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ABSTRACT

Large language models (LLMs) still struggle with the “lost-in-the-middle” prob-
lem, where critical information located in the middle of long-context inputs is
often underrepresented or lost. While existing methods attempt to address this by
combining multi-scale rotary position embeddings (RoPE), they typically suffer
from high latency or rely on suboptimal hand-crafted scaling. To overcome these
limitations, we introduce a layer-specific positional embedding scaling (LPES)
method that assigns distinct scaling factors to each layer. LPES achieves a more
balanced attention distribution without fine-tuning model parameters or increasing
inference delay. A specially designed genetic algorithm is employed to efficiently
select the optimal scaling factors for each layer by incorporating Bézier curves
to reduce the search space. Extensive experiments demonstrate that LPES ef-
fectively mitigates positional attention bias and delivers consistent improvements
across multiple long-context benchmarks, yielding up to an 11.2% accuracy gain
on the key-value retrieval dataset.

1 INTRODUCTION

Enabling large language models to effectively process long inputs is essential for supporting com-
plex tasks such as long-text summarization (Feng et al., 2021; Zhang et al., 2021), code generation
(Zheng et al., 2023; Liu et al., 2024a), and long-context question-answering (Li et al., 2024). Rotary
position embeddings (RoPE) (Su et al., 2021), widely adopted in transformer-based LLMs, were de-
signed to encode relative distances between input tokens and are expected to handle long inputs more
effectively than absolute positional embeddings (Vaswani et al., 2017). However, as context length
increases, RoPE-based LLMs still exhibit position bias, where the model fails to allocate appropri-
ate attention across different positions in the input, even when the input length is within the model’s
pre-training range. A prominent instance of this problem is the well-known “lost-in-the-middle”
phenomenon (Liu et al., 2024c), in which models disproportionately focus on the beginning and end
of the context while relatively overlooking critical information in the middle. RoPE encodes rela-
tive positions through the superposition of sine and cosine functions with varying frequencies. The
periodic and oscillatory nature of these functions causes inter-token dependencies to attenuate over
longer distances (Chen et al., 2023b; Zhang et al., 2024), which can result in imbalanced attention
distribution across the input sequence.

Several approaches have been proposed to address the position bias problem by combining multi-
ple rotary position embeddings with different bases or scaling factors (Chen et al., 2023b; Zhang
et al., 2024; Lin et al., 2024). Chen et al. (2023b) observed that RoPE with different bases induces
attention troughs at specific positions, which impairs the model’s ability to capture the correspond-
ing content. To mitigate this, they introduced a method, named Attention Buckets, that combines
multiple RoPE with different bases to achieve a more balanced attention distribution. Similarly, Lin
et al. (2024) proposed an MoICE method that assigns multiple RoPE bases to each attention head
and aggregates the outputs through a weighted sum. However, whether through varying bases or
scaling factors, these methods require multiple forward passes during inference, each corresponding
to a specific base or scaling factor, followed by ensembling the results. Although some operations
can be parallelized, this process inevitably slows down inference and increases computational cost.

Varying bases across the entire model can be considered as a form of model-level ensembling,
whereas applying multiple RoPE bases to individual attention heads functions as module-level en-
sembling. The former influences the model globally, limiting the flexibility for targeted adjustments,
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Figure 1: Comparison of the proposed LPES with two representative existing methods. (a) Attention
Buckets (Chen et al., 2023b) combines multiple RoPEs with different bases through model parallels.
(b) MoICE (Lin et al., 2024) assigns multiple bases to each attention head. Unlike these existing
methods which require multiple forward passes during inference, our LPES (c) achieves superior
performance with a single forward pass, significantly reducing inference time.

while the latter operates at an overly fine-grained level (down to each individual attention head),
making it challenging to determine suitable scaling factors and their weights for each head. In this
study, we explore a control granularity that lies between these two extremes. Specifically, we pro-
pose applying different scaling factors at different layers, with all attention heads within a layer
sharing the same factor. Most importantly, our method is designed to achieve or surpass the per-
formance of existing methods with a single forward pass during inference, thereby eliminating the
overhead for multiple passes.

Choosing an appropriate scaling factor for each layer is still a non-trivial problem. Let L denote
the number of layers in a transformer-based network, and M the number of possible values for
the scaling factors; the total number of combinations is ML, which makes an exhaustive search
computationally intractable. We attempted to use gradient backpropagation to determine the scaling
factors for each layer; however, we observed poor convergence, and the resulting model performed
worse than expected. This is because gradient descent tends to converge to a local optimum, whereas
the problem is inherently combinatorial in nature. To overcome this, we leverage Bézier curves,
which can define a smooth, continuous curve using a limited set of discrete control points. Denoting
the number of control points by C, the search space is reduced to (M×L)C , with a detailed analysis
provided in Appendix B. Our experiments show that a cubic Bézier curves (i.e., C = 4) can represent
a wide variety of shapes and are sufficient to capture layer-specific scaling relationships. We also
designed a genetic algorithm to solve this combinatorial optimization problem by constraining the
search space to the Bézier curve. By combining the genetic algorithm with Bézier curves (see
Figure 2), we can efficiently optimize layer-specific scaling factors, typically within 3 to 4 hours
using only a few hundred examples (e.g., 200 instances) on four H100 GPUs. In long-text tasks,
our method introduces no additional inference latency while delivering superior performance over
existing approaches, without requiring fine-tuning of the LLM parameters.

The contributions of this study can be summarized as follows:

• We propose a layer-specific positional embedding scaling method, termed LPES, which effectively
mitigates the position bias problem without incurring additional inference latency. LPES achieves
significant speedups, 2.42x faster than MoICE (Lin et al., 2024) and 1.45x faster than Ms-PoE
(Zhang et al., 2024), while also improving the model’s ability to handle long-context tasks.

• We introduce an efficient genetic search algorithm in which the search space is constrained by
Bézier curves, enabling rapid optimization of layer-specific scaling factors using only a small set
of examples (typically a few hundred examples only).

• Extensive experiments on multiple benchmark datasets demonstrate that our method preserves the
model’s general capabilities while producing a more balanced attention distribution without costly
fine-tuning, making it broadly applicable across different models and tasks.

