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Abstract

We study the classification problem for high-dimensional data with n observations on p fea-
tures where the p × p covariance matrix Σ exhibits a spiked eigenvalues structure and the
vector ζ, given by the difference between the whitened mean vectors, is sparse. We analyzed
an adaptive classifier (adaptive with respect to the sparsity s0) that first performs dimension
reduction on the feature vectors prior to classification in the dimensionally reduced space,
i.e., the classifier whitened the data, then screen the features by keeping only those corre-
sponding to the s0 largest coordinates of ζ and finally apply Fisher linear discriminant on
the selected features. Leveraging recent results on entrywise matrix perturbation bounds
for covariance matrices, we show that the resulting classifier is Bayes optimal whenever
n → ∞ and s0

√
n−1 ln p → 0. Finally, experiment results on real and synthetic data in-

dicate that the classifier is competitive with state-of-the-art methods while also selecting a
smaller number of features. paragraph.

1 Introduction

Classification is one of the most important and widely studied inference tasks in statistics and machine learn-
ing. Among standard classifiers, the Fisher linear discriminant analysis (LDA) rule is especially popular for
its ease of implementation and interpretation. More specifically, suppose that we are given a p-variate ran-
dom vector Z drawn from a mixture of two multivariate normal distributions π1Np(µ1, Σ)+(1−π1)Np(µ2, Σ)
and our goal is to classify Z into one of the two classes. The Fisher LDA rule is then given by

ΥF (Z) =
{

1 if
(
Σ−1(µ2 − µ1)

)⊤(Z − µ1+µ2
2
)

≤ ln π1
1−π1

,
2 if

(
Σ−1(µ2 − µ1)

)⊤(Z − µ1+µ2
2
)

> ln π1
1−π1

,
(1.1)

provided that Σ is positive definite. The Fisher rule ΥF is the Bayes decision rule, i.e., it achieves the
smallest mis-classification error with respect to 0-1 loss for classifying Z. ΥF is, however, not directly
applicable in practice as it involves the unknown parameters Σ−1, µ1 and µ2; we thus usually compute
the sample covariance matrix Σ̂ and the sample means X̄1 and X̄2 from a given training data set with n
observations and then plugged these quantities into Eq. (1.1); the resulting classifier is termed as the plug-in
LDA rule Υ̂F .

The classification accuracy of Υ̂F is well-understood in the low-dimensional regime where p ≪ n. In particular
Υ̂F is asymptotically optimal, i.e., it achieves the Bayes error rate as n → ∞ for fixed p. This behavior,
however, might no longer holds in the high-dimensional settings n ≍ p or even n ≪ p where the sample
covariance matrix Σ̂ is singular. Indeed, Bickel & Levina (2004) proved that the error rate for Υ̂F where
we replace Σ−1 with the Moore–Penrose pseudo-inverse of Σ̂ could be as bad as random guessing and that,
furthermore, the naive Bayes (NB) rule which ignores the correlation structure in Σ typically outperforms
Υ̂F .

Continuing this line of inquiry, other independence rules (IR) have been proposed in Tibshirani et al. (2002)
and Fan & Fan (2008) but these classifiers have two potentially major drawbacks, namely (1) the accumula-
tion of error in estimating µ1 and µ2 and (2) mis-specification of the covariance matrix Σ. In particular Fan
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& Fan (2008) demonstrated that the noise accumulation in estimating µ1 and µ2 alone is sufficient to degrade
the performance of IR classifiers, Shao et al. (2011) extended this result to show that the noise accumulation
can also lead to the plug-in LDA classifier being, asymptotically, no better than random guessing even when
Σ is known, and finally Fan et al. (2012) showed that ignoring the correlations structure in Σ prevents IR
classifiers from achieving Bayes optimality. These results indicate the need for imposing sparsity conditions
on the features and the important role of feature selection for mitigating the estimation errors associated
with growing dimensionality.

To address the above limitations of IR classifiers, Shao et al. (2011) proposed thresholding of both Σ and
µ2 − µ1; this is similar to the motivation for regularized covariance estimators in Bickel & Levina (2009).
In contrast, Cai & Liu (2011); Fan et al. (2012); Mai et al. (2012); Witten & Tibshirani (2011) and Cai &
Zhang (2019) imposed sparsity conditions on the discriminant direction β = Σ−1(µ2 − µ1) and use penalized
estimation approaches to recover β. Cai & Liu (2011) also noted two potential advantages to this approach,
namely that the assumption of sparsity on β is less restrictive than assuming sparsity for both Σ (or Σ−1)
and µ2 −µ1, and secondly ΥF only depends on Σ−1 and µ2 −µ1 through their product Σ−1(µ2 −µ1) and thus
consistent estimation of β is sufficient. The sparsity assumption on β leads to procedures and results that
resemble those for high-dimensional linear regression even though the classification problem is generally not
formulated in terms of a linear model. For example, Cai & Liu (2011) and Cai & Zhang (2019) considered a
linear programming approach similar to the Dantzig selector (Candes & Tao, 2005) while Mai et al. (2012)
studied a sparse discriminant analysis rule that used the Lasso (Tibshirani, 1996). Nevertheless it had been
observed that, empirically, these approaches can lead to classification rules which select a larger number
of features than necessary, and one possible explanation is that the correlation structure in Σ also induced
correlations among the entries for any estimate β̂ of β.

In this paper we consider a different approach where we first perform dimension reduction on the feature
vectors (using PCA) prior to classification (using LDA) in the dimensionally reduced space. As PCA is an
important and ubiquitous pre-processing step in high-dimensional data analysis, there is a sizable number
of work devoted to this approach. We refer to a generic classifier from this combination as lda ◦ pca. For
example Section 9.1 of Jolliffe (2002) provides a detailed review of combining LDA with different variants
of PCA in the low-dimensional setting while Niu et al. (2015) proposed the use of the reduced rank LDA
together with class-conditional PCA in the high-dimensional settings. In terms of applications, lda ◦ pca is
also used for faces and images recognition (Zhao et al., 1998; Belhumeur et al., 1997; Prasad et al., 2010),
and recovering genetic patterns (Jombart et al., 2010)

While lda ◦ pca classifiers arise quite naturally, their theoretical properties in the high-dimensional setting
remains an open problem. In particular their analysis requires possibly different techniques and assumptions
compared to those based on direct estimation of the discriminant direction β. More specifically consistency
results for β are usually based on ideas from high-dimensional regression including assumptions on bounded
and concentrated eigenvalues of Σ, see e.g., Bickel & Levina (2004); Fan & Fan (2008); Shao et al. (2011);
Cai & Zhang (2019). However Wang & Fan (2017) noted that bounded eigenvalues are incompatible with
the presence of strong signals (eigenvalues) in the data and might be problematic in fields such as genomics,
economics and finance. These assumptions are nevertheless imposed mainly due to the limitation of quanti-
fying the estimation error for Σ in terms of the spectral norm difference for Σ̂ − Σ. In contrast the idealized
setting for dimension reduction via PCA is when Σ contains a small subset of signal eigenvalues that accounts
for most of the variability in Σ. This idealized setting for PCA is also distinct from the idealized setting for
graphical models wherein Σ−1 is typically assumed to be sparse.

In summary, our contributions in this paper are as follows. We analyze the theoretical properties of a
prototypical lda ◦ pca classifier under a spiked-covariance structure assumption – a widely-adopted covari-
ance model for high-dimensional data – where Σ contains a few large eigenvalues that are well-separated
from the remaining (small) eigenvalues. In particular we show in Section 3 that lda ◦ pca is asymptotically
Bayes-optimal as n → ∞ and n−1 ln p → 0. This is, to the best of our knowledge, the first Bayes optimal
consistency result for classification after performing dimension reduction via PCA. In Section 4 we demon-
strate empirically, for both simulated and real data, that lda ◦ pca selects fewer features while also having
error rates that are competitive with existing classifiers based on estimating the discriminant direction β.
The theoretical and numerical results provide a clear example of the synergy linking dimension reduction
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with classification. Finally, in Section 5 we extend lda ◦ pca to classify data with (1) K ≥ 3 classes or (2)
two classes but with unequal covariance matrices or (3) feature vectors that are elliptical distributed but not
necessarily multivariate normal.

2 Methodology

2.1 Notation and settings

For a vector x ∈ Rp, the conventional ℓ0 quasi-norm and the ℓ1, ℓ2 and ℓ∞ norms are denoted by ∥x∥0,
∥x∥1, ∥x∥2 and ∥x∥∞, respectively. For p ∈ N, we denote the set {1, ..., p} by [p]. Given x ∈ Rp and a
non-empty set A ⊂ [p], we write xA = (xj , j ∈ A) to denote the column vector obtained by keeping only
the elements in x whose indices belong to A. The operation ’◦’, when applied to matrices, represents the
Hadamard (entrywise) product. For i ∈ [p], e(p)

i is the ith standard basis vector of Rp and 1p is a vector in
Rp whose elements are all 1; we also write ei and 1 when the choice of p is clear from context and Ip stands
for the identity matrix in Rp×p. For x, y ∈ Rp, the standard Euclidean inner product between x and y is
denoted as ⟨x, y⟩ := y⊤x. For a matrix M ∈ Rp×q, the Frobenius norm and spectral norm of M are written
as ∥M∥F and ∥M∥2, respectively. We will omit the subscript in ∥·∥2 when it is clear from context that the
spectral norm or ℓ2 norm is intended.

The two-to-infinity norm of M is defined as

∥M∥2→∞ := sup
∥x∥2=1

∥Mx∥∞ ≡ max
i∈[p]

∥Mi∥2 (2.1)

where Mi represent the ith row of M . We note that ∥M∥2→∞ ≤ ∥M∥ ≤ ∥M∥F . Let tr(M) and |M | denote
the trace and determinant of a square matrix M . The effective rank of a square matrix M is defined as
r(M) := tr(M)/ ∥M∥; the effective rank of a matrix is a useful surrogate measure for its complexity, see
e.g., Vershynin (2018). Let O(·), O(·), Θ(·) and Ω(·) represent the standard big-O, little-o, big-Theta and
big-Omega relationships. Finally, 1{A} and |A| stand for the indicator function of a set A and its cardinality,
respectively.

In the subsequent discussion we shall generally assume, unless specified otherwise, that we have access to
training set {X11, . . . , X1n1} and {X21, . . . , X2n2} whose elements are independently and identically dis-
tributed random vector from the p-variate distributions Np(µ1, Σ) (class 1) and Np(µ2, Σ) (class 2). The
sample means for each class and the pooled sample covariance matrix are denoted as

X̄1 = 1
n1

n1∑
j=1

X1j , X̄2 = 1
n2

n2∑
j=1

X2j , (2.2)

Σ̂ = 1
n

( n1∑
j=1

(X1j − X̄1)(X1j − X̄1)⊤ +
n2∑
j=1

(X2j − X̄2)(X2j − X̄2)⊤
)

(2.3)

On numerous occasions we also need a variant of the sample covariance matrix where we replace the sample
means with the true means. We denote this matrix as

Σ̂0 = 1
n

( n1∑
j=1

(X1j − µ1)(X1j − µ1)⊤ +
n2∑
j=1

(X2j − µ2)(X2j − µ2)⊤
)

. (2.4)

2.2 Linear discriminant analysis and whitening matrix

Let Σ be a p × p positive definite matrix. The whitening matrix W is a linear transformation satisfying
WW⊤ = Σ−1, and is generally used to decorrelate random variables and scale their variances to 1. The
whitening transformation is unique only up to orthogonal transformation as WTT ⊤W⊤ = WW for any p×p
orthogonal matrix T ; see Kessy et al. (2015) for a comparison between several common choices of whitening
transformation. Hence, for this paper, we take W = Σ−1/2 as the unique positive semidefinite square root
of Σ−1. Note that Σ−1/2 is the whitening transformation which minimizes the expected mean square error
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between the original data and the whitened data (Eldar & Oppenheim, 2003). Given W, we define the
whitened direction as ζ = W(µ2 − µ1) and let Sζ = {j : ζj ̸= 0}. We referred to the elements of Sζ as the
whitened coordinates or variables. The Fisher linear discriminant rule is then equivalent to

ΥF (Z) =
{

1 if ζ⊤(W(
Z − µ1+µ2

2
))

= ζ⊤
Sζ

(
W
(
Z − µ1+µ2

2
))

Sζ
≤ ln π1

1−π1
,

2 otherwise,
(2.5)

where Z ∼ π1Np(µ1, Σ) + (1 − π1)Np(µ2, Σ). Recall that, for a vector ξ and a set of indices A, the vector
ξA is obtained from ξ by keeping only the elements indexed by A. Since β = Σ−1(µ2 − µ1) is the Bayes
direction, a significant portion of previous research is devoted to recovering β and the discriminative set
Sβ = {j : βj ̸= 0}. We refer to the elements of Sβ as the discriminative coordinates or variables. We
emphasize that in general the discriminative set and whitened set are not the same, except for when Σ has
certain special structures, e.g., Σ being diagonal.

If p ≪ n then the empirical whitening matrix Ŵ = Σ̂−1/2 is well-defined and the empirical whitened variables
ζ̂ = Ŵ(X̄2 − X̄1) are approximately decorrelated in the plug-in LDA rule, i.e., by the law of large numbers,
ŴΣŴ → Ip and hence Var[ζ̂] ≈ cIp for some constant c > 0. In contrast, the coordinates of the estimated
discriminant direction β̂ are not decorrelated since Var[β̂] ≈ cΣ−1. It is thus easier to quantify the impact of
any arbitrary whitened feature toward the classification accuracy than to quantify the impact of an arbitrary
raw feature.

2.3 Combining LDA and PCA

Eq. (2.5) can be viewed under the framework of first performing dimension reduction and then doing clas-
sification in the lower-dimensional spaces with the main focus being that thresholding of the discriminant
direction corresponds to dropping a subset of the raw features while thresholding of the whitened direction
corresponds to dropping a subset of the whitened features. We now discuss the estimation of the whitening
matrix W.

If n ≍ p then the sample covariance matrix Σ̂ is often-times ill-conditioned, and is furthermore singular when
n < p. The estimation of either the precision matrix Σ−1 or the whitening matrix W is thus challenging in
these regimes, especially since Σ−1 and W both contains O(p2) entries. An universal approach to address
this difficulty is to reduce the number of parameters needed for estimating Σ, for example by assuming that
Σ has a parametric form with o(p2) parameters, or by introducing regularization terms to induce certain
structures in the estimate Σ̂.

The use of regularized estimators for covariance matrices are popular in high-dimensional classification, see
e.g., Bickel & Levina (2009); Shao et al. (2011), and theoretical analysis for these estimators are usually
based on assumptions about the sparsity of either Σ or Σ−1 and then bounding the estimation error in terms
of the spectral norm differences ∥Σ̂−1 − Σ−1∥ or ∥Σ̂ − Σ∥. There are, however, two potential drawbacks to
this approach. Firstly, quantifying the estimation error in terms of the spectral norm can be quite loose and
the resulting bounds might not capture the difference in geometry between the eigenspaces of Σ and that of
the perturbed matrix Σ̂ (e.g., Johnstone (2001) observed that the first few largest eigenvalues of the sample
covariance matrix Σ̂ are always larger than those for Σ in the high-dimensional setting). Secondly, while it
is not always appropriate to assume sparsity of Σ or Σ−1, Cai & Liu (2011) noted that some form of sparsity
is needed to guarantee consistent estimation of Σ or Σ−1 under spectral norm error.

