention Buckets, that combines
multiple RoPE with different bases to achieve a more balanced attention distribution. Similarly, Lin
et al. (2024) proposed an MoICE method that assigns multiple RoPE bases to each attention head
and aggregates the outputs through a weighted sum. However, whether through varying bases or
scaling factors, these methods require multiple forward passes during inference, each corresponding
to a specific base or scaling factor, followed by ensembling the results. Although some operations
can be parallelized, this process inevitably slows down inference and increases computational cost.

Varying bases across the entire model can be considered as a form of model-level ensembling,
whereas applying multiple RoPE bases to individual attention heads functions as module-level en-
sembling. The former influences the model globally, limiting the flexibility for targeted adjustments,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Attention

Pass N with base SN

Attention

Pass 1 With S1

Head H

... Attention

Pass N with base SN

Attention

Pass 1 with base S1

Head 0

(b) MoICE(a) Attention Buckets (c) LPES

Layer 0 with scaling factor S0

Layer 15 with scaling factor S15

Layer 1 with scaling factor S1

 Layer L-1 with scaling factor SL-1

 Layer L with scaling factor SL

 Only a single pass is required at inference

Bézier
Curve

...

Muti-Head
Attention

Feed Forward

Add & Norm

Add & Norm

L
x

Pass N with base SN

 eati-Mul H d
tentioAt n

Feed Forward

Add & Norm

Add & Norm

L
x

 Pass 1 with base S1

...

...

Figure 1: Comparison of the proposed LPES with two representative existing methods. (a) Attention
Buckets (Chen et al., 2023b) combines multiple RoPEs with different bases through model parallels.
(b) MoICE (Lin et al., 2024) assigns multiple bases to each attention head. Unlike these existing
methods which require multiple forward passes during inference, our LPES (c) achieves superior
performance with a single forward pass, significantly reducing inference time.

while the latter operates at an overly fine-grained level (down to each individual attention head),
making it challenging to determine suitable scaling factors and their weights for each head. In this
study, we explore a control granularity that lies between these two extremes. Specifically, we pro-
pose applying different scaling factors at different layers, with all attention heads within a layer
sharing the same factor. Most importantly, our method is designed to achieve or surpass the per-
formance of existing methods with a single forward pass during inference, thereby eliminating the
overhead for multiple passes.

Choosing an appropriate scaling factor for each layer is still a non-trivial problem. Let L denote
the number of layers in a transformer-based network, and M the number of possible values for
the scaling factors; the total number of combinations is ML, which makes an exhaustive search
computationally intractable. We attempted to use gradient backpropagation to determine the scaling
factors for each layer; however, we observed poor convergence, and the resulting model performed
worse than expected. This is because gradient descent tends to converge to a local optimum, whereas
the problem is inherently combinatorial in nature. To overcome this, we leverage Bézier curves,
which can define a smooth, continuous curve using a limited set of discrete control points. Denoting
the number of control points by C, the search space is reduced to (M×L)C , with a detailed analysis
provided in Appendix B. Our experiments show that a cubic Bézier curves (i.e., C = 4) can represent
a wide variety of shapes and are sufficient to capture layer-specific scaling relationships. We also
designed a genetic algorithm to solve this combinatorial optimization problem by constraining the
search space to the Bézier curve. By combining the genetic algorithm with Bézier curves (see
Figure 2), we can efficiently optimize layer-specific scaling factors, typically within 3 to 4 hours
using only a few hundred examples (e.g., 200 instances) on four H100 GPUs. In long-text tasks,
our method introduces no additional inference latency while delivering superior performance over
existing approaches, without requiring fine-tuning of the LLM parameters.

The contributions of this study can be summarized as follows:

• We propose a layer-specific positional embedding scaling method, termed LPES, which effectively
mitigates the position bias problem without incurring additional inference latency. LPES achieves
significant speedups, 2.42x faster than MoICE (Lin et al., 2024) and 1.45x faster than Ms-PoE
(Zhang et al., 2024), while also improving the model’s ability to handle long-context tasks.

• We introduce an efficient genetic search algorithm in which the search space is constrained by
Bézier curves, enabling rapid optimization of layer-specific scaling factors using only a small set
of examples (typically a few hundred examples only).

• Extensive experiments on multiple benchmark datasets demonstrate that our method preserves the
model’s general capabilities while producing a more balanced attention distribution without costly
fine-tuning, making it broadly applicable across different models and tasks.

2 RELATED WORK

Assigning attention based on the relevance of information rather than its position, is a cornerstone
of transformer-based LLMs. For instance, retrieval-augmented generation (RAG) has proven effec-
tive in incorporating up-to-date knowledge, reducing hallucinations, and improving response quality
(Gao et al., 2023; Wang et al., 2024). The success of RAG lies in its ability to enhance generation
whenever query-relevant documents are available. In practice, multiple documents are typically re-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

 Searching
scales

Assigning
scales

Layer 0: S0= 1.400

 Layer 30: S30 = 1.319

Layer 15: S15= 1.553

Layer 1: S1= 1.427
Q K V

S0

FFN

Q K V

S0

Head HHead 1

Layer 0

Layer 31 Layer 31: S31 = 1.300

Q K V

S31

FFN

Q K V

S31

Head HHead 0

Layer 31 ...

Assigning S = 1.553 to layer 15

Figure 2: Illustration of the proposed layer-specific positional embedding scaling (LPES) method.
Left: Bézier curves can represent a wide variety of shapes. Middle: An optimized Bézier curve
found by our search algorithm, which defines a smooth, continuous curve using a limited set of
discrete control points. Right: The relationship between the scaling factors and the optimized Bézier
curve, and their application within the attention mechanism of a transformer-based network.

trieved, and it is impossible to determine in advance which ones are most useful or to place them
where attention is concentrated. Consequently, it is crucial for LLMs to maintain a balanced atten-
tion distribution across all input positions. Nevertheless, even when the input length remains within
the model’s pre-training range, RoPE-based LLMs still exhibit position bias (Chen et al., 2023b;
Zhang et al., 2024). Addressing this bias and achieving a more balanced attention distribution as
input lengths increase has attracted considerable research interest (He et al., 2024; An et al., 2024;
Peysakhovich & Lerer, 2023; Hsieh et al., 2024; Chen et al., 2023b; Zhang et al., 2024; Lin et al.,
2024), with existing approaches falling broadly into four categories: fine-tuning, repositioning, at-
tention score reassignment, and multi-scale positional embeddings.

In fine-tuning approaches (He et al., 2024; An et al., 2024), a domain-specific dataset needs to be
constructed, and instruction fine-tuning is then applied to guide the model toward focusing more on
the relevant parts of the context. However, those approaches demands substantial human effort to
curate a large volume of training samples and entails significant computational costs during the fine-
tuning process. In many cases, particularly when LLMs have already been deployed in real-world
applications, it is preferable not to update their parameters in order to minimize potential impacts.