2 RELATED WORK

Assigning attention based on the relevance of information rather than its position, is a cornerstone
of transformer-based LLMs. For instance, retrieval-augmented generation (RAG) has proven effec-
tive in incorporating up-to-date knowledge, reducing hallucinations, and improving response quality
(Gao et al., 2023; Wang et al., 2024). The success of RAG lies in its ability to enhance generation
whenever query-relevant documents are available. In practice, multiple documents are typically re-
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Figure 2: Illustration of the proposed layer-specific positional embedding scaling (LPES) method.
Left: Bézier curves can represent a wide variety of shapes. Middle: An optimized Bézier curve
found by our search algorithm, which defines a smooth, continuous curve using a limited set of
discrete control points. Right: The relationship between the scaling factors and the optimized Bézier
curve, and their application within the attention mechanism of a transformer-based network.

trieved, and it is impossible to determine in advance which ones are most useful or to place them
where attention is concentrated. Consequently, it is crucial for LLMs to maintain a balanced atten-
tion distribution across all input positions. Nevertheless, even when the input length remains within
the model’s pre-training range, RoPE-based LLMs still exhibit position bias (Chen et al., 2023b;
Zhang et al., 2024). Addressing this bias and achieving a more balanced attention distribution as
input lengths increase has attracted considerable research interest (He et al., 2024; An et al., 2024;
Peysakhovich & Lerer, 2023; Hsieh et al., 2024; Chen et al., 2023b; Zhang et al., 2024; Lin et al.,
2024), with existing approaches falling broadly into four categories: fine-tuning, repositioning, at-
tention score reassignment, and multi-scale positional embeddings.

In fine-tuning approaches (He et al., 2024; An et al., 2024), a domain-specific dataset needs to be
constructed, and instruction fine-tuning is then applied to guide the model toward focusing more on
the relevant parts of the context. However, those approaches demands substantial human effort to
curate a large volume of training samples and entails significant computational costs during the fine-
tuning process. In many cases, particularly when LLMs have already been deployed in real-world
applications, it is preferable not to update their parameters in order to minimize potential impacts.

The repositioning method (Peysakhovich & Lerer, 2023) begins by computing attention scores for
each document in the input. Documents are then reordered based on these scores, with the highest-
scoring documents placed closer to the query. After this initial reordering, the attention scores are
recomputed and the document positions are updated accordingly. This iterative process continues
several times. Nevertheless, such repeated recomputation and reordering substantially increase the
inference-time cost. In contrast, Hsieh et al. (2024) collect attention scores for all input positions
from a set of examples and rescale them for each attention head in order to distribute attention as
evenly as possible across positions. However, this form of attention score reassignment may lead to
instability in the generation, particularly when the calibration intervenes at early layers.

Chen et al. (2023b) identified that RoPE with different bases can produce attention troughs at spe-
cific positions, thereby impairing the model’s ability to capture the relevant content. To address this,
their “attention buckets” method integrates multiple RoPE bases through model-parallel inference to
achieve a more uniform attention distribution. Zhang et al. (2024) suggested that the long-term decay
in attention may contribute to the position bias, and proposed Ms-PoE that assigns distinct scaling
factors to attention heads based on their relative sensitivity to positional information. Building on
the work of (Chen et al., 2023b), MoICE employs gradient descent to learn the weights for combin-
ing results with different bases (Lin et al., 2024). However, a major limitation of these approaches
is their high computational cost and inference latency. Specifically, attention buckets requires mul-
tiple forward passes, while both Ms-PoE and MoICE require repeated attention computations to
integrate multi-scale RoPE information. These methods also rely on heuristic rules or hand-crafted
configurations to select bases or scaling factors. By contrast, our method not only achieves superior
performance with a single forward pass at inference but also introduces a search algorithm that can
efficiently determine the optimal scaling factors using only a few hundred examples.

3 METHOD

The objective of this study is to achieve a more balanced attention distribution across the entire
input sequence by assigning distinct RoPE scaling factors to each transformer layer without incur-
ring additional inference costs. Previous research has shown that different network layers exhibit
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attention biases toward certain input positions, and these biases can be modulated by adjusting the
RoPE scaling factors, which were originally introduced to extend the network’s context window
length (Vig & Belinkov, 2019; Lis et al., 2022; Zhai et al., 2023). Unfortunately, our preliminary
experiments indicate that position biases cannot be substantially mitigated by simply assuming that
scaling factors vary linearly with layer depth, which significantly enlarges the search space of the
problem. Fortunately, Bézier curves provide an appealing alternative, as they can represent a wide
variety of shapes using only a small set of discrete control points (see Figure 2). However, selecting
the optimal scaling factors remains a combinatorial optimization problem, even with the help of
Bézier curves. We tried to use an end-to-end gradient descent algorithm to determine these factors,
but it performed poorly (see Appendix C), as the algorithm tend to converge to suboptimal local
minima. In the following, we first present the formal problem formulation and then introduce a
specially designed genetic algorithm to solve this problem in detail.

3.1 PROBLEM DEFINITION

In this study, we focus on improvements based on rotary position embeddings (RoPE), which have
proven superior to their predecessor, absolute positional embeddings (Clark et al., 2020; Lan et al.,
2019), due to its capability to enable language models to extrapolate effectively to longer sequences
(Su et al., 2021). With RoPE, the relative distance between tokens can be computed simply through
the inner product of their vector representations:

⟨f(q, i), f(k, j)⟩ = qTR(i− j)k (1)

where f(x, i) denotes the RoPE operation, which applies a position-dependent rotation at position i
to the query q, and f(k, j) represents the RoPE-rotated key at position j. The notation ⟨·, ·⟩ denotes
the inner product between the two position-aware vectors, and R(∆) is the rotation corresponding
to the relative offset ∆ = i − j. This equation shows that the inner product depends only on the
vectors q, k and the relative distance between them. Chen et al. (2023a) further show that the context
window length can be extended by applying a scaling factor s to the position as follows:

f ′(x, i) = f(x, i/s) (2)

By reducing the interval between two positions through this scaling, the context window length is
extended by a factor of s in theory. We further show that the scaling factors can mitigate long-term
decay and produce diverse attention patterns (see Appendix A). Our objective is to search for a
unique scaling factor s for each layer to mitigate the position bias problem.

