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Abstract

Graph Neural Networks (GNNs) have been widely used to learn node representations and
with outstanding performance on various tasks such as node classification. However, noise,
which inevitably exists in real-world graph data, would considerably degrade the perfor-
mance of GNNs revealed by recent studies. In this work, we propose a novel and robust
GNN encoder, Low-Rank Graph Contrastive Learning (LR-GCL). Our method performs
transductive node classification in two steps. First, a low-rank GCL encoder named LR-
GCL is trained by prototypical contrastive learning with low-rank regularization. Next,
using the features produced by LR-GCL, a linear transductive classification algorithm is
used to classify the unlabeled nodes in the graph. Our LR-GCL is inspired by the low
frequency property of the graph data and its labels, and it is also theoretically motivated by
our sharp generalization bound for transductive learning. To the best of our knowledge, our
theoretical result is among the first to theoretically demonstrate the advantage of low-rank
learning in graph contrastive learning supported by strong empirical performance. Exten-
sive experiments on public benchmarks demonstrate the superior performance of LR-GCL
and the robustness of the learned node representations. The code of LR-GCL is available
at https://anonymous.4open.science/r/LRGCL/.

1 Introduction

Graph Neural Networks (GNNs) have become popular tools for node representation learning in recent
years (Kipf & Welling, 2017; Bruna et al., 2014; Hamilton et al., 2017; Xu et al., 2019b). Most prevailing
GNNs (Kipf & Welling, 2017; Zhu & Koniusz, 2020) leverage the graph structure and obtain the representa-
tion of nodes in a graph by utilizing the features of their connected nodes. Benefiting from such propagation
mechanism, node representations obtained by GNN encoders have demonstrated superior performance on
various downstream tasks such as semi-supervised node classification and node clustering. Although GNNs
have achieved great success in node representation learning, many existing GNN approaches do not consider
the noise in the input graph. In fact, noise inherently exists in the graph data for many real-world applica-
tions Zhu et al. (2024); Zhong et al. (2019). Such noise may be present in node attributes or node labels,
which forms two types of noise, attribute noise and label noise. Recent works, such as (Patrini et al., 2017),
have evidenced that noisy inputs hurt the generalization capability of neural networks. Moreover, noise in
a subset of the graph data can easily propagate through the graph topology to corrupt the remaining nodes
in the graph data Dai et al. (2021); Wang et al. (2023; 2024b). Nodes that are corrupted by noise or falsely
labeled would adversely affect the representation learning of themselves and their neighbors. While manual
data cleaning and labeling could be remedies to the consequence of noise, they are expensive processes and
difficult to scale, thus not able to handle almost infinite amount of noisy data online. Therefore, it is crucial
to design a robust GNN encoder that could make use of noisy training data while circumventing the adverse
effect of noise. In this paper, we propose a novel GCL encoder termed Low-Rank Graph Contrastive Learning
(LR-GCL) to improve the robustness and the generalization capabilities of node representations for GNNs.

Prior work has demonstrated that deep neural networks can overfit to noisy data, significantly degrading
generalization performance (Zhang et al., 2021). Robust learning methods broadly fall into two categories,
which are loss correction, which modifies the learning objective to reduce the influence of corrupted labels
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or features (Patrini et al., 2017; Goldberger & Ben-Reuven, 2016), and sample selection, which attempts
to identify and train on clean samples only (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Yu et al.,
2019; Li et al., 2020; Han et al., 2018). While several methods (Dai et al., 2021; Qian et al., 2022; Zhuang
& Al Hasan, 2022) have extended these ideas to graph data, they primarily rely on heuristic assumptions
and lack theoretical analyses regarding how to improve the robustness of GNNs to noise in semi-supervised
node classification. Our LR-GCL is inspired by the low frequency property of the graph data and its labels,
and it is also theoretically motivated by our sharp generalization bound for transductive learning. To the
best of our knowledge, our theoretical result is among the first to theoretically demonstrate the advantage
of low-rank learning in graph contrastive learning supported by strong empirical performance. Extensive
experiments on public benchmarks demonstrate the superior performance of LR-GCL and the robustness of
the learned node representations.

Although GNNs are considered low-pass filtering, they implicitly learn the low-frequency information, and
the effect of such low-pass filtering is not strong enough to capture the Low-Frequency Property (LFP)
in the noisy labels. As illustrated by Figure 2 deferred to Section 5.7 and Figure 3 in Section B.3 of the
appendix, which demonstrates the LFP, that is, the majority of the clean label information is contained
only in the low-rank part of the observed label. In contrast with existing GNNs, our LR-GCL better
captures the LFP in the noisy labels by learning low-rank features. We remark that low-rank learning
exhibits superior performance for noisy attributes in (Cheng et al., 2021) through learnable low-rank filters.
Moreover, recent works on graph attention/transformer have shown that finding a good balance between
low-frequency and high-frequency information in the graph benefits node representation learning for graph
learning tasks such as node classification (Choi et al., 2024a; Zhang et al., 2024a). Compared with the
existing GNNs and graph attention/transformer methods, our LR-GCL learns a better balance between
low-frequency and high-frequency information, with more focus on the low-frequency part by minimizing the
Truncated Nuclear Norm (TNN) due to LFP. As shown in the new Table 3 and Table 8 in Section 5.3, LR-
GCL exhibits better node classification accuracy than graph attention/transformer methods, GFSA (Choi
et al., 2024a) and HONGAT (Zhang et al., 2024a), when label noise or attribute noise is present in the
input graph. In addition, the balance between the low-frequency and high-frequency information can be
quantitatively measured by the kernel complexity defined in Section 4.2. As shown in Table 5 and Table 6
in Section 5.5, the node representations learned by LR-GCL exhibit lower kernel complexity than those of
graph contrastive learning methods and graph attention/transformer methods.

1.1 Contributions

Our contributions are as follows.

First, we present a novel and provable GCL encoder termed Low-Rank Graph Contrastive Learning (LR-
GCL). Our algorithm is inspired by the low frequency property illustrated in Figure 2. That is, the low-rank
projection of the ground truth clean labels possesses the majority of the information of the clean labels, and
projection of the label noise is mostly uniform over all the eigenvectors of a kernel matrix used in classification.
Inspired by this observation, LR-GCL adds the TNN as a low-rank regularization term in the loss function
of the regular prototypical graph contrastive learning. As a result, the features produced by LR-GCL tend
to be low-rank, and such low-rank features are the input to the linear transductive classification algorithm.
We provide a novel generalization bound for the test loss on the unlabeled data, and our bound is among the
first few works which exhibit the advantage of learning with low-rank features for transductive classification
with the presence of noise.

Second, we provide strong theoretical guarantee on the generalization capability of the linear transductive
algorithm with the low-rank features produced by LR-GCL as the input. Extensive experimental results on
popular graph datasets evidence the advantage of LR-GCL over competing methods for node classification
on noisy graph data.

The organization of this paper is described as follows. In Section 2, we review existing graph neural net-
works, graph contrastive learning approaches, and robust learning techniques that motivate our method.
Section 3 formally defines the learning objective, the notations, and the assumptions of our node classifi-
cation task under noisy conditions. In Section 4, we present the formulation of the proposed Low-Rank
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Graph Contrastive Learning (LR-GCL) method with theoretical guarantee. Next, Section 5 validates our
approach through extensive comparisons across benchmarks under varying noise conditions, demonstrating
the superiority of LR-GCL.

2 Related Works

2.1 Graph Neural Networks

Graph neural networks (GNNs) have recently become popular tools for node representation learning. Given
the difference in the convolution domain, current GNNs fall into two classes. The first class features spectral
convolution (Bruna et al., 2014; Kipf & Welling, 2017), and the second class (Hamilton et al., 2017; Veličković
et al., 2017; Xu et al., 2019b) generates node representations by sampling and propagating features from
their neighborhood. To learn node representation without node labels, contrastive learning has recently
been applied to the training of GNNs (Suresh et al., 2021; Thakoor et al., 2021; Wang et al., 2022; Lee
et al., 2022; Feng et al., 2022a; Zhang et al., 2023; Lin et al., 2023). Most proposed graph contrastive
learning methods (Veličković et al., 2019; Sun et al., 2019; Hu et al., 2019; Jiao et al., 2020; Peng et al.,
2020; You et al., 2021; Jin et al., 2021; Mo et al., 2022) create multiple views of the unlabeled input graph
and maximize agreement between the node representations of these views. For example, SFA (Zhang et al.,
2023) manipulates the spectrum of the node embeddings to construct augmented views in graph contrastive
learning. In addition to constructing node-wise augmented views, recent works (Xu et al., 2021; Guo et al.,
2022; Li et al., 2021) propose to perform contrastive learning between node representations and semantic
prototype representations (Snell et al., 2017; Arik & Pfister, 2020; Allen et al., 2019; Xu et al., 2020) to
encode the global semantics information.

However, as pointed out by (Dai et al., 2021), the performance of GNNs can be easily degraded by noisy
training data (NT et al., 2019). Moreover, the adverse effects of noise in a subset of nodes can be exaggerated
by being propagated to the remaining nodes through the network structure, exacerbating the negative impact
of noise Wang et al. (2024b). Unlike previous GCL methods, we propose using contrastive learning to train
GNN encoders that are robust to noise existing in the labels and attributes of nodes.

2.2 Existing Methods Handing Noisy Data

Previous works (Zhang et al., 2021) have shown that deep neural networks usually generalize badly when
trained on input with noise. Existing literature on robust learning mostly fall into two categories. The
first category (Patrini et al., 2017; Goldberger & Ben-Reuven, 2016) mitigates the effects of noisy inputs by
correcting the computation of loss function, known as loss corruption. The second category aims to select
clean samples from noisy inputs for the training (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Yu
et al., 2019; Li et al., 2020; Han et al., 2018), known as sample selection.

To improve the performance of GNNs on graph data with noise, NRGNN(Dai et al., 2021) first introduces
a graph edge predictor to predict missing links for connecting unlabeled nodes with labeled nodes. RTGNN
(Qian et al., 2022) trains a robust GNN classifier with scarce and noisy node labels. It first classifies
labeled nodes into clean and noisy ones and adopts reinforcement supervision to correct noisy labels. To
improve the robustness of the node classifier on the dynamic graph, GraphSS (Zhuang & Al Hasan, 2022)
proposes to generalize noisy supervision as a kind of self-supervised learning method, which regards the noisy
labels, including both manual-annotated labels and auto-generated labels, as one kind of self-information
for each node. Different from previous works, we aim to improve the robustness of GNN encoders for node
classification by applying low-rank regularization during the training of the transductive classifier.

2.3 Learning Low-Frequency Signal in Graphs with GNNs and Graph Attention

Conventional GNNs, such as the Graph Convolutional Network (GCN) (Kipf & Welling, 2017), learn node
representations by aggregating information from their neighbors, inherently functioning as low-pass filters.
Existing works (NT & Maehara, 2019; Xu et al., 2019a; Wu et al., 2019; Yu & Qin, 2020) suggest that cap-
turing low-frequency information in the graph structure and node features is crucial to the success of GNNs.
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However, recent studies (Bo et al., 2021; Zhang et al., 2024b; Dong et al., 2025) indicate that relying solely
on low-frequency information can lead to over-smoothing (Sun et al., 2022), potentially degrading GNN
performance on graph datasets where nodes from different classes are frequently connected. To address this
issue, recent studies (Bo et al., 2021; Dong et al., 2021; Ju et al., 2022) have proposed methods to adap-
tively balance low-frequency and high-frequency information in learned node representations, demonstrating
improvements in graph learning tasks such as node classification (Tang et al., 2025). Furthermore, recent
studies have shown that GNNs explicitly designed to emphasize learning on the low-rank components of
node features and graph topology can enhance the robustness of GNNs against the noise in the graph (Tang
et al., 2024; Yang et al., 2023).

