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Abstract

Program of Thoughts (PoT) is an approach001
characterized by its executable intermediate002
steps, which ensure the accuracy of the numeri-003
cal calculations in the reasoning process. Cur-004
rently, PoT primarily uses Python. However,005
relying solely on a single language may result006
in suboptimal solutions and overlook the poten-007
tial benefits of other programming languages.008
In this paper, we conduct comprehensive ex-009
periments on the programming languages used010
in PoT and find that no single language con-011
sistently delivers optimal performance across012
all tasks and models. The effectiveness of each013
language varies depending on the specific sce-014
narios. Inspired by this, we propose a task015
and model agnostic approach called MultiPoT,016
which harnesses strength and diversity from017
various languages. Experimental results reveal018
that it significantly outperforms Python Self-019
Consistency. Furthermore, it achieves compa-020
rable or superior performance compared to the021
best monolingual PoT in almost all tasks across022
all models. In particular, MultiPoT achieves023
more than 4.6% improvement on average on024
both Starcoder and ChatGPT (gpt-3.5-turbo).025

1 Introduction026

Program of Thoughts (PoT) aims to prompt Code027

Large Language Models (Code LLMs) to decom-028

pose complex problems into successive executable029

codes (Gao et al., 2023; Chen et al., 2022). The030

computational process of the final result is decou-031

pled from Code LLMs and accurately executed by032

an external interpreter. PoT significantly reduces033

mathematical computation errors and improves rea-034

soning performance (Wang et al., 2023a). Subse-035

quently, benefiting from its flexibility and scalabil-036

ity, it is gradually applied to a broader spectrum of037

fields like image understanding (Surís et al., 2023)038

and robotic control (Li et al., 2023a). Nowadays,039

PoT has become a key method for enabling intelli-040

gence in agents (Yang et al., 2024).041

from datetime import datetime, timedelta
today = datetime(2008, 3, 31)
one_year_ago = today - timedelta(days=365)

library(lubridate)
today <- ymd("2008-03-31")
one_year_ago <- today - years(1)

PoT with Python

PoT with R

Answer:04/01/2007

Answer:03/31/2007

Today is the last day of the first quarter of 2008. 
What is the date one year ago from today?

let date = new Date(2008, 2, 31);
// months are 0-indexed in JavaScript
date.setFullYear(date.getFullYear() - 1);

PoT with JavaScript

Answer:03/31/2007

❌

✅

✅

Figure 1: Comparison of PoT with different PLs.
Python’s ‘timedelta’ lacks support for year compu-
tation, leading to a leap year (2008 has 366 days) error
by subtracting 365 days. R and JavaScript directly com-
pute the year and get the correct answer.

Despite significant progress, PoT has a notable 042

limitation: to the best of our knowledge, all re- 043

search on PoT focuses on Python. However, since 044

Code LLMs are capable of multilingual genera- 045

tion,1 and most of the reasoning tasks are language- 046

independent, many other programming languages 047

(PLs) can also be applied to PoT, especially when 048

considering their unique strength. From the per- 049

spective of tasks, different languages represent PoT 050

in different forms. Figure 1 shows that the repre- 051

sentation and calculation of dates in R is more 052

concise than in Python. This can reduce the com- 053

plexity when Code LLMs generate PoTs. From 054

the perspective of models, their multilingual ability 055

is inconsistent. For instance, Deepseek Coder’s 056

1In this paper, our “multilingual” represents multiple pro-
gramming languages, not natural languages.
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C++ outperforms Python on the code generation057