As previously mentioned, determining the optimal scaling factor for each layer by a brute-force
approach is intractable, since each factor can take many possible values and transformers typically
consist of tens of layers. To address this challenge, we represent the scaling factors for all layers
using a single Bézier curve. As illustrated in Figure 2, a Bézier curve here can be viewed as a smooth
curve that connects all the scaling factors in a two-dimensional plane. In this way, the problem of
selecting scaling factors for all layers is transformed into the problem of searching for an appropriate
Bézier curve. Fortunately, Bézier curves can model a wide variety of shapes using only a small set
of discrete control points, which significantly reduces the search space. A Bézier curve of degree d
which has d+ 1 control points is defined as follows (Mortenson, 1999):

B(t) =

d∑
k=0

bdk(t)Pk, 0 ≤ t ≤ 1. (3)

where the variable t represents the parametric coordinate that controls a point’s position along the
curve, Pk are the control points for the curve, and bdk are the Bernstein basis polynomials, which are
defined as:

bdk(t) =
d!

k!(d− k)!
tk(1− t)d−k, k = 0, . . . , d. (4)

Once a Bézier curve is determined, the scaling factor sh for layer h can be computed as follows:

sh = projy [B(t(xh))] (5)

where the notation projy[·] denotes the operation of extracting the y-coordinate of a two-dimensional
point. The function t(·) maps xh to the corresponding parameter t (see Appendix D), where xh
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represents the position of layer h within the evenly spaced x-coordinates defined by the minimum
and maximum values of the control points. The value of xh can be computed by:

xh = P x
0 +

P x
d − P x

0

L− 1
· h, h = 0, . . . , L− 1. (6)

where L denotes the number of layers in a network, and P x
t is the x-coordinates of the t-th control

point for the Bézier curve.

Given a training dataset D = {(xi, yi)}Ni=1 consisting of N examples, where xi is an input to the
large language model and yi is the corresponding ground-truth output, our goal is to maximize the
following function:

LD(θ) =
1

N

N∑
i=1

I{LLM(xi,θ) ≃ yi} (7)

where θ = (P0, . . . , Pd) denotes the set of control points defining a Bézier curve of degree d (each
control point Pk is a two-dimensional point), LLM(xi,θ) denotes the output of a language model
given input xi, with all scaling factors determined according to Equation (5) based on the Bézier
curve specified by θ, and I{·} is an indicator function with binary output 0 or 1. We constructed
the training dataset such that the content containing information useful for generating correct an-
swers appears at varying positions within the input, thereby encouraging the model to distribute its
attention more evenly across the entire input.

3.2 OPTIMIZATION ALGORITHM

We can regard θ = (P0, . . . , Pd) as a set of newly introduced hyper-parameters that influence
the behavior of an LLM. Each Pk is a two-dimensional vector whose x- and y-coordinates can
take multiple different values. Even though Bézier curves of degree d = 3 which has d + 1 = 4
control points, are capable of representing a wide variety of curves, selecting suitable control points
constitutes a combinatorial optimization problem. Due to the high complexity of the search space,
a brute-force approach for determining the scaling factors across layers is intractable; instead, we
employ a genetic algorithm to optimize the control points of the Bézier curves.

In our genetic algorithm, each individual is represented as (P x
0 , P

y
0 , . . . , P

x
d , P

y
d ), where P x

k and P y
k

denote the x- and y-coordinates values of the k-th control point, and each individual corresponds
to a specific Bézier curve. The initial population is constructed as follows. First, we initialize an
individual in which k-th control point is generated by:

(k(L− 1)/d, 1.5), k ∈ {0, . . . , d} (8)

where L is the number of layers in a network. Based on the empirical results reported by Zhang
et al. (2024), we set the y-coordinate values of all control points to 1.5. Subsequently, the remaining
individuals are generated by applying a mutation operator (described below) to this initial individual
until the population reaches the predefined size.

The fitness of an individual θ = (P x
0 , P

y
0 , . . . , P

x
d , P

y
d ) is evaluated by configuring the layer-wise

scaling factors of an LLM according to θ, running the LLM on a dataset D, and calculating the
resulting score LD(θ) as defined in Equation (7). When constructing the training dataset, we de-
liberately vary the position of relevant context within the input, which can generally be catego-
rized into three types: the query-relevant content appears at the beginning, middle, or end of the
input sequence. We denote these three corresponding sub-datasets as DB, DM, and DE, respec-
tively. Considering that original LLMs tend to allocate attention unevenly across different po-
sitions, we introduce three weights to reflect the relative importance of these sub-datasets when
optimizing the model’s scaling factors. The final fitness of an individual is then computed as
λBLDB(θ) + λMLDM(θ) + λELDE(θ), where λB ≥ 0, λM ≥ 0, λE ≥ 0, and λB + λM + λE = 1.

The crossover operator is performed by randomly selecting a pair of individuals with relatively high
fitness scores as parents, choosing a single crossover point at random, and exchanging the segments
beyond this point between the parents. This process produces two offspring, from which we retain
only the one with the higher fitness.

The mutation operator modifies P x and P y within a specified range to prevent excessive variations
in the resulting curve, as shown in Equation (9). Let Mx and My denote the maximum allowable
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change for the x- and y-coordinate, respectively. After mutation, the k-th control point (P̂ x
k , P̂

y
k ) of

an individual must remain within the following range:

P̂ x
k ∈


[max(0, P x

k −Mx), min(P x
k+1, P

x
k +Mx)] if k = 0,

[max(P x
k−1, P

x
k −Mx), min(P x

k+1, P
x
k +Mx)] if 0 < k < d,

[max(P x
k−1, P

x
k −Mx), min(P x

k +Mx, L− 1)] if k = d

P̂ y
k ∈

{
[max(1, P y

k −My), min(P y
k +My, 2)] if 0 ≤ k ≤ d

(9)

To ensure the smoothness of the curve and prevent undesirable abrupt changes in the scaling factor
(Ding et al., 2024), the x-coordinate values of all control points must increase monotonically. The
following condition should therefore be satisfied when performing either crossover or mutation op-
erations. Let P x

i and P x
j denote the x-coordinates of the i-th and j-th control points, respectively.

Their relationship is required to satisfy:

0 ≤ P x
i < P x

j ≤ n− 1 if i < j (10)

Offspring that fail to meet the above condition are discarded, and the crossover or mutation process
is repeated until the condition is satisfied.

Starting with the initial population, individuals are selected based on their fitness, followed by the
application of the crossover and mutation operators. This process is repeated iteratively until the
maximum number of generations is reached. The complete process is summarized in Algorithm 1.

