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Abstract

Recent advances in text-to-image diffusion models have shown remarkable perfor-
mance in generating realistic images from text descriptions. However, high-quality
visual text generation in generated images remains a major challenge. Gibberish
text generation is particularly problematic when the model has to generate proper
nouns and text that is not commonly present in training data. Unlike existing
methods to improve visual text generation which are based on data-intensive and
time-consuming fine-tuning approaches, we propose an inference-time representa-
tion alignment algorithm, TextIT, that does not need additional data or training.
First, we propose an inference-time self-attention manipulation loss that exposes
and aligns latent intermediate self-attention (SA) representations governing visual
text generation with those of correctly-rendered text. Next, we impose fine-grained
control over the generated text by aligning character-wise control points, obtained
through self-attention map vectorization, with ground truth character control points.
We provide evidence that inference-time representational manipulation enables
controllable and interpretable improvements in text-to-image generation, validating
our method with character and word-level visual text generation results that retain
the overall generative diversity of diffusion models.

1 Introduction

In recent times, diffusion-based generative models (Balaji et al.| [2023]], (Gu et al.| [2022]], Ho et al.
[2020], Rombach et al.| [2022], [Saharia et al.| [2022], Song et al.[[2022], |Zhao et al.|[2023]) have
become very popular for various text-to-image generation tasks due to their remarkable ability
to generate high-quality, realistic and diverse images, successfully outperforming earlier methods
(Dhariwal and Nichol| [2021]]) based on Generative Adversarial Networks (GANSs) (Goodfellow et al.
[2014], Radford et al.|[2016]]) and Variational Autoencoders (VAEs) (Kingma and Welling|[2022]],
Rolfe|[2017]]). However, despite their impressive performance in producing high-quality images, one
limitation with most existing approaches is their inability to render accurate text in the generated
images (Daras and Dimakis| [[2022]). The images often contain text that is ill-formed, illegible and
inaccurate. It is frequently observed that the rendered text contains strokes and symbols that do not
match any glyphs in the given language. Consequently, the overall quality of images that require
visual text decreases, making diffusion models a bad fit for such image generation tasks. Such tasks
include generation of logos, book covers, newspapers etc.

The rendering quality is especially bad for text that is unlikely to be present in the image-text paired
training data of these models. Examples include proper nouns—rare names of people, places and
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objects, and words that are not commonly used in the language. The inability of current diffusion
models to accurately render such text can be largely attributed to the lack of sufficient image-text data
which contains annotations for the text content in the images. Thus, during training, these models fail
to acquire robust internal representations for text, unlike the stronger representations they learn for
objects and scenes. Furthermore, during inference, there is no loss function that explicitly provides
guidance for the rendered text or enforces its alignment with the generation prompt. These factors,
along with the fine-grained complexity of visual text glyphs, make this a difficult task.
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Diffusion
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the letter S

the letter M the letter A

Figure 1: To tackle the inability of current text-to-image diffusion models in Visual Text Generation,
we propose TextIT, an inference-time optimisation approach that exposes and aligns intermediate
self-attention representations. The above results show that our method enables significant improve-
ments in text rendering compared to the baseline Stable Diffusion, while preserving overall image
characteristics such as background, color palette, and style.

Our Method:
TextlT

To address the challenge of visual text generation, recent works have explored different directions.
Some techniques have focused on replacing CLIP with large language models such as T5
et al| [2023]], [Saharia et al.| [2022])) as the text encoder in diffusion models, showing improved text
rendering. Others showed that the text encoders used in standard text-to-image diffusion models lack
character-level spelling information because they use Byte-Pair Encoding (BPE) tokenizers. They
have shown that replacing this with character-aware models such as ByT5 can improve results
[2023])). Instead of using a subword vocabulary like most other pretrained language models
(BERT, XLM-R, T5, GPT-3), the ByT5 model operates directly on UTF-8 bytes (2022])).
Additional approaches provide explicit text positional or content guidance, such as segmentation

masks and glyph images in GlyphDraw [2023]l, GlyphControl [Yang et al] [2023]], and
TextDiffuser [Chen et al| [2023a]], and fine-tuning a large language model for position and layout