task (Guo et al., 2024). It is natural to wonder058

whether this phenomenon also occurs on reasoning059

tasks. Therefore, a crucial question is raised with060

these perspectives: Is Python truly the optimal lan-061

guage for all tasks and models for PoT? Relying on062

Python may lead to a local optimum. In Figure 1,063

Python’s ‘timedelta’ does not support ‘year’, re-064

sulting in a miscalculation for the leap year. In065

contrast, R and JavaScript yield the correct answer.066

Motivated by this, we conduct comprehensive067

experiments for multilingual PoTs. Beyond Python,068

we select four PLs: three widely used general lan-069

guages (JavaScript, Java, and C++) and a niche070

but comprehensive language (R). For a comprehen-071

sive comparison, we identify five distinct sub-tasks072

within reasoning tasks: math applications (Cobbe073

et al., 2021; Patel et al., 2021; Miao et al., 2020),074

math (Hendrycks et al., 2021), tabular, date, and075

spatial (Suzgun et al., 2022). We select four back-076

bone LLMs: three strongest Code LLMs (Star-077

coder (Li et al., 2023b), Code Llama (Roziere et al.,078

2023), and Deepseek Coder (Guo et al., 2024))079

and code-capable ChatGPT (gpt-3.5-turbo). Under080

both greedy decoding and Self-Consistency (Wang081

et al., 2022) settings, we answer that “Python is not082

always the optimal choice, as the best language de-083

pends on the specific task and model being used.”084

In addition to the analysis contribution, to lever-085

age the strength of multiple PLs, we further intro-086

duce a simple yet effective approach, called Multi-087

PoT (Multilingual Program of Thoughts). Multi-088

PoT is a task and model agnostic approach, which089

uses LLMs to synchronously generate PoTs with090

various PLs and subsequently integrates their re-091

sults via a voting mechanism. The use of multi-092

ple PLs also provides greater diversity and re-093

duces the probability of repeating the same errors094

compared to single-language sampling. Experi-095

mental results demonstrate that MultiPoT outper-096

forms Python Self-Consistency significantly. Fur-097

thermore, MultiPoT achieves great performance098

across nearly all tasks and models. It effectively099

matches or even surpasses the top-performing lan-100

guages in each specific scenario, and outperforms101

on task and model averages. Especially on both102

ChatGPT and Starcoder, MultiPoT performs the103

best on four out of five tasks, with only a slight un-104

derperformance on the remaining task, and shows105

an improvement of over 4.6% compared to the best106

monolingual PoT on average.107

Our contributions are summarized below:108

• We conduct comprehensive experiments of 109

PoTs with different PLs across various reason- 110

ing tasks and models, revealing that the choice 111

of PL is dependent on tasks and models. 112

• We introduce a task and model agnostic ap- 113

proach called MultiPoT, which integrates mul- 114

tilingual PoTs and leverages strength and di- 115

versity across various PLs. 116

• Experimental results show that MultiPoT 117

outperforms Python Self-Consistency and 118

matches or surpasses the best language of 119

each scenario. On both the model and task 120

averages, MultiPoT enhances performance. 121

2 Related Work 122

2.1 Program of Thoughts 123

In-context learning (Brown et al., 2020; Chowdh- 124

ery et al., 2023) is a natural ability that emerges 125

when models scale up (Kaplan et al., 2020; Wei 126

et al., 2022b). It appends demonstrations before the 127

question, guiding the LLMs to generate outputs in 128

specific format (Liu et al., 2023; Wei et al., 2022a). 129

CoT (Wei et al., 2022c) is a specific form of in- 130

context learning, whose demonstrations consist of 131

intermediate steps imitating the human thought pro- 132

cess. It significantly enhances the model’s rea- 133

soning capabilities (Yang et al., 2023) but suf- 134

fers from errors associated with numerical calcu- 135

lations (Madaan and Yazdanbakhsh, 2022). CoT 136

always uses Self-Consistency (Wang et al., 2023c) 137

to increase the probability of getting the correct 138

answer by sampling and voting. 139

PoT (Chen et al., 2022; Gao et al., 2023) is an 140

extension of CoT to avoid incorrect calculation. 141

It represents intermediate steps as comments and 142

code and executes the entire program with an inter- 143

preter to obtain answers. PoT not only excels in rea- 144

soning tasks but has rapidly extended to practical 145

applications, including image understanding and 146

robotic control (Surís et al., 2023; Li et al., 2023a). 147

It has become a key method for agents to perform 148

complex reasoning and tool invocation (Yang et al., 149

2024). It is important to note that all previous PoT 150

work only use Python. For the first time, we are 151

exploring PoTs that use multiple PLs. 152

2.2 Usage of Multiple Program Languages 153

The training datasets naturally include a variety 154

of PLs, endowing Code LLMs with the ability to 155

handle multilingual programming (Kocetkov et al., 156
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MultiPoT
Step1: construct multilingual prompts

Self-Consistent

Step2: integrate multiple programming languages

Python Prompt Multipot.py
Multipot.java

Multipot.r
Multipot.cpp

Java Prompt
R Prompt

C++ Prompt
JavaScript Prompt Multipot.js

PoT[1-5].py

Python PoT in Demostration
penguins = [
    {"name": "Louis”,...},
    {"name": "James",...},...]
penguins_less_than_8_years = 
sum(1 for penguin in penguins if 
penguin["age"] < 8)
sorted_penguins =
sorted(penguins, key=lambda p: 
p["name"])

            C++ PoT in Demonstration 
#include <algorithm>
#include <vector>
...
struct Penguin {string name;int age;...};
...
    for (const auto& penguin : penguins)
        if (penguin.age < 8) count++;
    sort(penguins.begin(), penguins.end(), 
[](const Penguin &a, const Penguin &b) 
return a.name < b.name;

Python Prompt

Results: 
6 

❌

5 5 5 

✅

7 

❌

Answer: 
5 

✅

Answer: 
6 

❌

Results:
6 6 6 6 

❌

5 

✅

Built-in Content 
Sepcial Syntax 
Type Definition 
Varibale Naming

Demonstration
Question

Python PoT
Question

Figure 2: Comparative overview of MultiPoT and Self-Consistency. MultiPoT constructs prompts for each PL,
ensuring a consistent reasoning process while aslo considering the distinct coding styles. It then integrates these
PLs: generating multilingual PoTs based on prompts, executing them to gather results, and finally voting for the
answer. In contrast to Self-Consistency’s single-language focus, MultiPoT leverages multiple PLs.