Algorithm 1 Layer-specific scaling factor search algorithm
Input: an LLM M, a dataset D, population size Nps, the number of offspring generated by crossover Ncr,
zzzzzz the number of mutated individuals Nmu, and maximum number of generations T .
1: S0 = Initial-Population-Generation(D, Nps); // Randomly generate the initial population.
2: for i = 1 to T do
3: Evaluate-Fitness(Si−1, M, D); // Evaluate the fitness of all individuals in the population.
4: Spa = Select-Parents(Si−1); // Select the parent pool according to fitness values.
5: Scr = Crossover-Operator(Spa, Ncr); // Produce offspring using the crossover operator.
6: Smu = Mutation-Operator(Spa, Nmu); // Generate offspring using the mutation operator.
7: Si = Spa ∪ Scr ∪ Smu; // Merge the individuals to form the next generation’s population.
8: end for
9: Return the individual with the highest fitness in ST .

4 EXPERIMENT

We conducted four sets of experiments. The first evaluates the performance of LPES when relevant
information is placed at different positions in the input, examining how effectively LPES promotes
a more balanced attention distribution across the input sequence. The second experiment assesses
the performance of LPES on both open-ended and closed-ended benchmark datasets, in comparison
with baseline methods. The third investigates the impact of the proposed method on the general
capabilities of LLMs, as well as its inference efficiency relative to existing approaches. The final
experiment examines how the choice of hyperparameter values influences the performance of LPES.

4.1 MODELS, DATASETS, AND BASELINES

Base Models: We selected four representative RoPE-based LLMs for our experiments: Vicuna-7B-
v1.5 (Chiang et al., 2023), LLaMA-2-7B-chat (Touvron et al., 2023), and StableBeluga-7B (Mahan
et al., 2023), each with a 4k-token context window, as well as Qwen2.5-7B (Yang et al., 2024),
which supports a 130k-token context window.

Benchmark Datasets: MDQA (Liu et al., 2024b) is a widely-used multi-document question an-
swering dataset. The key-value retrieval dataset (Liu et al., 2024b) consists of key–value pairs in
which both keys and values are universally unique identifiers (UUIDs), making it particularly suit-
able for evaluating a model’s ability to extract relevant information. ZeroSCROLLS (Shaham et al.,
2023) comprises multiple open-ended long-text task datasets, with the specific sub-datasets and eval-
uation metrics summarized in Table 14. For closed-ended tasks, we adopt L-Eval (An et al., 2023) to
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Models Methods 0% 25% 50% 75% 100% Average 0% 20% 40% 60% 80% 100% Average
MDQA Key-Value Retrieval

Vicuna-7B-v1.5

Baseline 70.4 58.0 55.4 55.4 60.4 59.9 95.2 71.6 81.0 79.0 77.4 73.4 80.9

Positional Interpolation 71.2 59.6 58.8 56.4 56.2 60.4 98.6 92.8 83.8 90.0 85.8 83.0 89.0

Attention Buckets 72.6 61.4 60.6 60.8 59.6 63.0 100 94.6 88.6 91.6 87.6 65.8 88.0

Ms-PoE 72.6 61.4 61.8 62.0 59.0 63.5 95.2 63.2 84.8 91.6 87.4 77.8 83.3

MoICE 71.6 61.2 60.6 60.8 62.4 63.3 100 93.2 90.2 87.4 89.4 70.0 88.4

LPES (Ours) 71.4 62.2 62.0 61.0 61.6 63.6 99.4 92.8 87.8 93.6 90.4 88.8 92.1

StableBeluga-7B

Baseline 67.8 59.2 59.6 59.4 68.2 62.8 90.2 34.2 44.0 16.6 59.8 79.4 54.0

Positional Interpolation 69.6 58.6 58.2 60.0 65.4 62.4 95.2 53.6 31.8 28.6 61.6 83.6 59.1

Attention Buckets 69.2 59.0 59.8 59.2 67.4 63.0 100 79.8 54.4 58.2 68.4 89.2 75.6

Ms-PoE 68.4 57.0 60.2 61.0 68.4 63.0 90.2 27.2 27.6 59.4 70.4 89.0 60.6

MoICE 67.4 60.0 60.2 60.0 68.6 63.2 99.8 71.2 52.2 54.8 74.4 91.4 74.0

LPES (Ours) 68.8 60.0 60.8 61.0 68.2 64.5 99.2 82.4 57.2 56.2 70.4 89.6 75.8

Qwen2.5-7B

Baseline 69.4 61.0 62.6 58.6 63.6 63.0 99.8 88.6 92.6 90.6 99.0 99.2 95.0

Positional Interpolation 68.6 62.0 62.2 58.4 64.0 63.0 100 93.2 91.2 88.6 98.6 99.0 95.1

Attention Buckets 69.6 62.2 63.0 60.2 62.0 63.4 100 89.2 91.4 91.6 98.2 99.2 94.9

Ms-PoE − − − − − − − − − − − − −
MoICE 68.4 61.2 63.0 61.0 63.8 63.5 99.8 88.0 92.6 91.6 99.0 99.4 95.1

LPES (Ours) 69.6 64.8 69.2 63.0 65.4 66.4 99.8 97.4 93.2 94.0 99.2 99.2 97.1

Table 1: Performance (Accuracy) of LPES when relevant information is located at different positions
(e.g., 50% indicates that the relevant document is positioned in the middle), compared with baseline
methods. LPES outperforms all baselines on average across multiple base models and datasets,
demonstrating its effectiveness in mitigating positional bias.

assess model performance, with the description detailed in Table 13 (Appendix F). Finally, MMLU
(Hendrycks et al., 2020) and C-Eval (Huang et al., 2023), which cover a broad range of general
tasks, are employed to evaluate the overall generalization capability of the models.

Baseline Methods: Positional Interpolation (PI) uses a layer-agnostic scaling factor, which is the
mean of the searched layer-wise scaling factors (Chen et al., 2023a). Attention Buckets performs
multiple forward passes, each using a different RoPE base, and then aggregates the information from
these passes (Chen et al., 2023b). Ms-PoE dynamically assigns scaling factors ranging from 1.2 to
1.8 to attention heads based on their sensitivity to relevant information (Zhang et al., 2024). Building
on the work of Chen et al. (2023b), MoICE computes attention scores using seven different RoPE
bases and then performs a weighted sum of these scores using learned weights (Lin et al., 2024).