planning for TextDiffuser-2|Chen et al.| [2023b]. AnyText|Tuo et al|[2023] encodes glyphs, positions
and masked images into the latent space and uses stroke information as additional embeddings
along with image-caption embeddings, while Diff-Text/Zhang et al.| [2023]] proposes a training-free
approach that conditions diffusion models on Canny-detected edge images of rendered target text,
combined with localised attention constraints to appropriately position the scene text. While these
works highlight the value of controlling representations for text, they often depend on fine-tuning
which creates the necessity for appropriate data and computational requirements, or rigid conditioning
such as Diff-Text (Zhang et al|[2023]]) which incorporates text edge image and local guidance into
the UNet itself limiting flexibility and creative diversity of generated outputs. Furthermore, these
methods often fail to accurately render text that is unseen during training such as rare words, proper
nouns, and text borrowed from a different language.

To overcome these limitations without requiring additional training or fine-tuning, and without
altering conditional inputs to the base diffusion model, we introduce TextIT, an inference-time
optimisation algorithm to improve visual text generation in text-to-image diffusion models. Our
method dynamically adjusts intermediate self-attention maps during inference so that they better
align with reference maps of correctly-rendered text. These reference maps are obtained using the
Skia graphics library by automatically rendering the target text in a standard font and style, and we
further vectorize them to extract Bézier curve control points. Such control points provide a novel,
interpretable handle on text glyph geometry, offering a representation-level view of how text is
encoded. By minimising a loss between these control points and those extracted from self-attention
maps of correctly-rendered text, TextIT exposes and aligns the internal representations that drive text
generation. The control points provide flexible parametric controllability over the text generation



ability. Importantly, this is achieved without modifying model weights, providing evidence that
inference-time representational adjustments alone can significantly enhance generative behavior.
Experimental results demonstrate the efficacy of our method in generating visual text with greater
accuracy and controllability.

To summarize, our key contributions in this work are:

1. A completely training-free, inference-time-only approach that improves text rendering in
diffusion models by aligning internal self-attention representations. Our work is the first
representation-level inference-time intervention for accurate visual text generation.

2. Our method handles the problem of unseen text data, as ground truth attention maps can
be automatically obtained for any text (given we know the text to be rendered from the
generation prompt) using a rendering library, such as Skia [ﬂ

3. We provide evidence that inference-time representational manipulation not only improves
text fidelity, shown through character and word-level generations, but also acts as a probe
into how diffusion models encode structured glyphs, suggesting future directions for con-
trollability and interpretability.

2 Related Work

2.1 Text-to-Image Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) have had disruptive effects in the field of image
generation from text prompts, having recently replaced methods based on GANs and VAEs as the
most popular choice for the task (Daras and Dimakis|[2022], Ho et al.| [2020], Song et al.| [2022],
Dhariwal and Nichol| [2021], |Saharia et al.| [2022]], Ramesh et al.| [2022]], Rombach et al.| [2022]).
Imagen Saharia et al.| [2022] introduces standard large language models (T5-XXL text encoder) into
the image generation pipeline, in place of the CLIP text encoder, and demonstrates comparable or
superior overall image quality, while improving performance in visual text rendering. On the other
hand, eDiff-I|Balaji et al.|[2023]] concatenates the CLIP text embeddings with the TS text embeddings
to leverage the capabilities of both text encoders. In addition to these aforementioned pixel-level
diffusion models, Stable Diffusion Rombach et al.| [2022]] is a Latent Diffusion model that performs
the diffusion process in a downsampled latent space, and uses a powerful CLIP text encoder to provide
conditional generation information in text-to-image synthesis. Stable Diffusion-XL (SDXL) (Podell
et al.| [2023]]) improves on top of Stable Diffusion by using a 3 times larger UNet, a second text
encoder and another refinement model to enhance image generation quality through image-to-image
techniques. In our work, we adopt Stable Diffusion as our base model.