In addition, recent studies have shown that graph attention mechanisms, such as the Graph Attention
Network (GAT) (Veličković et al., 2017), can also facilitate the learning of low-frequency information (Zhang
et al., 2024a; Choi et al., 2024b). To mitigate over-smoothing in graph attention, HONGAT (Zhang et al.,
2024a) enhances correlation learning among high-order neighbors and sparsifies the attention weight matrix.
Moreover, recent works have explored the integration of spectral filters with graph attention to achieve a
more balanced and adaptive learning of different frequency components in node representations (Chang et al.,
2021; Sun et al., 2024; Wang et al., 2024a).

3 Problem Setup

3.1 Notations

An attributed graph with N nodes is denoted as G = (V, E , X), where the node set V = {v1, v2, . . . , vN } and
the edge set E ⊆ V × V represent the nodes and edges of the graph, respectively. The matrix X ∈ RN×D

denotes the attributes for all the nodes, where D is the dimension of node attributes. The adjacency matrix
A ∈ {0, 1}N×N for G has elements Aij = 1 if there is an edge (vi, vj) ∈ E . When self-loops are added
to the graph, the modified adjacency matrix is given by Ã = A + I, and D̃ is the diagonal degree matrix
corresponding to Ã. The notation [N ] denotes all natural numbers from 1 to N inclusive. L is a subset of
[N ] of size m, and U = [N ] \ L and |U| = u. Let VL and VU denote the set of labeled nodes and unlabeled
test nodes, respectively, and |VL| = m, |VU | = u. Let u ∈ RN be a vector, we use [u]A to denote a vector
formed by elements of u with indices in A for A ⊆ [N ]. If u is a matrix, then [u]A denotes a submatrix
formed by rows of u with row indices in A. ∥·∥F denotes the Frobenius norm of a matrix, and ∥·∥p denotes
the p-norm of a vector.

3.2 Graph Convolution Network (GCN)

To learn the node representation from the attributes X and the graph structure A, one simple yet effective
neural network model is Graph Convolution Network (GCN). GCN is originally proposed for semi-supervised
node classification, which consists of two graph convolution layers. In our work, we use GCN as the backbone
of the proposed LR-GCL, which is the GCL encoder, to obtain node representation Ĥ ∈ RN×d, where the
i-th row of Ĥ is the node representation of vi. In this manner, the output of LR-GCL is Ĥ = g(X, A) =
σ(Âσ(ÂXW̃(0))W̃(1)), where Â = D̃−1/2ÃD̃−1/2, W̃(0) and W̃(1) are the weight matrices, and σ is the
activation function ReLU. The robust and low-rank node representations produced by the LR-GCL are used
to perform transductive node classification by a linear classifier. LR-GCL and the linear transductive node
classification algorithm are detailed in Section 4.

3.3 Problem Description

Noise usually exists in the input node attributes or labels of real-world graphs, which degrades the quality
of the node representation obtained by common GCL encoders and affects the performance of the classifier
trained on such representations. We aim to obtain node representations robust to noise in two cases, where
noise is present in either the labels of VL or in the input node attributes X. That is, we consider either noisy
label or noisy input node attributes.
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The goal of LR-GCL is to learn low-rank node representations by H = g(X, A) such that the node repre-
sentations {hi}N

i=1 are robust to noise in the above two cases, where g(·) is the LR-GCL encoder. In our
work, g is a two-layer GCN introduced in Section 3.2. The low-rank node representations by LR-GCL,
H = {h1; h2; . . . ; hN } ∈ RN×d, are used for transductive node classification by a linear classifier. In trans-
ductive node classification, a linear transductive classifier is trained on VL, and then the classifier predicts
the labels of the unlabeled test nodes in VU .
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Figure 1: Illustration of the LR-GCL framework.

4 Methods

4.1 Low-Rank GCL: Low-Rank Graph Contrastive Learning

Preliminary of Prototypical GCL. The general node representation learning aims to train an encoder
g(·), which is a two-layer Graph Convolution Neural Network (GCN) (Kipf & Welling, 2017), to generate
discriminative node representations. In our work, we adopt contrastive learning to train the GCL encoder
g(·). To perform contrastive learning, two different views, G1 = (X1, A1) and G2 = (X2, A2), are generated
by node dropping, edge perturbation, and attribute masking. The representation of two generated views
are denoted as H1 = g(X1, A1) and H2 = g(X2, A2), with H1

i and H2
i being the i-th row of H1 and

H2, respectively. It is preferred that the mutual information between H1 and H2 is maximized. For
computational reason, its lower bound is usually used as the objective for contrastive learning. We use
InfoNCE (Li et al., 2021) as our node-wise contrastive loss. In addition to the node-wise contrastive learning,
we also adopt prototypical contrastive learning (Li et al., 2021) to capture semantic information in the node
representations, which is interpreted as maximizing the mutual information between node representation
and a set of estimated cluster prototypes {c1, ..., cK}. Following (Li et al., 2021; Snell et al., 2017), we use
K-means to cluster the node representations {hi}n

i=1 into K clusters and take the clustering centroid of the
k-th cluster as the k-th prototype ck = 1

|Sk|
∑

hi∈Sk
hi for all k ∈ [K]. The loss function of Prototypical

GCL is comprised of two terms, Lnode, the loss function for node-wise contrastive learning, and Lproto, the
prototypical contrastive learning loss, which are presented below:

Lnode = − 1
N

N∑
i=1

log s(H1
i , H2

i )
s(H1

i , H2
i ) +

∑N

j=1 s(H1
i , H2

j )
, Lproto = − 1

N

N∑
i=1

log exp(Hi · ck/τ)∑K

k=1 exp(Hi · ck/τ)
. (1)

Here s(H1
i , H2

i ) is the cosine similarity between two node representations, H1
i and H2

i . The node-wise con-
trastive loss encourages consistency between node representations across two perturbed views of the input
graph. This design is particularly helpful in mitigating the impact of attribute noise, as the perturbations
simulate different noise patterns. By maximizing agreement between representations from these views, the
model learns to extract noise-invariant features that are robust to corruptions in input attributes. The
prototypical contrastive loss clusters node representations and enforces alignment between individual nodes
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Algorithm 1 Low-Rank Graph Contrastive Learning (LR-GCL)
Input: The input attribute matrix X, adjacency matrix A, and the training epochs tmax.
Output: The parameters of LR-GCL encoder g

1: Initialize the parameter of LR-GCL encoder g
2: for t← 1 to tmax do
3: Calculate node representations by H = g(X, A), generate augmented views G1, G2, and calculate node repre-

sentations H1 = g(X1, A1) and H2 = g(X2, A2)
4: Cluster node representations {hi}n

i=1 into K clusters {Sk}K
k=1 with K-means clustering

5: Update the prototype ck as the centroid of Sk by ck = 1
|Sk|

∑
hi∈Sk

hi for all k ∈ [K]
6: Calculate the eigenvalues {λi}N

i=1 of the feature kernel H⊤H
7: Update the parameters of LR-GCL encoder g by one step of gradient descent on the loss Lrep

8: end for
9: return The LR-GCL encoder g

and their corresponding cluster prototypes. This helps address label noise by leveraging semantic consis-
tency across nodes within the same cluster. Even if a node’s label is corrupted, the prototype, which is
computed from a group of similar nodes in a cluster, provides a denoised supervisory signal that guides the
representation toward its correct semantic class.

LR-GCL: Low-Rank Graph Contrastive Learning. LR-GCL aims to improve the robustness and
generalization capability of the node representations of Prototypical GCL by enforcing the learned feature
kernel to be low-rank. The kernel gram matrix K of the node representations H ∈ RN×d is calculated by
K = H⊤H ∈ RN×N . Let

{
λ̂i

}n

i=1
with λ̂1 ≥ λ̂2 . . . ≥ λ̂min{N,d} ≥ λ̂min{N,d}+1 = . . . , = 0 be the eigenvalues

of K. In order to encourage the features H or the gram matrix H⊤H to be low-rank, we explicitly add the
TNN ∥K∥r0+1 :=

∑n
r=r0

λ̂i to the loss function of prototypical GCL. The starting rank r0 < min(n, d) is
the rank of the kernel gram matrix of the features we aim to obtain with the LR-GCL encoder, that is, if
∥K∥r0

= 0, then rank(K) = r0. Therefore, the overall loss function of LR-GCL is

LLR-GCL = Lnode + Lproto + τ∥K∥r0
, (2)

where τ > 0 is the weighting parameter for the TNN ∥K∥r0
. We summarize the training algorithm for the

LR-GCL encoder in Algorithm 1. After finishing the training, we calculate the low-rank node feature by
H = g(A, X).

Motivation of Learning Low-Rank Features. Let Ỹ ∈ RN×C be the ground truth clean label matrix
without noise. By the low frequency property illustrated in Figure 2, the projection of Ỹ on the top r
eigenvectors of K with a small rank r, such as r = 0.2N , covers the majority of the information in Ỹ. On
the other hand, the projection of the label noise N are distributed mostly uniform across all the eigenvectors.
This observation motivates low-rank features H or equivalently, the low-rank gram matrix K. This is because
the low-rank part of the feature matrix H or the gram matrix K covers the dominant information in the
ground truth label Ỹ while learning only a small portion of the label noise. Moreover, we remark that the
regularization term ∥K∥r0

in the loss function (2) of LR-GCL is also theoretically motivated by the sharp
upper bound for the test loss using a linear transductive classifier, presented as (4) in Theorem 4.1. A smaller
∥K∥r0

renders a smaller upper bound for the test loss, which ensures better generalization capability of the
linear transductive classier to be introduced in the next subsection.

4.2 Transductive Node Classification

In this section, we introduce a simple yet standard linear transductive node classification algorithm using the
low-rank node representations H ∈ RN×d produced by the LR-GCL encoder. We present strong theoretical
result on the generalization bound for the test loss for our low-rank transductive algorithm with the presence
of label noise.

We first give basic notations for our algorithm. Let yi ∈ RC be the observed one-hot class label vector for
node vi for all i ∈ [N ], and define Y := [y1; y2; . . . yN ] ∈ RN×C be the observed label matrix which may
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contain label noise N ∈ RN×C . We define F(W) = HW as the linear output of the transductive classier
with W ∈ Rd×C being the weight matrix for the classifier. Our transductive classifier uses softmax(F(W)) ∈
RN×C for prediction of the labels of the test nodes. We train the transductive classifier by minimizing the
regular cross-entropy on the labeled nodes through

min
W

L(W) = 1
m

∑
vi∈VL

KL (yi, [softmax (HW)]i) , (3)

where KL is the KL divergence between the label yi and the softmax of the classifier output at node vi. We use
a regular gradient descent to optimize (3) with a learning rate η ∈ (0, 1

λ̂1
). W is initialized by W(0) = 0, and

at the t-th iteration of gradient descent for t ≥ 1, W is updated by W(t) = W(t−1) − η∇WL(W)|W=W(t−1) .