Experimental Setup: For LLMs with a 4k-token context window, we use 10 documents from the
MDQA dataset or 50 key–value pairs from the key-value retrieval dataset as context. To evaluate
the effectiveness of mitigating positional bias in longer contexts, we provide Qwen2.5-7B with 20
MDQA documents or 150 key–value pairs and assess the model’s accuracy when the ground-truth
information appears at different positions within the context. For ZeroSCROLLS and L-Eval, the
context window is set to 3,584 tokens, with a maximum of 512 decoded tokens (Tables 2 and 3).
In addition to experiments conducted under the 4K context setting, we also report the performance
of LPES under a 16K context window in Appendix I. In the optimization algorithm, we set λB,
λM, and λE to 0.2, 0.3, and 0.5, respectively, with their settings further examined in Appendix
G. To determine the layer-wise scaling factors, we sample 200 examples from either the MDQA
or key–value retrieval datasets to search the control points of cubic Bézier. The performance of
LLMs with the optimized scaling factors is then evaluated on 500 held-out samples per dataset. To
assess the generalizability of our LPES, the scaling factors learned from MDQA are also applied to
ZeroSCROLLS and L-Eval. Additionally, the MMLU and C-Eval benchmarks are used to evaluate
the effect of layer-specific scaling on the model’s overall generalization capabilities.

4.2 RESULTS

Layer-specific positional embedding scaling greatly mitigates position bias. As shown in Table 1,
our method consistently improves performance across all positions, whereas baselines like Posi-
tional Interpolation and Ms-PoE suffer from performance degradation when relevant information
is at certain positions. Moreover, our LPES provides substantial gains on the key-value retrieval
dataset, with an average increase of 11.2 observed for the Vicuna. We evaluate the transferability
of the scaling factors derived from MDQA dataset on ZeroSCROLLS and L-Eval benchmarks. The
results in Tables 2 and 3 demonstrate that our method is effective across different models and tasks,
and for a given LLM, the optimized scaling factors generalize well to diverse tasks. Furthermore, the
results on longer context windows and larger model scales (detailed in Appendix I) further validate
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the applicability of LPES. Additionally, our method preserves the model’s general capabilities with
minimal interference, as shown in Table 4.

Model Method GovRpt Qasper SumScrFd Qmsum NarrQA Squality SpcDgst Average

Vicuna-7B-v1.5
Baseline 18.44 22.82 18.42 14.50 10.98 16.56 21.39 16.91
MoICE 22.29 32.34 13.31 14.79 13.61 16.22 22.60 19.30
LPES (Ours) 21.47 33.37 14.39 15.53 11.52 16.91 22.24 19.35

LLaMA-2-7B-chat
Baseline 18.00 13.48 13.73 14.29 10.28 15.94 49.72 19.35
MoICE 19.62 15.10 14.69 14.79 10.25 16.80 50.22 20.21
LPES (Ours) 18.20 15.23 13.99 15.04 14.93 17.37 52.28 21.01

StableBeluga-7B
Baseline 14.88 26.89 12.09 14.24 10.73 15.05 48.50 20.34
MoICE 18.14 36.89 14.35 15.76 7.990 15.97 44.50 21.94
LPES (Ours) 18.98 34.19 13.06 15.46 9.910 16.65 46.61 22.12

Qwen2.5-7B
Baseline 24.76 22.92 14.69 16.25 9.780 14.85 53.66 22.42
MoICE 25.56 23.51 15.12 23.19 10.64 16.92 53.81 24.11
LPES (Ours) 27.56 23.91 16.18 23.19 11.97 14.92 53.81 25.51

Table 2: Results of our method on various open-ended datasets compared with the baselines. Our
LPES improves performance across multiple models on seven different long-text tasks, demonstrat-
ing its effectiveness in enhancing the model’s ability to leverage contextual information.

Model Method Coursera QuALITY TOEFL SFiction Average

Vicuna-7B-v1.5
Baseline 37.21 38.12 38.00 57.90 42.81
MoICE 46.65 43.71 39.33 57.20 46.72
LPES (Ours) 40.41 42.57 40.67 58.20 45.46

LLaMA-2-7B-chat
Baseline 34.89 37.62 55.00 60.93 47.11
MoICE 42.50 42.08 56.13 64.84 50.72
LPES (Ours) 37.50 42.16 63.00 63.50 51.52

Qwen2.5-7B
Baseline 45.47 62.43 66.00 60.87 58.69
MoICE 48.13 64.28 67.33 66.00 61.44
LPES (Ours) 48.51 66.43 69.28 66.42 62.66

Table 3: Results of our method on four closed-ended long-text tasks compared with the baselines.
Our LPES consistently enhances performance on four datasets across all models.

LPES yields a more balanced attention distribution without incurring additional computational cost
during inference. Both Ms-PoE and MoICE are sample-dependent, requiring the scaling parameters
to be determined for each individual input. Consequently, the scaling factors cannot be precomputed.
Ms-PoE (Zhang et al., 2024) requires real-time computation of each attention head’s sensitivity to
relevant information, which entails performing attention calculations twice. MoICE, on the other
hand, necessitates parallel attention computations across all seven modules, while the router com-
putation is executed serially alongside the attention operations. To demonstrate the advantage in
inference efficiency, we sample 500 examples from the MDQA dataset and report the average infer-
ence time of Vicuna on a single H100 GPU. For a fair comparison, FlashAttention-2 (Dao, 2023)
was used as the attention backend for all methods. As shown in Table 5, the inference time per
sample is 1.03 seconds for Ms-PoE, 1.72 seconds for MoICE, and approximately 0.71 seconds for
our method, making LPES roughly 1.45x faster than Ms-PoE and 2.42x faster than MoICE.

Model Method MMLU C-Eval

Vicuna-7B-v1.5
Baseline 49.90 49.42

LPES (Ours) 49.00 49.33

StableBeluga-7B
Baseline 51.50 34.78

LPES (Ours) 51.30 34.63

Table 4: General capability of models equipped
with LPES on MMLU and C-Eval datasets.