2.2 Visual Text Rendering

Despite the success of diffusion models in text-to-image synthesis, accurate visual text rendering
remains a persistent challenge. A number of works address this using additional conditioning or
fine-tuning with new data. For example, GlyphDraw Ma et al.| [2023]] and GlyphControl [Yang
et al.[[2023] introduce glyph-based inputs, with the latter also incorporating multi-line layouts and
positional information. TextDiffuser and TextDiffuser-2 (Chen et al.[[2023alb]]) provide character-
level segmentation masks and layout planning through large language models, while AnyText|Tuo
et al.| [2023]] encodes glyphs, positions, and strokes into the latent space to enhance rendering
accuracy. Other approaches include Diff-Text Zhang et al.|[2023]], which uses edge maps with local
attention constraints, and DreamText Wang et al.|[2024]], which reconstructs the training process with
refined character-level guidance. Another line of work focuses on improving the text encoders within
diffusion models. Imagen Saharia et al.|[2022], eDiff-I Balaji et al.|[2023]], and DeepFloyd IF leverage
large-scale language models such as T5 to strengthen text representations. At the same time, methods
like ByT5 [Xue et al.[[2022]] and Glyph-ByT5 |Liu et al.|[2024b] replace or fine-tune character-blind
encoders to capture glyph-level structure more effectively. In contrast, our work is markedly different
from these by being completely training-free, avoiding the overhead of fine-tuning data, training
time and resources, and instead operating by directly manipulating self-attention representations at
inference time to improve alignment between prompts and rendered text.

"https://skia.org/docs/user/api/
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Figure 2: Control Points generated from Bezier curves for Skia-rendered ground truth SA maps

3 Proposed Approach

3.1 Latent Diffusion Models and Self-Attention

We start with a brief review of diffusion models and the associated self-attention computation
mechanism. We adopt Stable Diffusion (SD) (Rombach et al.| [2022]]) as our backbone. The
architecture of Stable Diffusion uses a Variational Auto-encoder (VAE) which, given an input RGB
image x of dimensions H x W X 3, uses an encoder &, to transform it into a latent representation z
of dimensions h X w X ¢, where o« = % = % is the downsampling factor of the VAE and c is the
latent feature dimension. After the diffusion process, decoder D is used to reconstruct the image x
from the latent space representation z.

The diffusion process is carried out in this low-dimensional latent space, where a conditional UNet
(Ronneberger et al.|[2015])) is used as a denoiser €g(z¢, t,y) to predict the noise in the noisy latent
z¢. Layers of the UNet consist of a residual block, a self-attention block and a cross-attention block.
Here, ¢ is the current time step and y is the generation condition information which is generally
text (in text-to-image models) that is projected to an intermediate representation 74 (y) by a text
encoder 7 (such as CLIP Radford et al.| [2021]], TS |Raffel et al.| [2023]], ByT5 Xue et al.| [2022])).
However, y can also belong to other modalities, e.g., segmentation maps, canny edge maps etc.
This encoded condition information 7¢(y) is then mapped to the intermediate layers of the UNet
via a cross-attention mechanism between projections of both image and text modalities. Moreover,
the residual block of the UNet convolves image features qﬁi*l from the previous layer to produce
intermediate feature maps f} for a given layer /. Self-attention is computed between projections of
these feature maps into queries, keys and values. This operation gives rise to a set of self-attention
maps Ay € ROXMX(x) ywhere - = 8,16, 32, 64, which we extract and use. The overall training
objective is to minimise the following loss:

Lsp = ]Eg(g;)%ewj\[(o,l%t [”6 —€p(2, t, TG(?J))”%] (M

In inference, a latent code zr ~ N(0, 1) is sampled and the prompt y is encoded into 74 (y). Then, T
denoising steps are run using the UNet denoiser €y to obtain zg, which is decoded using D to obtain
the generated image ' = D(zo).

3.2 Control Points

As mentioned in Iluz et al.|[2023]], Thamizharasan et al.|[2024]], modern typeface formats, such as
TrueType and PostScript represent the glyphs contained in the alphabet using a vectorized graphic
representation of their outlines. The individual character glyphs are made up of outline contours
that are represented by a collection of lines and Bézier/B-spline curves. These Bézier curves are
defined with a set of control points which can be extracted from the vector representation of the
corresponding image. An example is illustrated in Figure 2] where we can see the constituent control
points around the glyph of the character 'B’. These control points have been automatically generated
using our pipeline’s vectorisation module, Mang2Vec (Su et al.|[2023]]), an approach for vectorising
raster black-and-white mangas, using a trained Deep Reinforcement Learning model. We use this
work for extracting control points because our intermediate and ground truth self-attention maps are
gray-scale images. The Bézier curve C is represented in the following form:

Q: xlyl, xy

The second set of coordinates (x,y) specifies where the curve should end. The set (z1,yl) is the
control point of the curve. The control point essentially determines the slope of the curve at both its
start and end points. The Bézier function then creates a smooth curve that transfers from the slope
established at the beginning of the line, to the slope at the other end.