2022; Nguyen et al., 2023; Gao et al., 2020; Ni-157

jkamp et al., 2023; Chen et al., 2021). This capabil-158

ity extends code tasks like generation, optimization,159

translation, and repair to other languages beyond160

Python (Gimeno et al., 2023; Shypula et al., 2023;161

Zhang et al., 2023; Wu et al., 2023). Despite the162

progress, current multilingual research (Jin et al.,163

2023; Joshi et al., 2023; Khare et al., 2023) mainly164

focuses on code-related tasks, neglecting the po-165

tential of PLs as tools to assist in other tasks. Ad-166

ditionally, these studies often treat each language167

separately without interaction. Our study pioneers168

the use of multiple PLs in reasoning tasks and in-169

troduces a novel integrated approach, leveraging170

the collective strength and diversity of various PLs171

to enhance overall performance.172

3 Methodology173

Figure 2 provides an overview of MultiPoT and174

compares it with Self-Consistency. MultiPoT in-175

volves two key steps. Firstly, it constructs a unique176

prompt for each PL while ensuring semantic con-177

sistency and formal diversity among them. (Sec-178

tion 3.1). Secondly, it integrates multiple PLs.179

Specifically, generate PoT in the corresponding180

language from the prompt of each PL, followed by181

executing to obtain results and voting for the final182

answer. (Section 3.2). Unlike Self-Consistency,183

which relies on a single PL, MultiPoT integrates a184

range of PLs, utilizing their strength and diversity.185

3.1 Multilingual Prompts Construction 186

To prompt Code LLMs to generate PoTs with mul- 187

tiple PLs, we first construct demonstrations with 188

PoTs across different PLs. To ensure fairness, all 189

PLs share the same questions in demonstrations. 190

This requires that PoTs in each PL are semanti- 191

cally identical, which means the same reasoning 192

process and execution results. However, there is a 193

great diversity among PLs. The representation of 194

the reasoning process should closely align with the 195

typical styles of each PL in the pre-training data. 196

This is crucial to fully utilize the capabilities of 197

Code LLMs (Wang et al., 2023b). Therefore, when 198

transforming the reasoning process into code, we 199

consider the formal diversity among PLs. 200

We take Built-in Content, Special Syntax, 201

Type Definition, and Varibale Naming as exam- 202

ples. In Figure 2, (1) while Python can directly 203

employ the ‘sort’ function, C++ has to load it 204

from the ‘algorithm’ library. Regarding variables, 205

Python’s ‘list’ resembles C++’s ‘vector’ more 206

than the array. (2) List comprehension like ‘sum(1 207

for penguin in penguins if penguin["age"] 208

< 8)’ is a standard syntax in Python. However, a 209

straightforward for-loop is the common practice 210

in other PLs. (3) Static PLs such as C++ require 211

to define the variable type. We carefully define 212

‘int’ and ‘double’ variables to ensure computa- 213

tional accuracy and enhance flexibility by defining 214

‘struct’. (4) We keep the naming styles of each 215
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PL. For instance, Python uses Snake Case, whereas216

Java favors Camel Case (‘secondPenguin’). Ap-217

pendix A.3 shows the demonstrations.218

Based on semantic consistency, we successfully219

craft multilingual demonstrations exhibiting some220

formal variations. By adding the question after the221

demonstration, we get the prompt for each PL.222

3.2 Intergration223

While Self-Consistency enhances performance by224

sampling to explore more reasoning paths, it can225

lead to repeated errors across different samples. In226

contrast, MultiPoT constructs multilingual prompts227

and generates PoTs in multiple PLs, significantly228

increasing the diversity of results.229

Specifically, after constructing prompts for each230

PL, models generate corresponding PoTs, while231

tracking cumulative probabilities. These probabili-232

ties indicate the model’s confidence in each answer,233

with higher probabilities denoting greater confi-234

dence. PoTs are then executed and results are col-235

lected. The final answer is determined by voting on236

these results. In cases of tied votes, answers with237

higher cumulative probabilities are favored. The238

integration of multiple PLs introduces more poten-239

tial correct answers and reduces the probability of240

the same errors in candidate results.241

4 Experiment Setup242

4.1 Programming Languages243

When selecting PLs to compare with Python, we244

focus on diversity. JavaScript is the most popu-245

lar language on GitHub (GitHub, 2023) and has246

less overlap in application with Python, particu-247

larly in the ML/AI domains. R has an extensive248

range of packages, which is similar to Python, but249

has much less data in pre-training data since it is250

a niche language. Python, R, and JavaScript are251

dynamic languages that do not require explicit vari-252

able type definitions. To incorporate the diversity253

of language types, we choose the two most com-254

mon static languages, Java and C++. The latter255

is closer to low-level programming and has fewer256

extension packages. We do not include C due to257

its high similarity with C++. These five languages258

offer a diverse range of application scenarios, data259

volumes, and language types compared to Python.260

4.2 Tasks261

We select representative and discriminating tasks.262

We initially select four tasks from Gao et al. (2023):263

Math Application (Appl.), Date, Tabular and 264

Spatial, and add the task Math. Appl. contains 265

elementary-level mathematical application prob- 266

lems (GSM8K (Cobbe et al., 2021), SVAMP (Patel 267

et al., 2021), Asdiv (Miao et al., 2020)). Date, Tabu- 268

lar, and Spatial are extracted from BBH-Hard (Suz- 269

gun et al., 2022) (Date Understanding, Penguins 270

in a Table, Reasoning about Coloured Objects). 271

These tasks assess understanding and reasoning 272

about temporal sequences, structured text, and spa- 273

tial positioning respectively. Math, consisting of 274

the transformed MATH (Hendrycks et al., 2021) 275

dataset. The difference between Math and Appl. 276

lies in the level of difficulty. Math is more chal- 277

lenging and directly describes the math question 278

without scenarios. These five tasks do not encom- 279

pass all reasoning tasks and datasets but are dis- 280

criminating and representative enough to test the 281

capabilities of the model in different PLs. The addi- 282

tional details of the tasks are in the Appendix A.1. 283

4.3 Backbone LLMs 284

As the previously used code-davinci family is no 285

longer accessible, we select four backbone LLMs, 286

including the three strongest Code LLMs: Star- 287

coder (15B), Code Llama (34B), and Deepseek 288

Coder (33B). We select the base versions. The 289

experiments of the Python version are discussed in 290

Section 6.2.5, and the results indicate that they do 291

not affect our conclusions and methodology. Chat- 292

GPT is also utilized as a representative of code- 293

capable NL LLMs, invoking through the API of 294

gpt-3.5-turbo. By choosing these backbone LLMs 295

with different sizes and characteristics, we can ob- 296

tain more realistic and credible results. 297

4.4 Inference Details 298

We combine Chen et al. (2022) and Gao et al. 299

(2023)’s prompt templates for few-shot inference. 300

We fix the questions from the previous work and 301

write code in the respective PLs. The number of 302

questions in each task is shown in Appendix A.1. 303

When sampling for Self-Consistency, we follow 304

Chen et al. (2022) and set t = 0.4, top_p = 1. For 305

a fair comparison with MultiPoT which integrates 306

five languages, we set k = 5. 307

5 Results 308

In this section, we first discover from the results 309

of greedy decoding that Python is not the best lan- 310

guage for all tasks and all models. There is no 311

such perfect language. The performance of each 312
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(a) Starcoder (b) Code Llama (c) Deepseek Coder

