© o N O g A~ W N =

22
23

24
25

26

27
28
29
30
31
32

Learning Causal Gene Relationships in Biological
Pathways with Graph Attention Networks (GATS)

Anonymous Author(s)
Affiliation
Address

email

Abstract

Biological pathways are natural causal graphs mapping gene-gene interactions
that govern human processes. Despite their importance, most ML models treat
genes as unstructured tokens, discarding causal structure. The latest pathway-
informed models capture pathway-pathway interactions, but still treat each path-
way as a “bag of genes” via MLPs, discarding its topology and gene-gene inter-
actions. We propose a Graph Attention Network (GAT) framework that encodes
gene-level pathway priors. We show that GATs generalize much better than MLPs,
achieving an 81% reduction in MSE when predicting pathway dynamics under
unseen treatment conditions. We further validate the correctness of our biological
prior by encoding drug mechanisms as causal graph modifications, improving ro-
bustness. Finally, trained without a prior, we show that our GAT model correctly
rediscovers all five gene-gene interactions in the canonical TP53-MDM2-MDM4
feedback loop from raw time-series mRNA data, demonstrating the ability to learn
causal gene relationships and generate novel biological insights directly from ex-
perimental data. [All code will be released upon publication.]

1 Introduction

Biological pathways encode the logic of human processes, and can guide models to learn true biolog-
ical relationships. However, existing ML models often treat genes as unstructured tokens, or at most
encode interactions at the pathway level. To improve on this, we make the following contributions:

1. We propose a novel method to explicitly encode biological pathways at the gene level using
Graph Attention Networks (GATS).

2. We show that encoding known biological pathways as a mechanistic prior allows models
to learn a more robust, interpretable, and generalizable set of pathway dynamics.

3. We suggest the potential of our GAT formulation to discover new biological insights, such
as candidate pathways and novel gene-gene interactions.

2 Related Work

The latest approaches to incorporating biological pathway knowledge into ML models include: (1)
encoding gene-pathway membership via sparse neural networks [1; 2]; and (2) encoding pathway-
pathway interactions using attention biases or graph priors [3; 4; 5]. While these approaches have
achieved superior results on many downstream tasks, they remain limited by only encoding inter-
actions at the pathway level, discarding the structured gene-gene interactions that define a pathway.
For example, in the canonical p53 pathway, the gene TP53 activates MDM?2, while MDM?2 in turn

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



33
34
35
36
37
38
39

40

41

42
43
44
45

46
47
48
49
50

51
52

53
54
55
56
57
58

59

60

61
62
63

Multi-head attention ;
activates (activating edges) >
(MDM2 l! | TP53
inhibits Concat
A Multi-head attention across Shared
(inhibiting edges)  heade & —>] linear
; decoder
relations
Multi-head attention
(self-loops) > — >
Pathway graph represented Relation-specific GATs, one Output head for
as adjacency matrix masks for each interaction type. Updated _node downstream task
A(act), A(inh), A(self). Attention heads shared embeddings (e.g. t4 prediction)

across nodes.

Figure 1: Model schematic

inhibits TP53, forming a negative feedback loop that is critical to regulating p53. Treating TP53
and MDM?2 as independent tokens aggregated into a single ’p53 pathway” node loses this mech-
anistic detail. We address this by proposing a Graph Attention Network (GAT) method to encode
the natural graph structure of a biological pathway. We encode genes as nodes, and use multiple
adjacency matrices for different interaction types (e.g. activatory/inhibitory). We show: (1) better
generalization to unseen treatment conditions versus MLP; (2) correctness of our biological prior
via edge interventions reflecting drug mechanisms; and (3) ability to rediscover known biology.

3 Methods

3.1 Data

We use our framework to model the core feedback loop of the p53 pathway, composed of the genes
TP53, MDM2, and MDM4 (Figure 1). TP53 is a tumor suppressor whose activity is tightly regulated
by MDM?2 and MDM4 via negative feedback. This feedback loop generates oscillatory dynamics,
presenting a richer challenge than linear signaling pathways.