In this paper we assume a different structure for Σ, namely that Σ is a spiked-covariance matrix with a
few leading eigenvalues (the spike) that are well-separated from the remaining eigenvalues (the bulk). More
specifically, we assume that Σ satisfies the following condition.
Assumption 1 (Spiked covariance matrix). Let u1, . . . , ud be orthonormal vectors in Rp and assume that the
covariance matrix Σ for the p-variate distributions Np(µ1, Σ) and Np(µ2, Σ) is of the form

Σ =
d∑
k=1

λkuku⊤
k + σ2Ip = UΛU⊤ + σ2Ip. (2.6)
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Here Λ = diag(λk) is a d×d diagonal matrix, U = ( uk ), k ∈ [d] is a p×d matrix with orthonormal columns,
and Ip is the identity matrix. We assume implicitly that λ1 ≥ · · · ≥ λd > 0, σ > 0 and d ≪ p.

Covariance matrices with spiked structures have been studied extensively in the high-dimensional statistics
literature, see e.g., Johnstone (2001) and Chapter 11 of Yao et al. (2015), and there is a significant number
of results for consistent estimation of U under the assumption that the support of U is sparse, e.g., either
that the number of non-zero rows of U is small compared to p or that the ℓq quasi-norm, for some q ∈ [0, 1],
of the columns of U are bounded. The case when q = 0 and q > 0 correspond to “hard” and “soft” sparsity
constraints, respectively; see for example Birnbaum et al. (2012); Berthet & Rigollet (2012); Vu & Lei
(2012); Cai et al. (2013) and the references therein. In contrasts to the above cited results, in this paper we
do not impose sparsity conditions on U but instead assume that U have bounded coherence, namely that the
maximum ℓ2 norm of the rows of U are of order O(p−1/2); see Assumption 4 for a precise statement. The
resulting matrix Σ will no longer be sparse. The main rationale for assuming bounded coherence is that the
spiked eigenvalues Λ can grow linearly with p while still guaranteeing bounded variance in Σ. There is thus
a large gap between the spiked eigenvalues and the bulk eigenvalues, and this justifies the use of PCA as a
pre-processing step.

If Σ satisfies Condition 1 then the whitening matrix is given by

W = UDU⊤ + 1
σ

(Ip − UU⊤) (2.7)

where D = diag(ηk) is a d × d diagonal matrix with diagonal entries ηk = (λk + σ2)−1/2. The above form
for W suggests the following estimation procedure.

1. Extract the d largest eigenvalues and corresponding eigenvectors of the pooled sample covariance
matrix Σ̂. Let Λ̂ denote the diagonal matrix of these d largest eigenvalues and Û denote the p × d
orthogonal matrix whose columns are the corresponding eigenvectors.

2. Estimate the non-spiked eigenvalues by

σ̂2 = tr(Σ̂) − tr(Λ̂)
p − d

. (2.8)

3. Let D̂ = (Λ̂ + σ̂2Id)−1/2 and estimate W by Ŵ = ÛD̂Û⊤ + σ̂−1(Ip − ÛÛ⊤).

Although the sample covariance matrix Σ̂ is generally a poor estimate of Σ when n ≪ p, the eigenvectors
Û corresponding to the d largest eigenvalues of Σ̂ are nevertheless accurate estimates of U . In particular,
Fan et al. (2018) and Cape et al. (2019) provide uniform error bound for minT ∥ÛT − U∥2→∞ where the
minimum is taken over all d × d orthogonal transformations T ; see also Theorem 1 of the current paper. We
can thus transform Û by an orthogonal transformation T so that the resulting (transformed) rows of Û are
uniformly close to the corresponding rows of U .

Given the above estimate for W, we then have the prototypical lda◦pca classifier in Algorithm 1. Algorithm 1
contains two tuning parameters, namely d, the number of principal components in the PCA step and s, the
number of coordinates of estimated whitened direction ζ̂ that we preserve. The choices for d and s correspond
to the number of spiked eigenvalues in Σ and the sparsity level of the whitened direction ζ. We show in
Section 3 that, under certain mild conditions, one can consistently estimate s using Eq. (3.6). Consistent
estimation of d can be obtained using results in Bai & Ng (2002); Alessi et al. (2010); Hallin & Liška (2007)
among others. Algorithm 1 thus yields a classifier that is adaptive with respect to both d and s.
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Algorithm 1: lda ◦ pca decision rule
Input: X̄1, X̄2, Σ̂ and the test sample Z
Output: Υ̂lda◦pca(Z)
Algorithm

// Step 1: Perform PCA on the feature vectors for the training data (standard PCA approach)
// Step 2: Extract the d largest principal components and obtain Ŵ = ÛD̂Û⊤ + σ̂−1(Ip − ÛÛ⊤).
// Step 3: Take X̃i = ŴX̄i, i = 1, 2 and X̃a = 0.5(X̃1 + X̃2). Let ζ̂ = X̃2 − X̃1 and form the
indices set Ŝ by selecting the s largest coordinates of ζ̂ in modulus.
// Step 4: Given the test sample Z, take Z̃ = ŴZ and plug the sub-vector of ζ̂, Z̃ and X̃a

corresponding to the indices in Ŝ into the Fisher discriminant rule, i.e.,

Υ̂lda◦pca(Z) =
{

1 if ζ̂⊤
Ŝ

[
Z̃ − X̃a

]
Ŝ ≤ ln n1

n2
,

2 otherwise
(2.9)

2.4 Related works

2.4.1 Whitening matrix and spiked covariance

We first discuss the relationship between Algorithm 1 and two other relevant classifiers, namely the features
annealed independence rule (FAIR) of Fan & Fan (2008) and the LDA with CAT scores (CAT-LDA) of Zuber
& Strimmer (2009). FAIR is the independence rule applied to the features prescreened by the two-sample t
test while CAT-LDA scores decorrelate the t statistics by first whitening the data using the sample correlation
matrix diag(Σ̂)−1/2 Σ̂ diag(Σ̂)−1/2; CAT-LDA is motivated by the empirical observation that accounting for
correlations is essential in the analysis of proteomic and metabolic data.

If there are no correlation or if the correlations are negligible, i.e., when Σ is diagonal or approximately
diagonal, then Algorithm 1 is essentially equivalent to both FAIR and CAT-LDA. However, when the cor-
relations are not negligible, the performance of IR classifiers such as FAIR degrades significantly due to
mis-specification of the covariance structure (Fan et al., 2012). Both Algorithm 1 and CAT-LDA apply a
whitening transformation before doing LDA but the choice of whitening matrices are different between the two
procedures. In particular CAT-LDA uses the asymmetric whitening transformation Corr(Σ)−1/2diag(Σ)−1/2

where Corr(Σ) is the matrix of correlations. The choice of whitening transformation is not important if
Σ is known or if we are in the low-dimensional setting where p ≪ n for which consistent estimation of Σ
is straightforward. It is only when p ≍ n or p ≫ n when the different regularization strategies used in
CAT-LDA and Algorithm 1 lead to possibly different behaviors for the resulting classifiers; see for example
the numerical comparisons given in Section 4 of the current paper. Finally we view the theoretical results
in Section 3 as not only providing justification for Algorithm 1 but also serve as examples of theoretical
analysis that can be extended to other classifiers in which dimension reduction is done prior to performing
LDA. Indeed, to the best of our knowledge, there are no theoretical guarantees for the error rate for the
CAT-LDA classifier in the high-dimensional setting.

Finally we note that our paper is not the first work to study high-dimensional classification under spiked
covariance matrices of the form in Condition 1. In particular Sifaou et al. (2020a) also analyzed the per-
formance of LDA under spiked covariance structures; however, their theoretical results are premised under
different settings and framework from ours and most importantly they do not show that their classification
rule achieves the Bayes error rate; see Remark 4 for detailed comparisons of the assumptions and theoretical
results in our paper against that of Sifaou et al. (2020a). With a different focus, Hao et al. (2015) examined
the effects of spiked eigenvalues when trying to find an orthogonal transformation T of the discriminant
direction β so that Tβ is sparse. More specifically they show that if Σ is known then T can be computed
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using the eigen-decomposition of the matrix Σrot where

Σrot = Σ + γ∆µ∆µ⊤, for a given γ > 0 (2.10)

where ∆µ = µ2 −µ1 is the vector of mean differences between the two classes. Let Urot,m be the p×m matrix
whose columns consist of the orthonormal eigenvectors of Σrot corresponding to the m largest eigenvalues.
When m = p then Urot,p diagonalizes Σrot and Hao et al. (2015) showed that Urot,p further sparsifies β in
that ∥U⊤

rot,p β∥0 ≤ d + 1 whenever Σ satisfies the spiked covariance assumption in Assumption 1, and hence
it might be beneficial to rotate the data before performing classification.

When Σ is unknown Hao et al. (2015) propose the following procedure for estimating Urot,m for some choice
of m ≤ min{n, p}; here γ > 0 is a user-specified parameter.

Algorithm 2: Rotation as a preprocessing in LDA
Algorithm

// Step 1: Perform PCA on Σ̂rot = Σ̂ + γ(X̄2 − X̄1)(X̄2 − X̄1)⊤ to extract the m largest principal
components. Let Ûrot,m be the resulting p × m matrix.
// Step 2: Rotate the training set to {Û⊤

rot,mXi1, . . . , Û⊤
rot,mXini

} where Û⊤
rot,mXij ∈ Rm for

i ∈ {1, 2} and j ∈ {1, 2, . . . , ni}.
// Step 3: Apply some discriminant direction based LDA method such as Fan et al. (2012); Cai &
Liu (2011); Mai et al. (2015) on the rotated data set {Û⊤

rot,mXij}.

We will use this pre-processing step in some of our numerical experiments in Section 4. Nevertheless we
emphasize that the theoretical results of Hao et al. (2015) assume Σ is known as they are mainly concerned
with the analysis of different approaches for sparsifying β, i.e., they explicitly chose not to address the
important issue of how the estimation error for Ûrot,m impacts the classification accuracy.

2.4.2 Connection to high-dimensional sparse LDA

Let X be the (n1 + n2) × p matrix whose rows are the {Xij} and Y ∈ Rn be the vector whose first n1
elements are set to −(n/n1) and the remaining n2 elements are set to n/n2. Mai et al. (2012) reframed LDA
in high-dimension as the solution to a Lasso-type problem (we have omitted the intercept term for simplicity
of presentation)

β̂ = arg min
β∈Rp

1
2∥Y − Xβ∥2 + λ∥β∥1 (2.11)

for some λ > 0. In a similar spirit to Eq. (2.11), we might, conceptually, also reformulate Algorithm 1 as a
(general) Lasso-type problem (Tibshirani & Taylor (2011))

β̂ = arg min
β∈Rp

1
2∥Y − Xβ∥2 + λ∥Ψβ∥1 (2.12)

for some λ > 0, where Ψ = Σ1/2 (once again omitting the intercept for simplicity). As Σ is invertible,
Eq. (2.12) is equivalent to first solving

ζ̂ = arg min
ζ∈Rp

1
2∥Y − X̃ζ∥2 + λ∥ζ∥1 (2.13)

where X̃ = XΣ−1/2, and then setting β̂ = Σ−1/2ζ̂. Comparing Eqs. (2.12) and (2.13) against Eq. (2.11),
one could argue that the main difference between lda ◦ pca in Algorithm 1 and the lassoed LDA classifier
of Mai et al. (2012) is due to the different choice of the predictor variables X vs X̃ in the Lasso regression.
This argument, however, overlooks the important fact that the transformation Σ−1/2 needs to be estimated
in Algorithm 1 while for the general Lassso in Eq. (2.12), the matrix Ψ is specified a priori and thus free
from any estimation error. Indeed, while there have been significant effort devoted to understanding the
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solution path of Eq. (2.12) in the high-dimensional setting – see, for example, Duan et al. (2016); Tibshirani
& Taylor (2011) among others – its behavior when Ψ is determined empirically from the data is yet to be
theoretically investigated.

Next we note that, instead of Eq. (2.11), one can also estimate ζ via an ℓ1 optimization problem similar to
that of the Dantzig selector (Candes & Tao, 2005; Cai & Liu, 2011; Cai & Zhang, 2019), namely

ζ̂ = arg min
ζ∈Rp

{
∥ζ∥1 subject to ∥Σ̂1/2ζ − (X̄2 − X̄1)∥∞ ≤ λ

}
. (2.14)

The main difference between Algorithm 1 and Eq. (2.14) is that Algorithm 1 first whiten the feature vectors
using an empirical estimate of the covariance matrix followed by feature selection on the whitened data (see
Eq. (2.13)). In contrast, Eq. (2.14) attempts to find a ζ for which its transformation Σ̂1/2ζ is most similar
to X̄2 − X̄1. While the approaches underlying Algorithm 1 and Eq. (2.14) are quite similar, we believe
that Algorithm 1 provide a more direct link between PCA and LDA for high-dimensional classification
as it is particularly suitable for high-dimensional data generated from a (possibly low-dimenisonal) factor
model (where the covariance matrix will now have a spiked structure with leading eigenvalues that grow
with the dimension p). See Fan et al. (2021) for further discussion of factor models and their applications to
statistics and machine learning. Although Algorithm 1 and Eq. (2.11) share a conceptual link in optimization
formulation, they differ significantly in algorithmic structure, leading to distinct computational profiles.
We compare the computational complexity of lda ◦ pca and Lassoed LDA. For our method, the dominant
cost comes from computing the top d̄ singular values of the centered data matrix X, with cost O(npd̄),
where d̄ upper-bounds the rank d; see Halko et al. (2011) and Feng & Yu (2023) for more details. In
contrast, Lassoed LDA solves an ℓ1-penalized least squares problem with complexity O(npT ), where T is the
number of iterations until convergence. The iteration count T can be substantial in practice, especially when
regularization is weak or X is ill-conditioned as often occurs in settings with low-rank or highly correlated
features. As a result, our method thus offers notable computational advantages in high-dimensional latent
variable models while maintaining competitive classification accuracy (see Section 4).

Finally we conclude this section by comparing Algorithm 1 with the principal component classifiers proposed
in Bing et al. (2024); Bing & Wegkamp (2023). In particular both Bing & Wegkamp (2023) and Bing
et al. (2024) assumed that the discriminant direction β (and the whitening direction ζ as in our work) lies
entirely within the column space spanned by the d leading principal components U . However, as noted
by Jolliffe (1982), the principal components associated with small eigenvalues can be just as important as
those associated with large eigenvalues in real data analysis (see also the simulation settings for Model 1
and Model 3 in Section 4). By working with the whitened data, Algorithm 1 also take into account the
non-leading principal components and furthermore, by performing feature selection in the whitened space,
avoid the need to specify a priori the low-dimensional subspaces containing β and/or ζ.

3 Theoretical properties

In this section, we derive the theoretical properties of the lda◦pca classifier in Algorithm 1 for the case where
the feature vectors X are sampled from a mixture of two multivariate Gaussians. Extensions of these results
to the case where X is a mixture of K ≥ 2 elliptical, but not necessarily multivariate normal, distributions
are discussed in Section 7.3 and Section 5.1.

If X ∼ π1Np(µ1, Σ) + (1 − π1)Np(µ2, Σ) then the Fisher’s rule ΥF has error rate

RF = π1Φ
(

−1
2∥ζ∥ + ∥ζ∥−1 ln 1 − π1

π1

)
+ (1 − π1)Φ

(
−1

2∥ζ∥ − ∥ζ∥−1 ln 1 − π1

π1

)
. (3.1)

Here Φ is the cumulative distribution function for N (0, 1) and ζ = Σ−1/2(µ2 − µ1); see e.g., Ripley (1996,
Section 2.1). We note that RF is the smallest mis-classification error achievable by any classifier and,
furthermore, is monotone decreasing as ∥ζ∥ increases. If ∥ζ∥ → 0 then RF → min{π1, 1 − π1} and ΥF is no
better than assigning every data point to the most prevalent class, while if ∥ζ∥ → ∞ then RF → 0 and ΥF

achieves perfect accuracy. The cases where RF → 0 or RF → min{π1, 1−π1} are, theoretically, uninteresting

8



Under review as submission to TMLR

and hence in this paper we only focus on the case where 0 < ∥ζ∥ < ∞. We therefore make the following
assumption.
Assumption 2. Let Sζ denote the set of indices i for which ζi ̸= 0. Also let C0 > 0, M > 0 and Cζ > 0 be
constants not depending on p such that s0 := |Sζ | ≤ M and

min
j∈Sζ

|ζj | ≥ C0, max
{

∥Σ−1/2µ1∥, ∥Σ−1/2µ2∥
}

≤ Cζ .