Method Inference time per sample (s)
Baseline 0.71
Attention Buckets 3.38
Ms-PoE 1.03
MoICE 1.72
LPES (Ours) 0.71

Table 5: Comparison of inference efficiency be-
tween LPES and baseline methods.
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4.3 IMPACT OF HYPER-PARAMETERS

In this section, we present three sets of experiments using Vicuna-v1.5 on the MDQA dataset to
demonstrate that Bézier curves more effectively determine layer-specific scaling factors compared
to alternative curves. We further examine the impact of the number of control points on both con-
vergence quality and speed. Compared to brute-force search, modeling the search space with Bézier
curves enables rapid convergence to high-performing solutions within a limited time, and the results
indicate that performance is largely insensitive to the number of control points employed. Addi-
tionally, by sampling different search sets to determine the scaling factors, we observe consistently
stable performance, further confirming the robustness of our search algorithm.

4.3.1 THE IMPACT OF CURVE TYPE

Bézier curves provide a compact, low-dimensional parameterization capable of approximating a
wide variety of curve shapes (Nuntawisuttiwong & Dejdumrong, 2021). To demonstrate the advan-
tages of Bézier curve modeling, we further employ two alternative approaches: linear interpolation
between control points and step-function modeling based on control points. Although these alter-
natives differ in their curve formulations, they also serve as layer-specific scaling strategies within
our framework. While linear interpolation offers slightly higher computational efficiency, we ulti-
mately adopt Bézier curves due to their superior performance. As shown in Table 6, Bézier curves
outperform other curve-fitting methods, and the minor additional cost required to determine the scal-
ing factors is fully offset by the inference-time performance gains. Furthermore, when evaluated on
deeper models and finer-grained positional segments, Bézier curves consistently yield improvements
across all positions compared with linear interpolation, as detailed in Appendix H.

Method 0% 25% 50% 75% 100% Average
Baseline 70.4 58.0 55.4 55.4 60.4 59.92
LPES (Linear interpolation) 71.8 61.0 62.2 60.0 60.6 63.12
LPES (Step function) 71.6 60.2 59.4 59.2 60.4 62.16
LPES (Bézier curve) 71.4 62.2 62.0 61.0 61.6 63.64

Table 6: Performance comparison of different curve types for determining layer-wise scaling factors.
Bézier curves achieve superior performance.

4.3.2 EFFECT OF THE NUMBER OF CONTROL POINTS

We set the maximum number of iterations to 20 and, while keeping all other experimental settings
unchanged, vary the number of control points to evaluate performance and convergence speed, where
performance is measured by the mean and variance of accuracy across different document positions.
As the number of control points increases, the Bézier curve fitting becomes more precise, improving
the likelihood of identifying an optimal combination of scaling factors. However, a larger number
of control points also enlarges the search space, which slows convergence.

As shown in Table 7, using four control points provides a favorable trade-off between performance
and convergence speed. In contrast, brute-force search shows little tendency to converge within the
limited number of iterations, further highlighting the efficiency of our constrained genetic algorithm.

Control Points Accuracy (Std) Epochs to Convergence (≤ 20)
Baseline 59.9 (±5.56) −−
Brute-Force 60.2 (±4.69) 20
2 60.6 (±4.55) 3
3 62.2 (±3.97) 5
4 63.6 (±3.90) 9
5 63.8 (±3.87) 16

Table 7: Performance with varying numbers of control points. Increasing the number of control
points improves accuracy and reduces positional bias, although convergence slows as the computa-
tional cost of optimization increases. Overall, the experimental results indicate that performance is
insensitive to the number of control points used.
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4.3.3 ROBUSTNESS OF THE SEARCH ALGORITHM

In this section, we evaluate the robustness of the scaling factors with respect to variations in the
search dataset. On the MDQA dataset, we use Vicuna-1.5-7B and randomly sample 200 training
instances as the search set for each run. Across five independent runs, the average performance
is 63.68 with a sample variance of only 0.027, demonstrating that our method remains highly sta-
ble under different search subsets. Overall, our approach consistently outperforms prior methods,
highlighting both the stability and robustness of the proposed search algorithm.

Method 0% 25% 50% 75% 100% Average
Baseline 70.4 58.0 55.4 55.4 60.4 59.9
Attention Buckets 72.6 61.4 60.6 60.8 59.6 63.0
Ms-PoE 72.6 61.4 61.8 62.0 59.0 63.5
MoICE 71.6 61.2 60.6 60.8 62.4 63.3

LPES (run 1) 71.4 62.2 62.0 61.0 61.6 63.6
LPES (run 2) 71.6 62.4 62.2 60.8 61.8 63.8
LPES (run 3) 71.6 61.8 61.8 62.0 61.0 63.6
LPES (run 4) 72.6 61.0 62.0 63.2 61.0 63.9
LPES (run 5) 72.2 62.8 61.0 61.0 60.4 63.5

Table 8: Performance of LPES across five independent runs compared with baseline methods. Per-
centages indicate the relative position of relevant documents in the context.

5 CONCLUSION

We presented layer-specific positional embedding scaling (LPES), an efficient method to mitigate
position bias in transformer-based LLMs. By assigning distinct scaling factors to each layer, LPES
achieves a balanced attention distribution across long-context inputs without fine-tuning model pa-
rameters or increasing inference latency. To efficiently identify optimal layer-wise scaling factors,
we introduced a genetic optimization algorithm constrained by Bézier curves, which significantly re-
duces the search space and enables rapid convergence with only a few hundred examples. Extensive
experiments across multiple benchmarks demonstrate that LPES consistently improves long-context
performance while preserving general model capabilities. Notably, LPES requires only a single for-
ward pass, achieving 2.42x speedup over MoICE and 1.45x over Ms-PoE. Our findings also showed
that the derived scaling factors generalize well to new tasks and preserve the model’s general capa-
bilities, making LPES a broadly applicable and efficient solution.

ETHICS STATEMENT

This study focuses on positional bias in the contexts of LLMs and strictly adheres to the ICLR
Code of Ethics. Ethical considerations were carefully integrated into dataset selection, model usage,
methodological design, and potential applications to prevent any involvement of privacy risks, dis-
crimination, or harmful content. All experiments were conducted using publicly available datasets
and open-source frameworks to ensure fairness, safety, and reproducibility of the research findings.