Python R C++ Java JavaScript

Date Date Date

Tabular Math Tabular TabularMath Math

Spatial Appl. Spatial SpatialAppl. Appl.

AVG AVG AVG

Figure 3: The performance of three models across five tasks in five different programming languages. AVG denotes
the average performance of a programming language across all tasks. Each language performance is expressed as a
ratio to the highest-performing language for that specific task. The center of the circle represents 50%.

Language Code LLMs ChatGPT

Appl. Math Date Tabular Spatial AVG Appl. Math Date Tabular Spatial AVG

Python 58.51 23.62 42.37 83.00 73.87 56.27 80.75 39.74 46.61 94.63 91.70 70.69
R 57.04 22.61 47.70 85.46 71.20 56.80 79.37 34.86 55.01 89.93 92.85 70.40
C++ 60.80 22.61 32.79 86.35 75.87 55.68 79.46 39.90 47.70 91.95 86.65 69.13
Java 60.11 23.75 43.81 87.92 75.82 58.28 80.63 42.65 51.22 87.92 86.70 69.82
JavaScript 60.14 24.35 42.82 83.89 71.58 56.56 81.25 36.07 55.01 92.62 90.15 71.02

Table 1: The performance of Code LLMs and ChatGPT for greedy decoding for five languages on five tasks. Code
LLMs are the average results for Starcoder, Code Llama, and Deepseek Coder. AVG means the average performance
of the language on five tasks. Bold denotes the highest performance on the task.

PL varies greatly depending on the task and model313

(Section 5.1). After Self-Consistency, the perfor-314

mance discrepancy still exists. Finally, by inte-315

grating multiple languages, MultiPoT significantly316

outperforms Python. Furthermore, its performance317

matches or exceeds the best monolingual PoTs in318

almost all scenarios and achieves improvement on319

task and model averages (Section 5.2).320

To reduce evaluation bias, our analysis of the321

correlation between PLs and tasks will be based322

on the averaged results from the three Code LLMs.323

Due to the significant differences between Chat-324

GPT and these Code LLMs, we will not include its325

results in the average calculation.326

5.1 Comparison among programming327

languages328

Python is not the optimal language choice. Ta-329

ble 1 shows that the best PL for Code LLMs and330

ChatGPT on average is Java and JavaScript, respec-331

tively. Figure 3 illustrates that Python does not332

achieve the best performance on any of the tasks333

for any of the Code LLMs. On Deepseek Coder,334

Python is even the worst-performing PL on average.335

On ChatGPT, although Python performs best on 336

Tabular, it falls short by 2.9% and 8.4% compared 337

to the best PL on Math and Date respectively. The 338

preference for Python among humans may be due 339

to its simple syntax and high readability, but it is a 340

subjective bias that PoT only needs it. Relying on 341

Python leads to a suboptimal outcome. 342

However, it is important to note that there is 343

no one-size-fits-all language for all tasks and 344

models. The gap between PLs is significant when 345

considering each task and model. 346

The performance of each programming lan- 347

guage is task-dependent. Different tasks are suit- 348

able for different languages. Table 1 indicates that, 349

except for Python on Code LLMs and C++ on Chat- 350

GPT, all PLs excel in at least one task. What’s more, 351

on ChatGPT, except for JavaScript, each language 352

also ranks as the least effective in at least one task. 353

A language that performs exceptionally well in one 354

task might underperform in another. For instance, 355

R demonstrates superior performance on Date for 356

both Code LLMs and ChatGPT, yet it is the least 357

effective on Appl. and Math. 358

The performance of each programming lan- 359
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ChatGPT Starcoder

Appl. Math Date Table Spatial AVG Appl. Math Date Table Spatial AVG

Python 82.31 45.76 47.70 94.63 93.60 72.80 47.04 19.69 34.96 79.19 70.00 50.18
R 80.95 40.61 58.81 93.29 94.60 73.65 44.21 17.74 37.13 77.85 65.90 48.57
C++ 81.40 43.77 49.05 93.29 88.45 71.19 47.34 16.74 18.70 82.55 70.95 47.26
Java 81.79 45.33 53.39 92.62 88.80 72.39 47.97 16.76 35.23 78.52 69.50 49.60
JavaScript 82.58 40.64 56.10 96.64 93.30 73.85 48.40 19.15 36.31 80.54 72.95 51.47

MultiPoT 84.33 49.92 58.54 98.66 95.30 77.35 49.67 20.41 40.38 87.25 71.55 53.85

Code Llama Deepseek Coder

Python 68.63 27.95 50.68 92.62 77.55 63.48 70.65 37.64 44.72 93.96 89.80 67.35
R 66.80 26.65 58.27 93.29 79.05 64.81 69.22 33.59 53.12 93.29 92.60 68.36
C++ 71.33 24.99 43.36 93.29 80.45 62.68 72.32 33.94 39.57 95.30 93.40 66.91
Java 70.10 27.93 56.91 93.96 81.80 66.14 72.10 35.35 55.56 93.96 88.75 69.14
JavaScript 68.97 26.16 50.41 87.25 80.35 62.63 71.89 35.60 52.57 93.29 86.10 67.89