In addition, we assume that the number of spikes d in the spiked covariance model (see Assumption 1) is
fixed and does not grow with p or n.
Remark 1. Assumption 2 implies 0 < C0

√
s0 ≤ ∥ζ∥ ≤ 2Cζ < ∞. We emphasize that sparsity is imposed on

the whitened direction so that only a few transformed features contribute to classification outcome; similar
assumptions can be found in Silin & Fan (2022). To further explain this condition, we note that sparsity
of the discriminant direction β = Σ−1(µ1 − µ2) also implies that only a small subset of the raw covariates
affects the response (as the classification boundary for a feature vector x is given by 1{x⊤β > a} for some
a ∈ R). However, as noted by Zhu & Bradic (2018) and Hall et al. (2014), sparsity of β is incompatible with
many real data application such as genome-wide gene expression profiling where all genes are believed to play
a role in disease markers, or analysis of micro-array data to identify leukemia or colon/prostate cancer. In
contrast sparsity of the whitened direction ζ = Σ−1/2(µ1 − µ2) still allows for β = Σ−1/2ζ to be non-sparse,
thereby circumventing the issue described above. Lastly, throughout our theoretical results and proofs, we
assume that the sparsity level s0 is fixed and independent of the sample size n, though it may be arbitrary.
The case where s0 grows with n can be handled mutatis mutandis. However, it requires more careful control
of technical arguments and is therefore left to the interested reader.

Our theoretical results are large-sample results in which the sample sizes n1 and n2 for the training data
increase as the dimension p increases, and thus our next assumption specifies the asymptotic relationships
between these quantities and the eigenvalues of Σ.
Assumption 3. Let σ > 0 be fixed and suppose that

n1

n2
= Θ(1), ln p = o(n).

Furthermore, the spiked eigenvalues λ1, . . . , λd of Σ satisfy

λk = Θ(p), for all k ∈ [d].

If Σ satisfies Assumption 3 then tr(Σ) = Θ(p) and r(Σ) = tr(Σ)/∥Σ∥ = O(1). Recall that r(Σ) is the
effective rank of Σ. Assumption 3 also implies that the spiked eigenvalues of Σ are unbounded as p increases
and this assumption distinguishes our theoretical results from existing results in the literature wherein it is
generally assumed that the eigenvalues of Σ are bounded; see Bickel & Levina (2004); Fan & Fan (2008); Shao
et al. (2011); Cai & Zhang (2019) for a few examples of results under the bounded eigenvalues assumption.
While the bounded eigenvalues assumption is prevalent, it can also be problematic for high-dimensional data
as it ignores the strong signals present in many real data applications; see Fan et al. (2013) and Wang &
Fan (2017) for further discussions of this issue. Indeed, a standard heuristic for PCA is to keep the d largest
principal components that explains 90% or 95% of the variability in the data, and hence if p is large and Σ
has bounded eigenvalues then one has to choose d = Θ(p) which is inconsistent with the use of PCA as a
dimension reduction procedure.

If Σ has a spiked eigenvalues structure as in Assumption 1 then W is given by

W = Σ−1/2 = U(Λ + σ2I)−1/2U⊤ + σ−1(I − UU)⊤ (3.2)

and a natural estimate for W is

Ŵ = Û(Λ̂ + σ̂2I)−1/2Û⊤ + σ̂−1(I − ÛÛ⊤) (3.3)

where Λ̂ is the diagonal matrix containing the d largest eigenvalues of the pooled covariance matrix, Û is
the p × d orthonormal matrix whose columns are the corresponding eigenvectors, and σ̂2 is as defined in
Eq. (2.8). We now make the following assumption on U .

9
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Assumption 4 (Bounded Coherence). There is a constant CU ≥ 1 independent of n and p such that

∥U∥2→∞ ≤ CU
√

d
√

p
.

Remark 2. The bounded coherence assumption appears frequently in statistical inference for matrix-valued
data. More specifically, as every column in U has ℓ2 norm equal to 1, the rows U have, on average, ℓ2 norm
of order

√
d/p. Assumption 4 then guarantees that the maximum ℓ2 norm of the rows of U is also of order√

d/p. For more discussions about the bounded coherence assumption in the context of matrix completion,
covariance matrix estimation, and random matrix theory, see Candès & Recht (2009); Fan et al. (2018);
Rudelson & Vershynin (2016); Bloemendal et al. (2014) among others. Finally we note that if U satisfies the
bounded coherence assumption with constant CU then

Σii ≤ C2
U λ1d

p
+ σ2, for all i ∈ [p],

which together with Assumption 3 implies maxi∈[p] Σii = O(1). In summary, Assumption 4 allows for the
spiked eigenvalues λ1, . . . , λd of the covariance matrix Σ to grow linearly with p while also guaranteeing that
the entries of Σ remains bounded, i.e., each variable in Xij has a finite variance.

We next state a result on the estimation accuracy of Û . This result is a slight extension of an earlier result in
Cape et al. (2019). More specifically, Cape et al. (2019) assume E[X] = 0 and hence the sample covariance
matrix is simply 1

nX⊤X. In this paper we used the pooled sampled covariance matrix which requires first
centering the feature vectors by the sample means of each class.
Theorem 1. Let X be a n × p matrix where the rows X1, . . . , Xn are i.i.d samples from π1N (µ1, Σ) +
(1 − π1)N (µ2, Σ) and Σ satisfies Assumption 1, Assumption 3, and Assumption 4. Let Û be the matrix of
eigenvectors corresponding to the d largest eigenvalues of the pooled sample covariance matrix Σ̂. Then there
exists a d × d orthogonal matrix ΞU and a constant C > 0 such that with probability at least 1 − O(p−2),

∥Û − UΞU ∥2→∞ ≤ C

√
d3 ln p

np
. (3.4)

Note that, for simplicity, we assume in Theorem 1 as well in the subsequent part of this paper that d, the
number of spiked eigenvalues, is known. If d is unknown then it can be consistently estimated using the ratio
between consecutive eigenvalues, similar to the procedures in Ahn & Horenstein (2013). More specifically,
from Assumption 3 and Lemma 1 we have with high probabliity that λ̂k = Θ(p) for k ≤ d and λ̂k = O(σ2)
for k ≥ d + 1. Here λ̂k are the eigenvalues of Σ̂. There thus exists a significant gap between λ̂d−1/λ̂d = O(1)
and λ̂d/λ̂d+1 = Ω(p), and hence, letting d̂ be the smallest index k for which λ̂k/λ̂k+1 = Ω(ln p), we have
d̂ = d asymptotically almost surely.

We now analyze the classification accuracy of lda ◦ pca. Recall that the main idea behind lda ◦ pca is that
we first construct an estimate ζ̂ for the whitened direction ζ and then project our whitened data onto the
d largest coordinates, in magnitude, of ζ̂ (see Algorithm 1). By Eq. (3.1), the Bayes error rate RF is a
monotone decreasing function of ∥ζ∥ and hence, to achieve RF it is only necessary to recover the indices in
Sζ = {i : ζi ̸= 0}. In summary the error rate for lda ◦ pca converges to RF provided we can (1) bound the
error ζ̂ − ζ and (2) show that thresholding ζ̂ perfectly recovers Sζ .
Theorem 2. Under Assumptions1-4, there exists a constant C > 0 such that with probability at least
1 − O(p−2),

∥ζ̂ − ζ∥∞ ≤ C

√
ln p

n
. (3.5)

Assumption 2 implies ζi ̸= 0 if and only if ζi > C0 for some constant C0 > 0. By Theorem 2, if ζi = 0 then
ζ̂i = O((n−1 ln p)1/2) with high probability. Let ζ̃ be a hard thresholding of ζ̂, namely

ζ̃j = ζ̂j1(|ζ̂j | > tn), j ∈ [p] (3.6)

10
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where tn = (n−1 ln p)α for some 0 < α < 1
2 . Given ζ̃, define the active set S̃ = {j : ζ̃j ̸= 0}. The mis-

classification rate for lda ◦ pca conditional on the training data {X11, . . . , X1n1} and {X11, . . . , X1n1}, is
then

R̂lda◦pca = P(label(Z) ̸= Υ̂lda◦pca(Z) | {X11, . . . , X1n1}, {X21, . . . , X2n2}) (3.7)

The following result shows that S̃ recovers Sζ exactly and lda ◦ pca is asymptotically Bayes-optimal.
Theorem 3. Suppose that Z ∼ π1Np(µ1, Σ) + (1 − π1)Np(µ2, Σ) where π1 ∈ (0, 1). Suppose Assumption 1
through Assumption 4 are satisfied. We then have

P(S̃ ̸= Sζ) = O(p−2). (3.8)

Furthermore, suppose that ln p = O(n). We then have

|R̂lda◦pca − RF | −→ 0 (3.9)

almost surely as n, p → ∞.

Our theoretical framework and results can be extended to elliptical distributions with minimal modifications;
see the discussion in Section 7.3. Key remarks on our main results are presented below.
Remark 3. Theorem 2 and Theorem 3 appear, at first blush, quite similar to the results in Mai et al. (2012) for
lassoed LDA using the discriminant direction β = Σ−1(µ1−µ2). However the underlying assumptions behind
these results are very different. In particular lassoed LDA relies on irrepresentable condition analogous to
those in Zhao & Yu (2006) to achieve consistent variable selection, and thus the discriminative variables
cannot be highly correlated with the remaining (irrelevant) variables. In contrast Theorem 3 do not assume
an irrepresentable condition and furthermore Assumption 1 only assume boundedness of the non-spiked
eigenvalues but allows for diverging spiked eigenvalues.
Remark 4. We now compare our results and settings with those in Sifaou et al. (2020a). Firstly, Sifaou et al.
(2020a) assumed: (1) proportional growth rate p/n → c for some finite constant c > 0, (2) distinct spiked
eigenvalues λ1 > λ2 > · · · > λd and lastly (3) ∥Σ∥ = O(1). In contrast, our work is derived under a more
challenging set-up wherein (1) the dimension p and the number of training samples n satisfy n−1 ln p → 0
(Assumption 3), (2) some or even all of the eigenvalues λ1 ≥ · · · ≥ λd > 0 can be equal (Assumption 1) and
(3) the leading eigenvalues {λk}dk=1 can diverge with n (Assumption 3). We emphasize that n−1 ln p → 0
allows for p = nγ for any γ > 1, so that p/n → ∞.

The assumptions used in Sifaou et al. (2020a) are because their theoretical analysis rely heavily on existing
results in random matrix theory as presented in Donoho & Ghorbani (2018); Donoho et al. (2018), which
generally require p/n < ∞ as well as bounded eigenvalues. In contrast, if p/n → ∞, then Donoho &
Ghorbani (2018) shows that the best estimate of the true covariance matrix is typically a diagonal matrix
(see also Bickel & Levina (2004)), which might make the results in Sifaou et al. (2020a) sub-optimal for the
high-dimensional regime p/n → ∞ considered in our paper.

Finally, Sifaou et al. (2020a) did not guarantee that their classification rule is Bayes-optimal. Rather, they
only show that the its mis-classification rate converge to some expression given in Theorem 3 of Sifaou
et al. (2020a), and is strictly larger than Bayes error when p/n increases. Sifaou et al. (2020b) subsequently
extended the results in Sifaou et al. (2020a) to the case of heterogeneous covariance matrices but the resulting
classifier is once again not Bayes-optimal. In contrast, Theorem 3 and Theorem 6 showed that the error
rate for lda ◦ pca and qda ◦ pca (Quadratic Discriminant Analysis, QDA) converge to the Bayes error rate
in the case of equal and unequal (class-conditional) covariance matrices, respectively. These results are,
to the best of our knowledge, are among the first to show Bayes consistency when combining PCA with
LDA/QDA for high-dimensional classification under divergent spikes. A key reason for this improvement
lies in two elements: (1) the assumption of sparsity in the signal vector ζ, which mitigates estimation error
high-dimensional means and covariances (motivated by Tibshirani et al. (2002); Fan & Fan (2008)) and (2)
the use of the entrywise matrix perturbation bounds, providing precise control over the estimated eigenspace
Û and the resulting whitened direction ζ̂.
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4 Numerical results

We now present simulation results and real data analysis for lda ◦ pca. Comparisons will be made against
the nearest shrunken centroids method (NSC) of Tibshirani et al. (2002), sparse linear discriminant analysis
(SLDA) of Shao et al. (2011), direct sparse discriminant analysis (DSDA) of Mai et al. (2012), adaptive
linear discriminant analysis (AdaLDA) of Cai & Zhang (2019), and LDA rule with CAT scores (CAT-LDA)
of Zuber & Strimmer (2009); note that CAT-LDA uses a different sphering transformation compared to
lda ◦ pca. There are three other commonly used classifiers that are not included in our comparisons, namely
the naive Bayes rule, the linear programming discriminant (LPD) (Cai & Liu, 2011) and the regularized
optimal affine discriminant (ROAD)(Fan et al., 2012). We omit these classifiers because (1) the naive Bayes
rule is a special case of the NSC rule without soft thresholding of the mean vectors (2) Mai & Zou (2013)
showed that the ROAD and DSDA classifiers are equivalent and (3) Cai & Zhang (2019) showed that the
AdaLDA rule is a refinement of the LPD rule, i.e., compared to the LPD rule, the AdaLDA rule allows for
“heteroscedastic constraints” and requires no tuning parameters.

Implementations of the DSDA and CAT-LDA rules are based on the TULIP and sda library in R while
the implementation of the AdaLDA rule is based on Matlab codes provided in ADAM github repository.
We also consider the rotation pre-processing step of Hao et al. (2015), which yields the transformed data
{U⊤

rot,nX11, . . . , U⊤
rot,nX1n1} and {U⊤

rot,nX21, . . . , U⊤
rot,nX2n2} based on Matlab codes from HDRotation where

we set γ = 0.25 in Eq. (2.10). These transformed data are then used as input to the DSDA and AdaLDA
rules; we denote the resulting classifiers as DSDA(rot) and AdaLDA(rot).

4.1 Simulated examples

We consider three different simulation settings. For each setting, the number of features is set to p = 800 and
we generate n1 = n2 = 100 data points from each class for the training data and also generate n1 = n2 = 100
data points from each class for the testing data. The classification accuracy of the classifiers in each simulation
setting are computed based on 200 Monte Carlo replications. The mean vectors of the two classes are
µ1 = 0800 and µ2 = (110, 0790), i.e., the vector µ2 contains 10 non-zero entries with values all equal to 1.
We consider the following models for the covariance matrix Σ. These models were considered previously in
Fan et al. (2012); Mai et al. (2012); Cai & Zhang (2019); Cai & Liu (2011), among others.

1. Model 1 (equal correlation): Here Σ = (σij)p×p = ρ11⊤ + (1 − ρ)Ip, i.e., σij = ρ for i ̸= j and
σij = 1 for i = j. With this covariance structure Σ, the discriminant direction β = Σ−1(µ1 − µ0)
and whitened direction ζ = Σ−1/2(µ1 − µ0) are non-sparse (all entries of β and ζ are non-zero).