The repositioning method (Peysakhovich & Lerer, 2023) begins by computing attention scores for
each document in the input. Documents are then reordered based on these scores, with the highest-
scoring documents placed closer to the query. After this initial reordering, the attention scores are
recomputed and the document positions are updated accordingly. This iterative process continues
several times. Nevertheless, such repeated recomputation and reordering substantially increase the
inference-time cost. In contrast, Hsieh et al. (2024) collect attention scores for all input positions
from a set of examples and rescale them for each attention head in order to distribute attention as
evenly as possible across positions. However, this form of attention score reassignment may lead to
instability in the generation, particularly when the calibration intervenes at early layers.

Chen et al. (2023b) identified that RoPE with different bases can produce attention troughs at spe-
cific positions, thereby impairing the model’s ability to capture the relevant content. To address this,
their “attention buckets” method integrates multiple RoPE bases through model-parallel inference to
achieve a more uniform attention distribution. Zhang et al. (2024) suggested that the long-term decay
in attention may contribute to the position bias, and proposed Ms-PoE that assigns distinct scaling
factors to attention heads based on their relative sensitivity to positional information. Building on
the work of (Chen et al., 2023b), MoICE employs gradient descent to learn the weights for combin-
ing results with different bases (Lin et al., 2024). However, a major limitation of these approaches
is their high computational cost and inference latency. Specifically, attention buckets requires mul-
tiple forward passes, while both Ms-PoE and MoICE require repeated attention computations to
integrate multi-scale RoPE information. These methods also rely on heuristic rules or hand-crafted
configurations to select bases or scaling factors. By contrast, our method not only achieves superior
performance with a single forward pass at inference but also introduces a search algorithm that can
efficiently determine the optimal scaling factors using only a few hundred examples.

3 METHOD

The objective of this study is to achieve a more balanced attention distribution across the entire
input sequence by assigning distinct RoPE scaling factors to each transformer layer without incur-
ring additional inference costs. Previous research has shown that different network layers exhibit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

attention biases toward certain input positions, and these biases can be modulated by adjusting the
RoPE scaling factors, which were originally introduced to extend the network’s context window
length (Vig & Belinkov, 2019; Lis et al., 2022; Zhai et al., 2023). Unfortunately, our preliminary
experiments indicate that position biases cannot be substantially mitigated by simply assuming that
scaling factors vary linearly with layer depth, which significantly enlarges the search space of the
problem. Fortunately, Bézier curves provide an appealing alternative, as they can represent a wide
variety of shapes using only a small set of discrete control points (see Figure 2). However, selecting
the optimal scaling factors remains a combinatorial optimization problem, even with the help of
Bézier curves. We tried to use an end-to-end gradient descent algorithm to determine these factors,
but it performed poorly (see Appendix C), as the algorithm tend to converge to suboptimal local
minima. In the following, we first present the formal problem formulation and then introduce a
specially designed genetic algorithm to solve this problem in detail.

3.1 PROBLEM DEFINITION

In this study, we focus on improvements based on rotary position embeddings (RoPE), which have
proven superior to their predecessor, absolute positional embeddings (Clark et al., 2020; Lan et al.,
2019), due to its capability to enable language models to extrapolate effectively to longer sequences
(Su et al., 2021). With RoPE, the relative distance between tokens can be computed simply through
the inner product of their vector representations:

⟨f(q, i), f(k, j)⟩ = qTR(i− j)k (1)

where f(x, i) denotes the RoPE operation, which applies a position-dependent rotation at position i
to the query q, and f(k, j) represents the RoPE-rotated key at position j. The notation ⟨·, ·⟩ denotes
the inner product between the two position-aware vectors, and R(∆) is the rotation corresponding
to the relative offset ∆ = i − j. This equation shows that the inner product depends only on the
vectors q, k and the relative distance between them. Chen et al. (2023a) further show that the context
window length can be extended by applying a scaling factor s to the position as follows:

f ′(x, i) = f(x, i/s) (2)

By reducing the interval between two positions through this scaling, the context window length is
extended by a factor of s in theory. We further show that the scaling factors can mitigate long-term
decay and produce diverse attention patterns (see Appendix A). Our objective is to search for a
unique scaling factor s for each layer to mitigate the position bias problem.

As previously mentioned, determining the optimal scaling factor for each layer by a brute-force
approach is intractable, since each factor can take many possible values and transformers typically
consist of tens of layers. To address this challenge, we represent the scaling factors for all layers
using a single Bézier curve. As illustrated in Figure 2, a Bézier curve here can be viewed as a smooth
curve that connects all the scaling factors in a two-dimensional plane. In this way, the problem of
selecting scaling factors for all layers is transformed into the problem of searching for an appropriate
Bézier curve. Fortunately, Bézier curves can model a wide variety of shapes using only a small set
of discrete control points, which significantly reduces the search space. A Bézier curve of degree d
which has d+ 1 control points is defined as follows (Mortenson, 1999):

B(t) =

d∑
k=0

bdk(t)Pk, 0 ≤ t ≤ 1. (3)

where the variable t represents the parametric coordinate that controls a point’s position along the
curve, Pk are the control points for the curve, and bdk are the Bernstein basis polynomials, which are
defined as:

bdk(t) =
d!

k!(d− k)!
tk(1− t)d−k, k = 0, . . . , d. (4)

Once a Bézier curve is determined, the scaling factor sh for layer h can be computed as follows:

sh = projy [B(t(xh))] (5)

where the notation projy[·] denotes the operation of extracting the y-coordinate of a two-dimensional
point. The function t(·) maps xh to the corresponding parameter t (see Appendix D), where xh

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

represents the position of layer h within the evenly spaced x-coordinates defined by the minimum
and maximum values of the control points. The value of xh can be computed by:

xh = P x
0 +

P x
d − P x

0

L− 1
· h, h = 0, . . . , L− 1. (6)

where L denotes the number of layers in a network, and P x
t is the x-coordinates of the t-th control

point for the Bézier curve.

Given a training dataset D = {(xi, yi)}Ni=1 consisting of N examples, where xi is an input to the
large language model and yi is the corresponding ground-truth output, our goal is to maximize the
following function:

LD(θ) =
1

N

N∑
i=1

I{LLM(xi,θ) ≃ yi} (7)

where θ = (P0, . . . , Pd) denotes the set of control points defining a Bézier curve of degree d (each
control point Pk is a two-dimensional point), LLM(xi,θ) denotes the output of a language model
given input xi, with all scaling factors determined according to Equation (5) based on the Bézier
curve specified by θ, and I{·} is an indicator function with binary output 0 or 1. We constructed
the training dataset such that the content containing information useful for generating correct an-
swers appears at varying positions within the input, thereby encouraging the model to distribute its
attention more evenly across the entire input.