From Fig.[2] we see that with extracting control points, we can obtain point clouds along the outlines
of the glyphs of the visual text. Thus, we use these as an interpretable representation of glyph
geometry, and extract and optimise point clouds generated around the glyphs in our self-attention
maps. This enables fine-grained control of shape and structural details of the generated visual text.

3.3 Proposed Approach

As mentioned earlier, prior works have tackled the issue of visual text rendering via different text
encoding strategies or using additional input conditions, and fine-tuning on appropriate datasets.
This makes these methods data-intensive, computationally demanding and difficult to generalize
to out-of-domain scenarios. To this end, our approach comprises of a training-free inference-time
optimisation, where we dynamically manipulate self-attention maps of the generated images during
denoising steps, to align them with correctly-rendered ground truth self-attention maps.

Figure 3: SA maps from intermediate denoising steps

Self-attention maps in diffusion models provide an interpretable, semantically-meaningful inter-
mediate representation for steering visual content by encoding long-range spatial dependencies
and revealing task-relevant image structures (Chefer et al.| [2021]], |Carion et al.| [2020], Mehrani
and Tsotsos| [2023]]). |Chefer et al.| [2023]] have shown that targeted manipulation of the attention
mechanism can be used to improve semantic fidelity to input prompt during inference. Liu et al.
[20244a] demonstrate that self-attention maps capture the geometric and shape details of the generated
image, and modify those maps during denoising to achieve controllable image edits. Inspired by
these works, which validate attention as an actionable control mechanism for generative steering, we
manipulate self-attention maps in order to exploit the correspondence between these maps and the
glyphs of generated text renderings. We demonstrate this correspondence in Fig. [3] which shows
intermediate self-attention maps of some generated visual text, where the glyph structure of the text
to be rendered is clearly visible. The self-attention map which is used for visualization, and for our
inference-time optimisation, is actually obtained by retaining the first principal component after per-
forming Principal Component Analysis (PCA) on the self-attention maps extracted directly from the
UNet (we provide exact details on how we compute and visualize the intermediate self-attention maps
in the Supplementary Material). This emergence of the final glyph structure further validates utilizing
intermediate self-attention maps to detect and rectify incorrect text glyphs, as the self-attention maps
at any given denoising step drive the final generation. Therefore, manipulating these intermediate
maps to match the target text shall allow controlling and steering the quality of generated text towards
the one specified by a user in the input prompt.

The overall architecture of our method, TextIT, is visually represented in Fig.[d] We first extract self-
attention maps of the image being generated from the intermediate denoising steps of the diffusion
process, and then perform self-attention manipulation by proposing two different losses computed
between these attention maps and the ground truth attention maps.

We take into consideration those cases of generation where the users want the image to contain
specific text. The ground truth attention maps are obtained from using a standard 2D graphics library,
such as Skia, to render the target text that is to be present in the image, in a fixed standard font and
in black-and-white (Refer to Fig.[2]for examples). The style and size in which the ground truth is
rendered remains fixed for all generations. The target text can be determined from the text prompt
passed into the text-to-image model, either explicitly present in the prompt, or can be implicitly
inferred from it using a large language model, such as GPT-3.5.

We next elaborate the proposed losses computed between the intermediate self-attention maps and
these ground truth maps in order to manipulate the self-attention maps during denoising:

1. Self-Attention Loss, L5 4: We compute a direct pixel-intensity loss between the images of
the self-attention maps and the ground truth maps. Both the self-attention and the ground
truth maps are single-channel gray-scale images. For computing the loss, we use the Focal
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Figure 4: Overall Architecture of our proposed method, TextIT

Loss (Lin et al.[[2018]]), which is used abundantly for object detection tasks. We calculate this
loss between the SA maps and the ground truth maps. Observations from our experiments
have shown that this loss function leads to better performance compared to other losses, such
as MSE Loss. We provide more details about Focal Loss in the Supplementary Material.