2. Model 2 (block diagonal with equal correlation) Here Σ = (σij)p×p is assumed to be a block diagonal
matrix with two blocks of size 20 × 20 and (p − 20) × (p − 20). Both diagonal blocks are also of the
form ρ11⊤ +(1−ρ)I where the correlation ρ is the same for both blocks. The discriminant direction
β and whitened direction ζ are sparse in this model, with β and ζ both having 20 non-zero entries.

3. Model 3 (random correlation) Here Σ = LL⊤ + cLIp where L ∈ Rp×10 with Lij generated from
N (0, 1) and cL = mini∈[p][LL⊤]ii. Note that we generate a new L for every Monte Carlo replicate.
For further comparison, we also consider Lij generated from the uniform distribution on [−1, 1]
and the Student’s t-distribution with 5 degrees of freedom. The discriminant direction β and ζ are
generally non-sparse in this model, i.e., all of their entries are non-zero.

The tuning parameters for each classifier are chosen using five-fold cross validation (CV). In particular, SLDA
(Shao et al., 2011) requires two tuning parameters, one being the number of non-zero entries in µ1 − µ2 and
the other being the number of non-zero entries in Σ. For simplicity we shall assume that the sparsity of
µ1 − µ2 is known when implementing SLDA and thus the only tuning parameter required is the number
of non-zero entries in Σ; following Cai & Zhang (2019), this tuning parameter is selected from the set of
values {

√
n−1 ln p, 1.5

√
n−1 ln p, . . . , 5

√
n−1 ln p} using five-fold CV. The lda ◦ pca classifier in Algorithm 1

also requires two tuning parameters, namely (1) the number of spikes d in the estimation of Σ and (2) the
sparsity level s in ζ. We chose d to account for at least 90% of the total variability in the data, i.e., d is the
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Table 1: Mis-classification rate (%) with standard deviations (%) in parentheses for equal correlation setting
(model 1), based on 200 independent Monte Carlo replicates.

ρ 0.50 0.60 0.70 0.80 0.90

Oracle 1.37 (0.87) 0.61 (0.53) 0.19 (0.30) 0.19 (0.30) 0.00 (0.00)
lda ◦ pca 1.74 (1.00) 1.00 (0.82) 0.55 (0.67) 0.55 (0.67) 0.22 (0.39)
CAT-LDA 7.18 (2.22) 4.70 (1.77) 2.60 (1.34) 1.10 (0.88) 0.38 (0.56)
DSDA 3.27 (1.47) 1.96 (1.08) 0.74 (0.62) 0.76 (0.65) 0.00 (0.04)
DSDA(rot) 6.31 (1.83) 3.26 (1.27) 1.16 (0.83) 0.30 (0.41) 0.01 (0.06)
AdaLDA 4.15 (1.61) 2.62 (1.24) 1.22 (0.91) 0.31 (0.42) 0.00 (0.04)
AdaLDA(rot) 7.04 (2.07) 3.70 (1.26) 1.19 (0.79) 0.13 (0.26) 0.00 (0.00)
SLDA 17.97 (3.53) 14.46 (2.99) 11.14 (2.43) 11.14 (2.43) 1.64 (0.92)
NSC 20.38 (8.53) 22.60 (8.38) 24.64 (8.36) 24.64 (8.36) 29.26 (8.04)

Table 2: Average number of nonzero coefficients with standard deviations in parentheses for equal correlation
setting (model 1), based on 200 independent Monte Carlo replicates.

ρ 0.50 0.60 0.70 0.80 0.90

lda ◦ pca 12.04 (4.53) 11.31 (4.10) 9.52 (4.01) 9.52 (4.01) 3.68 (0.98)
CAT-LDA 24.85 (3.74) 24.70 (3.58) 24.60 (3.97) 22.29 (3.93) 15.45 (2.39)
DSDA 96.20 (31.06) 106.42 (32.57) 117.15 (30.52) 117.05 (29.97) 96.48 (8.66)
DSDA(rot) 33.78 (32.71) 36.88 (38.13) 57.23 (61.02) 147.57 (66.97) 176.29 (5.08)
AdaLDA 46.54 (5.95) 45.84 (5.25) 46.72 (6.41) 47.86 (5.88) 48.65 (5.02)
AdaLDA(rot) 5.68 (1.82) 5.57 (1.84) 5.86 (1.82) 7.83 (2.54) 19.85 (9.96)
SLDA 728.84 (226.63) 788.16 (95.69) 799.96 (0.21) 799.96 (0.21) 799.96 (0.21)

smallest integer of k satisfying (
∑k
i=1 λ̂i)/tr(Σ̂) ≥ 0.9; here λ̂1 ≥ λ̂2 ≥ . . . are the eigenvalues of the pooled

sample covariance matrix Σ̂. We acknowledge that the choice of d can significantly impact performance;
therefore, a sensitivity analysis is provided in Section 7.2. For each Monte Carlo replication, the training
data are randomly split into five folds for CV, with new splits generated each time. The sparsity level s is
chosen from s ∈ {1, 2, . . . , 30} to minimize the average CV misclassification error. In the case where multiple
values of s yield the same minimum error, we choose the smallest such s to promote a more parsimonious
model. Similarly, the number of features in CAT-LDA is selected among the top {1, 2, . . . , 30} features ranked
by CAT scores using five-fold CV. The choice of the upper limit 30 is motivated by the common sparsity
condition s0 = O((n/ ln p)τ ), for some τ > 0, for instance, τ = 1/2 in Cai & Liu (2011). We deliberately
choose n/ ln p (≈ 30) as a relaxed upper bound to broaden the grid and ensure adequate coverage.

For data generated according to Model 1, Table 1 and Table 2 show that lda ◦ pca achieves the highest
accuracy while using only a small number of features compared to the other classifiers. Note that although
CAT-LDA also apply a whitening transformation before performing LDA, the accuracy of CAT-LDA is
much worse compared to that of lda ◦ pca. The DSDA and DSDA(rot) classifiers have slightly better
accuracies compared to those for the AdaLDA and AdaLDA(rot) classifiers; recall that the DSDA(rot) and
AdaLDA(rot) classifiers first applied the rotation pre-processing step of Hao et al. (2015) before running
DSDA and AdaLDA on the transformed data. The NSC classifier has the largest mis-classification error;
this is a consequence of the NSC rule ignoring the correlation structure in Σ. Finally, the oracle classifier
correspond to the LDA rule where π1, µ0, µ1 and Σ are known, and thus its error rate is the Bayes error rate
from Eq. (3.1).
Remark 5. Recall that for Model 1, all entries of the discriminant direction β and the whitened direction ζ
are non-zero. These entries however can be classified into those representing strong signals vs weak signals
based on their magnitudes; see Table 9 in the supplementary. The strong signals appear in the first 10 entries
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Table 3: Mis-classification rate (%) with standard deviations (%) in parentheses for block diagonal setting
(model 2), based on 200 independent Monte Carlo replicates.

ρ 0.50 0.60 0.70 0.80 0.90

Oracle 5.30 (1.71) 5.21 (1.52) 5.34 (1.64) 5.48 (1.62) 5.40 (1.74)
lda ◦ pca 9.08 (2.71) 8.61 (2.59) 8.30 (2.55) 8.26 (2.45) 8.12 (2.58)
CAT-LDA 10.08 (3.00) 9.36 (2.57) 9.31 (2.50) 9.25 (2.59) 9.21 (2.89)
DSDA 9.63 (2.61) 9.62 (2.64) 9.50 (2.66) 9.58 (2.67) 9.47 (2.42)
DSDA(rot) 20.64 (4.16) 20.52 (3.99) 20.75 (4.18) 21.02 (4.44) 20.90 (4.40)
AdaLDA 12.70 (2.99) 13.06 (3.39) 13.88 (3.45) 13.75 (3.48) 14.68 (3.86)
AdaLDA(rot) 23.91 (3.79) 23.81 (3.72) 24.33 (4.10) 23.89 (3.92) 24.12 (3.94)
SLDA 6.99 (2.89) 6.66 (1.92) 6.71 (2.17) 6.62 (1.97) 6.56 (1.90)
NSC 25.14 (3.11) 26.47 (3.31) 28.61 (3.35) 29.59 (3.24) 30.52 (3.82)

of β (similarly ζ) and the remaining p − 10 entries of β (similarly ζ) correspond to the weak signals. For
example, if ρ = 0.5 then the first 10 entries of β are all equal to 1.98 and the remaining p = 10 entries are all
equal to −0.02. From Table 2 we see that lda ◦ pca kept all of the coordinates corresponding to the strong
signals and only added a few coordinates corresponding to the weak signals; this explains the small number
of features used in lda ◦ pca. In contrast, the DSDA and SLDA classifiers include a large number of (noisy)
features with weak signals.

For Model 2, Table 3 shows that SLDA performs slightly better than lda ◦ pca and DSDA. However, from
Table 4, we see that SLDA also selects a much larger number of features compared to both lda◦pca and DSDA.
Recall that, for model 2, both β and ζ contains exactly 20 non-zero entries and hence SLDA is selecting a large
number of extraneous, non-informative features; a similar, albeit much less severe, phenomenon is observed
for DSDA. Table 3 and Table 4 shows that lda◦pca, CAT-LDA, and AdaLDA have comparable accuracy with
a similar number of selected features. The NSC rule once again has the largest mis-classification error due to
it ignoring the correlation structure in Σ. Finally we see that the rotation pre-processing step described in
Hao et al. (2015) lead to a substantial loss in accuracy for the DSDA and AdaLDA classifiers; to understand
why this happens, we need to extend the theoretical analysis in Hao et al. (2015) (which assume that Σ and
Urot,p are known) to the setting where Σ and Urot,p have to be estimated. We leave this investigation for
future work.

Finally for Model 3, Table 5 and Table 6 show that lda ◦ pca has both the highest accuracy as well as the
smallest number of selected features among all the considered classifiers; DSDA has a slightly worse accuracy
and also selected a much larger number of features, when compared to lda ◦ pca. SLDA now has the worst
accuracy and also selects almost all p = 800 features, and this is a consequence of Σ being a dense matrix.
The mis-classification rate for AdaLDA and AdaLDA(rot) are also quite large, and we surmise that this is due
to the numerical instability when solving the linear programming problem in AdaLDA. Indeed, the condition
numbers for Σ can be quite large; see Table 12 in the supplementary for summary statistics of these condition
numbers using the same 200 Monte Carlo replicates as that for generating Table 5. Following the suggestion
in Cai & Zhang (2019), we replace the sample covariance matrix Σ̂ used in the optimization problem for
AdaLDA and AdaLDA(rot) (see Eq. (8) and Eq. (9) in Cai & Zhang (2019)) with Σ̃ = Σ̂ +

√
n−1 ln p Ip;

the resulting classifiers are denoted as AdaLDA(reg) and AdaLDA(rot + reg), respectively. Table 5 however
shows that using Σ̃ only leads to a minimal increase in accuracy. Finally we observe that the rotation
pre-processing step once again leads to a substantial loss in accuracy for the DSDA and AdaLDA classifiers.
Remark 6. While our theoretical results primarily focus on fixed sparsity (see Remark 1 for more on growing
sparsity), we deliberately include dense examples with s0 = p, such as Model 1 and Model 3, to demonstrate
robustness beyond the sparse regime. In the dense models, full recovery of ζ or β is not anticipated but
lda ◦ pca still delivers strong classification performance due to effective decorrelation. In particular, for
Model 1, our method’s performance is very close to the oracle across varying ρ.
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Table 4: Average number of nonzero coefficients with standard deviations in parentheses for block diagonal
setting (model 2), based on 200 independent Monte Carlo replicates.

ρ 0.50 0.60 0.70 0.80 0.90

lda ◦ pca 20.19 (4.87) 20.48 (5.06) 20.48 (4.88) 20.96 (4.96) 20.58 (4.44)
CAT-LDA 20.02 (4.95) 19.86 (4.31) 20.05 (4.62) 20.32 (4.21) 20.33 (4.54)
DSDA 50.28 (26.61) 50.74 (28.92) 47.48 (25.77) 43.66 (22.42) 45.15 (23.78)
DSDA(rot) 51.02 (39.23) 46.13 (29.09) 51.93 (36.08) 45.56 (31.15) 49.62 (33.50)
AdaLDA 19.45 (2.37) 18.53 (2.23) 17.93 (2.27) 17.40 (2.20) 16.85 (2.07)
AdaLDA(rot) 14.40 (3.14) 14.81 (3.53) 15.16 (3.40) 15.69 (3.99) 14.97 (3.84)
SLDA 405.98 (390.84) 320.17 (380.33) 210.99 (336.12) 242.19 (352.81) 172.00 (309.62)

Table 5: Mis-classification rate (%) with standard deviations (%) in parentheses for random correlation
setting (model 3), based on 200 independent Monte Carlo replicates.

Method U(−1, 1) N (0, 1) t5

lda ◦ pca 5.07 (2.40) 12.39 (4.17) 13.72 (5.00)
CAT-LDA 11.93 (4.04) 23.67 (6.13) 25.68 (6.82)
DSDA 7.32 (3.05) 16.92 (5.21) 17.90 (5.49)
DSDA(rot) 18.51 (6.37) 31.81 (7.11) 33.65 (7.28)
AdaLDA 17.94 (6.03) 44.55 (7.12) 47.89 (5.10)
AdaLDA(rot) 23.00 (7.49) 39.29 (6.11) 42.52 (6.28)
AdaLDA(reg) 29.48 (7.58) 47.49 (4.52) 48.96 (4.04)
AdaLDA(reg+rot) 21.23 (7.43) 38.93 (6.60) 42.52 (6.28)
SLDA 50.10 (4.40) 49.98 (4.25) 50.09 (3.70)
NSC 30.30 (6.28) 44.55 (5.16) 46.70 (4.49)

4.2 Real data analysis

We now assess the performance of lda ◦ pca on two gene expression data sets for leukaemia and lung cancer.
The leukaemia dataset (Golub et al., 1999) includes p = 7128 gene measurements on 72 patients with either
acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) and we wish to classify patients into
either ALL or AML based on their gene expressions. The training set consists of the gene expressions for

Table 6: Model size with standard deviations in parentheses for random correlation setting (model 3), based
on 200 independent Monte Carlo replicates.

Method U(−1, 1) N (0, 1) t5

lda ◦ pca 11.93 (4.10) 11.48 (3.88) 11.37 (3.92)
CAT-LDA 21.19 (6.51) 20.64 (6.88) 20.75 (6.90)
DSDA 66.00 (31.92) 65.63 (34.45) 64.91 (30.51)
DSDA(rot) 51.08 (34.82) 71.94 (41.64) 77.56 (49.29)
AdaLDA 15.99 (2.32) 10.46 (1.97) 8.51 (2.22)
AdaLDA(rot) 14.62 (4.61) 19.08 (3.93) 16.26 (3.43)
AdaLDA(reg) 11.38 (1.77) 8.50 (2.00) 7.12 (1.96)
AdaLDA(reg+rot) 9.86 (4.71) 15.99 (3.63) 16.26 (3.43)
SLDA 799.51 (1.31) 800.00 (0.07) 800.00 (0.00)
NSC 12.21 (8.47) 55.38 (131.65) 102.89 (192.83)
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Table 7: Mis-classification rate and model size of various methods for the leukaemia data
Method Training Error Test Error Model Size

lda ◦ pca 0/38 1/34 12
DSDA 0/38 1/34 36
AdaLDA (reg) 0/38 1/34 18
NSC 1/38 3/34 24

Table 8: Mis-classification rate and model size of various methods for the lung cancer data
Method Training Error Test Error Model Size

lda ◦ pca 0/145 0/36 20
DSDA 1/145 0/36 25
AdaLDA (reg) 0/145 0/36 388
NSC 1/145 0/36 1206

n1 = 27 patients with ALL and n2 = 11 patients with AML while the test set contains the gene expression
data for 20 patients with ALL and 14 patients with AML. The lung cancer data was originally analyzed in
Gordon et al. (2002) and we use a version of the data wherein the predictor variables with low variances are
removed; see Pun & Hadimaja (2021). The resulting data set contains tumor tissues with p = 1577 features
collected from patients with adenocarcinoma (AD) or malignant pleural mesothelioma (MPM). According
to Gordon et al. (2002), MPM is highly lethal but distinguishing between MPM and AD is quite challenging
in both clinical and pathological settings. The training set consists of n1 = 120 gene expressions for patients
with AD and n2 = 25 gene expressions for patients with MPM, and the test set consists of gene expressions
for 30 patients with AD and 6 patients with MPM. Table 7 and Table 8 presents the classification accuracy
and number of selected features for various classifiers when applied to the leukemia and lung cancer data,
respectively. The hyperparameters for these classifiers are selected using leave-one-out CV. Table 7 and 8
indicate that the performance of lda ◦ pca is competitive with existing state-of-the-art classifiers while also
selecting substantially fewer features.