Define F(W, t) := HW(t) as the output of the classifier after the t-th iteration of gradient descent for
t ≥ 1. We have the following theoretical result, Theorem 4.1, on the Mean Squared Error (MSE) loss of
the unlabeled test nodes VU measured by the gap between [F(W, t)]U and

[
Ỹ
]

U when using the low-rank
feature H with r0 ∈ [n], which is the generalization error bound for the linear transductive classifier using
F(W) = HW to predict the labels of the unlabeled nodes. Similar to existing works (Kothapalli et al.,
2023) that uses the Mean Squared Error (MSE) to analyze the optimization and the generalization of GNNs,
we employ the MSE loss to provide the generalization error of the node classifier in the following theorem.
It is remarked that the MSE loss is necessary for the generalization analysis of transductive learning using
transductive local Rademacher complexity (Tolstikhin et al., 2014; Yang, 2023).
Theorem 4.1. Let m ≥ cN for a constant c ∈ (0, 1), and r0 ∈ [n]. Assume that a set L with |L| = m is
sampled uniformly without replacement from [N ], and the remaining nodes VU = V \ VL are the test nodes.
Then for every x > 0, with probability at least 1 − exp(−x), after the t-th iteration of gradient descent for
all t ≥ 1, we have

Utest(t) := 1
u

∥∥[F(W, t) − Ỹ
]

U

∥∥2
F

≤ 2c0

m

(
L1(K, Ỹ, t) + L2(K, N, t)

)
+ c0KC(K) + c0x

u
, (4)

where c0 is a positive number depending on U,
{

λ̂i

}r0

i=1
, and τ0 with τ2

0 = maxi∈[N ] Kii. L1(K, Ỹ, t) :=∥∥∥∥(Im − η [K]L,L

)t [
Ỹ
]

L

∥∥∥∥2

F
, L2(K, N, t) =

∥∥∥∥η [K]L,L
∑t−1

t′=0

(
Im − η [K]L,L

)t′

[N]L

∥∥∥∥2

F
. KC is the kernel com-

plexity of the kernel gram matrix K = HH⊤ defined by

KC(K) = min
r0∈[0,n]

r0

(
1
u

+ 1
m

)
+
√

∥K∥r0

(
1√
u

+ 1√
m

)
. (5)

This theorem is proved in Section A of the appendix. It is noted that Utest(t) is the test loss of the unlabeled
nodes measured by the distance between the classifier output F(W, t) and Ỹ. There are three terms on
the upper bound for the test loss in (4), L1(K, Ỹ, t), L2(K, N, t), and KC(K), which are explained as
follows. L1(K, Ỹ, t) corresponds to the training loss of the node classifier with the clean label. L2(K, N, t)
corresponds to the loss incurred by label noise. KC(K) is the kernel complexity (KC), which measures the
complexity of the kernel gram matrix from the node representation H generated by our LR-GCL encoder.
We remark that the TNN ∥K∥r0

appears on the RHS of the upper bound (4), theoretically justifying why we
learn the low-rank features K of the LR-GCL by adding the TNN ∥K∥r0

to the loss of our LR-GCL in (2).
Moreover, when the low frequency property holds, which is always the case as demonstrated by Figure 2 and
Figure 3 in the appendix, L1(K, Ỹ, t) would be very small with enough iteration number t. L2(K, N, t) is
also small due to the fact that the projection of label noise is approximately uniform over all the eigenvectors,
and K = H⊤H is approximately a low-rank matrix of rank r0 since H is approximately a rank-r0 matrix
with its TNN optimized through the optimization of the LR-GCL encoder (2).

In our empirical study in the next section, we search for the rank r0 for the TNN by standard cross-validation
for all the graph data sets. In Table 1 of our experimental results, it is observed that the best rank r0 is always
between 0.1 min {N, d} and 0.3 min {N, d}. The overall framework of LR-GCL is illustrated in Figure 1.
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4.3 LRA-LR-GCL: Improving LR-GCL by Low Rank Attention

To further improve the performance of LR-GCL, we introduce LRA-LR-GCL in this section. LRA-LR-GCL
features a novel LR-Attention layer, or the LRA layer, which applies self-attention to the output of the LR-
GCL encoder by F = BH, where H ∈ RN×d is the low-rank node representations produced by the LR-GCL
encoder through the optimization of (2). F is the attention output and B ∈ RN×N is our new attention
matrix in the LRA layer. We recall that the kernel gram matrix of the node features H is K = HH⊤. The
attention weight matrix B is set to B = K/λ̂1. The gram matrix KF of the node representations F ∈ RN×d

is then KF = FF⊤ = K3/λ̂2
1. Let {λi}N

i=1 be the eigenvalues of KF with λ1 ≥ λ2 ≥ ...λN ≥ 0, then we have
λi = λ̂3

i /λ̂2
1 for every i ∈ [n]. Noting that λi = λ̂i · λ̂2

i /λ̂2
1 ≤ λ̂i due to λ1 ≥ λi for all i ∈ [N ], therefore, the

LRA layer can reduce the kernel complexity of the kernel gram matrix K, because the KC of KF is always
not greater than that of K. We then train a transductive classifier on top of F similar to Section 4.2 by
minimizing the loss function

min
W

L(W) = 1
m

∑
vi∈VL

KL (yi, [softmax (FW)]i) , (6)

where W is the weight matrix for the classifier. Such linear classifier trained with the the LRA layer through
the optimization of (6) is termed LRA-LR-GCL. It then follows from the above discussion and the upper
bound for the test loss (4) in Theorem 4.1 that LRA-LR-GCL has a lower KC, so that the test loss Utest(t)
of LRA-LR-GCL can be even lower than that of LR-GCL, suggesting a better prediction accuracy of LRA-
LR-GCL than LR-GCL. This is empirically justified in Table 5 and Table 6 where LRA-LR-GCL exhibits
lower KC and lower upper bound for the test loss than that of LR-GCL.

5 Experiments

In this section, we evaluate the performance of LR-GCL on public graph datasets. In Section 5.1, we
discuss the experimental settings and implementation details of LRA-GCL. The detailed statistics of the
benchmark datasets are presented in Section 5.2. In Section 5.3, we present evaluation results of LR-GCL
for semi-supervised node classification with different types of noise. In Section 5.4, we compare LR-GCL
with existing GCL methods equipped with different types of classifiers. In Section 5.5, we study the kernel
complexity of node representations learned by LR-GCL. In Section 5.6, we perform an ablation study on the
rank r0 in the TNN. In Section B.1 of the appendix, we present experiment results for node classification
on additional benchmarks. In Section B.2 of the appendix, we compare the training time of LR-GCL with
other baseline methods. Additional eigen-projection and signal concentration ratio results are presented in
Section B.3 of the appendix. In Section B.4, we study the effectiveness of LR-GCL on the heterophilic graph
datasets.

5.1 Experimental Settings

In our experiment, we adopt eight widely used graph benchmark datasets, namely Cora, Citeseer, PubMed
(Sen et al., 2008), Coauthor CS, ogbn-arxiv (Hu et al., 2020), Wiki-CS (Mernyei & Cangea, 2020), Amazon-
Computers, and Amazon-Photos (Shchur et al., 2018) for the evaluation in node classification. Due to the
fact that all public benchmark graph datasets do not come with corrupted labels or attribute noise, we
manually inject noise into public datasets to evaluate our algorithm. We follow the commonly used label
noise generation methods from the existing work (Han et al., 2020; Dai et al., 2022; Qian et al., 2022) to
inject label noise. We generate noisy labels over all classes in two types: (1) Symmetric, where nodes from
each class is flipped to other classes with a uniform random probability; (2) Asymmetric, where mislabeling
only occurs between similar classes. In this work, we adopt the formal definitions of label noise introduced
in (Song et al., 2022). Let T ∈ [0, 1]C×C denote the noise transition matrix, where Tij := P(ỹ = j | y = i)
represents the probability that a clean label y = i is flipped to a noisy label ỹ = j. Under symmetric noise
with rate τ ∈ [0, 1], labels are flipped uniformly to any of the other classes, i.e., Tii = 1 − τ and Tij = τ

C−1
for all j ̸= i. In contrast, asymmetric noise assumes that mislabeling is biased toward specific confounding
classes. Formally, Tii = 1 − τ and there exist j ̸= i, k ̸= i such that Tij > Tik, meaning that some incorrect
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classes are more likely than others. This setting captures more realistic scenarios where label confusion
follows a structured pattern.

To evaluate the performance of our method with attribute noise, we randomly shuffle a certain percentage of
input attributes for each node following (Ding et al., 2022). The percentage of shuffled attributes is defined
as the attribute noise level in our experiments.

Details on the datasets we use in our experiments are introduced in Section 5.2. For all our experiments,
we follow the default separation (Shchur et al., 2018; Mernyei & Cangea, 2020; Hu et al., 2020) of training,
validation, and test sets on each benchmark. The noise is added to the training and validation sets, and
the test set is kept clean for evaluation. We search for the optimal values of different hyper-parameters,
including learning rate, weight decay, hidden dimension, and dropout rate, by 5-fold cross-validation on the
training data of each dataset. We search for the learning rate from {1×10−4, 5×10−4, 1×10−3, 5×10−3, 1×
10−2, 3 × 10−2, 6 × 10−2, 1 × 10−1, 5 × 10−1}. We search for weight decay from {1 × 10−5, 5 × 10−5, 1 ×
10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3}. The dropout rate is selected from {0.3, 0.4, 0.5, 0.6, 0.7}. Values leading
to the lowest validation loss are selected for each dataset. All models are trained using the Adam optimizer
for a maximum of 500 epochs, with early stopping applied if the validation loss does not decrease for 20
consecutive epochs. To mitigate the impact of the randomness, we run each experiment for 10 times with
different random seeds for the initialization of the network parameters.

Tuning r0, τ by Cross-Validation. We tune the rank r0 and the weight for the truncated nuclear loss
τ by standard cross-validation on each dataset. Let r0 = ⌈γ min {N, d}⌉ where γ is the rank ratio. We
select the values of γ and τ by performing 5-fold cross-validation on 20% of the training data in each
dataset. The value of γ is selected from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The value of τ is selected from
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. The selected values on each dataset are shown in Table 1.

Table 1: Selected rank ratio γ and truncated nuclear loss’s weight λ for each dataset.

Hyper-parameters Cora Citeseer PubMed Coauthor CS ogbn-arxiv Wiki-CS Amazon-Computers Amazon-Photos
τ 0.10 0.10 0.10 0.20 0.10 0.25 0.20 0.20
γ 0.2 0.2 0.3 0.3 0.4 0.2 0.2 0.3

5.2 Datasets

Table 2: The statistics of the datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Coauthor CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 128 40
Wiki-CS 11,701 215,863 300 10
Amazon-Computers 13,752 245,861 767 10
Amazon-Photos 7,650 119,081 745 8

We evaluate our method on eight public bench-
marks that are widely used for node rep-
resentation learning, namely Cora, Citeseer,
PubMed (Sen et al., 2008), Coauthor CS, ogbn-
arxiv (Hu et al., 2020), Wiki-CS (Mernyei
& Cangea, 2020), Amazon-Computers, and
Amazon-Photos (Shchur et al., 2018). Cora,
Citeseer, and PubMed are the three most
widely used citation networks. Coauthor CS
is a co-authorship graph. The ogbn-arxiv is
a directed citation graph. Wiki-CS is a hy-
perlink networks of computer science articles.
Amazon-Computers and Amazon-Photos are co-purchase networks of products selling on Amazon.com. We
summarize the statistics of all the datasets in Table 2.

5.3 Node Classification

Compared Methods. We compare LR-GCL against semi-supervised node representation learning meth-
ods, GCN (Kipf & Welling, 2017), GCE (Zhang & Sabuncu, 2018), S2GC (Zhu & Koniusz, 2020), and
GRAND+ (Feng et al., 2022b). Furthermore, we include two baseline methods for node classification with
label noise, which are NRGNN (Dai et al., 2021) and RTGNN (Qian et al., 2022). We also compare LR-GCL
against state-of-the-art GCL methods, including GraphCL (You et al., 2020), MERIT (Jin et al., 2021),
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Table 3: Performance comparison for node classification on Cora, Citeseer, PubMed, and Wiki-CS with
asymmetric label noise, symmetric label noise, and attribute noise.