REPRODUCIBILITY STATEMENT

This work ensures strong reproducibility. The datasets, models, and detailed experimental settings
are thoroughly described in Section 4.1. The hyperparameters of the genetic algorithm and the
weighting scheme of the fitness function are further detailed in Appendices E and G, respectively.
All experiments are implemented using the open-source Transformers framework, which further
guarantees reproducibility.
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A LONG-TERM DECAY AND ATTENTION WAVE IN ROPE

Zhang et al. (2024) observed that the long-term decay of RoPE causes the model to focus more
on the end of a sequence. As the relative distance grows, attention scores drop rapidly, leading
the model to overemphasize nearby tokens during autoregressive decoding while neglecting distant
ones. To mitigate this issue, they scale RoPE by a factor s >= 1 (Figure 3), which effectively
reduces the relative distance to 1/s of its original value (Figure 4). This adjustment slows the decay
rate, enabling the model to attend not only to nearby tokens but also to more distant ones, particularly
those in the middle of the sequence.

To demonstrate that scaling RoPE can indeed enhance the model’s attention to middle positions, we
use the Vicuna-7B-v1.5 (Chiang et al., 2023) and LLaMA-2-7B-hf (Touvron et al., 2023) which
both consist of 32 transformer layers to conduct experiment on the validation dataset of QMSum
(Shaham et al., 2023). We split the context into three parts and calculate the attention scores to the
middle-part tokens at different scales. In Figure 5, an increase in the scale factor leads to higher
attention scores, demonstrating that scaling RoPE allows the model to focus more on middle-part
content during autoregressive decoding.

Chen et al. (2023b) analyze the phenomenon of oscillatory “attention waves” in Transformer models,
where attention fluctuates across tokens instead of being smoothly distributed. These oscillations,
mainly induced by the mechanisms of RoPE, can cause the model to under-attend to important in-
formation located at attention troughs, limiting long-context utilization and potentially introducing
instability. To address this issue, the authors propose the Attention Buckets approach, which runs
multiple model parallels with different bases in RoPE and combines the decoded logits across these
bases, producing complementary attention wave patterns. The method enhances the model’s sensi-
tivity to context across all positions.

Normal AttentionScaled Attention

Softmax

RoPE
(Scaling Factor = s) 

Query Key Value

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

0

1/s 0

2/s 1/s 0

3/s 2/s 1/s 0

4/s 3/s 2/s 1/s 0

Figure 3: We obtain multi-scale RoPE by scaling the positional indices.

Attention Waves

Figure 4: The rapid decay of RoPE prioritizes local focus, and the attention waves may cause the
model to overlook crucial information at attention troughs, whereas the scaling operation can slow
this decay and generate diverse wave patterns.
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Figure 5: The attention score to the middle part across some layers. The scaling operation can
enhance the model’s attention to middle positions.

B SEARCH SPACE AND TIME COMPLEXITY ANALYSIS

We follow Ding et al. (2024), discretizing the continuous search space to enable more efficient
searching. Assume the control points of the Bézier curve are (P x, P y), where P x ∈ [0, L − 1] (L
is the number of scaled layers) and P y ∈ [1, 2]. The values of P x are discretized with a step size of
1, and the values of P y are discretized with a step size of 0.1. Given that the model consists of 32
layers, there are 32 possible selections in PX , while the scaling factor chosen from the PY set offers
11 options as shown in Table 9. The total number of choices for the brute-force search is 1132. If a
Cubic Bezier curve is used, each control point has 32×11 possible combinations. With four control
points, the total search space is 3524 which approximately narrows the search space by a significant
factor 1020 compared to the brute-force search.

Coordinate Search Space
P x {0, 1, 2, 3, 4, 5, 6, 7, 8,. . . , n− 4, n− 3, n− 2, n− 1}
P y {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}

Table 9: Search space for the control point of Bézier curves.

In our method, the dominant cost of the genetic algorithm arises from evaluating the fitness func-
tion, which requires running model inference to assess the effectiveness of different scaling factors.
In contrast, the computational overhead of other GA operations—such as assignment, mutation,
and crossover—is negligible. Using 4×H100 GPUs, we measured the per-epoch time cost of each
operation as follows:

Operation Type Time (s)
Assigning scaling factor from curve 5.2
Mutation 4.5
Crossover 2.3
Computing fitness via model inference 1167.4

Table 10: Measured runtime per epoch of each operation in the genetic algorithm when using
4×H100 GPUs. Model inference dominates the total cost.

Assume the algorithm runs for at most M epochs and generates N new individuals per epoch,
and the search uses S samples. Each individual requires three inference runs (placing the correct
document at different positions). Thus, the total number of inference calls is 3NMS. In practice,
we perform data-parallel inference using Ncard GPUs with batch size B, which reduces the effective
runtime to O((3MNS)/(Ncard ·B)) .
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C LIMITATIONS OF GRADIENT-BASED METHODS

We also attempted to determine the layer-specific scaling factors using gradient descent, but ob-
served poor convergence behaviors. This may also shed light on why LongRoPE (Ding et al., 2024)
and LongRoPE2 (Shang et al., 2025) employ genetic algorithms rather than backpropagation to de-
termine the scaling factors across RoPE dimensions. Although the genetic algorithm incurs higher
computational overhead compared to directly optimizing hyperparameters via backpropagation, it
consistently converges to a more favorable set of scaling parameters. Furthermore, incorporating
Bézier curves significantly accelerates the convergence process.

In the gradient-based method setting, we construct three datasets from the MDQA, each containing
2, 000 samples in which the correct document is placed at a different position (i.e., first, middle, or
last). In each epoch, a total of 2, 000 samples are drawn from these datasets based on the value of
λ as specified in Section §4.1, where a larger λ indicates a higher probability of sampling from the
corresponding dataset. For stable training, we use a batch size of 32, a learning rate of 1e − 5, and
train the model for a total of 30 epochs.

For the gradient-based method, we observed that even with a large batch size and a small learning
rate, the optimization of scaling factors via backpropagation failed to converge. A possible reason
is the limited number of trainable parameters (Sun et al., 2025). We evaluated the model at the 30th
epoch and found a significant degradation in performance, as shown in Table 11.

Model Method 0% 25% 50% 75% 100%

Vicuna-7B-v1.5 Baseline 70.4 58.0 55.4 55.4 60.4
Gradient-Based 67.4 54.0 51.2 52.8 55.8

Qwen2.5-7B Baseline 69.4 61.0 62.6 58.6 63.6
Gradient-Based 68.7 56.6 57.6 55.8 57.8

Table 11: Gradient-based methods lead to accuracy degradation in the MDQA dataset.