5 Extensions of lda ◦ pca

5.1 Multi-class classification

Suppose we are given training data from K ≥ 3 classes where the feature vectors for each class are iid
samples from a p-dimensional multivariate normal distribution, i.e.,

Xi1, . . . , Xini
∼ Np(µi, Σ), i ∈ [K].

Here ni denote the number of training data points from class i ∈ [K]. The testing data point Z is drawn
from a mixture of K multivariate normal distributions namely, Z ∼

∑K
i=1 πiNp(µi, Σ) with πi ≥ 0 and∑K

i=1 πi = 1. Note that, for ease of exposition, the {Xij} are assumed to be multivariate normals but the
subsequent results also hold when {Xij} are elliptically distributed as in Section 7.3.

Now define, for 2 ≤ i ≤ K, the whitened direction ζ(i) and the whitened indices Si via

ζ(i) = W(µi − µ1), Si = {j : ζ
(i)
j ̸= 0}.

Define the global whitened set as Sζ = S2 ∪ S3 ∪ · · · ∪ SK . The indices in Sζ are the important variables
for feature selection. The extension of lda ◦ pca to K ≥ 3 classes is then given in Algorithm 3 below, and
theoretical results are presented in the supplementary.
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Algorithm 3: K-classes lda ◦ pca decision rule
Input: X̄i, i ∈ [K], Σ̂ and the test sample Z
Output: Υ̂lda◦pca(Z)
Algorithm

// Step 1: Perform PCA on the feature vectors for the training data (standard PCA approach).
Extract the d largest principal components to obtain Ŵ.
// Step 2: For 2 ≤ i ≤ K, let X̃i = ŴX̄i and ζ̂(i) = X̃i − X̃1. Also let Ŝi be the set of indices
corresponding to the si largest elements of ζ̂(i) in absolute values. The value of si is, in general, a
user-specified or tuning parameter. Nevertheless, under certain conditions, we can also estimate si;
see Eq. (8.51) in the supplementary.
// Step 3: Given the test data point Z, let Z̃ = ŴZ and denote by ζ̂

(i)
Ŝi

the vector obtained from
ζ̂(i) by keeping only those coordinates belonging to Ŝi.
// Step 4: Set D̃1 = 0 and calculate, for 2 ≤ i ≤ K, the discriminant score for class i relative to
class 1 as

D̃i =
[
Z̃ −

(
X̃i+X̃1

2
)]⊤

Ŝi
ζ̂

(i)
Ŝi

+ ln ni
n1

. (5.1)

.
// Step 5: Assign the label of Z to the class that maximizes the discriminant score, i.e.,

Υ̂lda◦pca(Z) = arg max
i∈[K]

D̃i. (5.2)

5.2 Heterogeneous covariance matrices

Despite the simplicity and popularity of regularized or sparse LDA for high-dimensional data, the assumption
of equal covariances is not always tenable in practice. More specifically, suppose we are given a p-variate
random vector Z drawn from a mixture π1Np(µ1, Σ1) + (1 − π1)Np(µ2, Σ2) with Σ1 possibly distinct from
Σ2. The Bayes classifier is then the QDA rule given by

ΥF (Z) =
{

1 if
(
Z − µ1

)⊤Σ−1
1
(
Z − µ1

)
−
(
Z − µ2

)⊤Σ−1
2
(
Z − µ2

)
≤ κ

2 otherwise
(5.3)

where κ = 2 ln π1
1−π1

− ln |Σ1|
|Σ2| . If Σ1 = Σ2, then Eq. (5.3) reduces to Eq. (1.1). We now discuss how the

results in Section 3 can be extended to quadratic discriminant analysis (QDA) with PCA. Firstly we assume
that Σ1 and Σ2 both have spiked covariance structures as specified below.
Assumption 5. Let ui1, . . . , uidi , for i = 1, 2 be orthonormal vectors in Rp and assume that the covariance
matrix Σi for the p-variate normal distributions Np(µi, Σi) is of the form

Σi =
di∑
k=1

λikuiku⊤
ik + σ2

i Ip = UiΛiU⊤
i + σ2

i Ip, i = 1, 2. (5.4)

Here Λi = diag(λik) is a di × di diagonal matrix and Ui is a p × di matrix with orthonormal columns. We
assume implicitly that λi1 ≥ · · · ≥ λid > 0, σi > 0 and di ≪ p, i = 1, 2.

Note that a recent line of research on QDA for high-dimensional classification is based on the assumption
that Σ−1

2 − Σ−1
1 is sparse; see e.g., Li & Shao (2015); Jiang et al. (2018); Cai & Zhang (2021). In contrast,

Assumption 5 do not enforce any sparsity assumption and also allows for Σ1 and Σ2 to have different spiked
eigenvalues and eigenvectors; the latter is is a generalization of the common principal components (CPC)
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assumption in Zhu (2006); Pepler et al. (2017); Flury (1988) where the leading principal components are the
same for both Σ1 and Σ2.

Under Assumption 5, the whitening transformation Wi = Σ−1/2
i for i = 1, 2 is of the form in Eq. (2.7) and

thus a suitable estimate for Wi is given by Eq. (3.3). Let ζi = Wiµi for i = 1, 2, and denote the whitened
index sets by Ai = {j : ζij ̸= 0} for i = 1, 2. Let A0 = A1 ∪ A2 and note that the elements in A0 are the
signal coordinates for the QDA rule (after the PCA step). Eq. (5.3) can be written as

Υ(Z) :=
{

1 if ∥[W1
(
Z − µ1

)
]A0∥2 −

∥∥[W2
(
Z − µ2

)
]A0∥2 ≤ κ

2 otherwise
(5.5)

A plugin decision rule is then obtained by replacing µi, Σi and A0 with their estimates X̄i, Σ̂i and Â0.
Note that the intercept κ is non-trivial to estimate in the high-dimensional setting as it involves the log-
determinant ln |Σ1|

|Σ2| ; see Cai et al. (2015) for further details. For our paper we employ the data-driven
approach of Jiang et al. (2018) which circumvents the need to estimate the determinants of Σ1 and Σ2. The
full details of qda ◦ pca are specified in Algorithm 4 below, and theoretical results for qda ◦ pca are provided
in the supplementary.

Algorithm 4: qda ◦ pca decision rule
Input: X̄1, X̄2, Σ̂1, Σ̂2 and a test data point Z

Output: Υ̂qda◦pca(Z)

Algorithm
// Step 1: Perform PCA on the feature vectors for the training data (standard PCA approach).
Extract, for i = 1, 2, the di largest principal components Ûi and compute Ŵi as in Eq. (3.3).
// Step 2: For i = 1, 2,, set ζ̂i = ŴiX̄i and form the indices set Âi by selecting the si largest (in
magnitude) coordinates of ζ̂i.
// Step 3:Let Â0 = Â1 ∪ Â2 and define for any x ∈ Rp

Q(x | {X̄1, X̄2, Ŵ1, Ŵ2, Â0}) =
∥∥[Ŵ1(x − X̄1)]Â0

∥∥2 −
∥∥[Ŵ2(x − X̄2)]Â0

∥∥2
.

.
// Step 4:Find κ̂ to minimize the empirical 0-1 loss of the decision rule induced by Q, i.e.,

κ̂ = arg min
η∈R

1
n

2∑
i=1

ni∑
j=1

1(Υ(Xij | {X̄1, X̄2, Ŵ1, Ŵ2, Â0, ηthresh}) ̸= i) (5.6)

where, for any ηthresh ∈ R, we define

Υ(Xij | {X̄1, X̄2, Ŵ1, Ŵ2, Â0, ηthresh}) =
{

1 if Q(Xij | {X̄1, X̄2, Ŵ1, Ŵ2, Â0}) ≤ ηthresh

2 otherwise

.
// Step 5: Given a test data point Z, return the decision rule

Υ̂qda◦pca(Z) =
{

1 if Q(Z | {X̄1, X̄2, Ŵ1, Ŵ2, Â0}) ≤ κ̂

2 otherwise
(5.7)

As indicated by Jiang et al. (2018), ηthresh is selected by minimizing the in-sample misclassification error
based on X̄1, X̄2, Σ̂1, and Σ̂2. Under Assumption 5, the grid search can be narrowed to a neighborhood

18



Under review as submission to TMLR

around −2 log
(

|Ŵ2|
|Ŵ1|

)
− 2 log

(
n1
n2

)
. This is justified by the improved stability of the log-determinant ratio

in the spiked setting, where bulk eigenvalue σ2
i is consistently estimated via the pooled sample covariance

and the leading spikes remain well-separated (from the bulks).

6 Discussion

In this paper we addressed the classification problem for high-dimensional data by analyzing the prototypical
lda ◦ pca classifier that first transform the feature vectors using a whitening transformation, then perform
feature selection on the whitened data, and finally apply LDA in the dimensionally reduced space. We
show that, under a spiked eigenvalues structure for Σ, the mis-classification error rate for lda ◦ pca is
asymptotically Bayes optimal whenever n → ∞ and n−1 ln p → 0. While the Bayes consistency of lda ◦ pca
is similar to that of classifiers based on estimating the discriminant direction β, the underlying assumptions
and motivations for our results are substantially different. Indeed, the focus on PCA and the whitening
matrix leads to the natural assumption that Σ has spiked/diverging eigenvalues while earlier results that
focus on estimation of β had generally assumed that Σ is sparse or that the eigenvalues of Σ are bounded.
Numerical experiments indicate that lda ◦ pca is competitive with existing state-of-the-art classifiers while
also selecting a substantially smaller number of features.

We now mention two interesting issues for future research. The first is to extend the theoretical results in this
paper for combining LDA with PCA to other, possibly non-linear, dimension reduction techniques such as
(classical) multidimensional scaling, kernel PCA, and Laplacian eigenmaps (Belkin & Niyogi, 2003), followed
by learning a classifier in the dimensionally reduced space. The second issue concerns the spiked covariance
structure in Assumption 1. In particular, while Assumption 1 is widely used in the literature, see e.g., Hao
et al. (2015); Cai et al. (2013); Johnstone (2001); Birnbaum et al. (2012), its assumption on the non-spiked
eigenvalues and eigenvectors might be somewhat restrictive. We can consider relaxing Assumption 1 by
assuming that Σ arises from an approximate factor model (Fan et al., 2013) or that Σ can be decomposed
into a low-rank plus sparse matrix structure (Agarwal et al., 2011). We surmise that, due to the focus on
the whitening matrix Σ−1/2, theoretical analysis of lda ◦ pca under these more general covariance structure
will also leads to interesting technical developments; e.g., while perturbation results for Σ̂−1 − Σ−1 given
Σ̂ − Σ are well-studied, much less is known about perturbation bounds for Σ̂−1/2 − Σ−1/2 given Σ̂ − Σ.
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7 Supplementary Numerical Results

7.1 Supplementary Results to Model 1 to Model 3

We provide here several tables that supplement the simulation results in Section 4. Table 9 reports the
magnitudes for the strong and weak signals in the discriminant direction β and whitened direction ζ for
Model 1. Table 10 and 11 reports the average number of strong signals and weak signals captured by
lda ◦ pca, DSDA, AdaLDA and SLDA under Model 1. From Table 11 we see that lda ◦ pca includes only a
few features corresponding to the weak signals and thus selects only a small number of features compared
to the other classifiers. We also report in Table 12 the summary statistics for the condition numbers of
the covariance matrix Σ in Model 3; these statistics indicate that the performance of AdaLDA for Model 3
can be sub-optimal as AdaLDA estimates β by solving a linear programming problem which is numerically
unstable when Σ̂ have large condition numbers.

Table 9: Strong and faint signals for equal correlation setting (model 1). See the discussion in Remark 5
ρ 0.50 0.60 0.70 0.80 0.90

strong signal β 1.98 2.47 3.29 4.94 9.88
strong signal ζ 1.40 1.56 1.80 2.21 3.12
faint signal β -0.02 -0.03 -0.04 -0.06 -0.12
faint signal ζ -0.02 -0.02 -0.02 -0.03 -0.04
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Table 10: Average number of strong discriminative and whitened variable with standard deviations in paren-
theses for equal correlation setting (model 1)

ρ 0.50 0.60 0.70 0.80 0.90

lda ◦ pca 9.59 (0.82) 9.42 (0.85) 8.53 (1.41) 8.53 (1.41) 3.68 (0.98)
DSDA 10.00 (0.00) 9.99 (0.07) 9.99 (0.07) 9.99 (0.07) 10.00 (0.00)
AdaLDA 9.95 (0.22) 9.93 (0.26) 9.95 (0.23) 10.00 (0.07) 10.00 (0.07)
SLDA 9.98 (0.22) 9.98 (0.28) 10.00 (0.00) 10.00 (0.00) 10.00 (0.00)

Table 11: Average number of weak discriminative and whitened variable with standard deviations in paren-
theses for equal correlation setting (model 1)

ρ 0.50 0.60 0.70 0.80 0.90

lda ◦ pca 2.44 (4.22) 1.90 (3.73) 0.98 (3.35) 0.98 (3.35) 0.00 (0.00)
DSDA 86.20 (31.06) 96.42 (32.57) 107.16 (30.53) 107.06 (29.96) 86.48 (8.66)
ADaLDA 36.59 (5.94) 35.91 (5.22) 36.78 (6.36) 37.86 (5.88) 38.65 (5.02)
SLDA 718.86 (226.57) 778.18 (95.53) 789.96 (0.21) 789.96 (0.21) 789.96 (0.21)

Table 12: Summary statistics of condition numbers of generated Σ from uniform, normal and student
distributions

Statistics U(−1, 1) N (0, 1) t5

Mean 415.3 688.0 1059.2
SD 102.4 195.2 400.0
Median 391.5 658.5 966.3
IQR 108.0 205.9 314.1
Max 849.9 1622.1 3708.4
Min 266.3 396.9 536.0
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7.2 Sensitive Analysis

This subsection aims to explore the sensitivity of lda ◦ pca to the number of spikes d. As a baseline, we list
the performance of Oracle and DSDA. Consider a covariance matrix Σ = (σij)p×p with parameters ρ1, ρ2 > 0
and ρ1 + ρ2 < 2:

Σ = ρ1p u1u⊤
1 + ρ2p u2u⊤

2 + (2 − ρ1 − ρ2)(Ip − u1u⊤
1 − u2u⊤

2 ) (7.1)
where u1 = 1√

p1p, and u2 = 1√
2 (e1 − e2).

This covariance structure is a slight modification of Model 1 (the equal correlation model) to incorporate
two spikes corresponding to the eigenvalues ρ1p and ρ2p. The class means are set to be µ1 = 0p and
µ2 = e1 + e2 − 2e3 so that the mean difference µ2 − µ1, discriminant direction β and whitened direction ζ
are all sparse with exactly three nonzero entries, located at the first three coordinates. This contrasts with
the dense structures exhibited in Model 1 and Model 3.