3.2 OPTIMIZATION ALGORITHM

We can regard θ = (P0, . . . , Pd) as a set of newly introduced hyper-parameters that influence
the behavior of an LLM. Each Pk is a two-dimensional vector whose x- and y-coordinates can
take multiple different values. Even though Bézier curves of degree d = 3 which has d + 1 = 4
control points, are capable of representing a wide variety of curves, selecting suitable control points
constitutes a combinatorial optimization problem. Due to the high complexity of the search space,
a brute-force approach for determining the scaling factors across layers is intractable; instead, we
employ a genetic algorithm to optimize the control points of the Bézier curves.

In our genetic algorithm, each individual is represented as (P x
0 , P

y
0 , . . . , P

x
d , P

y
d), where P x

k and P y
k

denote the x- and y-coordinates values of the k-th control point, and each individual corresponds
to a specific Bézier curve. The initial population is constructed as follows. First, we initialize an
individual in which k-th control point is generated by:

(k(L− 1)/d, 1.5), k ∈ {0, . . . , d} (8)

where L is the number of layers in a network. Based on the empirical results reported by Zhang
et al. (2024), we set the y-coordinate values of all control points to 1.5. Subsequently, the remaining
individuals are generated by applying a mutation operator (described below) to this initial individual
until the population reaches the predefined size.

The fitness of an individual θ = (P x
0 , P

y
0 , . . . , P

x
d , P

y
d) is evaluated by configuring the layer-wise

scaling factors of an LLM according to θ, running the LLM on a dataset D, and calculating the
resulting score LD(θ) as defined in Equation (7). When constructing the training dataset, we de-
liberately vary the position of relevant context within the input, which can generally be catego-
rized into three types: the query-relevant content appears at the beginning, middle, or end of the
input sequence. We denote these three corresponding sub-datasets as DB, DM, and DE, respec-
tively. Considering that original LLMs tend to allocate attention unevenly across different po-
sitions, we introduce three weights to reflect the relative importance of these sub-datasets when
optimizing the model’s scaling factors. The final fitness of an individual is then computed as
λBLDB(θ) + λMLDM(θ) + λELDE(θ), where λB ≥ 0, λM ≥ 0, λE ≥ 0, and λB + λM + λE = 1.

The crossover operator is performed by randomly selecting a pair of individuals with relatively high
fitness scores as parents, choosing a single crossover point at random, and exchanging the segments
beyond this point between the parents. This process produces two offspring, from which we retain
only the one with the higher fitness.

The mutation operator modifies P x and P y within a specified range to prevent excessive variations
in the resulting curve, as shown in Equation (9). Let Mx and My denote the maximum allowable

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

change for the x- and y-coordinate, respectively. After mutation, the k-th control point (P̂ x
k , P̂

y
k) of

an individual must remain within the following range:

P̂ x
k ∈


[max(0, P x

k −Mx), min(P x
k+1, P

x
k +Mx)] if k = 0,

[max(P x
k−1, P

x
k −Mx), min(P x

k+1, P
x
k +Mx)] if 0 < k < d,

[max(P x
k−1, P

x
k −Mx), min(P x

k +Mx, L− 1)] if k = d

P̂ y
k ∈

{
[max(1, P y

k −My), min(P y
k +My, 2)] if 0 ≤ k ≤ d

(9)

To ensure the smoothness of the curve and prevent undesirable abrupt changes in the scaling factor
(Ding et al., 2024), the x-coordinate values of all control points must increase monotonically. The
following condition should therefore be satisfied when performing either crossover or mutation op-
erations. Let P x

i and P x
j denote the x-coordinates of the i-th and j-th control points, respectively.

Their relationship is required to satisfy:

0 ≤ P x
i < P x

j ≤ n− 1 if i < j (10)

Offspring that fail to meet the above condition are discarded, and the crossover or mutation process
is repeated until the condition is satisfied.

Starting with the initial population, individuals are selected based on their fitness, followed by the
application of the crossover and mutation operators. This process is repeated iteratively until the
maximum number of generations is reached. The complete process is summarized in Algorithm 1.

Algorithm 1 Layer-specific scaling factor search algorithm
Input: an LLM M, a dataset D, population size Nps, the number of offspring generated by crossover Ncr,
zzzzzz the number of mutated individuals Nmu, and maximum number of generations T .
1: S0 = Initial-Population-Generation(D, Nps); // Randomly generate the initial population.
2: for i = 1 to T do
3: Evaluate-Fitness(Si−1, M, D); // Evaluate the fitness of all individuals in the population.
4: Spa = Select-Parents(Si−1); // Select the parent pool according to fitness values.
5: Scr = Crossover-Operator(Spa, Ncr); // Produce offspring using the crossover operator.
6: Smu = Mutation-Operator(Spa, Nmu); // Generate offspring using the mutation operator.
7: Si = Spa ∪ Scr ∪ Smu; // Merge the individuals to form the next generation’s population.
8: end for
9: Return the individual with the highest fitness in ST .

4 EXPERIMENT

We conducted four sets of experiments. The first evaluates the performance of LPES when relevant
information is placed at different positions in the input, examining how effectively LPES promotes
a more balanced attention distribution across the input sequence. The second experiment assesses
the performance of LPES on both open-ended and closed-ended benchmark datasets, in comparison
with baseline methods. The third investigates the impact of the proposed method on the general
capabilities of LLMs, as well as its inference efficiency relative to existing approaches. The final
experiment examines how the choice of hyperparameter values influences the performance of LPES.

4.1 MODELS, DATASETS, AND BASELINES

Base Models: We selected four representative RoPE-based LLMs for our experiments: Vicuna-7B-
v1.5 (Chiang et al., 2023), LLaMA-2-7B-chat (Touvron et al., 2023), and StableBeluga-7B (Mahan
et al., 2023), each with a 4k-token context window, as well as Qwen2.5-7B (Yang et al., 2024),
which supports a 130k-token context window.

Benchmark Datasets: MDQA (Liu et al., 2024b) is a widely-used multi-document question an-
swering dataset. The key-value retrieval dataset (Liu et al., 2024b) consists of key–value pairs in
which both keys and values are universally unique identifiers (UUIDs), making it particularly suit-
able for evaluating a model’s ability to extract relevant information. ZeroSCROLLS (Shaham et al.,
2023) comprises multiple open-ended long-text task datasets, with the specific sub-datasets and eval-
uation metrics summarized in Table 14. For closed-ended tasks, we adopt L-Eval (An et al., 2023) to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Models Methods 0% 25% 50% 75% 100% Average 0% 20% 40% 60% 80% 100% Average
MDQA Key-Value Retrieval

Vicuna-7B-v1.5

Baseline 70.4 58.0 55.4 55.4 60.4 59.9 95.2 71.6 81.0 79.0 77.4 73.4 80.9

Positional Interpolation 71.2 59.6 58.8 56.4 56.2 60.4 98.6 92.8 83.8 90.0 85.8 83.0 89.0