Noise Type
0 40 60 80Dataset Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

Cora

GCN 0.815±0.005 0.547±0.015 0.636±0.007 0.639±0.008 0.405±0.014 0.517±0.010 0.439±0.012 0.265±0.012 0.354±0.014 0.317±0.013
S2GC 0.835±0.002 0.569±0.007 0.664±0.007 0.661±0.007 0.422±0.010 0.535±0.010 0.454±0.011 0.279±0.014 0.366±0.014 0.320±0.013
GCE 0.819±0.004 0.573±0.011 0.652±0.008 0.650±0.014 0.449±0.011 0.509±0.011 0.445±0.015 0.280±0.013 0.353±0.013 0.325±0.015

UnionNET 0.820±0.006 0.569±0.014 0.664±0.007 0.653±0.012 0.452±0.010 0.541±0.010 0.450±0.009 0.283±0.014 0.370±0.011 0.320±0.012
NRGNN 0.822±0.006 0.571±0.019 0.676±0.007 0.645±0.012 0.470±0.014 0.548±0.014 0.451±0.011 0.282±0.022 0.373±0.012 0.326±0.010
RTGNN 0.828±0.003 0.570±0.010 0.682±0.008 0.678±0.011 0.474±0.011 0.555±0.010 0.457±0.009 0.280±0.011 0.386±0.014 0.342±0.016
SUGRL 0.834±0.005 0.564±0.011 0.674±0.012 0.675±0.009 0.468±0.011 0.552±0.011 0.452±0.012 0.280±0.012 0.381±0.012 0.338±0.014
MERIT 0.831±0.005 0.560±0.008 0.670±0.008 0.671±0.009 0.467±0.013 0.547±0.013 0.450±0.014 0.277±0.013 0.385±0.013 0.335±0.009
ARIEL 0.843±0.004 0.573±0.013 0.681±0.010 0.675±0.009 0.471±0.012 0.553±0.012 0.455±0.014 0.284±0.014 0.389±0.013 0.343±0.013

SFA 0.839±0.010 0.564±0.011 0.677±0.013 0.676±0.015 0.473±0.014 0.549±0.014 0.457±0.014 0.282±0.016 0.389±0.013 0.344±0.017
Sel-Cl 0.828±0.002 0.570±0.010 0.685±0.012 0.676±0.009 0.472±0.013 0.554±0.014 0.455±0.011 0.282±0.017 0.389±0.013 0.341±0.015

Jo-SRC 0.825±0.005 0.571±0.006 0.684±0.013 0.679±0.007 0.473±0.011 0.556±0.008 0.458±0.012 0.285±0.013 0.387±0.018 0.345±0.018
GRAND+ 0.858±0.006 0.570±0.009 0.682±0.007 0.678±0.011 0.472±0.010 0.554±0.008 0.456±0.012 0.284±0.015 0.387±0.015 0.345±0.013

GFSA 0.837±0.006 0.568±0.012 0.676±0.010 0.672±0.009 0.466±0.012 0.545±0.013 0.451±0.012 0.279±0.012 0.384±0.015 0.336±0.013
HONGAT 0.833±0.004 0.566±0.011 0.673±0.011 0.667±0.010 0.464±0.010 0.543±0.011 0.449±0.010 0.278±0.013 0.381±0.014 0.334±0.014
CRGNN 0.842±0.005 0.572±0.010 0.678±0.010 0.674±0.010 0.470±0.012 0.551±0.013 0.454±0.013 0.283±0.014 0.386±0.014 0.341±0.015
CGNN 0.835±0.006 0.567±0.009 0.670±0.012 0.669±0.011 0.462±0.013 0.544±0.011 0.450±0.013 0.281±0.012 0.380±0.013 0.337±0.014

LR-GCL 0.858±0.006 0.589±0.011 0.713±0.007 0.695±0.011 0.492±0.011 0.587±0.013 0.477±0.012 0.306±0.012 0.419±0.012 0.363±0.011
LRA-LR-GCL 0.861±0.006 0.602±0.011 0.724±0.007 0.708±0.011 0.510±0.011 0.605±0.013 0.492±0.012 0.329±0.012 0.436±0.012 0.382±0.011

Citeseer

GCN 0.703±0.005 0.475±0.023 0.501±0.013 0.529±0.009 0.351±0.014 0.341±0.014 0.372±0.011 0.291±0.022 0.281±0.019 0.290±0.014
S2GC 0.736±0.005 0.488±0.013 0.528±0.013 0.553±0.008 0.363±0.012 0.367±0.014 0.390±0.013 0.304±0.024 0.284±0.019 0.288±0.011
GCE 0.705±0.004 0.490±0.016 0.512±0.014 0.540±0.014 0.362±0.015 0.352±0.010 0.381±0.009 0.309±0.012 0.285±0.014 0.285±0.011

UnionNET 0.706±0.006 0.499±0.015 0.547±0.014 0.545±0.013 0.379±0.013 0.399±0.013 0.379±0.012 0.322±0.021 0.302±0.013 0.290±0.012
NRGNN 0.710±0.006 0.498±0.015 0.546±0.015 0.538±0.011 0.382±0.016 0.412±0.016 0.377±0.012 0.336±0.021 0.309±0.018 0.284±0.009
RTGNN 0.746±0.008 0.498±0.007 0.556±0.007 0.550±0.012 0.392±0.010 0.424±0.013 0.390±0.014 0.348±0.017 0.308±0.016 0.302±0.011
SUGRL 0.730±0.005 0.493±0.011 0.541±0.011 0.544±0.010 0.376±0.009 0.421±0.009 0.388±0.009 0.339±0.010 0.305±0.010 0.300±0.009
MERIT 0.740±0.007 0.496±0.012 0.536±0.012 0.542±0.010 0.383±0.011 0.425±0.011 0.387±0.008 0.344±0.014 0.301±0.014 0.295±0.009

SFA 0.740±0.011 0.502±0.014 0.532±0.015 0.547±0.013 0.390±0.014 0.433±0.014 0.389±0.012 0.347±0.016 0.312±0.015 0.299±0.013
ARIEL 0.727±0.007 0.500±0.008 0.550±0.013 0.548±0.008 0.391±0.009 0.427±0.012 0.389±0.014 0.349±0.014 0.307±0.013 0.299±0.013
Sel-Cl 0.725±0.008 0.499±0.012 0.551±0.010 0.549±0.008 0.389±0.011 0.426±0.008 0.391±0.020 0.350±0.018 0.310±0.015 0.300±0.017

Jo-SRC 0.730±0.005 0.500±0.013 0.555±0.011 0.551±0.011 0.394±0.013 0.425±0.013 0.393±0.013 0.351±0.013 0.305±0.018 0.303±0.013
GRAND+ 0.756±0.004 0.497±0.010 0.553±0.010 0.552±0.011 0.390±0.013 0.422±0.013 0.387±0.013 0.348±0.013 0.309±0.014 0.302±0.012

GFSA 0.743±0.006 0.495±0.012 0.546±0.012 0.546±0.011 0.386±0.011 0.418±0.011 0.386±0.012 0.342±0.013 0.308±0.015 0.298±0.012
HONGAT 0.738±0.007 0.492±0.014 0.540±0.011 0.545±0.009 0.380±0.012 0.413±0.010 0.384±0.013 0.340±0.014 0.306±0.016 0.296±0.011
CRGNN 0.751±0.006 0.497±0.011 0.552±0.010 0.549±0.012 0.389±0.014 0.423±0.013 0.388±0.012 0.347±0.015 0.310±0.014 0.301±0.012
CGNN 0.741±0.007 0.493±0.013 0.544±0.012 0.546±0.010 0.385±0.013 0.419±0.012 0.385±0.011 0.343±0.013 0.307±0.013 0.297±0.012

LR-GCL 0.757±0.010 0.520±0.013 0.581±0.013 0.570±0.007 0.410±0.014 0.455±0.014 0.406±0.012 0.369±0.012 0.335±0.014 0.318±0.010
LRA-LR-GCL 0.762±0.010 0.533±0.013 0.597±0.013 0.588±0.007 0.430±0.014 0.472±0.014 0.423±0.012 0.392±0.012 0.352±0.014 0.335±0.010

PubMed

GCN 0.790±0.007 0.584±0.022 0.574±0.012 0.595±0.012 0.405±0.025 0.386±0.011 0.488±0.013 0.305±0.022 0.295±0.013 0.423±0.013
S2GC 0.802±0.005 0.585±0.023 0.589±0.013 0.610±0.009 0.421±0.030 0.401±0.014 0.497±0.012 0.310±0.039 0.290±0.019 0.431±0.010
GCE 0.792±0.009 0.589±0.018 0.581±0.011 0.590±0.014 0.430±0.012 0.399±0.012 0.491±0.010 0.311±0.021 0.301±0.011 0.424±0.012

UnionNET 0.793±0.008 0.603±0.020 0.620±0.012 0.592±0.012 0.445±0.022 0.424±0.013 0.489±0.015 0.313±0.025 0.327±0.015 0.435±0.009
NRGNN 0.797±0.008 0.602±0.022 0.618±0.013 0.603±0.008 0.443±0.012 0.434±0.012 0.499±0.009 0.330±0.023 0.325±0.013 0.433±0.011
RTGNN 0.797±0.004 0.610±0.008 0.622±0.010 0.614±0.012 0.455±0.010 0.455±0.011 0.501±0.011 0.335±0.013 0.338±0.017 0.452±0.013
SUGRL 0.819±0.005 0.603±0.013 0.615±0.013 0.615±0.010 0.445±0.011 0.441±0.011 0.501±0.007 0.321±0.009 0.321±0.009 0.446±0.010
MERIT 0.801±0.004 0.593±0.011 0.612±0.011 0.613±0.011 0.447±0.012 0.443±0.012 0.497±0.009 0.328±0.011 0.323±0.011 0.445±0.009
ARIEL 0.800±0.003 0.610±0.013 0.622±0.010 0.615±0.011 0.453±0.012 0.453±0.012 0.502±0.014 0.331±0.014 0.336±0.018 0.457±0.013

SFA 0.804±0.010 0.596±0.011 0.615±0.011 0.609±0.011 0.447±0.014 0.446±0.017 0.499±0.014 0.330±0.011 0.327±0.011 0.447±0.014
Sel-Cl 0.799±0.005 0.605±0.014 0.625±0.012 0.614±0.012 0.455±0.014 0.449±0.010 0.502±0.008 0.334±0.021 0.332±0.014 0.456±0.014

Jo-SRC 0.801±0.005 0.613±0.010 0.624±0.013 0.617±0.013 0.453±0.008 0.455±0.013 0.504±0.013 0.330±0.015 0.334±0.018 0.459±0.018
GRAND+ 0.845±0.006 0.610±0.011 0.624±0.013 0.617±0.013 0.453±0.008 0.453±0.011 0.503±0.010 0.331±0.014 0.337±0.013 0.458±0.014