For sensitivity analysis, our method variants are labeled as lda ◦ pca(d) for d = 1, 2, 3, with d = 2 being
the correctly specified case. Training and test samples are generated using Σ from Eq. (7.1), following
Monte Carlo setups and CV procedure detailed in Section 4.1. Table 13 shows that correct specifying or
overestimating d results in classification errors comparable to DSDA whereas underestimating d leads to
a notable degradation in performance. Since overestimation does not harm accuracy, we recommend, in
practice, selecting d as the smallest integer such that the cumulative eigenvalue ratio (

∑d
i=1 λ̂i)/tr(Σ̂) ≥ 0.9,

ensuring 90% of the total variance is retained in the selected subspace.

DSDA achieves similar accuracy but tends to over-select non-informative features is as shown in Table 14
with average 49.46 selected features well above the true sparsity level of 3. In comparison, lda◦pca maintains
comparable accuracy across all simulation settings. Our method also yields more parsimonious and offers
greater computational efficiency especially under the spike covariance structure.

Table 13: Mis-classification rate (%) with standard deviations (%) in parentheses for Eq. (7.1), based on 200
independent Monte Carlo replicates.

(ρ1, ρ2) (1.5, 0.3)

Oracle 0.30 (0.36)
lda ◦ pca(d = 1) 24.19 (23.09)
lda ◦ pca(d = 2) 0.55 (0.60)
lda ◦ pca(d = 3) 0.55 (0.60)
DSDA 0.50 (0.49)

7.3 Elliptical distributions

A random vector X ∈ Rp is said to have an elliptical distribution with mean µ and covariance matrix Σ if
the probability density function for X is of the form

f(x) = Cf |Σ|−1/2h((x − µ)⊤Σ−1(x − µ)), for all x ∈ Rp. (7.2)

Table 14: Average number of nonzero coefficients with standard deviations in parentheses for for Eq. (7.1),
based on 200 independent Monte Carlo replicates.

(ρ1, ρ2) (1.5, 0.3)

lda ◦ pca(d = 1) 1.49 (1.90)
lda ◦ pca(d = 2) 3.82 (4.28)
lda ◦ pca(d = 3) 3.71 (3.92)
DSDA 49.35 (32.97)
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Here Cf is a normalization constant, |Σ| is the determinant of Σ and h is a monotone function on [0, ∞).
The class of elliptical distributions is analytically tractable and many results that hold for multivariate
normal distributions can be extended to general elliptical distributions. In particular, Fang & Anderson
(1992) showed that Fisher’s LDA rule in Eq. (1.1) is also Bayes optimal whenever the feature vectors X
are sampled from a mixture of two elliptical distributions with known covariance matrix Σ and known class
conditional means µ1 and µ2. Shao et al. (2011) and Cai & Liu (2011) leveraged this fact to show that,
under certain conditions on the sparsity of either µ1 − µ2 and Σ or the sparsity of Σ−1(µ1 − µ2), both SLDA
and AdaLDA classifiers also achieve the Bayes error rate for elliptical distributions with unknown Σ, µ1 and
µ2. We now discuss how the theoretical properties for lda ◦ pca can be extended to elliptical distributions,
provided that they have sub-Gaussian tails as define below.
Definition 1. Let Ψ : [0, ∞) → [0, ∞) be a non-decreasing and non-zero convex function with Ψ(0) = 0. Let
Z be a mean 0 random variable. The Birnbaum-Orlicz Ψ-norm of Z is defined as

∥Z∥Ψ = inf
{

s ≥ 0 : EΨ
(Z

s

)
≤ 2
}

. (7.3)

Similarly, if Z is a mean 0 random vector taking values in Rp then its Ψ-norm is defined as

∥Z∥Ψ = sup
w∈Rp,∥w∥=1

∥w⊤Z∥Ψ. (7.4)

Let Ψ1(x) = exp(|x|) and Ψ2(x) = exp(x2). A mean 0 random vector Z is said to be sub-exponential if
∥Z∥Ψ1 < ∞ and is said to be sub-Gaussian if ∥Z∥Ψ2 < ∞. If Z ∈ Rp is a mean 0 sub-Gaussian random
vector then w⊤Z is a sub-Gaussian random variable for all w ∈ Rp. Furthermore, if Z is a sub-Gaussian
random variable then there exists a universal constant K such that for all t > 0, we have

P(Z > t) ≤ 2 exp
(
−t2/(K∥Z∥Ψ2)2).

For more on sub-Gaussian random vectors, see Vershynin (2018, Section 2.5, Section 3.4).
Remark 7. If Z ∈ Rp is a mean 0 sub-Gaussian random vector with covariance matrix Σ then ∥w⊤Z∥2

Ψ2
≥

w⊤Σw for all w ∈ Rp. In this paper we shall assume that a converse inequality also holds, namely that there
exist a constant c1 > 0 such that,

w⊤Σw ≥ c1∥w⊤Z∥2
Ψ2

, for all w ∈ Rp. (7.5)

We note that the constant c1 in Eq. (7.5) can depend on Z but does not depend on the choice of w ∈ Rp. If
Z is multivariate normal then Eq. (7.5) always hold. If Z is a zero mean sub-Gaussian random vector but
not a multivariate normal then Eq. (7.5) allows us to bound the Orlicz norm of w⊤Z for any w ∈ Rp in
terms of its variance. This then allow us to obtain better estimate for Σ̂ − Σ in spectral norm, especially in
the setting where the spiked eigenvalues could diverge with p. See for example Theorem 4.7.1 in Vershynin
(2018) and Theorem 9 in Koltchinskii & Lounici (2017).

We can now reformulate the classification problem in the earlier part of this paper to the case of elliptical
distributions as follows. Let {ϵ11, . . . , ϵ1n1} and {ϵ21, . . . , ϵ2n2} be independently and identically distributed
mean 0 random vectors with probability density functions of the form in Eq. (7.2) and suppose that the
training sample is given by Xij = µi + ϵij for i ∈ {1, 2} and j ∈ {1, 2, . . . , ni}.

Given these training samples {Xij}, let X be the (n1 + n2) × p matrix whose rows are the {Xij}. Then
Theorem 1, in particular Eq. (3.4), also holds for these X as long as the {ϵij} satisfy Eq. (7.5). This then
implies that Theorem 2, in particular Eq. (3.5), also holds when the X are sub-Gaussian random vectors.
The resulting bound for ∥ζ̂ − ζ∥∞ allows us to recover Sζ by thresholding ζ̂, and hence R̂lda◦pca → RF . In
summary, lda ◦ pca is asymptotically Bayes optimal whenever the feature vectors {Xij} are sampled from a
mixture of elliptical distributions with sub-Gaussian tails.
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8 Proofs of Stated Results

This section contains the proofs of Theorem 1 through Theorem 3. We will present the proofs under the more
general assumption that the feature vectors {Xij} are sub-Gaussian random vectors; see also the discussion
in Section 7.3.

8.1 Preliminary results

We start by listing some elementary but useful facts about the 2 → ∞ norm and its relationships with other
matrix norms. Recall that ∥ · ∥ denote the spectral norm if its argument is a matrix and denote the ℓ2 norm
if its argument is a vector.
Proposition 1. Let A ∈ Rp1×p2 and B ∈ Rp2×p3 be arbitrary real-valued matrices. Let x ∈ Rp2 be an
arbitrary vector. For a given i ∈ [p1], let ei denote the ith elementary basis vector in Rp1 . Then

∥A∥2→∞ = max
i∈[p1]

∥A⊤ei∥; (8.1)

∥Ax∥∞ ≤ ∥A∥2→∞ × ∥x∥; (8.2)
∥AB∥2→∞ ≤ ∥A∥2→∞ × ∥B∥. (8.3)

Eq. (8.1) states that the two-to-infinity norm of a matrix A is equivalent to the maximum ℓ2 norm of the rows
of A. Eq. (8.2) provides a bound for ∥Ax∥∞ that is tighter than the naive bound ∥Ax∥∞ ≤ ∥Ax∥ ≤ ∥A∥ ∥x∥.

Throughout the section, we will make use of Bernstein’s inequality. For completeness, we state the result
below without proof.
Proposition 2. Let X1, X2, . . . , Xn be independent, mean-zero, sub-exponential random variables. Then for
all t > 0, there exists a constant c > 0 such that:

P(|
n∑
i=1

Xi| ≥ t) ≤ 2 exp
(

−c · min
(

t2∑n
i=1 ∥Xi∥2

ψ1

,
t

maxi ∥Xi∥ψ1

))
. (8.4)

where ∥ · ∥ψ1 denotes the sub-exponential Orlicz norm.

Let ξi = X̄i − µi. Recall that ηk = (λk + σ2)−1/2 and σ2 = 1
p−d (tr(Σ) − tr(Λ)) are the eigenvalues of

W = Σ−1/2. The following lemma provides several concentration inequalities for Σ̂ − Σ, η̂k − ηk and σ2 − σ̂2.
Lemma 1. Assume that the random variables {Xi} satisfy Eq. (7.5) and the covariance matrix Σ satisfies
Assumption 3 and Assumption 4. Then the following bounds hold simultaneously with probability at least
1 − p−2 (where Σ̂0 is defined in Eq. (2.4))

∥Σ̂0 − Σ∥ = O(p
√

n−1 ln p), (8.5)
∥ξi∥2 = O(p n−1 ln p), (8.6)

∥Σ̂ − Σ∥ = O(p
√

n−1 ln p), (8.7)

|η̂k − ηk| = O(
√

p−1n−1 ln p), for all k ∈ [d] (8.8)

|σ2 − σ̂2| = O(
√

n−1 ln p). (8.9)

Eq. (8.5) is given in Lounici (2014) and Koltchinskii & Lounici (2017) while Eq. (8.6) follows from an
application of Bernstein inequality; see Section 2 and Section 3 of Vershynin (2018). Eq. (8.7) follows from
Eq. (8.5) and Eq. (8.6) together with the observation that Σ̂0 −Σ̂ = n−1(n1ξ1ξ⊤

1 +n2ξ2ξ⊤
2 ). Finally, Eq. (8.8)

and Eq. (8.9) follow from Eq. (8.7) and Weyl’s inequality.

8.2 Proof of Theorem 1

Recall that U and Û denote the p×d matrices whose columns are the orthonormal eigenvectors corresponding
to the d largest eigenvalues of Σ and the pooled sample covariance matrix Σ̂, respectively. Now let U⊥ and
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Û⊥ be the p × (p − d) matrices whose orthonormal columns are the remaining eigenvectors of Σ and Σ̂,
respectively, i.e., Ip − UU⊤ = U⊥U⊤

⊥ and Ip − ÛÛ⊤ = Û⊥Û⊤
⊥ .

Let Ξ be the d × d orthogonal matrix that minimizes

min
W

∥W − U⊤Û∥F

among all orthogonal matrices. Let En = Σ̂ − Σ. Then by Theorem 3.7 in Cape et al. (2019) we have

∥Û − UΞ∥2→∞ ≤ 2(λd + σ2)−1∥(U⊥U⊤
⊥ )En(UU⊤)∥2→∞

+ 2(λd + σ2)−1∥(U⊥U⊤
⊥ )En(U⊥U⊤

⊥ )∥2→∞ × ∥ sin Θ(Û , U)∥
+ 2(λd + σ2)−1∥(U⊥U⊤

⊥ )Σ(U⊥U⊤
⊥ )∥2→∞ × ∥ sin Θ(Û , U)∥

+ ∥ sin Θ(Û , U)∥2 × ∥U∥2→∞.

(8.10)

Now recall the matrix Σ̂0 from Eq. (2.4). We then have

Σ̂ − Σ︸ ︷︷ ︸
En

= Σ̂0 − Σ︸ ︷︷ ︸
En

−n1

n
(x̄1 − µ1)(x̄1 − µ1)⊤︸ ︷︷ ︸

E1

−n2

n
(x̄2 − µ2)(x̄2 − µ2)⊤︸ ︷︷ ︸

E2

.

Using the same argument as that for the proof of Theorem 1.1 in Cape et al. (2019) we have with probability
at least 1 − p−2 that

∥U⊥U⊥EnUU⊤∥2→∞ ≤ Cd
(

max
i∈[p]

Σii
)1/2

×
√

(λ1 + σ2) ln p

n
(8.11)

∥U⊥U⊤
⊥ EnU⊥U⊤

⊥ ∥2→∞ ≤ Cσ

√
(λ1 + σ2) ln p

n
(8.12)

where we have used the assumption that λk = Θ(p) for all k ∈ [d] so that r(Σ) – the effective rank of Σ –
is bounded. Here and in the subsequent derivations we will, for simplicity of presentation, use C to denote
a finite and universal constant that can change from line to line.

Therefore to complete the proof of Theorem 1, it suffices to show that, for j ∈ {1, 2}, the terms
∥U⊥U⊥EjUU⊤∥2→∞ and ∥U⊥U⊤

⊥ EjU⊥U⊤
⊥ ∥2→∞ are of the same or smaller order than those in Eqs. (8.11)

and (8.12), respectively.

We now bound ∥U⊥U⊥E1UU⊤∥2→∞. From Assumption 4 and Proposition 1 we have

∥U⊥U⊤
⊥ ∥∞ ≤ C

√
d, and ∥U⊥U⊤

⊥ E1UU⊤∥2→∞ ≤ C
√

d∥E1U∥2→∞. (8.13)

Furthermore, we also have

∥E1U∥2→∞ ≤
√

d max
i∈[p],j∈[d]

∣∣⟨E1e(p)
i , uj⟩

∣∣ =
√

d max
i∈[p],j∈[d]

∣∣[(X̄1 − µ1)⊤e(p)
i ] × [(X̄1 − µ1)⊤uj ]

∣∣.
Since Xi is sub-Gaussian, by the properties of Orlicz norms we have∥∥[(X̄1 − µ1)⊤e(p)

i ] × [(X̄1 − µ1)⊤uj ]
∥∥

Ψ1
≤
∥∥(X̄1 − µ1)⊤e(p)

i

∥∥
Ψ2

×
∥∥(X̄1 − µ1)⊤uj

∥∥
Ψ2

Eq. (7.5) implies that there exists a constant C > 0 such that for any i ∈ [p] and j ∈ [d],

∥∥(X̄1 − µ1)⊤e(p)
i

∥∥
Ψ2

≤ C
√

Σii
n1

≤ C
√

n1

(
max
i∈[p]

Σii
)1/2

, (8.14)

∥∥(X̄1 − µ1)⊤uj
∥∥

Ψ2
≤ C

√
Var(u⊤

j (X̄1 − µ1) ≤ C
√

u⊤
j n−1Σuj ≤ C

√
λ1 + σ2

n1
. (8.15)
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Now fix an arbitrary pair (i, j) with i ∈ [p] and j ∈ [d]. Then by Assumption 4, Eqs. (8.14) and (8.15), and
properties of sub-exponential random variables, we have

E[|⟨E1e(p)
i , uj⟩|] ≤ C(λ1 + σ2)

n1
×

√
d

p
.