Attention Buckets 72.6 61.4 60.6 60.8 59.6 63.0 100 94.6 88.6 91.6 87.6 65.8 88.0

Ms-PoE 72.6 61.4 61.8 62.0 59.0 63.5 95.2 63.2 84.8 91.6 87.4 77.8 83.3

MoICE 71.6 61.2 60.6 60.8 62.4 63.3 100 93.2 90.2 87.4 89.4 70.0 88.4

LPES (Ours) 71.4 62.2 62.0 61.0 61.6 63.6 99.4 92.8 87.8 93.6 90.4 88.8 92.1

StableBeluga-7B

Baseline 67.8 59.2 59.6 59.4 68.2 62.8 90.2 34.2 44.0 16.6 59.8 79.4 54.0

Positional Interpolation 69.6 58.6 58.2 60.0 65.4 62.4 95.2 53.6 31.8 28.6 61.6 83.6 59.1

Attention Buckets 69.2 59.0 59.8 59.2 67.4 63.0 100 79.8 54.4 58.2 68.4 89.2 75.6

Ms-PoE 68.4 57.0 60.2 61.0 68.4 63.0 90.2 27.2 27.6 59.4 70.4 89.0 60.6

MoICE 67.4 60.0 60.2 60.0 68.6 63.2 99.8 71.2 52.2 54.8 74.4 91.4 74.0

LPES (Ours) 68.8 60.0 60.8 61.0 68.2 64.5 99.2 82.4 57.2 56.2 70.4 89.6 75.8

Qwen2.5-7B

Baseline 69.4 61.0 62.6 58.6 63.6 63.0 99.8 88.6 92.6 90.6 99.0 99.2 95.0

Positional Interpolation 68.6 62.0 62.2 58.4 64.0 63.0 100 93.2 91.2 88.6 98.6 99.0 95.1

Attention Buckets 69.6 62.2 63.0 60.2 62.0 63.4 100 89.2 91.4 91.6 98.2 99.2 94.9

Ms-PoE − − − − − − − − − − − − −
MoICE 68.4 61.2 63.0 61.0 63.8 63.5 99.8 88.0 92.6 91.6 99.0 99.4 95.1

LPES (Ours) 69.6 64.8 69.2 63.0 65.4 66.4 99.8 97.4 93.2 94.0 99.2 99.2 97.1

Table 1: Performance (Accuracy) of LPES when relevant information is located at different positions
(e.g., 50% indicates that the relevant document is positioned in the middle), compared with baseline
methods. LPES outperforms all baselines on average across multiple base models and datasets,
demonstrating its effectiveness in mitigating positional bias.

assess model performance, with the description detailed in Table 13 (Appendix F). Finally, MMLU
(Hendrycks et al., 2020) and C-Eval (Huang et al., 2023), which cover a broad range of general
tasks, are employed to evaluate the overall generalization capability of the models.

Baseline Methods: Positional Interpolation (PI) uses a layer-agnostic scaling factor, which is the
mean of the searched layer-wise scaling factors (Chen et al., 2023a). Attention Buckets performs
multiple forward passes, each using a different RoPE base, and then aggregates the information from
these passes (Chen et al., 2023b). Ms-PoE dynamically assigns scaling factors ranging from 1.2 to
1.8 to attention heads based on their sensitivity to relevant information (Zhang et al., 2024). Building
on the work of Chen et al. (2023b), MoICE computes attention scores using seven different RoPE
bases and then performs a weighted sum of these scores using learned weights (Lin et al., 2024).

Experimental Setup: For LLMs with a 4k-token context window, we use 10 documents from the
MDQA dataset or 50 key–value pairs from the key-value retrieval dataset as context. To evaluate
the effectiveness of mitigating positional bias in longer contexts, we provide Qwen2.5-7B with 20
MDQA documents or 150 key–value pairs and assess the model’s accuracy when the ground-truth
information appears at different positions within the context. For ZeroSCROLLS and L-Eval, the
context window is set to 3,584 tokens, with a maximum of 512 decoded tokens (Tables 2 and 3).
In addition to experiments conducted under the 4K context setting, we also report the performance
of LPES under a 16K context window in Appendix I. In the optimization algorithm, we set λB,
λM, and λE to 0.2, 0.3, and 0.5, respectively, with their settings further examined in Appendix
G. To determine the layer-wise scaling factors, we sample 200 examples from either the MDQA
or key–value retrieval datasets to search the control points of cubic Bézier. The performance of
LLMs with the optimized scaling factors is then evaluated on 500 held-out samples per dataset. To
assess the generalizability of our LPES, the scaling factors learned from MDQA are also applied to
ZeroSCROLLS and L-Eval. Additionally, the MMLU and C-Eval benchmarks are used to evaluate
the effect of layer-specific scaling on the model’s overall generalization capabilities.

4.2 RESULTS

Layer-specific positional embedding scaling greatly mitigates position bias. As shown in Table 1,
our method consistently improves performance across all positions, whereas baselines like Posi-
tional Interpolation and Ms-PoE suffer from performance degradation when relevant information
is at certain positions. Moreover, our LPES provides substantial gains on the key-value retrieval
dataset, with an average increase of 11.2 observed for the Vicuna. We evaluate the transferability
of the scaling factors derived from MDQA dataset on ZeroSCROLLS and L-Eval benchmarks. The
results in Tables 2 and 3 demonstrate that our method is effective across different models and tasks,
and for a given LLM, the optimized scaling factors generalize well to diverse tasks. Furthermore, the
results on longer context windows and larger model scales (detailed in Appendix I) further validate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the applicability of LPES. Additionally, our method preserves the model’s general capabilities with
minimal interference, as shown in Table 4.

Model Method GovRpt Qasper SumScrFd Qmsum NarrQA Squality SpcDgst Average

Vicuna-7B-v1.5
Baseline 18.44 22.82 18.42 14.50 10.98 16.56 21.39 16.91
MoICE 22.29 32.34 13.31 14.79 13.61 16.22 22.60 19.30
LPES (Ours) 21.47 33.37 14.39 15.53 11.52 16.91 22.24 19.35

LLaMA-2-7B-chat
Baseline 18.00 13.48 13.73 14.29 10.28 15.94 49.72 19.35
MoICE 19.62 15.10 14.69 14.79 10.25 16.80 50.22 20.21
LPES (Ours) 18.20 15.23 13.99 15.04 14.93 17.37 52.28 21.01

StableBeluga-7B
Baseline 14.88 26.89 12.09 14.24 10.73 15.05 48.50 20.34
MoICE 18.14 36.89 14.35 15.76 7.990 15.97 44.50 21.94
LPES (Ours) 18.98 34.19 13.06 15.46 9.910 16.65 46.61 22.12

Qwen2.5-7B
Baseline 24.76 22.92 14.69 16.25 9.780 14.85 53.66 22.42
MoICE 25.56 23.51 15.12 23.19 10.64 16.92 53.81 24.11
LPES (Ours) 27.56 23.91 16.18 23.19 11.97 14.92 53.81 25.51

Table 2: Results of our method on various open-ended datasets compared with the baselines. Our
LPES improves performance across multiple models on seven different long-text tasks, demonstrat-
ing its effectiveness in enhancing the model’s ability to leverage contextual information.