GFSA 0.823±0.005 0.608±0.012 0.621±0.011 0.616±0.009 0.450±0.013 0.452±0.012 0.500±0.010 0.333±0.013 0.334±0.011 0.455±0.012
HONGAT 0.818±0.006 0.606±0.011 0.619±0.012 0.613±0.010 0.448±0.014 0.447±0.012 0.498±0.012 0.328±0.012 0.326±0.013 0.450±0.011
CRGNN 0.829±0.005 0.612±0.010 0.623±0.009 0.618±0.011 0.452±0.011 0.455±0.013 0.503±0.009 0.335±0.013 0.333±0.014 0.457±0.012
CGNN 0.822±0.006 0.607±0.013 0.620±0.011 0.615±0.010 0.449±0.012 0.451±0.014 0.499±0.010 0.332±0.014 0.330±0.012 0.454±0.013

LR-GCL 0.845±0.009 0.637±0.014 0.645±0.015 0.637±0.011 0.479±0.011 0.484±0.013 0.526±0.011 0.356±0.011 0.360±0.012 0.482±0.014
LRA-LR-GCL 0.846±0.009 0.652±0.014 0.662±0.015 0.655±0.011 0.498±0.011 0.503±0.013 0.544±0.011 0.379±0.011 0.379±0.012 0.498±0.014

Coauthor-CS

GCN 0.918±0.001 0.645±0.009 0.656±0.006 0.702±0.010 0.511±0.013 0.501±0.009 0.531±0.010 0.429±0.022 0.389±0.011 0.415±0.013
S2GC 0.918±0.001 0.657±0.012 0.663±0.006 0.713±0.010 0.516±0.013 0.514±0.009 0.556±0.009 0.437±0.020 0.396±0.010 0.422±0.012
GCE 0.922±0.003 0.662±0.017 0.659±0.007 0.705±0.014 0.515±0.016 0.502±0.007 0.539±0.009 0.443±0.017 0.389±0.012 0.412±0.011

UnionNET 0.918±0.002 0.669±0.023 0.671±0.013 0.706±0.012 0.525±0.011 0.529±0.011 0.540±0.012 0.458±0.015 0.401±0.011 0.420±0.007
NRGNN 0.919±0.002 0.678±0.014 0.689±0.009 0.705±0.012 0.545±0.021 0.556±0.011 0.546±0.011 0.461±0.012 0.410±0.012 0.417±0.007
RTGNN 0.920±0.005 0.678±0.012 0.691±0.009 0.712±0.008 0.559±0.010 0.569±0.011 0.560±0.008 0.455±0.015 0.415±0.015 0.412±0.014
SUGRL 0.922±0.005 0.675±0.010 0.695±0.010 0.714±0.006 0.550±0.011 0.560±0.011 0.561±0.007 0.449±0.011 0.411±0.011 0.429±0.008
MERIT 0.924±0.004 0.679±0.011 0.689±0.008 0.709±0.005 0.552±0.014 0.562±0.014 0.562±0.011 0.452±0.013 0.403±0.013 0.426±0.005
ARIEL 0.925±0.004 0.682±0.011 0.699±0.009 0.712±0.005 0.555±0.011 0.566±0.011 0.556±0.011 0.454±0.014 0.415±0.019 0.427±0.013

SFA 0.925±0.009 0.682±0.011 0.690±0.012 0.715±0.012 0.555±0.015 0.567±0.014 0.565±0.013 0.458±0.013 0.402±0.013 0.429±0.015
Sel-Cl 0.922±0.008 0.684±0.009 0.694±0.012 0.714±0.010 0.557±0.013 0.568±0.013 0.566±0.010 0.457±0.013 0.412±0.017 0.425±0.009

Jo-SRC 0.921±0.005 0.684±0.011 0.695±0.004 0.709±0.007 0.560±0.011 0.566±0.011 0.561±0.009 0.456±0.013 0.410±0.018 0.428±0.010
GRAND+ 0.927±0.004 0.682±0.011 0.693±0.006 0.715±0.008 0.554±0.008 0.568±0.013 0.557±0.011 0.455±0.012 0.416±0.013 0.428±0.011

GFSA 0.923±0.004 0.679±0.010 0.687±0.009 0.711±0.009 0.550±0.012 0.559±0.011 0.558±0.010 0.453±0.014 0.410±0.012 0.426±0.011
HONGAT 0.924±0.003 0.681±0.012 0.692±0.010 0.713±0.008 0.553±0.013 0.563±0.013 0.560±0.012 0.456±0.013 0.411±0.015 0.427±0.010
CRGNN 0.926±0.005 0.683±0.011 0.690±0.011 0.712±0.007 0.551±0.015 0.561±0.012 0.559±0.011 0.454±0.012 0.412±0.014 0.426±0.012
CGNN 0.925±0.006 0.680±0.012 0.689±0.012 0.710±0.010 0.549±0.014 0.560±0.012 0.557±0.012 0.452±0.013 0.409±0.015 0.425±0.012

LR-GCL 0.933±0.006 0.699±0.015 0.721±0.011 0.742±0.015 0.575±0.014 0.595±0.018 0.588±0.015 0.469±0.015 0.438±0.015 0.453±0.017
LRA-LR-GCL 0.934±0.006 0.714±0.015 0.736±0.011 0.758±0.015 0.594±0.014 0.612±0.018 0.606±0.015 0.489±0.015 0.453±0.015 0.470±0.017

SUGRL (Mo et al., 2022), and SFA (Zhang et al., 2023). We compare LR-GCL with attention-based GNNs,
GFSA (Choi et al., 2024a) and HONGAT (Zhang et al., 2024a), which balance low-frequency information
and high-frequency information learned from the graph. We also compare with CRGNN (Li et al., 2024) and
CGNN (Yuan et al., 2023), which adopt graph contrastive learning to mitigate the label noise in the training
data. To demonstrate the power of LR-GCL in learning robust node representation, we also compare LR-
GCL with two robust contrastive learning baselines, Jo-SRC (Yao et al., 2021) and Sel-CL (Li et al., 2022),
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which select clean samples for image data. Since their sample selection methods are general and not limited
to the image domain, we adopt these two baselines to the graph domain in our experiments as detailed in
Section C of the appendix.

Experimental Results. We first compare LR-GCL against competing methods for semi-supervised or
transductive node classification on input with two types of label noise. To show the robustness of LR-GCL
against label noise, we perform the experiments on graphs injected with different levels of label noise ranging
from 40% to 80% with a step of 20%. We follow the widely used semi-supervised setting (Kipf & Welling,
2017) for node classification. In LR-GCL, we train a transductive classifier for node classification. Previous
GCL methods, including MERIT, SUGRL, and SFA, train a linear layer for inductive classification on top
of the node representations learned by contrastive learning without using test data in training. Because
LR-GCL is a transductive classifier, for fair comparisons, we also train the compared GCL baselines with the
same transductive classifier as that for LR-GCL and a two-layer GCN transductive classifier. The results
with different types of classifiers are shown in Section 5.4. For all the baselines in our experiments that
perform inductive classification when predicting the labels, we report their best results using their original
inductive classifier and two types of transductive classifiers: the same transductive classifier as that for
LR-GCL and a two-layer GCN transductive classifier.

Results on Cora, Citeseer, PubMed, and Coauthor-CS are shown in Table 3, where we report the means of the
accuracy of 10 runs and the standard deviation. It is observed from the results that LR-GCL outperforms
all the baselines. By selecting confident nodes and computing robust prototypes using BEC, LR-GCL
outperforms all the baselines by an even larger margin with a larger label noise level. In addition, we
compare LR-GCL with baselines for noisy input with attribute noise levels ranging from 40% to 80% with
a step of 20%. The results for node classification with symmetric label noise, asymmetric label noise, and
attribute noise on ogbn-arxiv, Wiki-CS, Amazon-Computers, and Amazon-Photos are shown in Table 8 in
Section B.1, where we report the means of the accuracy of 10 runs and the standard deviation. It is observed
that LR-GCL also outperforms all the baselines for node classification with both label noise and attribute
noise on these four benchmark datasets.

5.4 Node Classification Results for GCL Methods with Different Types of Classifiers

Existing GCL methods, such as MERIT, SUGRL, and SFA, first train a graph encoder with graph contrastive
learning objectives such as InfoNCE (Jin et al., 2021). After obtaining the node representation learned by
contrastive learning, a linear layer for classification is trained in the supervised setting. In contrast, LR-
GCL adopts a transductive classifier on top of the node representation obtained by contrastive learning.
For fair comparisons with previous GCL methods, we also train the compared GCL baselines with the same
transductive classifier as in LR-GCL and a two-layer transductive GCN classifier.

Table 4: Performance comparison for node classification by inductive linear classifier, transductive two-layer
GCN classifier, and transductive classifier used in LR-GCL. The comparisons are performed on Cora.

Noise Type
0 40 60 80Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

SUGRL (original, inductive classifier) 0.834±0.005 0.564±0.011 0.674±0.012 0.675±0.009 0.468±0.011 0.552±0.011 0.452±0.012 0.280±0.012 0.381±0.012 0.338±0.014
SUGRL + transductive GCN 0.833±0.006 0.562±0.013 0.675±0.015 0.673±0.012 0.470±0.011 0.551±0.011 0.454±0.012 0.280±0.012 0.380±0.012 0.340±0.014

SUGRL + linear transductive classifier 0.836±0.007 0.568±0.013 0.677±0.010 0.674±0.011 0.472±0.011 0.555±0.011 0.457±0.012 0.284±0.012 0.383±0.012 0.341±0.014
MERIT (original, inductive classifier) 0.831±0.005 0.560±0.008 0.670±0.008 0.671±0.009 0.467±0.013 0.547±0.013 0.450±0.014 0.277±0.013 0.385±0.013 0.335±0.009

MERIT + transductive GCN 0.831±0.007 0.562±0.011 0.668±0.013 0.672±0.014 0.466±0.013 0.549±0.015 0.451±0.016 0.276±0.012 0.382±0.014 0.337±0.013
MERIT + linear transductive classifier 0.833±0.003 0.562±0.014 0.673±0.012 0.673±0.011 0.466±0.015 0.546±0.016 0.453±0.017 0.280±0.016 0.386±0.011 0.336±0.014

SFA (original, inductive classifier) 0.839±0.010 0.564±0.011 0.677±0.013 0.676±0.015 0.473±0.014 0.549±0.014 0.457±0.014 0.282±0.016 0.389±0.013 0.344±0.017
SFA + transductive GCN 0.837±0.013 0.565±0.011 0.673±0.017 0.673±0.018 0.474±0.016 0.551±0.015 0.453±0.018 0.277±0.016 0.389±0.015 0.343±0.019

SFA + linear transductive classifier 0.841±0.015 0.566±0.013 0.678±0.014 0.679±0.014 0.477±0.015 0.552±0.012 0.456±0.016 0.284±0.017 0.391±0.015 0.348±0.019
LR-GCL 0.757±0.010 0.520±0.013 0.581±0.013 0.570±0.007 0.410±0.014 0.455±0.014 0.406±0.012 0.369±0.012 0.335±0.014 0.318±0.010

LRA-LR-GCL 0.762±0.010 0.533±0.013 0.597±0.013 0.588±0.007 0.430±0.014 0.472±0.014 0.423±0.012 0.392±0.012 0.352±0.014 0.335±0.010

5.5 Study in the Kernel Complexity and the Upper Bound of the Test Loss

In this section, we compute the kernel complexity (KC) for the gram matrix of node representations learned
by LR-GCL and the competing GCL methods on different datasets with asymmetric label noise of level 40
by Equation (5) in Theorem 4.1. The results are shown in Table 5. It is observed that the gram matrix of the
node representations learned by LR-GCL exhibits much lower complexity, which suggests that the transduc-
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tive classifiers trained on the node representations learned by LR-GCL have lower generalization errors on
the unlabeled nodes. Furthermore, we compare each term in the upper bound of the test loss in Equation 4,
including L1(K, Ỹ, t), L2(K, N, t), and KC(K), for the gram matrix of the node representation learned by
different methods in Table 6. It is observed that LR-GCL and LRA-LR-GCL exhibit a significantly lower
value in each of the terms than the competing baseline methods, demonstrating the better generalization
capability of LR-GCL and LRA-LR-GCL for semi-supervised node classification even under the presence of
label noise.

