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Abstract

Biological pathways are natural causal graphs mapping gene-gene interactions1

that govern human processes. Despite their importance, most ML models treat2

genes as unstructured tokens, discarding causal structure. The latest pathway-3

informed models capture pathway-pathway interactions, but still treat each path-4

way as a “bag of genes” via MLPs, discarding its topology and gene-gene inter-5

actions. We propose a Graph Attention Network (GAT) framework that encodes6

gene-level pathway priors. We show that GATs generalize much better than MLPs,7

achieving an 81% reduction in MSE when predicting pathway dynamics under8

unseen treatment conditions. We further validate the correctness of our biological9

prior by encoding drug mechanisms as causal graph modifications, improving ro-10

bustness. Finally, trained without a prior, we show that our GAT model correctly11

rediscovers all five gene-gene interactions in the canonical TP53-MDM2-MDM412

feedback loop from raw time-series mRNA data, demonstrating the ability to learn13

causal gene relationships and generate novel biological insights directly from ex-14

perimental data. [All code will be released upon publication.]15

1 Introduction16

Biological pathways encode the logic of human processes, and can guide models to learn true biolog-17

ical relationships. However, existing ML models often treat genes as unstructured tokens, or at most18

encode interactions at the pathway level. To improve on this, we make the following contributions:19

1. We propose a novel method to explicitly encode biological pathways at the gene level using20

Graph Attention Networks (GATs).21

2. We show that encoding known biological pathways as a mechanistic prior allows models22

to learn a more robust, interpretable, and generalizable set of pathway dynamics.23

3. We suggest the potential of our GAT formulation to discover new biological insights, such24

as candidate pathways and novel gene-gene interactions.25

2 Related Work26

The latest approaches to incorporating biological pathway knowledge into ML models include: (1)27

encoding gene-pathway membership via sparse neural networks [1; 2]; and (2) encoding pathway-28

pathway interactions using attention biases or graph priors [3; 4; 5]. While these approaches have29

achieved superior results on many downstream tasks, they remain limited by only encoding inter-30

actions at the pathway level, discarding the structured gene-gene interactions that define a pathway.31

For example, in the canonical p53 pathway, the gene TP53 activates MDM2, while MDM2 in turn32
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Figure 1: Model schematic

inhibits TP53, forming a negative feedback loop that is critical to regulating p53. Treating TP5333

and MDM2 as independent tokens aggregated into a single ”p53 pathway” node loses this mech-34

anistic detail. We address this by proposing a Graph Attention Network (GAT) method to encode35

the natural graph structure of a biological pathway. We encode genes as nodes, and use multiple36

adjacency matrices for different interaction types (e.g. activatory/inhibitory). We show: (1) better37

generalization to unseen treatment conditions versus MLP; (2) correctness of our biological prior38

via edge interventions reflecting drug mechanisms; and (3) ability to rediscover known biology.39

3 Methods40

3.1 Data41

We use our framework to model the core feedback loop of the p53 pathway, composed of the genes42

TP53, MDM2, and MDM4 (Figure 1). TP53 is a tumor suppressor whose activity is tightly regulated43

by MDM2 and MDM4 via negative feedback. This feedback loop generates oscillatory dynamics,44

presenting a richer challenge than linear signaling pathways.45

Dataset. We use time-series mRNA expression for TP53, MDM2, and MDM4 from Hafner et al.46

[6] (GEO: GSE100099). Experiments cover three treatment conditions: Wild-type (WT) with no47

intervention; TP53-sh, a knock-down that dampens TP53 expression; and Nutlin, a drug that blocks48

the MDM2-TP53 interaction. For each condition there are two independent trajectories; within a49

trajectory, the three genes are measured at 6-12 time points over 0-24 hours.50

Problem formulation. Given measurements at t1, t2, t3 plus metadata (elapsed time between mea-51

surements ∆t1:3 and treatment indicators), predict the expression at t4 for the three genes.52

Evaluation protocol (LOCO). To test model robustness, we adopt Leave-One-Condition-Out53

(LOCO) validation. Each fold trains on two treatment conditions, and is then evaluated on the54

held-out condition. This assesses the model’s ability to learn pathway dynamics that generalize to55

unseen treatment conditions. Unless stated otherwise, we report mean squared error (MSE) on the56

standardized target space averaged over 10 random seeds (mean± std) and compare against an MLP57

baseline that reflects the ”bag-of-genes” approach used in the literature.58

3.2 Model Architecture59

We build a pathway graph with N nodes (one per gene). Node i receives the feature vector:60

xi = [ yi(t1:3) || ∆t1:3 || u ] (1)

where yi(t1:3) ∈ R3 are the first three expression measurements of gene i in the current window,61

∆t1:3 ∈ R3 are the corresponding inter-measurement time gaps (identical for all nodes), and u ∈62

{0, 1}K is the treatment indicator vector (also identical for all nodes).63
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Next, we encode pathway structure with a set of relation typesR (here,R = {activatory, inhibitory,64

self-loops}). For each r ∈ R, we define a binary adjacency A(r) ∈ {0, 1}N×N , where A
(r)
ij = 165

means that, under relation r, gene j can attend to gene i. For example, the relation ”TP53 activates66