Model Method Coursera QuALITY TOEFL SFiction Average

Vicuna-7B-v1.5
Baseline 37.21 38.12 38.00 57.90 42.81
MoICE 46.65 43.71 39.33 57.20 46.72
LPES (Ours) 40.41 42.57 40.67 58.20 45.46

LLaMA-2-7B-chat
Baseline 34.89 37.62 55.00 60.93 47.11
MoICE 42.50 42.08 56.13 64.84 50.72
LPES (Ours) 37.50 42.16 63.00 63.50 51.52

Qwen2.5-7B
Baseline 45.47 62.43 66.00 60.87 58.69
MoICE 48.13 64.28 67.33 66.00 61.44
LPES (Ours) 48.51 66.43 69.28 66.42 62.66

Table 3: Results of our method on four closed-ended long-text tasks compared with the baselines.
Our LPES consistently enhances performance on four datasets across all models.

LPES yields a more balanced attention distribution without incurring additional computational cost
during inference. Both Ms-PoE and MoICE are sample-dependent, requiring the scaling parameters
to be determined for each individual input. Consequently, the scaling factors cannot be precomputed.
Ms-PoE (Zhang et al., 2024) requires real-time computation of each attention head’s sensitivity to
relevant information, which entails performing attention calculations twice. MoICE, on the other
hand, necessitates parallel attention computations across all seven modules, while the router com-
putation is executed serially alongside the attention operations. To demonstrate the advantage in
inference efficiency, we sample 500 examples from the MDQA dataset and report the average infer-
ence time of Vicuna on a single H100 GPU. For a fair comparison, FlashAttention-2 (Dao, 2023)
was used as the attention backend for all methods. As shown in Table 5, the inference time per
sample is 1.03 seconds for Ms-PoE, 1.72 seconds for MoICE, and approximately 0.71 seconds for
our method, making LPES roughly 1.45x faster than Ms-PoE and 2.42x faster than MoICE.

Model Method MMLU C-Eval

Vicuna-7B-v1.5
Baseline 49.90 49.42

LPES (Ours) 49.00 49.33

StableBeluga-7B
Baseline 51.50 34.78

LPES (Ours) 51.30 34.63

Table 4: General capability of models equipped
with LPES on MMLU and C-Eval datasets.

Method Inference time per sample (s)
Baseline 0.71
Attention Buckets 3.38
Ms-PoE 1.03
MoICE 1.72
LPES (Ours) 0.71

Table 5: Comparison of inference efficiency be-
tween LPES and baseline methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 IMPACT OF HYPER-PARAMETERS

In this section, we present three sets of experiments using Vicuna-v1.5 on the MDQA dataset to
demonstrate that Bézier curves more effectively determine layer-specific scaling factors compared
to alternative curves. We further examine the impact of the number of control points on both con-
vergence quality and speed. Compared to brute-force search, modeling the search space with Bézier
curves enables rapid convergence to high-performing solutions within a limited time, and the results
indicate that performance is largely insensitive to the number of control points employed. Addi-
tionally, by sampling different search sets to determine the scaling factors, we observe consistently
stable performance, further confirming the robustness of our search algorithm.

4.3.1 THE IMPACT OF CURVE TYPE

Bézier curves provide a compact, low-dimensional parameterization capable of approximating a
wide variety of curve shapes (Nuntawisuttiwong & Dejdumrong, 2021). To demonstrate the advan-
tages of Bézier curve modeling, we further employ two alternative approaches: linear interpolation
between control points and step-function modeling based on control points. Although these alter-
natives differ in their curve formulations, they also serve as layer-specific scaling strategies within
our framework. While linear interpolation offers slightly higher computational efficiency, we ulti-
mately adopt Bézier curves due to their superior performance. As shown in Table 6, Bézier curves
outperform other curve-fitting methods, and the minor additional cost required to determine the scal-
ing factors is fully offset by the inference-time performance gains. Furthermore, when evaluated on
deeper models and finer-grained positional segments, Bézier curves consistently yield improvements
across all positions compared with linear interpolation, as detailed in Appendix H.

Method 0% 25% 50% 75% 100% Average
Baseline 70.4 58.0 55.4 55.4 60.4 59.92
LPES (Linear interpolation) 71.8 61.0 62.2 60.0 60.6 63.12
LPES (Step function) 71.6 60.2 59.4 59.2 60.4 62.16
LPES (Bézier curve) 71.4 62.2 62.0 61.0 61.6 63.64

Table 6: Performance comparison of different curve types for determining layer-wise scaling factors.
Bézier curves achieve superior performance.

4.3.2 EFFECT OF THE NUMBER OF CONTROL POINTS

We set the maximum number of iterations to 20 and, while keeping all other experimental settings
unchanged, vary the number of control points to evaluate performance and convergence speed, where
performance is measured by the mean and variance of accuracy across different document positions.
As the number of control points increases, the Bézier curve fitting becomes more precise, improving
the likelihood of identifying an optimal combination of scaling factors. However, a larger number
of control points also enlarges the search space, which slows convergence.

As shown in Table 7, using four control points provides a favorable trade-off between performance
and convergence speed. In contrast, brute-force search shows little tendency to converge within the
limited number of iterations, further highlighting the efficiency of our constrained genetic algorithm.

Control Points Accuracy (Std) Epochs to Convergence (≤ 20)
Baseline 59.9 (±5.56) −−
Brute-Force 60.2 (±4.69) 20
2 60.6 (±4.55) 3
3 62.2 (±3.97) 5
4 63.6 (±3.90) 9
5 63.8 (±3.87) 16

Table 7: Performance with varying numbers of control points. Increasing the number of control
points improves accuracy and reduces positional bias, although convergence slows as the computa-
tional cost of optimization increases. Overall, the experimental results indicate that performance is
insensitive to the number of control points used.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4.3.3 ROBUSTNESS OF THE SEARCH ALGORITHM

In this section, we evaluate the robustness of the scaling factors with respect to variations in the
search dataset. On the MDQA dataset, we use Vicuna-1.5-7B and randomly sample 200 training
instances as the search set for each run. Across five independent runs, the average performance
is 63.68 with a sample variance of only 0.027, demonstrating that our method remains highly sta-
ble under different search subsets. Overall, our approach consistently outperforms prior methods,
highlighting both the stability and robustness of the proposed search algorithm.