Table 5: Comparisons in complexity of kernels. The evaluation is performed on semi-supervised node
classification with 40% of symmetric label noise.

Datasets MERIT SFA Jo-SRC GCN GFSA HONGAT LR-GCL LRA-LR-GCL

Cora KC 0.37 0.42 0.48 0.44 0.35 0.40 0.20 0.18
r0 1420 1478 1665 1511 1262 1450 440 395

Citeseer KC 0.47 0.45 0.55 0.64 0.47 0.50 0.24 0.21
r0 1214 1180 1405 1590 1224 1285 405 369

PubMed KC 0.54 0.50 0.62 0.71 0.52 0.66 0.30 0.28
r0 1644 1562 1785 1993 1588 1874 1197 1090

Wiki-CS KC 0.42 0.44 0.40 0.49 0.43 0.45 0.19 0.17
r0 1805 1993 1746 2130 1842 2048 970 904

Amazon-Computers KC 0.39 0.37 0.40 0.45 0.35 0.37 0.12 0.11
r0 1450 1428 1489 1632 1370 1415 874 820

Amazon-Photos KC 0.38 0.38 0.43 0.47 0.39 0.41 0.14 0.12
r0 1872 1884 1990 2145 1895 1921 750 722

Coauthor-CS KC 0.29 0.28 0.32 0.34 0.31 0.32 0.12 0.11
r0 1774 1725 1896 1903 1872 1890 1120 1039

ogbn-arxiv KC 0.12 0.13 0.12 0.14 0.12 0.13 0.05 0.05
r0 1860 1936 1852 1996 1845 1920 1354 1328

Table 6: Comparisons on L1(K, Ỹ, t), L2(K, N, t), KC(K) and the value of the upper bound of the test
loss from Theorem 4.1. The evaluation is performed on semi-supervised node classification with 40% of
symmetric label noise. The lowest values for each dataset in the table are bold, and the second-lowest values
are underlined.

Datasets MERIT SFA Jo-SRC GCN GFSA HONGAT LR-GCL LRA-LR-GCL

Cora

L1 5.24 6.04 6.50 7.38 6.44 6.38 3.72 3.65
L2 4.92 4.95 5.05 5.24 3.80 4.25 2.97 2.72
KC 0.37 0.42 0.48 0.44 0.35 0.40 0.20 0.18

Upper Bound 10.68 11.59 12.18 13.22 10.80 11.25 7.05 6.74

Citeseer

L1 4.72 4.85 4.92 5.10 4.54 4.69 4.02 3.95
L2 4.33 4.69 4.42 5.08 4.20 4.42 3.75 3.60
KC 0.47 0.45 0.55 0.64 0.47 0.50 0.24 0.21

Upper Bound 9.77 10.21 10.17 11.07 9.40 9.84 8.20 7.97

PubMed

L1 3.97 4.02 4.11 4.35 4.26 3.95 3.38 3.40
L2 2.69 2.54 2.60 2.88 2.98 2.85 2.32 2.26
KC 0.54 0.50 0.62 0.71 0.52 0.66 0.30 0.28

Upper Bound 7.44 7.28 7.59 8.15 7.99 7.63 6.25 6.16

5.6 Ablation Study on the Rank in the Truncated Nuclear Norm

We perform ablation study on the value of rank r0 in the TNN ∥K∥r0
in the loss function (2) of LR-GCL. It

is observed from Table 7 that the performance of our LR-GCL is consistently close to the best performance
among all the choices of the rank when r0 is between 0.1 min {N, d} and 0.3 min {N, d}.

Furthermore, we compare the training time of LR-GCL with competing baselines in Table 9 in Section B.2
of the appendix. We study the effectiveness of LR-GCL and LRA-LR-GCL on the heterophilic graphs in
Section B.4 of the appendix. The node classification results in Table 10 show that both LR-GCL and LRA-
LR-GCL remain effective on heterophilic graphs in combating the label noise and the attribute noise for
node classification.

5.7 Visualization of the Low Frequency Property (LFP) by Eigen-Projections

The eigen-projection and energy concentration on Cora, Citeseer, and Pubmed are illustrated in Figure 2.
The eigen-projection and energy concentration on Coauthor-CS, Amazon Computers, Amazon Photos, and
ogbn-arxiv are illustrated in Figure 3 in Section B.3 of the supplementary. More eigen-projection and energy
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Table 7: Ablation study on the value of rank r0 in the optimization problem (3) on Cora with different levels
of asymmetric and symmetric label noise. The accuracy with the optimal rank is shown in the last row. The
accuracy difference against the optimal rank is shown for other ranks.

Rank
Noise Type

0 40 60 80
- Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric

0.1 min {N, d} -0.002 -0.001 -0.002 -0.002 -0.001 -0.001 -0.000
0.2 min {N, d} -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
0.3 min {N, d} -0.000 -0.000 -0.001 -0.002 -0.001 -0.000 -0.001
0.4 min {N, d} -0.001 -0.003 -0.002 -0.001 -0.002 -0.002 -0.002
0.5 min {N, d} -0.001 -0.002 -0.003 -0.003 -0.003 -0.001 -0.002
0.6 min {N, d} -0.003 -0.002 -0.002 -0.003 -0.002 -0.002 -0.003
0.7 min {N, d} -0.003 -0.004 -0.003 -0.004 -0.004 -0.004 -0.005
0.8 min {N, d} -0.002 -0.005 -0.006 -0.006 -0.006 -0.007 -0.007
0.9 min {N, d} -0.004 -0.004 -0.005 -0.007 -0.008 -0.008 -0.006

min {N, d} -0.004 -0.004 -0.007 -0.007 -0.008 -0.010 -0.008
optimal 0.858 0.589 0.713 0.492 0.587 0.306 0.419
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Figure 2: Eigen-projection (first row) and signal concentration ratio (second row) on Cora, Citeseer, and
Pubmed. To compute the eigen-projection, we first calculate the eigenvectors U of the feature gram matrix
K = HH⊤, then the eigen-projection value is computed by pr = 1

C

∑C
c=1

∥∥∥U(r)⊤Ỹ(c)
∥∥∥2

2
/
∥∥Ỹ(c)

∥∥2
2 for r ∈ [N ],

where C is the number of classes, and Ỹ ∈ {0, 1}N×C is the one-hot clean labels of all the nodes, Ỹ(c) is
the c-th column of Ỹ. We let p = [p1, . . . , pN ] ∈ RN . With the presence of label noise N ∈ RN×C , the
observed label matrix is Y = Ỹ + N. The eigen-projection pr reflects the amount of the signal projected
onto the r-th eigenvector of K, and the signal concentration ratio of a rank r reflects the proportion of
signal projected onto the top r eigenvectors of K. The signal concentration ratio for rank r is computed by∥∥p(1:r)

∥∥
1, where p(1:r) contains the first r elements of p. It is observed from the red curves in the first row

that the projection of the ground truth clean labels mostly concentrates on the top eigenvectors of K. On
the other hand, the projection of label noise, computed by 1

C

∑C
c=1

∥∥U⊤N(c)
∥∥2

2/
∥∥Y(c)

∥∥2
2 ∈ RN , is relatively

uniform over all the eigenvectors, as illustrated by the blue curves in the first row. The study in this figure
is performed for asymmetric label noise with a noise level of 60%. By the rank r = 0.2 min {N, d}, the signal
concentration ratio of Ỹ for Cora, Citeseer, and Pubmed are 0.844, 0.809, and 0.784 respectively. We refer
to such property as the low frequency property, which suggests that we can learn a low-rank portion of
the observed label Y which covers most information in the ground truth clean label while only learning a
small portion of the label noise. Figure 3 in the appendix further illustrates the low frequency property on
more datasets.
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concentration on the heterophilic graphs illustrated in Figure 4 in Section B.4 of the appendix demonstrate
that LFP also exists in the heterophilic graphs.

6 Conclusions

In this paper, we propose a novel GCL encoder termed Low-Rank Graph Contrastive Learning (LR-GCL).
LR-GCL is a robust GCL encoder which produces low-rank features inspired by the low frequency property
of universal graph datasets and the sharp generalization bound for transductive learning. LR-GCL is trained
with prototypical GCL with the TNN as the regularization term. We evaluate the performance of LR-GCL
with comparison to competing baselines on semi-supervised or transductive node classification, where graph
data are corrupted with noise in either the labels for the node attributes. Extensive experimental results
demonstrate that LR-GCL generates more robust node representations with better performance than the
current state-of-the-art node representation learning methods.
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A Theoretical Results

We present the proof of Theorem 4.1 in this section.

Proof of Theorem 4.1. Define N := Y − Ỹ ∈ RN as the label noise. It can be verified that at the t-th
iteration of gradient descent for t ≥ 1, we have

W(t) = W(t−1) − η [H]⊤L
[
HW(t−1) − Y

]
L

= W(t−1) − η [H]⊤L
[
HW(t−1) − Ỹ

]
L

+ η [H]⊤L [N]L . (7)

It follows by (7) that

[H]L W(t) = [H]L W(t−1) − ηKL,L

[
HW(t−1) − Ỹ

]
L

+ η [K]L,L [N]L , (8)

where KL,L := [H]L [H]⊤L ∈ Rm×m. With F(W, t) = HW(t), it follows by (8) that

[
F(W, t) − Ỹ

]
L =

(
Im − η [K]L,L

) [
F(W, t − 1) − Ỹ

]
L + η [K]L,L [N]L .

It follows from the above equality and the recursion that

[
F(W, t) − Ỹ

]
L = −

(
Im − η [K]L,L

)t [
Ỹ
]

L + η [K]L,L

t−1∑
t′=0

(
Im − η [K]L,L

)t′

[N]L (9)

We apply (Yang, 2023, Corollary 3.7) to obtain the following bound for the test loss 1
u

∥∥[F(W, t) − Ỹ
]

U

∥∥2
F:

1
u

∥∥[F(W, t) − Ỹ
]

U

∥∥2
F ≤ c0

m

∥∥[F(W, t) − Ỹ
]

L

∥∥2
F + c0 min

0≤Q≤n
r(u, m, Q) + c0x

u
, (10)

with

r(u, m, Q) := Q

(
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u

+ 1
m

)
+


√√√√√ N∑

q=Q+1
λ̂q

u
+
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q=Q+1

λ̂q

m

 ,

where c0 is a positive constant depending on U,
{

λ̂i

}r

i=1
, and τ0 with τ2

0 = maxi∈[N ] Kii.
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It follows from (9) and (10) that for every r0 ∈ [0, n], we have

1
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1
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+
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m
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+ c0x

u
, (11)

where 1⃝ follows from the Cauchy-Schwarz inequality, (9), and
∑N

q=r0+1 λ̂q = ∥K∥r0
. (4) then follows directly

from (11).

B Additional Experiment Results

B.1 Additional Node Classification Results

The results for node classification with symmetric label noise, asymmetric label noise, and attribute noise on
ogbn-arxiv, Wiki-CS, Amazon-Computers, and Amazon-Photos are shown in Table 8 in Section B.1, where
we report the means of the accuracy of 10 runs and the standard deviation. It is observed that LR-GCL
also outperforms all the baselines for node classification with both label noise and attribute noise on these
four benchmark datasets. For example, LRA-GCL outperforms the best baseline method by 2.3% in node
classification accuracy on PubMed with 80% symmetric label noise.