Furthermore, by Bernstein inequality (Vershynin, 2018, Section 2.8), there exists a constant C > 0 such that
with probability at least 1 − O(p−3),

|⟨E1e(p)
i , uj⟩| ≤ E[|⟨E1e(p)

i , uj⟩|] + C ln p

n1

(
max
i∈[p]

Σii
)1/2√

λ1 + σ2. (8.16)

Now recall Eq. (8.13). Then by Eq. (8.16) together with a union bound over all i ∈ [p] and j ∈ [d] we have,
with probability at least 1 − O(p−2),

∥U⊥U⊥E1UU∥2→∞ ≤ C
√

d∥E1U∥2→∞ ≤ Cd max
i,j

|⟨E1e(p)
i , uj⟩| ≤ C

d3/2√
p ln p

n
. (8.17)

where we had used Assumption 3, namely n1 ≍ n and λ1 ≍ p, when simplifying the above expression. An
almost identical argument also yields

∥U⊥U⊥E2UU∥2→∞ ≤ C
d3/2√

p ln p

n

with probability at least 1 − O(p−2). We therefore have

2∥U⊥U⊤
⊥ EnUU⊤∥2→∞

λd + σ2 ≤ C
λd + σ2

(
d
(

max
i

Σii
)1/2

×
√

(λ1 + σ2) ln p

n
+

d3/2√
p ln p

n

)
≤ Cd3/2

√
ln p

np

(8.18)

We next consider ∥U⊥U⊤
⊥ E1U⊥U⊤

⊥ ∥2→∞. For j > d, we have

∥(X̄1 − µ1)⊤uj∥Ψ2 ≤ C
√

u⊤
j n−1Σuj ≤ Cn−1/2σ.

Then following the same argument as that used for showing Eq. (8.17), we have∥∥U⊥U⊤
⊥ E1U⊥U⊤

⊥
∥∥

2→∞ ≤ C
√

p d σ
(

max
i∈[p]

Σii
)1/2

× ln p

n1
≤ C σ

√
p d

ln p

n
(8.19)

with probability at least 1 − O(p−2), and similarly for ∥U⊥U⊤
⊥ E2U⊥U⊤

⊥ ∥2→∞.

Next we have, by the Davis-Kahan theorem and Lemma 1, that

∥ sin Θ(Û , U)∥ ≤ ∥En∥
λd + σ2 ≤ C

√
ln p

n
(8.20)

with probability at least 1 − O(p−2). From Eqs. (8.12), (8.19) and (8.20), together with a similar argument
as that for showing Eq. (8.18), we have

2∥U⊥U⊤
⊥ EnU⊥U⊤

⊥ ∥2→∞ × ∥ sin Θ(Û , U)∥
(λd + σ2) ≤ Cσd × ln p

n
√

p
(8.21)

with probability at least 1 − O(p−2). Eq. (8.20) together with Assumption 4 also imply

∥ sin Θ(Û , U)∥2
2 × ∥U∥2→∞ ≤ C ln p

n
×

√
d

√
p

= C
√

d ln p

n
√

p
. (8.22)
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with probability at least 1 − O(p−2). Next note that

∥U⊥U⊤
⊥ ΣU⊥U⊤

⊥ ∥2→∞ = ∥σ2U⊥U⊤
⊥ ∥2→∞ ≤ σ2∥U⊥U⊤

⊥ ∥ = σ2.

We therefore have

2∥U⊥U⊤
⊥ ΣU⊥U⊤

⊥ ∥2→∞ × ∥ sin Θ(Û , U)∥
λd + σ2 ≤ Cσ2

λd + σ2 ×
√

ln p

n
≤ Cσ2√

ln p√
np

(8.23)

Subtituting the bounds in Eqs. (8.18), (8.21), (8.22) and (8.23) into Eq. (8.10) we obtain

∥∥Û − UΞ
∥∥

2→∞ ≤ C
(d3/2√

ln p
√

np
+ d ln p

n
√

p
+ σ2√

ln p√
np

)
≤ C

√
d3 ln p

np

with probability at least 1 − p−2. This completes the proof of Theorem 1.

8.3 Proof of Theorem 2

First recall that ζ̂ = Ŵ(X̄2 − X̄1) and ζ = W(µ2 − µ1) where the whitening matrix W and its estimate Ŵ
are given by Eq. (3.2) and Eq. (3.3), respectively. We now consider the decomposition

ζ̂ − ζ = W
[
(X̄2 − X̄1) − (µ2 − µ1)

]︸ ︷︷ ︸
A

+ (Ŵ − W)
[
(X̄2 − X̄1) − (µ2 − µ1)

]︸ ︷︷ ︸
B

+ (Ŵ − W)(µ2 − µ1)︸ ︷︷ ︸
C

.

We will now bound each of the term in the right hand side of the above display. We start with the term in
(A). Let δ = (X̄2 − X̄1) − (µ2 − µ1) and let ξ = Wδ. We then have E[ξ] = 0 and Var[ξ] = c n−1Ip for some
finite constant c. Since δ satisfies Eq. (7.5), ξ also satisfies Eq. (7.5). Hence, by Bernstein inequality for
sub-Gaussian random vectors, there exists a constant C > 0 such that with probability at least 1 − O(p−2),

∥∥W
(
(X̄2 − X̄1) − (µ2 − µ1)

)∥∥
∞ = ∥ξ∥∞ ≤ C

√
ln p

n
. (8.24)

We now bound the terms in (B) and (C). Let D̂ and D be diagonal matrices where

D̂ =
(
Λ̂ + σ̂2Id

)−1/2
, D =

(
Λ + σ2Id

)−1/2
.

We start by decomposing Ŵ − W as

Ŵ − W = ÛD̂Û⊤ − UDU⊤︸ ︷︷ ︸
I

+ (σ̂−1 − σ−1)(Ip − UU⊤)︸ ︷︷ ︸
II

+ σ̂−1(Û Û⊤ − UU⊤)︸ ︷︷ ︸
III

. (8.25)

Now consider the term (σ̂−1 − σ−1)(Ip − UU⊤)δ obtained by combining the expressions in (B) and (II).
The covariance matrix for δ is n−1Σ and hence (Ip − UU)⊤δ satisfies Eq. (7.5) with covariance matrix
n−1σ2(Ip−UU⊤). Therefore, by Bernstein inequality, there exists a constant C > 0 such that with probability
at least 1 − O(p−2),

∥(Ip − UU⊤)δ∥∞ ≤ Cσ

√
ln p

n
.

Furthermore, from Lemma 1, we have with probability at least 1 − O(p−2) that

|σ̂−1 − σ−1| = |σ̂2 − σ2|
σ̂σ(σ̂ + σ) ≤ C

√
ln p

n
. (8.26)

Combining the above bounds, we obtain

∥(σ̂−1 − σ−1)(I − UU⊤)δ∥∞ ≤ C ln p

n
. (8.27)
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with probability at least 1 − O(p−2).

We next consider the term (σ̂−1 − σ−1)(Ip − UU⊤)(µ2 − µ1). Recall that if U has bounded coherence as
in Assumption 4 then ∥Ip − UU⊤∥∞ ≤ (1 + CU )

√
d where CU is a finite constant. We therefore have, by

Lemma 1, that

∥(σ̂−1 − σ−1)(Ip − UU⊤)(µ2 − µ1)∥∞ = ∥(σ̂−1 − σ−1)(Ip − UU⊤)Σ1/2W(µ2 − µ1)∥∞

= ∥(σ̂−1 − σ−1)σ(Ip − UU)⊤ζ∥∞

≤ |(σ̂−1 − σ−1)| × σ(1 + CU )
√

d × ∥ζ∥∞

≤ C
√

ln p

n
× ∥ζ∥∞,

with probability at least 1 − O(p−2).

We now focus our effort on terms involving ÛD̂Û⊤ −UDU⊤. Let Ξ be the minimizer of ∥W −U⊤Û∥F among
all d × d orthogonal matrices W . We then have

ÛD̂Û⊤ − UDU⊤ = (Û − UU⊤Û)D̂Û⊤ + UU⊤ÛD̂Û⊤ − UDU⊤

=
[
(Û − UΞ) − U(U⊤Û − Ξ)

]
D̂Û⊤︸ ︷︷ ︸

Part 1

+ UU⊤ÛD̂Û⊤ − UDU⊤︸ ︷︷ ︸
Part 2

We now note a few elementary but useful algebraic facts frequently used in the subsequent derivations.
Fact 1.

∥U⊤Û − Ξ∥ ≤ ∥ sin Θ(Û , U)∥2, (8.28)
∥UU⊤Û⊥Û⊤

⊥ ∥ = ∥ÛÛ⊤U⊥U⊤
⊥ ∥ = ∥U⊤Û⊥Û⊤

⊥ ∥ = ∥Û⊤U⊥U⊤
⊥ ∥ = ∥ sin Θ(Û , U)∥, (8.29)

∥ sin Θ(U , Û)∥ ≤ ∥ÛÛ⊤ − UU⊤∥ ≤ 2∥ sin Θ(Û , U)∥, (8.30)
∥U⊤ÛD̂ − DU⊤Û∥ ≤ ∥U⊤(Σ − Σ̂)Û∥ × ∥H∥. (8.31)

where H = (Hij) is a d × d matrix with entries

Hij = 1√
(λ̂j + σ̂2)(λi + σ2)(

√
λi + σ̂2 +

√
λ̂j + σ2)

.

Eq. (8.28) is from Lemma 6.7 in Cape et al. (2019) while Eqs. (8.29) and (8.30) are standard results for
the sin-Θ distance (see for example Lemma 1 in Cai & Zhang (2018)). Finally, Eq. (8.31) follows from the
observation

(U⊤ÛD̂ − DU⊤Û)ij = (U⊤Û)i,j(D̂jj − Dii)

= (U⊤Û)ij
(λi + σ2) − (λ̂j + σ̂2)

(λ̂j + σ̂2)1/2(λi + σ2)1/2
(
(λ̂j + σ̂2)1/2 + (λi + σ2)1/2

)
= (ΛU⊤Û − U⊤ÛΛ̂)ijHij = (U⊤(Σ − Σ̂)Û)ijHij

We thus have U⊤ÛD̂ − DU⊤Û = (U⊤(Σ − Σ̂)Û) ◦ H. Therefore, by Schur inequality for Hadamard product
(see e.g., Theorem 5.5.1 of Horn & Johnson (1991)), we have

∥(U⊤(Σ − Σ̂)Û) ◦ H∥ ≤ ∥(U⊤(Σ − Σ̂)Û)∥ × ∥H∥.

We next state a technical lemma for bounding several terms that appears frequently in our analysis.
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Lemma 2. Suppose that Assumption 1 through Assumption 4 are satisfied. Then with probability at least
1 − O(p−2), the following bounds hold simultaneously

∥H∥ = O(d3/2p−3/2), (8.32)

∥U⊤(Σ − Σ̂)U∥ = O(p
√

n−1 ln p), (8.33)

∥U⊤(Σ − Σ̂)Û∥ = O(p
√

n−1 ln p), (8.34)
∥U⊤ÛD̂ − DU⊤Û∥ = O(n−1/2p−1/2 ln p), (8.35)

∥ÛÛ⊤ − UU⊤∥ = O(
√

n−1 ln p). (8.36)

Eqs. (8.33) and (8.34) follows from the sub-multiplicativity of the spectral norm together with bounds for
∥Σ̂0 − Σ∥ from Lounici (2014) and Koltchinskii & Lounici (2017). Eq. (8.36) is a consequence of Eq. (8.30)
and the Davis-Kahan theorem. Eq. (8.32) follows from Weyl’s inequality and the bound for ∥Σ̂−Σ∥. Finally,
Eqs. (8.31), (8.32) and (8.34) together imply Eq. (8.35).

With the above preparations in place, we now resume our proof of Theorem 2. We first have

∥(Û − UU⊤Û)D̂Û⊤δ∥∞ ≤ (∥Û − UΞ∥2→∞ + ∥U∥2→∞∥U⊤Û − Ξ∥)∥D̂Û⊤δ∥

≤ C
(√d3 ln p

np
+

√
d ln p

n
√

p

)
∥D̂Û⊤δ∥

≤ C
(√d3 ln p

np
+

√
d ln p

n
√

p

)
(∥D̂∥ + ∥D̂ − D∥)∥Û⊤δ∥

≤ C
(√d3 ln p

np
+

√
d ln p

n
√

p

)( 1√
λ1 + σ2 +

√
ln p

np

)
∥Û⊤δ∥

≤ C
√

ln p

p
√

n
∥Û⊤δ∥

(8.37)

with probability at least 1−O(p−2). For the above inequality, we have used Lemma 1 to bound ∥D̂ −D∥ and
used Theorem 1 to bound ∥Û − UΞ∥2→∞. Finally we used Eq. (8.28), Eq. (8.30) and Eq. (8.36) to bound
∥Û⊤U − Ξ∥.

Next let T = Ip − ÛÛ⊤. Then

∥(UU⊤ÛD̂Û − UDU⊤)δ∥∞ ≤ ∥U(U⊤ÛD̂ − DU⊤Û)Û⊤δ∥∞ + ∥UDU⊤Tδ∥∞

≤ ∥U∥2→∞(∥U⊤ÛD̂ − DU⊤Û∥ + ∥D∥ × ∥U⊤T∥)∥δ∥

≤
(C

√
d ln p

p
√

n
+ C

√
d ln p

p
√

n

)
×
√

p ln p

n
≤ C ln p

n
√

p

(8.38)

with probability at least 1−O(p−2). In the above derivations, we bound ∥U⊤ÛD̂ −DU⊤Û∥ using Eq. (8.35),
and bound ∥U⊤T∥ = ∥U⊤(Ip−ÛÛ⊤)∥ using Eqs. (8.29), (8.30) and (8.36). The bound for ∥D∥ and ∥U∥2→∞
follows from Assumption 3 and Assumption 4, respectively.

Combining Eqs. (8.37) and (8.38) we obtain

∥(ÛD̂Û⊤ − UDU⊤)δ∥∞ = O
( ln p

n
√

p

)
(8.39)

with probability at least 1 − O(p−2).
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Table 15: Asymptotic Order of Each Term:
Expression v = δ v = Σ1/2ζ Corresponding Terms

∥Wv∥∞

√
ln p
n n.a. (A)∥∥[ÛD̂Û⊤ − UDU⊤]v∥∥∞

ln p
n

√
p

√
ln p
np ∥ζ∥ (B)-(I) and (C)-(I)∥∥(σ̂−1 − σ−1)(Ip − UU⊤)v

∥∥
∞

ln p
n

√
ln p
n ∥ζ∥∞ (B)-(II) and (C)-(II)

∥σ̂−1(Û Û⊤ − UU⊤)v∥∞
ln p
n

√
ln p
n ∥ζ∥ (B)-(III) and (C)-(III)

Using similar arguments as that for Eqs. (8.37) and (8.38) we also have

1
σ̂

∥(Û Û⊤ − UU⊤)δ∥∞ ≤
∥
(
(Û − UΞ) − U(U⊤Û − Ξ)

)
Û⊤δ∥∞ + ∥UU⊤Tδ∥∞

σ̂

≤ C
(√d3 ln p

np
+

√
d ln p

n
√

p

)
×
√

p ln p

n
+ C

√
d ln p

np
×
√

p ln p

n

= O
( ln p

n

)
(8.40)

with probability at least 1 − O(p−2), where once again T = Ip − ÛÛ⊤. Note that in the above derivations
we have used Lemma 1 to show that σ̂−1 is bounded away from 0 by some constant not depending on p and
n.

Finally we can also replace δ with Σ1/2ζ in the derivations of Eqs. (8.37), (8.38) and (8.40) to obtain

∥(ÛD̂Û⊤ − UDU⊤)Σ1/2ζ∥∞ = O
(√ ln p

np
∥ζ∥2

)
(8.41)

∥σ̂−1(Û Û⊤ − UU⊤)Σ1/2ζ∥∞ = O
(√ ln p

n
∥ζ∥2

)
(8.42)

simultaneously, with probability at least 1 − O(p−2). A summary of the bounds for the terms (A), (B)-(I)
through (B)-(III), and (C)-(I) through (C)-(III), are provided in Table 15. Combining the terms in this
table we obtain the bound for ∥ζ̂ − ζ∥∞ given in Eq. (3.5) (note that both ∥ζ∥ and ∥ζ∥∞ are bounded, see
Assumption 2). This concludes the proof of Theorem 2.