Method 0% 25% 50% 75% 100% Average
Baseline 70.4 58.0 55.4 55.4 60.4 59.9
Attention Buckets 72.6 61.4 60.6 60.8 59.6 63.0
Ms-PoE 72.6 61.4 61.8 62.0 59.0 63.5
MoICE 71.6 61.2 60.6 60.8 62.4 63.3

LPES (run 1) 71.4 62.2 62.0 61.0 61.6 63.6
LPES (run 2) 71.6 62.4 62.2 60.8 61.8 63.8
LPES (run 3) 71.6 61.8 61.8 62.0 61.0 63.6
LPES (run 4) 72.6 61.0 62.0 63.2 61.0 63.9
LPES (run 5) 72.2 62.8 61.0 61.0 60.4 63.5

Table 8: Performance of LPES across five independent runs compared with baseline methods. Per-
centages indicate the relative position of relevant documents in the context.

5 CONCLUSION

We presented layer-specific positional embedding scaling (LPES), an efficient method to mitigate
position bias in transformer-based LLMs. By assigning distinct scaling factors to each layer, LPES
achieves a balanced attention distribution across long-context inputs without fine-tuning model pa-
rameters or increasing inference latency. To efficiently identify optimal layer-wise scaling factors,
we introduced a genetic optimization algorithm constrained by Bézier curves, which significantly re-
duces the search space and enables rapid convergence with only a few hundred examples. Extensive
experiments across multiple benchmarks demonstrate that LPES consistently improves long-context
performance while preserving general model capabilities. Notably, LPES requires only a single for-
ward pass, achieving 2.42x speedup over MoICE and 1.45x over Ms-PoE. Our findings also showed
that the derived scaling factors generalize well to new tasks and preserve the model’s general capa-
bilities, making LPES a broadly applicable and efficient solution.

ETHICS STATEMENT

This study focuses on positional bias in the contexts of LLMs and strictly adheres to the ICLR
Code of Ethics. Ethical considerations were carefully integrated into dataset selection, model usage,
methodological design, and potential applications to prevent any involvement of privacy risks, dis-
crimination, or harmful content. All experiments were conducted using publicly available datasets
and open-source frameworks to ensure fairness, safety, and reproducibility of the research findings.

REPRODUCIBILITY STATEMENT

This work ensures strong reproducibility. The datasets, models, and detailed experimental settings
are thoroughly described in Section 4.1. The hyperparameters of the genetic algorithm and the
weighting scheme of the fitness function are further detailed in Appendices E and G, respectively.
All experiments are implemented using the open-source Transformers framework, which further
guarantees reproducibility.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models.
arXiv preprint arXiv:2307.11088, 2023.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, and Jian-Guang Lou. Make your llm fully
utilize the context. arXiv preprint arXiv:2404.16811, 2024.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023a.

Yuhan Chen, Ang Lv, Ting-En Lin, Changyu Chen, Yuchuan Wu, Fei Huang, Yongbin Li, and
Rui Yan. Fortify the shortest stave in attention: Enhancing context awareness of large language
models for effective tool use. arXiv preprint arXiv:2312.04455, 2023b.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Kevin Clark, Minh-Thang Luong, QuocV. Le, and ChristopherD. Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv: Computation and Language,arXiv:
Computation and Language, Mar 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

Xiachong Feng, Xiaocheng Feng, and Bing Qin. A survey on dialogue summarization: Recent
advances and new frontiers. arXiv preprint arXiv:2107.03175, 2021.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Junqing He, Kunhao Pan, Xiaoqun Dong, Zhuoyang Song, Yuxin LiuYiBo, Liang, Hao Wang, En-
ming Zhang, and Jiaxing Zhang. Never lost in the middle: Mastering long-context question
answering with position-agnostic decompositional training. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13628–
13642, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, Zifeng Wang, Long T Le, Abhishek Ku-
mar, James Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, et al. Found in the mid-
dle: Calibrating positional attention bias improves long context utilization. arXiv preprint
arXiv:2406.16008, 2024.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese eval-
uation suite for foundation models. Advances in Neural Information Processing Systems, 36:
62991–63010, 2023.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv: Compu-
tation and Language,arXiv: Computation and Language, Sep 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Hongzhan Lin, Ang Lv, Yang Song, Hengshu Zhu, Rui Yan, et al. Mixture of in-context experts
enhance llms’ long context awareness. Advances in Neural Information Processing Systems, 37:
79573–79596, 2024.

Krzysztof Lis, Matthias Rottmann, Annika Mütze, Sina Honari, Pascal Fua, Mathieu Salzmann, and
Samsung AI Center Toronto. Attentropy: On the generalization ability of supervised semantic
segmentation transformers to new objects in new domains. arXiv e-prints, pp. arXiv–2212, 2022.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024b.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024c.

Dakota Mahan, Ryan Carlow, Louis Castricato, Nathan Cooper, and Christian Laforte. Stable bel-
uga models, 2023. URL [https://huggingface.co/stabilityai/StableBeluga2](https:
//huggingface.co/stabilityai/StableBeluga2).

M.E. Mortenson. Mathematics for Computer Graphics Applications. G - Reference,Information and
Interdisciplinary Subjects Series. Industrial Press, 1999. ISBN 9780831131111. URL https:
//books.google.co.jp/books?id=YmQy799flPkC.

Taweechai Nuntawisuttiwong and Natasha Dejdumrong. An approximation of bézier curves by a
sequence of circular arcs. Information Technology and Control, 50(2):213–223, 2021.

Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
language models. arXiv preprint arXiv:2310.01427, 2023.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot
benchmark for long text understanding. arXiv preprint arXiv:2305.14196, 2023.

Ning Shang, Li Lyna Zhang, Siyuan Wang, Gaokai Zhang, Gilsinia Lopez, Fan Yang, Weizhu
Chen, and Mao Yang. Longrope2: Near-lossless llm context window scaling. arXiv preprint
arXiv:2502.20082, 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. Cornell University - arXiv,Cornell University - arXiv, Apr 2021.

Qi Sun, Edoardo Cetin, and Yujin Tang. Transformer2: Self-adaptive llms. arXiv preprint
arXiv:2501.06252, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AidanN. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing
Systems,Neural Information Processing Systems, Jun 2017.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model. arXiv preprint arXiv:1906.04284, 2019.

Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi,
Zhengyuan Wang, Shizheng Li, Qi Qian, et al. Searching for best practices in retrieval-augmented
generation. arXiv preprint arXiv:2407.01219, 2024.

12

https://huggingface.co/stabilityai/StableBeluga2
https://huggingface.co/stabilityai/StableBeluga2
https://books.google.co.jp/books?id=YmQy799flPkC
https://books.google.co.jp/books?id=YmQy799flPkC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In International Conference on Machine Learning, pp. 40770–40803. PMLR,
2023.

Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry Wu, Chenguang Zhu, Budhaditya Deb,
Ahmed H Awadallah, Dragomir Radev, and Rui Zhang. Summˆ n: A multi-stage summariza-
tion framework for long input dialogues and documents. arXiv preprint arXiv:2110.10150, 2021.

Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu,
and Zhangyang Wang. Found in the middle: How language models use long contexts better via
plug-and-play positional encoding. arXiv preprint arXiv:2403.04797, 2024.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual
evaluations on humaneval-x. corr abs/2303.17568 (2023). arXiv preprint arXiv:2303.17568, 10,
2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LONG-TERM DECAY AND ATTENTION WAVE IN ROPE

Zhang et al. (2024) observed that the long-term decay of RoPE causes the model to focus more
on the end of a sequence. As the relative distance grows, attention scores drop rapidly, leading
the model to overemphasize nearby tokens during autoregressive decoding while neglecting distant
ones. To mitigate this issue, they scale RoPE by a factor s >= 1 (Figure 3), which effectively
reduces the relative distance to 1/s of its original value (Figure 4). This adjustment slows the decay
rate, enabling the model to attend not only to nearby tokens but also to more distant ones, particularly
those in the middle of the sequence.

To demonstrate that scaling RoPE can indeed enhance the model’s attention to middle positions, we
use the Vicuna-7B-v1.5 (Chiang et al., 2023) and LLaMA-2-7B-hf (Touvron et al., 2023) which
both consist of 32 transformer layers to conduct experiment on the validation dataset of QMSum
(Shaham et al., 2023). We split the context into three parts and calculate the attention scores to the
middle-part tokens at different scales. In Figure 5, an increase in the scale factor leads to higher
attention scores, demonstrating that scaling RoPE allows the model to focus more on middle-part
content during autoregressive decoding.

Chen et al. (2023b) analyze the phenomenon of oscillatory “attention waves” in Transformer models,
where attention fluctuates across tokens instead of being smoothly distributed. These oscillations,
mainly induced by the mechanisms of RoPE, can cause the model to under-attend to important in-
formation located at attention troughs, limiting long-context utilization and potentially introducing
instability. To address this issue, the authors propose the Attention Buckets approach, which runs
multiple model parallels with different bases in RoPE and combines the decoded logits across these
bases, producing complementary attention wave patterns. The method enhances the model’s sensi-
tivity to context across all positions.

Normal AttentionScaled Attention

Softmax

RoPE
(Scaling Factor = s)

Query Key Value

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

0

1/s 0

2/s 1/s 0

3/s 2/s 1/s 0

4/s 3/s 2/s 1/s 0

Figure 3: We obtain multi-scale RoPE by scaling the positional indices.

Attention Waves

Figure 4: The rapid decay of RoPE prioritizes local focus, and the attention waves may cause the
model to overlook crucial information at attention troughs, whereas the scaling operation can slow
this decay and generate diverse wave patterns.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: The attention score to the middle part across some layers. The scaling operation can
enhance the model’s attention to middle positions.

B SEARCH SPACE AND TIME COMPLEXITY ANALYSIS

We follow Ding et al. (2024), discretizing the continuous search space to enable more efficient
searching. Assume the control points of the Bézier curve are (P x, P y), where P x ∈ [0, L − 1] (L
is the number of scaled layers) and P y ∈ [1, 2]. The values of P x are discretized with a step size of
1, and the values of P y are discretized with a step size of 0.1. Given that the model consists of 32
layers, there are 32 possible selections in PX , while the scaling factor chosen from the PY set offers
11 options as shown in Table 9. The total number of choices for the brute-force search is 1132. If a
Cubic Bezier curve is used, each control point has 32×11 possible combinations. With four control
points, the total search space is 3524 which approximately narrows the search space by a significant
factor 1020 compared to the brute-force search.

Coordinate Search Space
P x {0, 1, 2, 3, 4, 5, 6, 7, 8,. . . , n− 4, n− 3, n− 2, n− 1}
P y {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}

Table 9: Search space for the control point of Bézier curves.

In our method, the dominant cost of the genetic algorithm arises from evaluating the fitness func-
tion, which requires running model inference to assess the effectiveness of different scaling factors.
In contrast, the computational overhead of other GA operations—such as assignment, mutation,
and crossover—is negligible. Using 4×H100 GPUs, we measured the per-epoch time cost of each
operation as follows:

Operation Type Time (s)
Assigning scaling factor from curve 5.2
Mutation 4.5
Crossover 2.3
Computing fitness via model inference 1167.4

Table 10: Measured runtime per epoch of each operation in the genetic algorithm when using
4×H100 GPUs. Model inference dominates the total cost.

Assume the algorithm runs for at most M epochs and generates N new individuals per epoch,
and the search uses S samples. Each individual requires three inference runs (placing the correct
document at different positions). Thus, the total number of inference calls is 3NMS. In practice,
we perform data-parallel inference using Ncard GPUs with batch size B, which reduces the effective
runtime to O((3MNS)/(Ncard ·B)) .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C LIMITATIONS OF GRADIENT-BASED METHODS

We also attempted to determine the layer-specific scaling factors using gradient descent, but ob-
served poor convergence behaviors. This may also shed light on why LongRoPE (Ding et al., 2024)
and LongRoPE2 (Shang et al., 2025) employ genetic algorithms rather than backpropagation to de-
termine the scaling factors across RoPE dimensions. Although the genetic algorithm incurs higher
computational overhead compared to directly optimizing hyperparameters via backpropagation, it
consistently converges to a more favorable set of scaling parameters. Furthermore, incorporating
Bézier curves significantly accelerates the convergence process.

In the gradient-based method setting, we construct three datasets from the MDQA, each containing
2, 000 samples in which the correct document is placed at a different position (i.e., first, middle, or
last). In each epoch, a total of 2, 000 samples are drawn from these datasets based on the value of
λ as specified in Section §4.1, where a larger λ indicates a higher probability of sampling from the
corresponding dataset. For stable training, we use a batch size of 32, a learning rate of 1e − 5, and
train the model for a total of 30 epochs.

For the gradient-based method, we observed that even with a large batch size and a small learning
rate, the optimization of scaling factors via backpropagation failed to converge. A possible reason
is the limited number of trainable parameters (Sun et al., 2025). We evaluated the model at the 30th
epoch and found a significant degradation in performance, as shown in Table 11.

Model Method 0% 25% 50% 75% 100%

Vicuna-7B-v1.5 Baseline 70.4 58.0 55.4 55.4 60.4
Gradient-Based 67.4 54.0 51.2 52.8 55.8

Qwen2.5-7B Baseline 69.4 61.0 62.6 58.6 63.6
Gradient-Based 68.7 56.6 57.6 55.8 57.8

Table 11: Gradient-based methods lead to accuracy degradation in the MDQA dataset.