B.2 Training Time Comparison

In this section, we compare the training time of LR-GCL against other baseline methods on all benchmark
datasets. The training time of LR-GCL includes the training time of robust graph contrastive learning,
the time of the SVD computation of the kernel, and the training time of the transductive classifier. For
the competing GCL methods, we include both the training time of the GCL encoder and the downstream
classifier. The training time is evaluated on one 80 GB A100 GPU. The results are shown in Table 9. It is
observed that the LR-GCL takes a similar training time as the competing GCL methods, such as SFA and
MERIT.

B.3 Eigen-Projection and Concentration Entropy Analysis on Additional Datasets

Figure 3 illustrates the eigen-projection and signal concentration ratio for Coauthor-CS, Amazon-Computers,
Amazon-Photos, and ogbn-arxiv.

B.4 Evaluation on Heterophilic Graphs

In this section, we study the effectiveness of LR-GCL for semi-supervised node classification on two widely
used heterophilic graph datasets, namely Texas and Chameleon (Pei et al., 2020). We first study the LFP
on Texas and Chameleon by the eigen-projection and signal concentration ratio illustrated in Figure 4.
It is observed that LFP also exists in the heterophilic graph datasets similar to that in the homophily
datasets. The study in this figure is performed for asymmetric label noise with a noise level of 60%. By the
rank of 0.2 min {N, d}, the concentration entropy on Chameleon and Texas are 0.762 and 0.725. Next, we
perform the semi-supervised node classification experiments on Texas and Chameleon following the setting
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Table 8: Performance comparison for node classification on Texas and Chameleon with asymmetric label
noise, symmetric label noise, and attribute noise.

Noise Type
0 40 60 80Dataset Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

ogbn-arxiv

GCN 0.717±0.003 0.401±0.014 0.421±0.014 0.478±0.010 0.336±0.011 0.346±0.021 0.339±0.012 0.286±0.022 0.256±0.010 0.294±0.013
S2GC 0.712±0.003 0.417±0.017 0.429±0.014 0.492±0.010 0.344±0.016 0.353±0.031 0.343±0.009 0.297±0.023 0.266±0.013 0.284±0.012
GCE 0.720±0.004 0.410±0.018 0.428±0.008 0.480±0.014 0.348±0.019 0.344±0.019 0.342±0.015 0.310±0.014 0.260±0.011 0.275±0.015

UnionNET 0.724±0.006 0.429±0.021 0.449±0.007 0.485±0.012 0.362±0.018 0.367±0.008 0.340±0.009 0.332±0.019 0.269±0.013 0.280±0.012
NRGNN 0.721±0.006 0.449±0.014 0.466±0.009 0.485±0.012 0.371±0.020 0.379±0.008 0.342±0.011 0.330±0.018 0.271±0.018 0.300±0.010
RTGNN 0.718±0.004 0.443±0.012 0.464±0.012 0.484±0.014 0.380±0.011 0.384±0.013 0.340±0.017 0.335±0.011 0.285±0.015 0.301±0.006
SUGRL 0.693±0.002 0.439±0.010 0.467±0.010 0.480±0.012 0.365±0.013 0.385±0.011 0.341±0.009 0.327±0.011 0.275±0.011 0.295±0.011
MERIT 0.717±0.004 0.442±0.009 0.463±0.009 0.483±0.010 0.368±0.011 0.381±0.011 0.341±0.012 0.324±0.012 0.272±0.010 0.304±0.009
ARIEL 0.717±0.004 0.448±0.013 0.471±0.013 0.482±0.011 0.379±0.014 0.384±0.015 0.342±0.015 0.334±0.014 0.280±0.013 0.300±0.010

SFA 0.718±0.009 0.445±0.012 0.463±0.013 0.486±0.012 0.368±0.011 0.378±0.014 0.338±0.015 0.325±0.014 0.273±0.012 0.302±0.013
Sel-Cl 0.719±0.002 0.447±0.007 0.469±0.007 0.486±0.010 0.375±0.008 0.389±0.025 0.344±0.013 0.331±0.008 0.284±0.019 0.304±0.012

Jo-SRC 0.715±0.005 0.445±0.011 0.466±0.009 0.481±0.010 0.377±0.013 0.387±0.013 0.340±0.013 0.333±0.013 0.282±0.018 0.297±0.009
GRAND+ 0.725±0.004 0.445±0.008 0.466±0.011 0.481±0.011 0.378±0.010 0.385±0.012 0.344±0.010 0.332±0.010 0.282±0.016 0.303±0.009

GFSA 0.719±0.004 0.443±0.012 0.460±0.010 0.482±0.011 0.370±0.012 0.379±0.012 0.342±0.011 0.328±0.012 0.278±0.013 0.299±0.011
HONGAT 0.716±0.005 0.440±0.011 0.458±0.012 0.480±0.012 0.366±0.013 0.373±0.013 0.339±0.012 0.324±0.014 0.276±0.014 0.296±0.012
CRGNN 0.721±0.003 0.446±0.010 0.465±0.010 0.483±0.009 0.372±0.010 0.382±0.011 0.343±0.010 0.330±0.012 0.281±0.012 0.302±0.010
CGNN 0.717±0.006 0.441±0.013 0.462±0.011 0.481±0.010 0.368±0.014 0.376±0.012 0.340±0.011 0.326±0.015 0.277±0.013 0.298±0.012

LR-GCL 0.728±0.006 0.472±0.013 0.492±0.011 0.508±0.014 0.405±0.014 0.411±0.012 0.405±0.012 0.359±0.015 0.307±0.013 0.335±0.013
LRA-LR-GCL 0.731±0.006 0.487±0.013 0.507±0.011 0.523±0.014 0.423±0.014 0.430±0.012 0.423±0.012 0.374±0.015 0.332±0.013 0.350±0.013

Wiki-CS

GCN 0.918±0.001 0.645±0.009 0.656±0.006 0.702±0.010 0.511±0.013 0.501±0.009 0.531±0.010 0.429±0.022 0.389±0.011 0.415±0.013
S2GC 0.918±0.001 0.657±0.012 0.663±0.006 0.713±0.010 0.516±0.013 0.514±0.009 0.556±0.009 0.437±0.020 0.396±0.010 0.422±0.012
GCE 0.922±0.003 0.662±0.017 0.659±0.007 0.705±0.014 0.515±0.016 0.502±0.007 0.539±0.009 0.443±0.017 0.389±0.012 0.412±0.011

UnionNET 0.918±0.002 0.669±0.023 0.671±0.013 0.706±0.012 0.525±0.011 0.529±0.011 0.540±0.012 0.458±0.015 0.401±0.011 0.420±0.007
NRGNN 0.919±0.002 0.678±0.014 0.689±0.009 0.705±0.012 0.545±0.021 0.556±0.011 0.546±0.011 0.461±0.012 0.410±0.012 0.417±0.007
RTGNN 0.920±0.005 0.678±0.012 0.691±0.009 0.712±0.008 0.559±0.010 0.569±0.011 0.560±0.008 0.455±0.015 0.415±0.015 0.412±0.014
SUGRL 0.922±0.005 0.675±0.010 0.695±0.010 0.714±0.006 0.550±0.011 0.560±0.011 0.561±0.007 0.449±0.011 0.411±0.011 0.429±0.008
MERIT 0.924±0.004 0.679±0.011 0.689±0.008 0.709±0.005 0.552±0.014 0.562±0.014 0.562±0.011 0.452±0.013 0.403±0.013 0.426±0.005
ARIEL 0.925±0.004 0.682±0.011 0.699±0.009 0.712±0.005 0.555±0.011 0.566±0.011 0.556±0.011 0.454±0.014 0.415±0.019 0.427±0.013

SFA 0.925±0.009 0.682±0.011 0.690±0.012 0.715±0.012 0.555±0.015 0.567±0.014 0.565±0.013 0.458±0.013 0.402±0.013 0.429±0.015
Sel-Cl 0.922±0.008 0.684±0.009 0.694±0.012 0.714±0.010 0.557±0.013 0.568±0.013 0.566±0.010 0.457±0.013 0.412±0.017 0.425±0.009

Jo-SRC 0.921±0.005 0.684±0.011 0.695±0.004 0.709±0.007 0.560±0.011 0.566±0.011 0.561±0.009 0.456±0.013 0.410±0.018 0.428±0.010
GRAND+ 0.927±0.004 0.682±0.011 0.693±0.006 0.715±0.008 0.554±0.008 0.568±0.013 0.557±0.011 0.455±0.012 0.416±0.013 0.428±0.011

GFSA 0.923±0.004 0.680±0.012 0.691±0.008 0.711±0.010 0.553±0.010 0.562±0.011 0.560±0.010 0.453±0.014 0.408±0.012 0.423±0.010
HONGAT 0.921±0.003 0.674±0.014 0.685±0.010 0.707±0.011 0.546±0.012 0.553±0.010 0.552±0.010 0.448±0.014 0.404±0.013 0.419±0.012
CRGNN 0.924±0.005 0.683±0.011 0.696±0.008 0.713±0.008 0.557±0.010 0.565±0.012 0.564±0.009 0.456±0.013 0.411±0.012 0.426±0.010
CGNN 0.920±0.004 0.677±0.010 0.688±0.009 0.710±0.011 0.549±0.011 0.559±0.013 0.558±0.010 0.451±0.015 0.406±0.012 0.421±0.009

LR-GCL 0.933±0.006 0.699±0.015 0.721±0.011 0.742±0.015 0.575±0.014 0.595±0.018 0.588±0.015 0.469±0.015 0.438±0.015 0.453±0.017
LRA-LR-GCL 0.936±0.006 0.714±0.015 0.736±0.011 0.758±0.015 0.594±0.014 0.612±0.018 0.606±0.015 0.489±0.015 0.453±0.015 0.470±0.017

Amazon-Computers

GCN 0.815±0.005 0.547±0.015 0.636±0.007 0.639±0.008 0.405±0.014 0.517±0.010 0.439±0.012 0.265±0.012 0.354±0.014 0.317±0.013
S2GC 0.835±0.002 0.569±0.007 0.664±0.007 0.661±0.007 0.422±0.010 0.535±0.010 0.454±0.011 0.279±0.014 0.366±0.014 0.320±0.013
GCE 0.819±0.004 0.573±0.011 0.652±0.008 0.650±0.014 0.449±0.011 0.509±0.011 0.445±0.015 0.280±0.013 0.353±0.013 0.325±0.015

UnionNET 0.820±0.006 0.569±0.014 0.664±0.007 0.653±0.012 0.452±0.010 0.541±0.010 0.450±0.009 0.283±0.014 0.370±0.011 0.320±0.012
NRGNN 0.822±0.006 0.571±0.019 0.676±0.007 0.645±0.012 0.470±0.014 0.548±0.014 0.451±0.011 0.282±0.022 0.373±0.012 0.326±0.010
RTGNN 0.828±0.003 0.570±0.010 0.682±0.008 0.678±0.011 0.474±0.011 0.555±0.010 0.457±0.009 0.280±0.011 0.386±0.014 0.342±0.016
SUGRL 0.834±0.005 0.564±0.011 0.674±0.012 0.675±0.009 0.468±0.011 0.552±0.011 0.452±0.012 0.280±0.012 0.381±0.012 0.338±0.014
MERIT 0.831±0.005 0.560±0.008 0.670±0.008 0.671±0.009 0.467±0.013 0.547±0.013 0.450±0.014 0.277±0.013 0.385±0.013 0.335±0.009
ARIEL 0.843±0.004 0.573±0.013 0.681±0.010 0.675±0.009 0.471±0.012 0.553±0.012 0.455±0.014 0.284±0.014 0.389±0.013 0.343±0.013