MultiPoT 71.17 27.97 58.54 93.96 79.60 66.24 72.32 37.55 54.47 95.30 91.70 70.27

Table 2: Self-Consistency and MultiPoT results of four LLMs on five tasks and AVG. ∆ represents the percentage
improvement of MultiPoT compared to the best monolingual PoT performance.

guage is model-dependent. Code LLMs and360

ChatGPT differ significantly. Table 1 shows that361

C++, JavaScript, and Java, excel on Appl., Math,362

and Spatial respectively on Code LLMs, but rank363

second-to-last on ChatGPT. Even within Code364

LLMs, disparities between models are evident. Fig-365

ure 3 shows that Code Llama has a clear preference366

for Java, which keeps the top two ranks across all367

tasks, yet is not observed on the remaining mod-368

els. On Deepseek Coder, C++ leads on average,369

whereas notably ranks last on the other models. R370

ranks second on Spatial on Deepseek Coder, but371

the worst on the other two Code LLMs.372

These variations demonstrate that different PLs373

exhibit distinct strength due to complex factors374

such as task suitability and model preference.375

5.2 MultiPoT376

Self-Consistency does not eliminate perfor-377

mance disparities between languages. Table 2378

presents the Self-Consistency results. The inherent379

strength of different languages persist. The optimal380

PL on each scenario is generally consistent with381

greedy decoding results, except Python emerges382

as the superior language on Math on all models.383

Despite Self-Consistency significantly improving384

the performance, it does not smooth out the perfor-385

mance gap among PLs. A single language offers386

limited diversity. When faced with tasks outside387

its strength, monolingual samples often make the388

same mistakes repeatedly, resulting in incorrect389

answers being chosen through voting.390

Different from Self-Consistency relying on a391

single PL, MutliPoT integrates multiple PLs. It392

not only leverages the distinct strength of each 393

PL, covering more questions (Section 6.2.1) but 394

also utilizes their greater diversity to reduce the 395

probability of repeating the same errors. 396

MultiPoT significantly outperforms Python 397

on almost all scenarios. It enhances performance 398

in tasks or models where Python is weak. Across 399

the four models, MultiPoT improves upon Python’s 400

performance on Date by at least 15%, and in aver- 401

age (AVG) performance by 4.33% to 7.32%. Fur- 402

thermore, MultiPoT also capitalizes on Python’s 403

strength. On Math, where Python excels, MultiPoT 404

also achieves the best results, except in Deepseek 405

Coder, where it slightly trails Python but remains 406

significantly ahead of other languages. 407

MultiPoT achieves comparable or superior 408

performance to the best monolingual results 409

across all tasks and models. It is task-agnostic. 410

It surpasses Self-Consistency on four tasks, rank- 411

ing second on the remaining task, regardless of 412

whether on Code LLMs average (Table 9) or Chat- 413

GPT. MultiPoT is also model-agnostic. It is the top 414

performer across all LLMs on Tabular. On Appl. 415

and Math, MultiPoT surpasses all single-language 416

PoTs across three LLMs. Additionally, on AVG, 417

MultiPoT outperforms the best monolingual result 418

on all four models. Particularly on ChatGPT and 419

Starcoder, it exhibits an improvement of over 4.6%. 420

The performance of PLs depends on the task 421

and model. Analyzing the interplay of PL, task, 422

and model in practical applications is challenging. 423

Therefore, MultiPoT is a task and model agnos- 424

tic method of choice due to its consistently high 425

performance across scenarios. 426
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Figure 4: The reasoning ability, code generation ability,
and percentage in pre-training data for different lan-
guages. Generation lacks data for R. The horizontal
coordinates of each model are ranked according to the
rise in reasoning performance (excluding R).

6 Discussion427

6.1 Reasoning Ability of Different Languages428

In Section 5.1, we note that the ranking of the av-429

erage performance of PL varies on each model.430

The language distribution in the pre-training data431

of Starcoder and Deepseek Coder offers insights432

into whether data amount impacts reasoning capa-433

bilities. Moreover, we are interested in examining434

whether code generation and reasoning of multilin-435

gual ability are aligned. To assess code generation436

ability, we utilize the results of each model on the437

Multilingual HumanEval benchmark, focusing on438

the pass@1 metric for the four available languages,439

excluding R due to a lack of evaluation data.440

Data distribution influences but does not com-441

pletely determine reasoning ability. Figure 4442

shows the relative relationships among reasoning443

performance of C++, Python, and Java are consis-444

tent with data distribution on Starcoder. However,445

R demonstrates unexpectedly strong performance,446

which has an extremely low percentage in both447

models. C++ has less data amount than Java on448

Deepseek Coder, but better reasoning performance.449

This suggests that there are other factors affecting450

performance besides data distribution.451

Code generation abilities do not always align452

with reasoning abilities. We compare the four453

languages excluding R in Figure 4. On ChatGPT,454

the reasoning and code generation abilities of C++,455

Java, and Python align perfectly. For Deepseek456

Coder, C++ leads in both abilities. However, an457

StarC. C. Llama Deep.C. GPT

Python 61.03 73.23 75.80 77.62
R 58.86 75.11 76.02 79.00
C++ 59.75 72.82 75.80 77.82
Java 61.32 75.62 78.06 78.08
JavaScript 62.60 74.15 76.62 77.65

MultiPoT 64.52 75.71 78.41 83.94

Table 3: The average coverage rate on five tasks of Self-
Consistency and MultiPoT on each model.