Dataset. We use time-series mRNA expression for TP53, MDM2, and MDM4 from Hafner et al.
[6] (GEO: GSE100099). Experiments cover three treatment conditions: Wild-type (WT) with no
intervention; TP53-sh, a knock-down that dampens TP53 expression; and Nutlin, a drug that blocks
the MDM2-TP53 interaction. For each condition there are two independent trajectories; within a
trajectory, the three genes are measured at 6-12 time points over 0-24 hours.

Problem formulation. Given measurements at t1, to, t3 plus metadata (elapsed time between mea-
surements At;.3 and treatment indicators), predict the expression at ¢4 for the three genes.

Evaluation protocol (LOCO). To test model robustness, we adopt Leave-One-Condition-Out
(LOCO) validation. Each fold trains on two treatment conditions, and is then evaluated on the
held-out condition. This assesses the model’s ability to learn pathway dynamics that generalize to
unseen treatment conditions. Unless stated otherwise, we report mean squared error (MSE) on the
standardized target space averaged over 10 random seeds (mean = std) and compare against an MLP
baseline that reflects the ’bag-of-genes” approach used in the literature.

3.2 Model Architecture

We build a pathway graph with /N nodes (one per gene). Node 7 receives the feature vector:

X, = [yi(ti:3) || At1z || u] (D

where y;(t1.3) € R? are the first three expression measurements of gene i in the current window,
Aty.3 € R3 are the corresponding inter-measurement time gaps (identical for all nodes), and u €
{0, 1} is the treatment indicator vector (also identical for all nodes).
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Next, we encode pathway structure with a set of relation types R (here, R = {activatory, inhibitory,
self-loops}). For each r € R, we define a binary adjacency A" € {0, 1}V*N | where Al(.;) =1
means that, under relation 7, gene j can attend to gene ¢. For example, the relation ”TP53 activates
MDM?2” is represented as Agjg&gt;gg = 1. We use raw node features as embeddings: h; < x;.

For each relation » € R, we run a GAT block with H heads. Each head h learns its own projection
matrix W € RF*P and node-level attention matrix a € R?”. We compute attention scores as:

Qi = softmax, () (LeakyReLU(a” [Wh; || Why])) 2

) —

where the softmax function is applied over all permitted neighbors of node ¢ under relation r, N/;

{5: Al(.;) = 1}. The output feature of node i is thus:
h; = aijWhj (3)
jENi(T)
We concatenate outputs across the heads of each relation, then concatenate across relations, generat-
ing our aggregated node embedding z; € RI™IH#P A linear readout W g, € RIRIFPX1 then maps

each node’s aggregated embedding to its predicted ¢4 expression. Dropout is applied on features and
attention weights, and all W (") and a(""") are randomly initialized using the Xavier method.

4 Results

4.1 GAT model generalizes to unseen treatment conditions much better

Table 1: LOCO performance, GAT vs MLP (10 seeds)
Fold (hold-out) MLP MSE (mean+std) GAT MSE (mean-=+std)

1 (WT) 1.07 £ 0.02 0.44 +£0.13
2 (TP53-SH) 4.92 +0.13 0.31 +0.18
3 (Nutlin) 504+ 1.6 10.0 £ 4.1
Overall mean 18.8 + 0.6 3.57 + 1.46

Under LOCO cross-validation, the GAT model achieved 81% lower overall MSE than the MLP
baseline (Table 1), showing that the pathway prior enables much stronger generalization to unseen
treatment conditions. The Nutlin case illustrates this best: Nutlin blocks MDM?2 from degrading the
TP53 protein; elevated TP53 then drives continuous MDM?2 transcription, producing a monotonic
rise up to 15 standard deviations above normal expression seen in training data (Fig. 2, blue).
Without a pathway prior, the MLP fails entirely at predicting this behavior (Fig. 2a). In contrast, the
GAT recognizes the feedback loop has been disrupted, and captures the rising trajectory (Fig. 2b-c).