2. Control Points Loss, Lo p: After obtaining the self-attention map for the particular
intermediate inference step, we pass it into our vectorising module, Mang2Vec, which takes
an input grayscale image and outputs its vectorised SVG form. From the outputs of this
pipeline, we can extract the control points that constitute the vectorised form of our images
from the Bézier curves. We extract control points from both the intermediate self-attention
maps and the black-and-white ground truth maps. Some examples of control points extracted
for ground truth maps are shown in Fig. 2] We then compute the loss between these two sets
of 2-Dimensional points using MSE.

Once we have computed these losses, we use a combination of the two as our overall loss £ for the
inference-time optimisation routine. The overall loss is defined as: £ = 51Lga + B2Lop,

where 31 and [35 are hyper-parameters that control the time-steps for which the Self-Attention loss
and the Control Points loss are to be applied respectively, as part of the overall loss. For the time-steps
for which we want to apply only CP loss, 51 = 0 and B3 = 1, and for the time-steps where we want
to apply only SA loss, 2 = 0 and 51 = 1. In case we want to apply both losses, 51 = 52 = 1, and
in case of neither, 51 = 82 = 0.

In each of these optimisation paradigms, once we compute the overall loss £ for a particular denoising
timestep, we need to update the latent code at that timestep z; such that it changes in the direction of
minimising the overall loss. This is based on our intuition that, given the definitions of the losses
used, minimising these would lead to more accurate text rendering. To achieve this, we perform the
following latent update:

Zg =7t — ozf;Vztﬁ (2)

where o is the step size of the gradient update, and V , is the gradient of the loss computed with
respect to the image’s latent code at denoising timestep ¢. The updated z; is now used in the next
denoising timestep in place of z;, and this entire gradient update step is performed for all the timesteps
that we perform inference-time optimisation for.

4 Experiments

We perform experiments with our proposed method in order to show Proof of Concept results for
our method, by implementing our optimisation strategy on top of our baseline diffusion model and
showing improved results for visual text rendering of single characters in the English alphabet. Our



text prompts into the text-to-image models thus take the form of "The letter A", "The letter B" and
so on. We observe that our method significantly improves rendering of single characters in English
when compared to our baseline model, in a completely training-free approach.

Implementation Details: We use Stable Diffusion 1.4 as the backbone for our proposed inference-
time optimisation. However, our code is compatible with all versions of Stable Diffusion models. As
described earlier, our contributions include two losses computed from the latent code representation
that are optimised during inference time. These are the Self-Attention loss, Lg 4, and the Control
Points loss, Lo p. The Lg 4 loss computes the difference in pixel-intensity between the ground truth
and intermediate self-attention maps. We found that the Focal Loss is best-suited for this task.

On the other hand, the L¢ p loss computes the alignment between the control point clouds extracted
from the ground truth and intermediate self-attention maps. To align these control point clouds, we
use the MSE loss. The experimental setup for our inference-time optimisation routine is as follows:

* Self-Attention loss Lg 4 with Control Points loss L p:

Here, we use the Focal loss function to compute the SA loss between the ground truth and
intermediate maps and align them in pixel-intensity space. Further, to align the control point
clouds extracted from the respective attention maps, we use the MSE loss function. In this
setup, we apply only the SA loss for the first 5 timesteps and only the CP loss for the next 20
timesteps. Thus, the overall loss function looks like (¢ is the inference time-step number):

L = Lga, fort<5
L = Lcp, forb<t <25

For all our experiments, the total number of diffusion denoising steps is 50. Of these, we perform
inference-time optimisation for only 25 denoising steps. The choice to optimise only during the first
25 steps is based on both empirical analyses and prior work on attention-based steering (Attend-
and-Excite [Chefer et al.|[2023]]). We have leveraged studies that suggest that diffusion attention
mechanism follows a coarse-to-fine progression, early step representations capturing high-level spatial
structures and middle steps capturing finer geometric details (Yue et al.|[2024], |Park et al.|[2023]).
Thus, we apply the pixel-based SA loss in the early denoising steps to optimise spatial and semantic
structures, and the CP loss in the middle steps for fine-grained text glyph alignment. We observe that
applying SA loss beyond the very early steps has little effect on the intermediate latents, thus we limit
it to the first 5 steps. We do not apply CP loss beyond 25 steps to avoid compromising the generation
diversity and creativity of the diffusion model, to ensure the latents remain in-distribution with respect
to the pretrained model, and to decrease the total time and resources needed for inference.