Finally, for ease of reference, we state two collaries summarizing the main derivations in the proof of Theorem
2. These corollaries will be used in the proof of Theorem 3 below.
Corollary 1. Suppose that Assumption 1 through Assumption 4 are satisfied. Let v be either a fixed vector
in Rp or a p-variate sub-Gaussian random vector with E[v] = 0. We then have

∥∥∥(Ŵ − W)v
∥∥∥

∞
=
{

O
(
n−1/2(ln p) maxi ςi

)
if v is a sub-Gaussian vector

O
(
n−1/2(ln p)1/2∥Σ−1/2v∥

)
if v is a constant vector

with probability at least 1 − O(p−2), where ς2
i is the variance of the ith element of v.

Corollary 2. Suppose that Assumption 1 through Assumption 4 are satisfied. Let v be a p-variate sub-
Gaussian random vector with Var[v] = c n−1Σ for some finite c > 0. We then have∥∥Ŵv − WE[v]∥∞ = O

(√
n−1 ln p

)
with probability at least 1 − O(p−2).
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8.4 Proof of Theorem 3

For simplicity of notation we will write S instead of Sζ since Theorem 3 only depends on the whitened vector
ζ. Now recall the definition of S̃ as

S̃ = {j : |ζ̂j | > tn}

where tn =
( ln p
n

)α for some constant 0 < α < 1
2 . We now show S̃ = S asymptotically almost surely.

From Theorem 2 there exists a choice of C such that if βn = C
√

n−1 ln p then

P
( p⋃
j=1

{|ζj − ζ̂j | > βn}
)

= O(p−2).

Now suppose Sc ∩ S̃ ̸= ∅ where (·)c denote set complement. Then there exists a j such that ζj = 0 and
|ζ̂j | > tn, and for this j we have |ζj − ζ̂j | > tn > βn, provided that n is sufficiently large. We thus have

P(Sc ∩ S̃ ≠ ∅) ≤ P
( p⋃
j=1

{|ζj − ζ̂j | > βn

)
= O(p−2). (8.43)

Similarly, if S ∩ S̃c ̸= ∅ then there exist a j such that |ζj | > C0 and |ζ̂j | ≤ tn. Recall that C0 > 0 is the
constant appearing in Assumption 2; in particular, C0 does not depend on n and p. By the reverse triangle
inequality, |ζj − ζ̂j | > C0 − tn > βn for sufficiently large n and hence

P(S ∩ S̃c ̸= ∅) ≤ P
( p⋃
j=1

{|ζj − ζ̂j | > βn

)
= O(p−2). (8.44)

Combining Eq. (8.43) and Eq. (8.44) yields P(S ≠ S̃) = O(p−2) and hence, as p → ∞, by the Borel-Cantelli
lemma we have S = S̃ asymptotically almost surely.

We now show that the error rate for lda ◦ pca converges to the Bayes error rate RF asymptotically almost
surely. From the description of lda ◦ pca in Eq. (2.9), it is sufficient to show that

ζ̂⊤
S̃
[
Ŵ
(
Z − X̄1+X̄2

2
)]

S̃ − ζ⊤
S
[
W
(
Z − µ1+µ2

2
)]

S
p−→ 0, (8.45)

ln n1

n2

p−→ ln π1

1 − π1
. (8.46)

Note that the convergence in Eq. (8.45) is with respect to a random testing sample Z ∼ π1N (µ1, Σ) + (1 −
π1)N (µ2, Σ) together with the training data, while the convergence in Eq.equation 8.46 is with respect to
the training data only. As Eq. equation 8.46 follows directly from the strong law of large numbers, we thus
focus our effort on showing Eq. (8.45).

First, suppose S̃ = S and let h(Z) = ζ̂⊤
S̃

[
Ŵ
(
Z − X̄1+X̄2

2
)]

S̃ − ζ⊤
S
[
W
(
Z − µ1+µ2

2
)]

S . Then∣∣h(Z)
∣∣ ≤ s0

∥∥[Ŵ(
Z − X̄1+X̄2

2
)

− W
(
Z − µ1+µ2

2
)]

S

∥∥
∞∥ζ∥∞

+ s0
∥∥[W(

Z − µ1+µ2
2
)]

S

∥∥
∞∥ζ̂ − ζ∥∞

+ s0
∥∥[Ŵ(

Z − X̄1+X̄2
2

)
− W

(
Z − µ1+µ2

2
)]

S

∥∥
∞∥ζ̂ − ζ∥∞.

(8.47)

The bounds for ∥ζ∥∞ and ∥ζ̂ − ζ∥∞ are given in Assumption 2 and Theorem 2, respectively. It thus suffices
to bound

(D) :=
∥∥[Ŵ(

Z − X̄1+X̄2
2

)
− W

(
Z − µ1+µ2

2
)]

S

∥∥
∞

(E) :=
∥∥[W(

Z − µ1+µ2
2
)]

S

∥∥
∞

Write Z = µz + Σ1/2ϵz where µz = µ1 if Z is sampled from class 1 and µz = µ2 otherwise. The term
∥[(Ŵ − W)Σ1/2ϵz]S

∥∥
∞ can be analyzed using the decomposition for Ŵ − W given in Eq. (8.25) together
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with similar arguments to that for deriving Eqs. (8.27), (8.37), (8.38) and (8.40). In particular we have, with
probability at least 1 − O(n−2), that

∥∥[(Ŵ − W)Σ1/2ϵz
]

S

∥∥
∞ = O(

√
ln n ln p

n
) (8.48)

Next, using Corollary 1, Corollary 2 and Eq. (8.48), we obtain, with probability at least 1 − O(n−2)

(D) ≤
∥∥[(Ŵ − W)Σ1/2ϵz

]
S

∥∥
∞ +

∥∥(Ŵ − W)µz
∥∥

∞ + 1
2
∥∥ŴX̄1 − Wµ1

∥∥
∞ + 1

2
∥∥ŴX̄2 − Wµ2

∥∥
∞

≤ C
(√ ln n ln p

n
+
√

ln p

n
+
√

ln p

n

)
= O(

√
ln n ln p

n
).

Thirdly, we have

(E) ≤
∥∥W

(
µz − µ1+µ2

2
)∥∥

∞ +
∥∥[W(Z − µz)

]
S

∥∥
∞ = 1

2 ∥ζ∥∞ + ∥[ϵz]S∥∞ =: ϑ(Z) (8.49)

where [ϵz]S is a mean 0 sub-Gaussian vector in Rs0 and Var[[ϵz]S ] = Is0 . Therefore, by Assumption 2 and
properties of sub-Gaussian random vectors, the term ϑ(Z) is bounded in probability.

Combining the above bounds, we conclude that with probability at least 1 − O(n−2), S̃ = S and

∣∣ζ̂⊤
S̃
[
Ŵ
(
Z − X̄1+X̄2

2
)]

S̃ − ζ⊤
S
[
W
(
Z − µ1+µ2

2
)]

S

∣∣ ≤ Cs0

(√ ln n ln p

n
∥ζ∥∞ + ϑ(Z)

√
ln p

n

)
.

Hence, for ln n ln p = o(n), we have∣∣ζ̂⊤
S̃
[
Ŵ
(
Z − X̄1+X̄2

2
)]

S̃ − ζ⊤
S
[
W
(
Z − µ1+µ2

2
)]

S

∣∣ −→ 0

in probability. This completes the proof of Theorem 3.

8.5 Theoretical results for Section 5.1

We now present theoretical results for multi-class lda ◦ pca. We first assume that the whitened directions
{ζ(i)}, the whitened indices {Si}, and the covariance Σ satisfy the following two conditions, which are natural
generalizations of Assumption 2 and Assumption 3 to the multi-class setting.
Assumption 6. Let |Si| = si > 0 for each i = 2, · · · , K. Recall that Si is the set of indices j for which ζij ̸= 0.
Let C0 > 0, M > 0 and Cζ > 0 be constants not depending on p such that maxi si ≤ M and

min
i=2,··· ,K

min
j∈Si

|ζij | ≥ C0, max
i∈[K]

∥Σ−1/2µi∥ ≤ Cζ .

Assumption 7. Let σ > 0 be fixed and that, for sufficiently large p, n1, · · · , nK and p satisfy
ni
nj

= Θ(1) for i ̸= j, i, j ∈ [K] and ln p = o(n).

Furthermore, for sufficiently large p, the spiked eigenvalues λ1, . . . , λd satisfy

λk = Θ(p), for all k ∈ [d].

Given the above conditions, the next result extends Theorem 2 (and has an identical proof) to bound
∥ζ̂(i) − ζ(i)∥∞ for i ≥ 2.
Theorem 4. Under Assumption 1, Assumption 4, Assumption 6 and Assumption 7, there exists a constant
C > 0 such that with probability at least 1 − O(p−2),

max
i=2,··· ,K

∥ζ̂(i) − ζ(i)∥∞ ≤ C
√

ln p

n
. (8.50)
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We now consider a hard thresholding estimate ζ̃(i) for recovering ζ(i). For a given i ≥ 2, let

ζ̃
(i)
j = ζ̂

(i)
j 1(|ζ̂(i)

j | > tn), j ∈ [p] (8.51)

where tn =
(

ln p/n
)α for some constant 0 < α < 1

2 . Here we assume, for simplicity, that α takes the same
value for all classes. Given ζ̃(i), define the associated active set S̃i = {j : ζ̃

(i)
j ̸= 0}. The next result extends

Theorem 3 (and has an identical proof) to show that lda ◦ pca is also asymptotically Bayes-optimal in the
multi-class setting. However, we note that (to the best of our knowledge), there is no closed-form explicit
expression for the Bayes error RF when classifying data from a mixture of K ≥ 3 multiviarate normals.
Theorem 5. Suppose that Z ∼

∑K
i=1 πiNp(µi, Σ) where πi ≥ 0 and

∑K
i=1 πi = 1. Suppose Assumption 1,

Assumption 4, Assumption 6 and Assumption 7 are satisfied. We then have

max
i=2,··· ,K

P(S̃i ̸= Si) = O(p−2). (8.52)

Furthermore we also have R̂lda◦pca − RF → 0 almost surely as n, p → ∞.

8.6 Theoretical results for Section 5.2

We now present theoretical results for qda ◦ pca. which depend on the following variant of Assumption 2
through Assumption 4 for heterogeneous covariance matrices.
Assumption 8. Let |Ai| = ai > 0. Recall that Ai is the set of indices j for which ζij ̸= 0, i = 1, 2 where
ζi = Σ−1/2

i µi. Let C0 > 0, M > 0 and Cζ > 0 be constants not depending on p such that max{a1, a2} ≤ M
and

min
i∈{1,2}

min
j∈Ai

|ζij | ≥ C0, max
i∈{1,2}

max
k∈{1,2}

∥Σ−1/2
i µk∥ ≤ Cζ .

Assumption 9. Let σi > 0 be fixed and that, for sufficiently large p, n1, n2 and p satisfy
n1

n2
= Θ(1), ln p = o(n).

Furthermore, for sufficiently large p, the spiked eigenvalues λi1, . . . , λidi
satisfy

λik = O(p), for all k ∈ [di], i = 1, 2.

Assumption 10 (Bounded Coherence). There is a constant CU ≥ 1 independent of n and p such that

∥Ui∥2→∞ ≤ CU
√

di√
p

, for i = 1, 2.

Assumption 8 guarantees that the noncentrality parameters for these χ2
1 are strictly positive and finite, so

that the Bayes error rate RF is stricly bounded away from 0 and min{π1, 1 − π1} (which corresponds to
random guessing). Note that if Σ1 ̸= Σ2 then there is no simple closed-form expression for RF as it depends
on the tail behavior of a linear combination of independent, noncentral χ2

1 random variables; see Anderson
(2003, Section 6.10) for more details. Assumption 9 allows the spiked eigenvalues for each Σi to grow
linearly with the dimension p, in contrast to the bounded eigenvalues assumption frequently encountered in
the literature (Li & Shao, 2015; Cai & Zhang, 2021).

We then have the following extensions of Theorem 2 and Theorem 3.
Theorem 6. Under Assumption 5 through 10, there exists a constant C > 0 such that

max
i=1,2

∥ζ̂i − ζi∥∞ ≤ C
√

ln p

n
. (8.53)

with probability at least 1 − O(p−2).
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Construct ζ̃i as in Eq. (3.6) for i ∈ {1, 2} and let Ãi be the indices for the non-zero coordinates of ζ̃i. Let
Z ∼ π1Np(µ1, Σ1) + (1 − π1)Np(µ2, Σ2). Then

max
i=1,2

P(Ãi ̸= Ai) = O(p−2). (8.54)

Furthermore, we also have R̂qda◦pca − RF → 0 in probability, as n, p → ∞.

Proof. For conciseness, we omit the derivations of Eq. (8.53) and Eq. (8.54) as they follow the same argument
as that in the proof of Theorem 2 and Eq. (3.8).

In order to show that Q(Z | X̄i, Ŵi, Â0) is a consistent estimate for Q(Z | µi, Wi, A0), it suffices to show that
the following quantities

q1(Z) :=
∣∣[W1

(
Z − µ1

)]⊤
A0

[
W1
(
Z − µ1

)]
A0

−
[
Ŵ1
(
Z − X̄1

)]⊤
A0

[
Ŵ1
(
Z − X̄1

)]
A0

∣∣ (8.55)

q2(Z) :=
∣∣[W2

(
Z − µ2

)]⊤
A0

[
W2
(
Z − µ2

)]
A0

−
[
Ŵ2
(
Z − X̄2

)]⊤
A0

[
Ŵ2
(
Z − X̄2

)]
A0

∣∣ (8.56)

both converge to 0 as n → ∞.

Assume without loss of generality that Z is a test sample from class 1, i.e,. Z ∼ Np(µ1, Σ1). Then

q1(Z) ≤ a0
∥∥[W1(Z − µ1) − Ŵ1(Z − X̄1)]A0

∥∥2
∞

+ 2a0
∥∥W1(Z − µ1)]A0

∥∥
∞ ×

∥∥[W1(Z − µ1) − Ŵ1(Z − X̄1)]A0

∥∥
∞

(8.57)

where a0 = |A0| ≤ a1 + a2, with ai = |Ai|.

Let h1(Z) :=
∥∥[W1(Z − µ1) − Ŵ1(Z − X̄1)]A0

∥∥
∞. Then by Corollaries 1 and 2, and following the same

arguments as that for Eq. (8.48), we have

h1(Z) ≤ ∥(W1 − Ŵ1)µ1∥∞ + ∥[(W1 − Ŵ1)Σ1/2
1 ϵz]A0∥∞ + ∥Ŵ1X̄1 − W1µ1∥∞

≤ C
(√ ln p

n
+
√

ln n ln p

n
+
√

ln p

n

) (8.58)

with probability at least 1 − O(n−2), where ϵz ∼ N (0, Ip). An almost identical bound also holds for
h2(Z) :=

∥∥[W2(Z − µ2) − Ŵ2(Z − X̄2)]A0

∥∥
∞, namely

h2(Z) ≤ ∥(W2 − Ŵ2)µ1∥∞ + ∥(W2 − Ŵ2)Σ1/2
1 ϵz]A0∥∞ + ∥Ŵ2X̄2 − W2µ2∥∞

≤C
(√ ln p

n
∥Σ−1/2

2 µ1∥2 +
√

ln n ln p

n
+
√

ln p

n

) (8.59)

with probability at least 1 − O(n−2).

Next, ∥
[
W1(Z − µ1)

]
A0

∥∥
∞ and ∥

[
W1(Z − µ1)

]
A0

∥∥
∞ can be bounded by the quantity ϑ(Z) as defined in

Eq. (8.49) which, by Assumption 8, is bounded in probability.

Finally, by Proposition 2 and Lemma 2 in Jiang et al. (2018), we have |κ̂ − κ| → 0 in probability. Combining
the above statements yield the proof of Theorem 6.
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