Stability Metric Starcoder Deepseek Coder

Default 53.85 70.27
Length Short 53.36 69.99
Length Long 53.16 69.76
Random 53.71 69.99
Data Amount Little 53.18 70.20
Data Amount Large 53.55 69.43

∆ 0.69 0.84

Table 4: The performance of MultiPoT with different
sorting methods. Length Short/Long represents the as-
cending/descending order according to the length of
PoTs, respectively. ∆ denotes the range of change.

opposite trend is observed in Deepseek Coder’s 458

Python, JavaScript, and Java, where the two abili- 459

ties diverge significantly. This suggests that while 460

there is consistency, the differences in tasks can 461

lead to substantial variations in results. 462

6.2 MultiPoT Analysis 463

6.2.1 Highest Coverage Rate 464

Unlike the voting mechanism which requires a ma- 465

jority for the correct answer, the coverage rate only 466

needs the answer to appear in PoT results. Table 3 467

demonstrates that MultiPoT achieves the highest 468

coverage rates on all four models. The monolingual 469

sampling covers less than the multilingual attempts, 470

highlighting that the strength of different PLs ex- 471

ists. MultiPoT effectively utilizes the strength of 472

different PLs and has the highest upper bound. 473

6.2.2 Stable Performance 474

When results are tied, the top-ranked result is se- 475

lected. Different sorting methods reflect the sta- 476

bility. Table 4 shows the performance fluctuation 477

is less than 1% across various sorting criteria, in- 478

cluding PoT length, randomness, or data amount 479

from pre-training, compared to the default cumula- 480

tive probability sorting. This indicates that Multi- 481

PoT consistently selects the correct answer directly, 482

with few instances of ties with incorrect answers. 483

This also suggests a lower probability of different 484
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Model Method Appl. Math Date Table Spatial AVG

Base Python 68.63 27.95 50.68 92.62 77.55 63.48
MultiPoT 71.17 27.95 58.54 93.96 79.60 66.24

Python Python 69.54 28.46 48.24 91.28 74.65 62.43
MultiPoT 70.67 27.46 55.83 92.62 76.70 64.65

Table 5: The performance of Python Self-Consistency and MultiPoT on Code Llama Base and Code Llama Python.

1 2 3 4 5
(a) Starcoder

44
46
48
50
52
54

Pe
rf

or
m

an
ce

s(
%

)

1 2 3 4 5
(b) Deepseek Coder

64

66

68

70

Data Amount Little -> Large
Data Amount Large -> Little

The Number of Languages

Figure 5: The impact of the number of integrating PLs.
We test the different order of adding languages.

Type Starcoder ChatGPT

All Dynamic 50.41 74.92
Dynamic + Static 51.87 75.77

Table 6: The impact of different language type combina-
tions on MultiPoT. All Dynamic indicates that the three
languages are all dynamic, and Dynamic+Static indi-
cates a combination of dynamic and static languages.

PoTs making the same errors.485

6.2.3 More Languages Better486

We investigate the impact of the number of PLs on487

the performance of MultiPoT. On both Starcoder488

and Deepseek Coder, we incrementally add lan-489

guages in both ascending and descending order490

of data amount. The results demonstrate that the491

performance of MultiPoT improves with an increas-492

ing number of PLs, regardless of the order. This493

suggests that our method is highly scalable and per-494

formance can be further enhanced by incorporating495

more PLs.496

6.2.4 More Language Types Better497

Python, R, and JavaScript are dynamic languages,498

while C++ and Java are static. To investigate499

whether a diverse set of language types enhances500

MultiPoT’s performance, we focus on three PLs.501

On Starcoder and ChatGPT, JavaScript emerges502

as the highest-performing dynamic language, sur-503

passing Java, which leads between the static lan- 504

guages. Consequently, we integrate JavaScript, 505

Python, and R as All Dynamic and combine Java, 506

Python, and R to represent Dynamic + Static. The 507

results in Table 6 indicate that replacing the higher- 508

performing JavaScript with the lower-performing 509

Java improves performance. This suggests that 510

more language types can provide more diversity to 511

MultiPoT, thereby further enhancing performance. 512

6.2.5 Python Model Also Works 513

Our prior experiments with Code LLMs utilize 514

the Base version. However, Code LLMs also 515

have a Python-specific version trained with addi- 516

tional Python corpora. Evaluating MultiPoT on 517

this Python version, as shown in Table 5, we find 518

that Python Self-Consistency improves on Appl. 519

and Math but declines on the other tasks compared 520

to the Base model. Moreover, MultiPoT still out- 521

performs Python Self-Consistency on all tasks ex- 522

cept Math, highlighting the adaptability of Mul- 523

tiPoT. Notably, MultiPoT’s performance on the 524

Python model is lower across all tasks than on the 525

Base model. This suggests that extensive training 526

on monolingual corpora might diminish the Base 527

model’s multilingual abilities on reasoning tasks. 528

7 Conclusion 529

Regarding the reliance on Python in PoT, we con- 530

duct extensive experiments across various models 531

and tasks using multiple programming languages 532

(Python, R, C++, Java, JavaScript). Our findings 533

demonstrate that Python is not always the best 534

choice, and the optimal language depends on the 535

specific task and the model used. Building on this 536

insight, we introduce MultiPoT, a simple yet effec- 537

tive multilingual integrated method that capitalizes 538

on the strength and diversity of different languages. 539

MultiPoT significantly outperforms Python and 540

achieves comparable or superior performance to 541

the best monolingual outcomes in nearly all scenar- 542

ios. With its high stability and potential for further 543

expansion, MultiPoT offers a promising avenue for 544

future research. 545
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Limitations546