SFA 0.839±0.010 0.564±0.011 0.677±0.013 0.676±0.015 0.473±0.014 0.549±0.014 0.457±0.014 0.282±0.016 0.389±0.013 0.344±0.017
Sel-Cl 0.828±0.002 0.570±0.010 0.685±0.012 0.676±0.009 0.472±0.013 0.554±0.014 0.455±0.011 0.282±0.017 0.389±0.013 0.341±0.015

Jo-SRC 0.825±0.005 0.571±0.006 0.684±0.013 0.679±0.007 0.473±0.011 0.556±0.008 0.458±0.012 0.285±0.013 0.387±0.018 0.345±0.018
GRAND+ 0.858±0.006 0.570±0.009 0.682±0.007 0.678±0.011 0.472±0.010 0.554±0.008 0.456±0.012 0.284±0.015 0.387±0.015 0.345±0.013

GFSA 0.837±0.004 0.567±0.010 0.672±0.009 0.667±0.010 0.463±0.012 0.543±0.011 0.453±0.012 0.281±0.014 0.376±0.013 0.333±0.014
HONGAT 0.841±0.005 0.571±0.008 0.678±0.011 0.673±0.012 0.469±0.013 0.551±0.012 0.456±0.011 0.283±0.015 0.384±0.014 0.340±0.015
CRGNN 0.846±0.003 0.572±0.009 0.680±0.008 0.677±0.009 0.471±0.011 0.553±0.010 0.457±0.010 0.284±0.013 0.388±0.012 0.342±0.012
CGNN 0.844±0.004 0.569±0.011 0.675±0.010 0.670±0.011 0.466±0.012 0.548±0.011 0.454±0.013 0.282±0.014 0.382±0.013 0.337±0.014

LR-GCL 0.858±0.006 0.589±0.011 0.713±0.007 0.695±0.011 0.492±0.011 0.587±0.013 0.477±0.012 0.306±0.012 0.419±0.012 0.363±0.011
LRA-LR-GCL 0.861±0.006 0.602±0.011 0.724±0.007 0.708±0.011 0.510±0.011 0.605±0.013 0.492±0.012 0.329±0.012 0.436±0.012 0.382±0.011

Amazon-Photos

GCN 0.703±0.005 0.475±0.023 0.501±0.013 0.529±0.009 0.351±0.014 0.341±0.014 0.372±0.011 0.291±0.022 0.281±0.019 0.290±0.014
S2GC 0.736±0.005 0.488±0.013 0.528±0.013 0.553±0.008 0.363±0.012 0.367±0.014 0.390±0.013 0.304±0.024 0.284±0.019 0.288±0.011
GCE 0.705±0.004 0.490±0.016 0.512±0.014 0.540±0.014 0.362±0.015 0.352±0.010 0.381±0.009 0.309±0.012 0.285±0.014 0.285±0.011

UnionNET 0.706±0.006 0.499±0.015 0.547±0.014 0.545±0.013 0.379±0.013 0.399±0.013 0.379±0.012 0.322±0.021 0.302±0.013 0.290±0.012
NRGNN 0.710±0.006 0.498±0.015 0.546±0.015 0.538±0.011 0.382±0.016 0.412±0.016 0.377±0.012 0.336±0.021 0.309±0.018 0.284±0.009
RTGNN 0.746±0.008 0.498±0.007 0.556±0.007 0.550±0.012 0.392±0.010 0.424±0.013 0.390±0.014 0.348±0.017 0.308±0.016 0.302±0.011
SUGRL 0.730±0.005 0.493±0.011 0.541±0.011 0.544±0.010 0.376±0.009 0.421±0.009 0.388±0.009 0.339±0.010 0.305±0.010 0.300±0.009
MERIT 0.740±0.007 0.496±0.012 0.536±0.012 0.542±0.010 0.383±0.011 0.425±0.011 0.387±0.008 0.344±0.014 0.301±0.014 0.295±0.009

SFA 0.740±0.011 0.502±0.014 0.532±0.015 0.547±0.013 0.390±0.014 0.433±0.014 0.389±0.012 0.347±0.016 0.312±0.015 0.299±0.013
ARIEL 0.727±0.007 0.500±0.008 0.550±0.013 0.548±0.008 0.391±0.009 0.427±0.012 0.389±0.014 0.349±0.014 0.307±0.013 0.299±0.013
Sel-Cl 0.725±0.008 0.499±0.012 0.551±0.010 0.549±0.008 0.389±0.011 0.426±0.008 0.391±0.020 0.350±0.018 0.310±0.015 0.300±0.017

Jo-SRC 0.730±0.005 0.500±0.013 0.555±0.011 0.551±0.011 0.394±0.013 0.425±0.013 0.393±0.013 0.351±0.013 0.305±0.018 0.303±0.013
GRAND+ 0.756±0.004 0.497±0.010 0.553±0.010 0.552±0.011 0.390±0.013 0.422±0.013 0.387±0.013 0.348±0.013 0.309±0.014 0.302±0.012

GFSA 0.722±0.006 0.492±0.012 0.530±0.012 0.543±0.010 0.372±0.012 0.398±0.011 0.383±0.011 0.328±0.016 0.294±0.015 0.292±0.012
HONGAT 0.738±0.005 0.496±0.010 0.542±0.011 0.547±0.009 0.384±0.013 0.415±0.012 0.388±0.012 0.342±0.015 0.303±0.014 0.298±0.011
CRGNN 0.744±0.004 0.501±0.009 0.548±0.010 0.549±0.008 0.388±0.011 0.422±0.010 0.390±0.010 0.346±0.014 0.306±0.013 0.301±0.010
CGNN 0.732±0.007 0.494±0.011 0.538±0.013 0.545±0.011 0.378±0.012 0.408±0.013 0.385±0.013 0.335±0.017 0.300±0.016 0.296±0.013

LR-GCL 0.757±0.010 0.520±0.013 0.581±0.013 0.570±0.007 0.410±0.014 0.455±0.014 0.406±0.012 0.369±0.012 0.335±0.014 0.318±0.010
LRA-LR-GCL 0.762±0.010 0.533±0.013 0.597±0.013 0.588±0.007 0.430±0.014 0.472±0.014 0.423±0.012 0.392±0.012 0.352±0.014 0.325±0.010
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Table 9: Training time (seconds) comparisons for node classification.

Methods Cora Citeseer PubMed Coauthor-CS Wiki-CS Computer Photo ogbn-arxiv
GCN 11.5 13.7 38.6 43.2 22.3 30.2 19.0 215.1
S2GC 20.7 22.5 47.2 57.2 27.6 38.5 22.2 243.7
GCE 32.6 36.9 67.3 80.8 37.6 50.1 32.2 346.1

UnionNET 67.5 69.7 100.5 124.2 53.2 69.2 45.3 479.3
NRGNN 72.4 80.5 142.7 189.4 74.3 97.2 62.4 650.2
RTGNN 143.3 169.5 299.5 353.5 153.7 201.5 124.2 1322.2
SUGRL 100.3 122.1 207.4 227.1 107.7 142.8 87.7 946.8
MERIT 167.2 179.2 336.7 375.3 172.3 226.5 140.6 1495.1
ARIEL 156.9 164.3 284.3 332.6 145.1 190.4 118.3 1261.4

SFA 237.5 269.4 457.1 492.3 233.5 304.5 187.2 2013.1
Sel-Cl 177.3 189.9 313.5 352.5 161.7 211.1 130.9 1401.1

Jo-SRC 148.2 157.1 281.0 306.1 144.5 188.0 118.5 1256.0
GRAND+ 57.4 68.4 101.7 124.2 54.8 73.8 44.5 479.2
LR-GCL 159.9 174.5 350.7 380.9 180.3 235.7 145.5 1552.7
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Figure 3: Eigen-projection (first row) and energy concentration (second row) on Coauthor-CS, Amazon-
Computers, Amazon-Photos, and ogbn-arxiv. By the rank of 0.2 min {N, d}, the concentration entropy on
Coauthor-CS, Amazon-Computers, Amazon-Photos, and ogbn-arxiv are 0.779, 0.809, 0.752, and 0.787.

in Section 5.3. We adopt TEDGCN (Yan et al., 2023), which is a widely used GNN for semi-supervised node
classification on heterophilic graphs, as the GNN encoder in LR-GCL and LRA-LR-GCL. The results are
shown in Table 10. It is observed that LR-GCL and LRA-LR-GCL show significantly improved performance
over the heterophilic GNN for semi-supervised node classification with the presence of different types of
noise.

Table 10: Performance comparison for node classification on Cora, Citeseer, PubMed, and Wiki-CS with
asymmetric label noise, symmetric label noise, and attribute noise.

Dataset Methods
Noise Type

0 40 60 80
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

Texas
TEDGCN 0.771±0.025 0.525±0.023 0.528±0.018 0.541±0.022 0.402±0.016 0.418±0.019 0.445±0.021 0.312±0.015 0.328±0.017 0.341±0.020
LR-GCL 0.780±0.013 0.547±0.019 0.557±0.016 0.568±0.017 0.438±0.015 0.444±0.017 0.463±0.018 0.336±0.012 0.353±0.014 0.365±0.016

LRA-LR-GCL 0.785±0.018 0.556±0.016 0.563±0.013 0.576±0.015 0.451±0.012 0.452±0.014 0.472±0.016 0.338±0.010 0.367±0.012 0.372±0.014

Chameleon
TEDGCN 0.569±0.009 0.382±0.021 0.401±0.018 0.425±0.020 0.298±0.017 0.315±0.019 0.328±0.022 0.225±0.016 0.241±0.018 0.254±0.021
LR-GCL 0.584±0.011 0.407±0.019 0.436±0.015 0.447±0.018 0.332±0.015 0.342±0.016 0.356±0.018 0.251±0.013 0.269±0.015 0.283±0.017

LRA-LR-GCL 0.585±0.008 0.412±0.016 0.444±0.013 0.452±0.014 0.341±0.011 0.352±0.013 0.361±0.015 0.262±0.010 0.282±0.012 0.290±0.014

C Additional Implementation Details

Jo-SRC utilizes the Jensen-Shannon divergence to identify clean training samples through a general repre-
sentation space selection strategy. This approach also incorporates a consistency regularization term into
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Figure 4: Eigen-projection (first row) and signal concentration ratio (second row) on Chameleon and Texas.
The study in this figure is performed for asymmetric label noise with a noise level of 60%. By the rank of
0.2 min {N, d}, the concentration entropy on Chameleon and Texas are 0.762 and 0.725.

the contrastive loss to enhance robustness. In our adaptation, we apply the sample selection and consistency
regularization techniques in Jo-SRC to the state-of-the-art GCL method, MERIT. We modify the graph
contrastive loss to integrate the regularization term from Jo-SRC and train the GCL encoder exclusively on
the clean samples identified by Jo-SRC.

Sel-CL is designed to learn robust pre-trained representations by selectively forming contrastive pairs from
confident examples. These confident examples are identified through the alignment of learned representations
with propagated labels, assessed using cross-entropy loss. Sel-CL then selects contrastive pairs that exhibit a
representation similarity exceeding a dynamically determined threshold. We adopt the confident contrastive
pair selection strategy in Sel-CL to select the confident contrastive pairs in the node representation space.
The selection strategy is incorporated into the state-of-the-art GCL method, MERIT.
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