D CUBIC BÉZIER CURVE PARAMETERIZATION FOR LAYER ASSIGNMENT

Consider a cubic Bézier curve with four control points:

P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3). (11)

where the x-coordinates are strictly increasing since Equation 10:

x0 < x1 < x2 < x3. (12)

The parametric form of the cubic Bézier curve is

x(t) = (1− t)3x0 + 3(1− t)2tx1 + 3(1− t)t2x2 + t3x3,

y(t) = (1− t)3y0 + 3(1− t)2ty1 + 3(1− t)t2y2 + t3y3,
(13)

where t ∈ [0, 1].

Since the xi are strictly increasing, the function x(t) is typically monotonic. This property allows
the use of a binary search over the interval [0, 1] to efficiently find the parameter t corresponding to
any given target value x, which defines the function t(x).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E HYPERPARAMETERS OF THE CONSTRAINED GENETIC ALGORITHM

Hyperparameter Value Description

Population size Nps 32 Number of individuals in initial population generation.
Parents size Npa 12 Number of individuals selected as parents.
Max epoch T 20 Maximum number of generatios.
Mutation numbers Nmu 16 Number of offspring generated through mutation.
Crossover numbers Ncr 4 Number of offspring generated through crossover.
Max crossover try Nct 4 Maximum attempts allowed to produce valid offspring during crossover.
Mx 2 Perturbation magnitude of the control point’s x-coordinate (P x).
My 0.2 Perturbation magnitude of the control point’s y-coordinate (P y).

Table 12: Hyperparameter settings of the constrained genetic algorithm

F DATASET DETAILS

Dataset Question Style Domain Metric
Coursera Multiple Choice Advanced Courses Accuracy
QuALITY Multiple Choice Gutenberg Accuracy
TOEFL Multiple Choice English Test Accuracy
SFiction True/False Questions Scientific Fiction Accuracy

Table 13: Overview and evaluation metrics of the sub-datasets in L-Eval.

Dataset Description Metric
GovReport Summarization of long reports ROUGE-1/2/L
SummScreenFD Summarization of TV show episode scripts ROUGE-1/2/L
QMSum Query-based summarization over meeting transcripts ROUGE-1/2/L
SQuALITY Question-focused summarization over stories ROUGE-1/2/L
Qasper Question answering over research papers F1
NarrativeQA Question answering about entire books and movie scripts F1
SpaceDigest Aggregated sentiment classification over 50 hotel reviews from Space Exp similarity

Table 14: Overview and evaluation metrics of the sub-datasets in ZeroSCROLLS.

Write a high-quality answer for the given question using only the provided 
search results (some of which might be irrelevant).

{search_results}

Question: {question}
Answer:

Extract the value corresponding to the specified key in the JSON object below.

JSON data:
{formatted_kv_records}

Key: "{key}"
Corresponding value:

Figure 6: Prompt templates used in MDQA and Key-Value Retrieval datasets.
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G PERFORMANCE VERSUS VALUES OF HYPER-PARAMETERS λ

In our experiments, we observed that when scaling RoPE, the model tends to improve performance
at early positions while neglecting performance at later positions. Consequently, when setting λ,
we favor assigning larger weights to later positions. Here, we define ⟨λB, λM, λE⟩ as the weights as-
signed to the accuracy of the beginning, middle, and end positions, respectively, in the genetic algo-
rithm’s fitness function. In this study, we compare three weighting schemes: ⟨0.333, 0.333, 0.333⟩,
⟨0.1, 0.3, 0.6⟩, and ⟨0.2, 0.3, 0.5⟩.

Method 0% 25% 50% 75% 100% Average
Baseline 70.4 58.0 55.4 55.4 60.4 59.9
⟨0.333, 0.333, 0.333⟩ 73.2 62.4 60.2 58.8 58.2 62.6
⟨0.1, 0.3, 0.6⟩ 70.6 60.2 60.8 61.0 62.0 63.0
⟨0.2, 0.3, 0.5⟩ 71.4 62.2 62.0 61.0 61.6 63.2

Table 15: The impact of hyper-parameters λ on the optimized layer-wise scaling factors, showing
that performance is largely insensitive to their choice.

H FURTHER ANALYSIS OF CURVE PARAMETERIZATIONS

To further emphasize the advantage of Bézier curves over linear interpolation, we evaluate a deeper
model (Vicuna-13B-v1.5 with 40 layers) using finer-grained 10% evaluation intervals. As shown
in Table 16, linear interpolation exhibits noticeable performance drops around the 20% and 80%
positions. In contrast, the smoother Bézier curve consistently improves performance across all
positions, confirming its superiority in modeling gradual layer-wise variations.

Curve Type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average
Baseline 70.4 66.2 66.4 65.2 64.8 64.0 63.0 62.0 63.4 65.2 65.2 65.1
Linear Interpolation 71.8 66.4 64.4 65.0 64.6 64.0 64.6 63.4 62.8 65.2 65.2 65.2
Bézier Curve 71.8 68.4 69.4 66.6 65.2 65.2 65.0 64.0 65.8 65.2 65.2 66.5

Table 16: Performance across different curve parameterizations, showing consistent improvements
of Bézier curves over linear interpolation and baseline.

I EFFECTIVENESS OF LPES ON LONGER CONTEXTS

We conduct experiments on Vicuna-1.5-13B and Qwen-2.5-7B under a 16k-token context setting
on L-Eval to verify the effectiveness of LPES in long-context scenarios. The decoding length is set
to 512 tokens, so the maximum usable context window is limited to 15,872 tokens. As shown in
Table 17, the results demonstrate that our method remains effective on larger models and extended
context lengths, highlighting its strong scalability and robustness.

Model Method Coursera QuALITY TOEFL SFiction Average

Vicuna-13B-v1.5-16k
Baseline 69.6 51.4 33.3 57.1 52.9
MoICE 67.4 55.6 35.7 52.6 52.8
LPES (Ours) 70.6 54.4 36.0 59.4 55.1

Qwen2.5-7B
Baseline 59.8 66.3 76.6 71.8 68.6
MoICE 59.8 66.3 78.7 73.0 69.5
LPES (Ours) 63.8 69.1 88.9 72.9 73.7

Table 17: Results on longer-context settings (16k tokens). LPES consistently improves performance
over baseline and MoICE on both Vicuna-13B-v1.5-16k and Qwen2.5-7B, demonstrating strong
scalability to larger models and longer context windows.
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