MDM2” is represented as A(activatory)
MDM2,TP53 = 1. We use raw node features as embeddings: hi ←− xi.67

For each relation r ∈ R, we run a GAT block with H heads. Each head h learns its own projection68

matrix W ∈ RF×D and node-level attention matrix a ∈ R2D. We compute attention scores as:69

αij = softmax
j∈N (r)

i
(LeakyReLU(aT [Whi ||Whj ])) (2)

where the softmax function is applied over all permitted neighbors of node i under relation r,N (r)
i =70

{j : A(r)
ij = 1}. The output feature of node i is thus:71

h′
i =

∑
j∈N (r)

i

αijWhj (3)

We concatenate outputs across the heads of each relation, then concatenate across relations, generat-72

ing our aggregated node embedding zi ∈ R|R|HD. A linear readout Wdec ∈ R|R|HD×1 then maps73

each node’s aggregated embedding to its predicted t4 expression. Dropout is applied on features and74

attention weights, and all W(r,h) and a(r,h) are randomly initialized using the Xavier method.75

4 Results76

4.1 GAT model generalizes to unseen treatment conditions much better77

Table 1: LOCO performance, GAT vs MLP (10 seeds)
Fold (hold-out) MLP MSE (mean±std) GAT MSE (mean±std)

1 (WT) 1.07 ± 0.02 0.44 ± 0.13
2 (TP53-SH) 4.92 ± 0.13 0.31 ± 0.18
3 (Nutlin) 50.4 ± 1.6 10.0 ± 4.1

Overall mean 18.8 ± 0.6 3.57 ± 1.46

Under LOCO cross-validation, the GAT model achieved 81% lower overall MSE than the MLP78

baseline (Table 1), showing that the pathway prior enables much stronger generalization to unseen79

treatment conditions. The Nutlin case illustrates this best: Nutlin blocks MDM2 from degrading the80

TP53 protein; elevated TP53 then drives continuous MDM2 transcription, producing a monotonic81

rise up to 15 standard deviations above normal expression seen in training data (Fig. 2, blue).82

Without a pathway prior, the MLP fails entirely at predicting this behavior (Fig. 2a). In contrast, the83

GAT recognizes the feedback loop has been disrupted, and captures the rising trajectory (Fig. 2b-c).84

4.2 Encoding the drug mechanism via edge intervention improves performance85

Table 2: LOCO performance, Drug Mechanism Encoding (10 seeds)

Fold (hold-out) MSE (mean ± std)
Unmodified Pathway Edge Intervention

1 (WT) 0.52 ± 0.13 0.44 ± 0.13
2 (TP53-SH) 0.37 ± 0.17 0.31 ± 0.18
3 (Nutlin) 11.0 ± 6.8 10.0 ± 4.1

Overall mean 3.97 ± 2.24 3.57 ± 1.46
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(a) MLP (b) GAT, unmodified pathway (c) GAT, drug target edge removed

Figure 2: True vs Predicted MDM2 expression under Nutlin

The correctness of the biological prior is further shown via an edge intervention. In Fig. 2b, the86

prior is unchanged; in Fig. 2c, we explicitly model Nutlin’s mechanism of blocking the MDM2-87

TP53 interaction by setting Ainhibitory
TP53, MDM2 = 0. We report a further 11% improvement in prediction88

accuracy, demonstrating the GAT model’s ability to explicitly incorporate known drug mechanisms.89

4.3 Given no prior, GAT model rediscovers p53 pathway90

Finally, we trained a GAT with a single, fully-connected adjacency matrix, using the tanh() activa-91

tion function to allow negative attention scores. From just raw time-series mRNA data, the model92

correctly recovered the signs of all 5 gene-gene interactions (Fig. 3). Their relative magnitudes93

also match known biology (e.g. TP53 being the main activator of MDM2; MDM2 being the main94

inhibitor of TP53). This suggests the GAT model can also be used to generate novel biological95

hypotheses (e.g. new pathways/interactions) when trained on raw experimental data without a prior.96

Figure 3: Learned attention weights (no prior) vs Ground truth pathway graph

Limitations. Our study focuses on a single pathway with few genes, and relies on a relatively97

limited dataset. Nonetheless, our results strongly suggest that encoding pathways at the gene level98

with GATs yields substantial improvements over MLP baselines, warranting further exploration.99

5 Conclusion100

We introduced a Graph Attention Network (GAT) framework that encodes biological pathways at the101

gene level, serving as a mechanistic prior. Our approach generalizes substantially better than existing102

MLP methods, and offers interpretability to encode known drug mechanisms and generate novel103

biological insights. Extensions include encoding temporal dynamics (e.g. via a GRU), and building104

a multi-pathway, hierarchical framework that uses one GAT layer to map gene data to pathways; and105

a further GAT layer to map pathway-pathway interactions – moving towards a foundation model106

covering all biological pathways that can be broadly applied to many life science tasks.107
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