Baselines: We compare TextIT with four different text-to-image diffusion models on the task
of single-character visual text rendering. The first model we compare with is the Stable Diffusion
model, which is the baseline that we implement and test our method on top of. We also compare
our method with recent works focused on improving the text rendering ability of diffusion models,
namely, TextDiffuser, TextDiffuser-2 and AnyText. One thing to note here is that the paradigm
of operation of these three models is very different from TextIT. While these models use various
additional conditioning information and have been fine-tuned on appropriate data, our method is
completely training-free. In the Supplementary, we compare separately with Diff-Text because it is
closest to our paradigm. We omit recent works such as|Wang et al.|[2024], Liu et al.| [2024D], since
these are also training-based methods, a category already well-represented among our baselines.

Evaluation Metrics and Quantitative Results: Quantitatively, we compare TextIT with four
different text-to-image diffusion models on the task of text rendering with diverse generations. First,
we compare with Stable Diffusion, which is the baseline that we implement and test our method
on top of. We also compare with recent works focused on improving text rendering - TextDiffuser,
TextDiffuser-2 and AnyText. The paradigm of operation of these models is very different from
TextIT, making a quantitative comparison difficult. While these models use various additional
conditioning information and have been fine-tuned on appropriate data, our method is completely
training-free and inference time-only.

We use three quantitative metrics to compare our method with prior models: OCR accuracy, CLIP-
Score, and FID score. For OCR accuracy, we employ PaddleOCR (Du et al.| [2020]) on the task



Stable Diffusion TextDiffuser TextDiffuser2 AnyText TextIT
OCR 333 % 34 % 60 % 65% 68 %
CLIP 23.19 2191 23.98 2523 2731
FID - 320.1 361.5 259.7  220.6

Table 1: Quantitative Results

of single-character generation. A generated character is considered correct if at least one detected
character matches the prompt, focusing on whether our method can render the intended glyph, and on
representational alignment. We observe that models sometimes produce extra characters beyond what
is specified in the prompt, which likely arises because models are trained on a lot of multi-character
text. The generation of image artifacts which are not specified in the prompt is a common issue
with the base Stable Diffusion model. We decide not to penalize this, since that isolates the effect
of our algorithm from unrelated artifacts introduced by the base model. Future work, and extension
to newer models, will incorporate stricter metrics and a focus on both text accuracy and artifact
suppression. We evaluate on 30 prompts corresponding to randomly selected letters, covering all 26
English alphabet letters, with seeds fixed across models for consistency. Although this is a relatively
small benchmark, it captures all 26 letters and adding more letters would serve as a multipler, leading
to redundant averaging over the comparison for some letters. For CLIPScore and FID, we assess
word-level generation to provide a more comprehensive comparison. CLIPScore is computed between
prompts and images for 20 short word generations, while FID is computed between the outputs of
Stable Diffusion and each baseline (including TextIT) for the same 20 prompts. Word generation is
performed letter by letter, ensuring coverage of all characters in the alphabet, and we will expand this
benchmark for the final version. We compare with Stable Diffusion outputs since all these works are
built on top of it. These metrics serve not only as benchmarks for accuracy of text generation but also
as indirect probes of how well self-attention representations align with target text structures. Table|T]
clearly shows that our method performs the best in terms of all our metrics, showing the alignment of
our outputs with text prompts as well as base SD outputs.