Our study is comprehensive, but has certain limita-547

tions that we plan to address in future research. Due548

to computational resource constraints, we confine549

our experiments to a select number of commonly550

used programming languages (PLs). While these551

PLs are representative, they do not encompass the552

entire spectrum of languages used in programming.553

Future research could investigate the advantages554

of incorporating a broader range of programming555

languages. This may reveal further insights and556

improve the relevance of our findings.557

Ethical Considerations558

Our research utilizes publicly available models and559

datasets with proper citations and adheres to the560

usage guidelines of ChatGPT, minimizing the risk561

of generating toxic content due to the widely-used,562

non-toxic nature of our datasets and prompts.563
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A Appendix804

A.1 Tasks805

Subset #Original #Filtered

Algebra 1,187 1,068
Counting & Probability 474 474
Geometry 479 466
Intermediate Algebra 903 721
Number Theory 540 528
Prealgebra 871 842
Precalculus 546 370

SUM 5,000 4,469

Table 7: After filtering, the statistics of MATH dataset.

In MATH, the answers to the problems are ex-806

pressed using LaTeX. It’s too hard to construct807

prompts in other languages that meet all the re-808

quirements, we select those that can be calculated809

to a single number, excluding problems with inter-810

val or formula-based answers.811

Task #Data #Shots

Appl. 4,415 3
Math 4,469 3
Date 369 6
Tabular 149 3
Spatial 2,000 3

Table 8: Summarization of selected reasoning tasks.

Here are the details of our selected tasks, in-812

cluding the number of questions in each task813

(#Data) and the number of shots in demonstrations.814

Appl. comprises the GSM8K (Cobbe et al., 2021),815

SVAMP (Patel et al., 2021), and Asdiv (Miao et al.,816

2020) datasets. These datasets contain elementary-817

level math problems set in specific application818

scenarios, focusing on mathematical abstraction819

and modeling skills, with relatively low difficulty.820

Since they are the same type of questions, we merge821

them in one task.822

A.2 Results823

Appl. Math Date Table Spatial

Python 62.11 28.43 43.45 88.59 79.12
R 60.08 25.99 49.50 88.14 79.18
C++ 63.66 25.23 33.88 90.38 81.60
Java 63.39 26.68 49.23 88.81 80.02
JavaScript 63.09 26.97 46.43 87.02 79.80

MultiPoT 64.39 28.64 51.13 92.17 80.95

Table 9: The average performance of three Code LLMs
for Self-Consistency and MultiPoT in each task.

Table 9 shows that on the average performance 824

of three Code LLMs, MultiPoT surpasses all Self- 825

Consistency on four tasks, and is only lower 826

slightly than C++ on Spatial. 827

A.3 Prompts 828

Here are our multilingual prompts. We show 829

prompts of Tabular(3-shots) as an example and 830

prompts for other tasks are in the released code. 831
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Define the table of penguins with their attributes
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15},
  {"name": "James", "age": 12, "height": 90, "weight": 12}
]

# Count the number of penguins that are less than 8 years old
penguins_less_than_8_years = sum(1 for penguin in penguins if penguin["age"] < 8)

ans = penguins_less_than_8_years

Figure 6: Python Prompt of the first question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Define the data for the penguins
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15}
]

# Find the youngest penguin
youngest_penguin = min(penguins, key=lambda p: p["age"])
ans = youngest_penguin["name"]

Figure 7: Python Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Creating a list of dictionaries to represent each penguin and their attributes
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15}
]

# Sorting the list of penguins by their names in alphabetical order
sorted_penguins = sorted(penguins, key=lambda p: p["name"])

# Extracting the name of the second penguin in the sorted list
ans = sorted_penguins[1]["name"]

Figure 8: Python Prompt of the third question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <vector>

using namespace std;

// Define a structure for storing penguin data
struct Penguin {
  string name;
  int age;
  int height;
  int weight;
};

int main() {
  // Create a vector of Penguin structures
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15},
    {"James", 12, 90, 12}
  };

  // Count penguins less than 8 years old
  int count = 0;
  for (const auto& penguin : penguins) {
    if (penguin.age < 8) {
      count++;
    }
  }
  int ans = count;
  // Print the result
  cout << ans << endl;

  return 0;
}

Figure 9: C++ Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <string>
#include <vector>

using namespace std;

struct Penguin {
  string name;
 int age;
 int height;
 int weight;
};

int main() {
  // Create a list of penguins
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15}
  };

  // Initialize variables to track the youngest penguin
  Penguin youngest = penguins[0];

  // Iterate through the list to find the youngest penguin
 for (const Penguin& penguin : penguins) {
   if (penguin.age < youngest.age) {
      youngest = penguin;
    }
  }

  string ans = youngest.name;
  // Output the name of the youngest penguin
  cout << ans << endl;

 return 0;
}

Figure 10: C++ Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Penguin {
  string name;
 int age;
 int height;
 int weight;
};

int main() {
  // Creating a list of penguins
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15}
  };

  // Sorting the penguins by name using a simpler lambda function
 sort(penguins.begin(), penguins.end(), [](const Penguin &a, const Penguin &b) {
   return a.name < b.name;
  });