D CUBIC BÉZIER CURVE PARAMETERIZATION FOR LAYER ASSIGNMENT

Consider a cubic Bézier curve with four control points:

P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3). (11)

where the x-coordinates are strictly increasing since Equation 10:

x0 < x1 < x2 < x3. (12)

The parametric form of the cubic Bézier curve is

x(t) = (1− t)3x0 + 3(1− t)2tx1 + 3(1− t)t2x2 + t3x3,

y(t) = (1− t)3y0 + 3(1− t)2ty1 + 3(1− t)t2y2 + t3y3,
(13)

where t ∈ [0, 1].

Since the xi are strictly increasing, the function x(t) is typically monotonic. This property allows
the use of a binary search over the interval [0, 1] to efficiently find the parameter t corresponding to
any given target value x, which defines the function t(x).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E HYPERPARAMETERS OF THE CONSTRAINED GENETIC ALGORITHM

Hyperparameter Value Description

Population size Nps 32 Number of individuals in initial population generation.
Parents size Npa 12 Number of individuals selected as parents.
Max epoch T 20 Maximum number of generatios.
Mutation numbers Nmu 16 Number of offspring generated through mutation.
Crossover numbers Ncr 4 Number of offspring generated through crossover.
Max crossover try Nct 4 Maximum attempts allowed to produce valid offspring during crossover.
Mx 2 Perturbation magnitude of the control point’s x-coordinate (P x).
My 0.2 Perturbation magnitude of the control point’s y-coordinate (P y).

Table 12: Hyperparameter settings of the constrained genetic algorithm

F DATASET DETAILS

Dataset Question Style Domain Metric
Coursera Multiple Choice Advanced Courses Accuracy
QuALITY Multiple Choice Gutenberg Accuracy
TOEFL Multiple Choice English Test Accuracy
SFiction True/False Questions Scientific Fiction Accuracy

Table 13: Overview and evaluation metrics of the sub-datasets in L-Eval.

Dataset Description Metric
GovReport Summarization of long reports ROUGE-1/2/L
SummScreenFD Summarization of TV show episode scripts ROUGE-1/2/L
QMSum Query-based summarization over meeting transcripts ROUGE-1/2/L
SQuALITY Question-focused summarization over stories ROUGE-1/2/L
Qasper Question answering over research papers F1
NarrativeQA Question answering about entire books and movie scripts F1
SpaceDigest Aggregated sentiment classification over 50 hotel reviews from Space Exp similarity

Table 14: Overview and evaluation metrics of the sub-datasets in ZeroSCROLLS.

Write a high-quality answer for the given question using only the provided
search results (some of which might be irrelevant).

{search_results}

Question: {question}
Answer:

Extract the value corresponding to the specified key in the JSON object below.

JSON data:
{formatted_kv_records}

Key: "{key}"
Corresponding value:

Figure 6: Prompt templates used in MDQA and Key-Value Retrieval datasets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G PERFORMANCE VERSUS VALUES OF HYPER-PARAMETERS λ

In our experiments, we observed that when scaling RoPE, the model tends to improve performance
at early positions while neglecting performance at later positions. Consequently, when setting λ,
we favor assigning larger weights to later positions. Here, we define ⟨λB, λM, λE⟩ as the weights as-
signed to the accuracy of the beginning, middle, and end positions, respectively, in the genetic algo-
rithm’s fitness function. In this study, we compare three weighting schemes: ⟨0.333, 0.333, 0.333⟩,
⟨0.1, 0.3, 0.6⟩, and ⟨0.2, 0.3, 0.5⟩.

Method 0% 25% 50% 75% 100% Average
Baseline 70.4 58.0 55.4 55.4 60.4 59.9
⟨0.333, 0.333, 0.333⟩ 73.2 62.4 60.2 58.8 58.2 62.6
⟨0.1, 0.3, 0.6⟩ 70.6 60.2 60.8 61.0 62.0 63.0
⟨0.2, 0.3, 0.5⟩ 71.4 62.2 62.0 61.0 61.6 63.2

Table 15: The impact of hyper-parameters λ on the optimized layer-wise scaling factors, showing
that performance is largely insensitive to their choice.

H FURTHER ANALYSIS OF CURVE PARAMETERIZATIONS

To further emphasize the advantage of Bézier curves over linear interpolation, we evaluate a deeper
model (Vicuna-13B-v1.5 with 40 layers) using finer-grained 10% evaluation intervals. As shown
in Table 16, linear interpolation exhibits noticeable performance drops around the 20% and 80%
positions. In contrast, the smoother Bézier curve consistently improves performance across all
positions, confirming its superiority in modeling gradual layer-wise variations.

Curve Type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average
Baseline 70.4 66.2 66.4 65.2 64.8 64.0 63.0 62.0 63.4 65.2 65.2 65.1
Linear Interpolation 71.8 66.4 64.4 65.0 64.6 64.0 64.6 63.4 62.8 65.2 65.2 65.2
Bézier Curve 71.8 68.4 69.4 66.6 65.2 65.2 65.0 64.0 65.8 65.2 65.2 66.5

Table 16: Performance across different curve parameterizations, showing consistent improvements
of Bézier curves over linear interpolation and baseline.

I EFFECTIVENESS OF LPES ON LONGER CONTEXTS

We conduct experiments on Vicuna-1.5-13B and Qwen-2.5-7B under a 16k-token context setting
on L-Eval to verify the effectiveness of LPES in long-context scenarios. The decoding length is set
to 512 tokens, so the maximum usable context window is limited to 15,872 tokens. As shown in
Table 17, the results demonstrate that our method remains effective on larger models and extended
context lengths, highlighting its strong scalability and robustness.

Model Method Coursera QuALITY TOEFL SFiction Average

Vicuna-13B-v1.5-16k
Baseline 69.6 51.4 33.3 57.1 52.9
MoICE 67.4 55.6 35.7 52.6 52.8
LPES (Ours) 70.6 54.4 36.0 59.4 55.1

Qwen2.5-7B
Baseline 59.8 66.3 76.6 71.8 68.6
MoICE 59.8 66.3 78.7 73.0 69.5
LPES (Ours) 63.8 69.1 88.9 72.9 73.7

Table 17: Results on longer-context settings (16k tokens). LPES consistently improves performance
over baseline and MoICE on both Vicuna-13B-v1.5-16k and Qwen2.5-7B, demonstrating strong
scalability to larger models and longer context windows.

18

	Introduction
	Related Work
	Method
	Problem Definition
	Optimization Algorithm

	Experiment
	Models, Datasets, and Baselines
	Results
	Impact of Hyper-Parameters
	The Impact of Curve Type
	Effect of the Number of Control Points
	Robustness of the Search Algorithm

	Conclusion
	Long-Term Decay and Attention Wave in RoPE
	Search Space and Time Complexity Analysis
	Limitations of Gradient-Based Methods
	Cubic Bézier Curve Parameterization for Layer Assignment
	Hyperparameters of the constrained genetic algorithm
	Dataset Details
	Configuration of lambda
	Further Analysis of Curve Parameterizations
	Effectiveness of LPES on Longer Contexts