4.2 Encoding the drug mechanism via edge intervention improves performance

Table 2: LOCO performance, Drug Mechanism Encoding (10 seeds)

MSE (mean =+ std)
Unmodified Pathway Edge Intervention

Fold (hold-out)

1 (WT) 0.52+0.13 0.44 +0.13
2 (TP53-SH) 0.37 £0.17 0.31 £0.18
3 (Nutlin) 11.0 £ 6.8 10.0 £ 4.1
Overall mean 3.97 +2.24 3.57 - 1.46
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Figure 2: True vs Predicted MDM?2 expression under Nutlin

The correctness of the biological prior is further shown via an edge intervention. In Fig. 2b, the
prior is unchanged; in Fig. 2c, we explicitly model Nutlin’s mechanism of blocking the MDM2-
TP53 interaction by §etting A?ﬁ;@ft‘;d% o = O.. .We report a fur.ther 11% improvement in predi.ction
accuracy, demonstrating the GAT model’s ability to explicitly incorporate known drug mechanisms.

4.3 Given no prior, GAT model rediscovers p53 pathway

Finally, we trained a GAT with a single, fully-connected adjacency matrix, using the tanh() activa-
tion function to allow negative attention scores. From just raw time-series mRNA data, the model
correctly recovered the signs of all 5 gene-gene interactions (Fig. 3). Their relative magnitudes
also match known biology (e.g. TP53 being the main activator of MDM2; MDM?2 being the main
inhibitor of TP53). This suggests the GAT model can also be used to generate novel biological
hypotheses (e.g. new pathways/interactions) when trained on raw experimental data without a prior.
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Figure 3: Learned attention weights (no prior) vs Ground truth pathway graph

Limitations. Our study focuses on a single pathway with few genes, and relies on a relatively
limited dataset. Nonetheless, our results strongly suggest that encoding pathways at the gene level
with GATs yields substantial improvements over MLP baselines, warranting further exploration.

5 Conclusion

We introduced a Graph Attention Network (GAT) framework that encodes biological pathways at the
gene level, serving as a mechanistic prior. Our approach generalizes substantially better than existing
MLP methods, and offers interpretability to encode known drug mechanisms and generate novel
biological insights. Extensions include encoding temporal dynamics (e.g. via a GRU), and building
a multi-pathway, hierarchical framework that uses one GAT layer to map gene data to pathways; and
a further GAT layer to map pathway-pathway interactions — moving towards a foundation model
covering all biological pathways that can be broadly applied to many life science tasks.



108

109
110
111

112
113
114

115
116
117

118
119
120

121
122
123

124
125
126

References

[1]

(2]

Jiajing Xie, Ying Chen, Shijie Luo, Wenxian Yang, Yuxiang Lin, Liansheng Wang, Xin Ding,
Mengsha Tong, and Rongshan Yu. Tracing unknown tumor origins with a biological-pathway-
based transformer model. Cell Reports Methods, 4(6), 2024.

Zhaoxiang Cai, Rebecca C Poulos, Adel Aref, Phillip J Robinson, Roger R Reddel, and Qing
Zhong. Deepathnet: A transformer-based deep learning model integrating multiomic data with
cancer pathways. Cancer Research Communications, 4(12):3151-3164, 2024.

Xiaofan Liu, Yuhuan Tao, Zilin Cai, Pengfei Bao, Hongli Ma, Kexing Li, Mengtao Li, Yunping
Zhu, and Zhi John Lu. Pathformer: a biological pathway informed transformer for disease
diagnosis and prognosis using multi-omics data. Bioinformatics, 40(5):btae316, 2024.

Zehao Dong, Qihang Zhao, Philip RO Payne, Michael A Province, Carlos Cruchaga, Muhan
Zhang, Tianyu Zhao, Yixin Chen, and Fuhai Li. Highly accurate disease diagnosis and highly
reproducible biomarker identification with pathformer. Research Square, pages rs—3, 2023.

Teng Ma and Jianxin Wang. Graphpath: a graph attention model for molecular stratification
with interpretability based on the pathway—pathway interaction network. Bioinformatics, 40(4):
btae165, 2024.

Antonina Hafner, Jacob Stewart-Ornstein, Jeremy E Purvis, William C Forrester, Martha L
Bulyk, and Galit Lahav. p53 pulses lead to distinct patterns of gene expression albeit similar
dna-binding dynamics. Nature structural & molecular biology, 24(10):840-847, 2017.