  // Displaying the name of the second penguin after sorting
  string ans = penguins[1].name;
  cout << ans << endl;

 return 0;
}

Figure 11: C++ Prompt of the third question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.ArrayList;
import java.util.List;

public class PenguinAgeCounter {
 public static void main(String[] args) {
   List<Penguin> penguins = new ArrayList<>();

   // Add penguins to the list
   penguins.add(new Penguin("Louis", 7, 50, 11));
   penguins.add(new Penguin("Bernard", 5, 80, 13));
   penguins.add(new Penguin("Vincent", 9, 60, 11));
   penguins.add(new Penguin("Gwen", 8, 70, 15));
   penguins.add(new Penguin("James", 12, 90, 12));

   // Count the number of penguins less than 8 years old
   int count = 0;
   for (Penguin penguin : penguins) {
     if (penguin.age < 8) {
        count++;
      }
    }
   int ans = count;
   System.out.println(ans);
  }
}

class Penguin {
 String name;
 int age;
 int height; // in cm
 int weight; // in kg

 public Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }
}

Figure 12: Java Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.ArrayList;
import java.util.List;

public class PenguinAgeFinder {
 public static void main(String[] args) {
   // Create a list of Penguin objects
   List<Penguin> penguins = new ArrayList<>();
   penguins.add(new Penguin("Louis", 7, 50, 11));
   penguins.add(new Penguin("Bernard", 5, 80, 13));
   penguins.add(new Penguin("Vincent", 9, 60, 11));
   penguins.add(new Penguin("Gwen", 8, 70, 15));

   // Call the method to find the youngest penguin
   Penguin youngest = findYoungestPenguin(penguins);

   // Print the name of the youngest penguin
   String ans = youngest.name;
   System.out.println(ans);
  }

 // Method to find the youngest penguin
 public static Penguin findYoungestPenguin(List<Penguin> penguins) {
   Penguin youngest = penguins.get(0);
   for (Penguin penguin : penguins) {
     if (penguin.age < youngest.age) {
        youngest = penguin;
      }
    }
   return youngest;
  }
}

// Define the Penguin class with relevant attributes
class Penguin {
 String name;
 int age;
 int height; // in cm
 int weight; // in kg

 // Constructor to initialize a Penguin object
 Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }
}

Figure 13: Java Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.*;

public class Main {
 public static void main(String[] args) {
   // Step 2: Create Penguin objects
   Penguin louis = new Penguin("Louis", 7, 50, 11);
   Penguin bernard = new Penguin("Bernard", 5, 80, 13);
   Penguin vincent = new Penguin("Vincent", 9, 60, 11);
   Penguin gwen = new Penguin("Gwen", 8, 70, 15);

   // Step 3: Add Penguins to a list
   List<Penguin> penguins = new ArrayList<>();
   penguins.add(louis);
   penguins.add(bernard);
   penguins.add(vincent);
   penguins.add(gwen);

   // Step 4: Sort the list by name
   Collections.sort(penguins, Comparator.comparing(Penguin::getName));

   // Step 5: Find and print the name of the second penguin
   Penguin secondPenguin = penguins.get(1); // Lists are zero-indexed
   String ans = secondPenguin.getName();
   System.out.println(ans);
  }
}

// Step 1: Define the Penguin class
class Penguin {
 private String name;
 private int age;
 private int height; // in cm
 private int weight; // in kg

 // Constructor
 public Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }

 // Getters
 public String getName() {
   return name;
  }
}

Figure 14: Java Prompt of the third question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Step 1: Create an array of penguin objects
let penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Step 2: Add James to the array
penguins.push({ name: "James", age: 12, height: 90, weight: 12 });

// Step 3: Initialize a counter
let count = 0;

// Step 4: Iterate over the array
for (let penguin of penguins) {
 // Step 5: Check if the penguin's age is less than 8
 if (penguin.age < 8) {
   count++;
  }
}

let ans = count;

Figure 15: JavaScript Prompt of the first question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Step 1: Create an array of penguins
const penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Step 2: Find the youngest penguin
let youngest = penguins[0];

for (let i = 1; i < penguins.length; i++) {
 if (penguins[i].age < youngest.age) {
   youngest = penguins[i];
  }
}

ans = youngest.name;

Figure 16: JavaScript Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Define the array of penguins
let penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Sort the penguins array by the name property
penguins.sort((a, b) => {
 if (a.name < b.name) {
   return -1;
  }
 if (a.name > b.name) {
   return 1;
  }
 return 0;
});

// The name of the second penguin after sorting
let ans = penguins[1].name;

Figure 17: JavaScript Prompt of the third question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create the data frame
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen", "James"),
age = c(7, 5, 9, 8, 12),
height = c(50, 80, 60, 70, 90),
weight = c(11, 13, 11, 15, 12)

)

# Filter and count the penguins younger than 8 years
num_penguins_younger_than_8 <- nrow(subset(penguins, age < 8))

ans = num_penguins_younger_than_8

Figure 18: R Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create a data frame representing the penguins
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen"),
age = c(7, 5, 9, 8),
height_cm = c(50, 80, 60, 70),
weight_kg = c(11, 13, 11, 15)

)

# Find the youngest penguin by locating the minimum age
youngest_index <- which.min(penguins$age)

ans = penguins$name[youngest_index]

Figure 19: R Prompt of the second question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create a data frame with the penguins' information
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen"),
age = c(7, 5, 9, 8),
height = c(50, 80, 60, 70),
weight = c(11, 13, 11, 15)

)

# Sort the data frame by the 'name' column
sorted_penguins <- penguins[order(penguins$name),]

# Extract the name of the second penguin in the sorted list
ans <- sorted_penguins$name[2]

Figure 20: R Prompt of the third question.
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