Stable
TextDiffuser-2 TextDiffuser Diffusion

AnyText

Our Method:
TextIT

the letter F the letter K the letter M the letter V the letter P

Figure 5: Comparison of TextIT with baselines for single-character visual text generation

Qualitative Results: Fig. [5|shows compared qualitative results of our method with our baselines,
in the task of visual rendering of single-characters. As we can see, TextIT significantly outperforms
the other methods in visual quality of generated single-character images, thus validating our Proof-
of-Concept. An important point to note is that, apart from the glyph correctness and legibility, the



Figure 6: Evolution of SA maps through inference timesteps using TextIT, and the generated image.

style, colors, theme, and semantics of the rest of the generated image remain close to the base model
generation. This demonstrates that our method and our choice of ground truth attention maps do not
limit the font, style or diversity of outputs. We provide more qualitative results for single characters
in the Supplementary. Note that other methods are bad at generating single characters even when the
prompt explicitly asks for them.

In Fig.[6] we would also like to show how the self-attention maps evolve with denoising steps as our
method progresses, along with the final fully-denoised output.

The Need for CP Loss: Fig. [/|shows that combining CP loss with SA loss yields more accurate
text, capturing fine-grained glyph shapes. SA loss is a pixel-based loss and, on its own, it aligns the
pixel intensities and appearance of attention maps which does not provide detailed control, while CP
loss aligns control points which are generated around the glyph edges, thus providing fine-grained
geometric control. However, CP loss alone can be unstable as the computed loss could diverge since
control points follow glyph shapes closely, so we combine it with SA loss for best results.

Using only SA loss Using SA and CP loss

Figure 7: Qualitative ablation study. The use of Control Points loss in addition to Self-Attention loss
provides fine-grained glyph shape refinement, leading to more accurate text rendering.

Rendering Short Text: We present qualitative results for rendering short English text, which we
take to be words with between 3 to 5 letters. This set of results provides the proof-of-concept for
improved small words generation using TextIT. Specifically, we focus on the following 3 types of
short words to show that our method can help render any arbitrary short text correctly, including
uncommon words and proper nouns which have been a major pain point for diffusion models: non-
proper nouns (both common and uncommon) which baseline Stable Diffusion is unable to render
accurately, names of persons (including names not common in the English language), and names of
places. Fig.[§|shows qualitative results for generating the above three categories of short words using
TextIT, and their comparison with baseline SD generations for the same seeds and prompts.

To render short text, we first use an OCR model to detect bounding boxes in the SA maps containing
characters. Each region is divided into n segments, where n is the number of target characters, and
independent losses are computed against the ground-truth maps of corresponding characters for each
segment. The latent is updated in a loop for each inference-time optimization step. By optimizing
at the character level, our method can render arbitrary words, including proper nouns and unseen
terms, since every word decomposes into characters. We use character level optimization so that our
approach is robust and not tied to any specific dataset of words.

5 Conclusion & Future Work

In this paper, we introduce an inference-time optimization approach that manipulates and aligns self-
attention representations in diffusion models, improving visual text generation without additional data
or fine-tuning. Our results show that latent representation alignment makes rendered text more faithful
to prompts while preserving overall diversity of generated images. This is the first representation-level
inference-time intervention for visual text, and the control points formulation offers interpretable
controls which could enable interactive human-in-the-loop editing. The same method can be extended
to other structured elements such as tables, infographics and logos, highlighting the potential of
inference-time representational control for robust and controllable generative modeling.
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Figure 8: Qualitative Results for Short Text Rendering for various categories: common words, person
names, and place names. Certain examples shown here are generated twice using two distinct seeds.

Although here we demonstrate TextIT on single characters and short words to validate the representa-
tional alignment and effectiveness of our method, it can generalize to longer text (multiple words and
lines) since the optimisation operates sequentially over character-level attention segments. The main
bottleneck is computational, not conceptual, and we plan to address this in future work via elegant
parallelised implementations of the per-character optimisation.

Moreover, our examples involve simple prompts which mention the target text directly, but our
method can be extended to more comprehensive prompts mentioning target words explicitly (an
example of which is shown in the Supplementary), as well as use-cases where the target text can be
inferred from the prompt through a small language model even when it isn’t explicitly mentioned.
While this limits applicability to fully open-ended prompts, since TextIT works well given the target
text, future work will focus on developing intermediate modules to bridge the gap between prompt
and target text, while also ensuring that unintended text and artifacts are suppressed.

Lastly, although the inference-time optimisation, vectorisation, and control points extraction add a
few seconds to the inference time compared to the base model, the trade-off for this limitation is that
TextIT removes the need for any finetuning, data collection, or computational overhead.
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