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Abstract

Large reasoning models trained via reinforcement learning
(RL) have been increasingly shown to outperform their su-
pervised fine-tuned (SFT) counterparts on mathematical rea-
soning tasks; Yet the mechanistic basis for this advantage re-
mains unclear. We therefore ask, what internal representa-
tional differences enable RL models’ superior performance?
Our work presents two converging lines of evidence: First,
linear probes trained on layer-wise hidden states reveal that
RL models tend to achieve higher accuracy in predicting an-
swer correctness compared to SFT models, indicating more
linearly separable and structured representations. Second,
mean ablation studies show that RL models develop a hierar-
chical architecture where deeper layers become progressively
more critical, whereas SFT models distribute importance uni-
formly across layers. Together, these findings demonstrate
that RL training fundamentally restructures how models rep-
resent and process reasoning problems. Finally, we analyze
token-count variability under repeated sampling across prob-
lems to assess adaptive compute allocation. While we observe
higher variability in some RL-tuned models than in their SFT
counterparts, we see strong consistency in others, suggesting
that token allocation may depend more on the overall train-
ing pipeline than on RL versus SFT alone. We believe this
token-allocation variability reveals the spread of plausible on-
policy reasoning, highlighting which models exhibit stable
policies versus those that are under-determined, potentially
non-identifiable solution behaviour.

Code — https://oankit.github.io/-rl-sft-reasoning/

Introduction
Large Reasoning Models (LRMs) such as OpenAI’s o1 and
DeepSeek-R1 substantially outperform traditionally fine-
tuned large language models (LLMs) on reasoning and logic
problems across benchmarks (OpenAI et al. 2024; Shao
et al. 2024). Understanding why this is the case though, re-
quires moving beyond performance metrics to mechanistic
explanations. While we know LRMs generate longer chains
of thought and achieve higher accuracy, how they differ in-
ternally from base LLMs remains an open challenge.

Current research has approached this question from
two mutually reinforcing but disconnected perspectives.
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Mechanistic interpretability has identified specific cir-
cuits for arithmetic operations (Sachan, Stolfo, and Sun
2025; Hanna, Liu, and Variengien 2023; Zhu, Dai, and
Sui 2024) and shown that chain-of-thought increases ac-
tivation sparsity (Chen, Plaat, and van Stein 2025), pri-
marily in smaller models on elementary operations. Be-
havioural studies have revealed information-theoretic com-
pression limits (Lee, Che, and Peng 2025), cross-variant
sensitivity to problem phrasing (Mirzadeh et al. 2025), and
RL training’s potential for long reasoning (Yeo et al. 2025).
However, what internal representational differences enable
LRMs’ superior performance remains unexplored.

We seek to bridge this gap through integrated
behavioural-mechanistic analysis using three complemen-
tary methods: (1) Linear probing on layer-wise hidden states
to predict answer correctness (Alain and Bengio 2018; Be-
linkov 2022), measuring when and how strongly representa-
tions emerge across model families. (2) Mean ablation in-
terventions (Zhang and Nanda 2024; Meng et al. 2023) to
identify which layers are critical for mathematical reason-
ing across training methodologies. (3) Generation consis-
tency analysis via multiple samples per problem, extending
variance analysis (Mirzadeh et al. 2025) to within-problem
comparisons and empirically validating compression the-
ory (Lee, Che, and Peng 2025).

Specifically, our contributions include: (1) Evidence that
RL models develop stronger, earlier-emerging representa-
tions through scalable linear probing. (2) Discovery that RL
training reshapes computational architecture, concentrating
reasoning in deeper layers versus instruction-tuning’s uni-
form distribution. (3) Empirical validation of token com-
plexity theory, revealing that superior representations man-
ifest as consistent token usage across difficulty levels, with
current RL training showing unexploited potential for adap-
tive allocation. Our analysis reveals that training method-
ology fundamentally reshapes computational architec-
ture: RL-trained models show earlier engagement and pro-
gressive concentration in deeper layers (r=0.47), whereas
instruction-tuned models distribute reasoning uniformly (r=-
0.11). This architectural difference, combined with earlier-
emerging and stronger answer representations in RL models,
provides initial mechanistic insight into performance dif-
ferences, moving from descriptive benchmarking (OpenAI
et al. 2024; DeepSeek-AI 2025) to mechanistic explanation.



Measuring Representation Quality via Probing
Understanding when and how correct answer information
emerges across model layers can reveal fundamental differ-
ences between LRMs and SFT models. If LRMs develop
“clearer” representations, we should be able to detect this
mechanistically: problems with more linearly separable in-
ternal representations should exhibit higher discriminabil-
ity between correct and incorrect answers. To test this, we
train linear probes on layer-wise hidden states to predict fi-
nal answer correctness, building on the interpretability liter-
ature using linear probes to study intermediate representa-
tions (Alain and Bengio 2018), particularly for mathemati-
cal reasoning (Zhu, Dai, and Sui 2024). We hypothesize that
probe accuracy correlates with model accuracy, potentially
explaining why LRMs outperform SFT models.

Synthetic Problem Generation
To investigate whether model failures stem from reason-
ing limitations or surface-form artifacts, we generated 1,000
synthetic mathematical problems using four fixed templates
covering probability, fractions, and cost calculations. Fol-
lowing Mirzadeh et al. (2025)’s approach of generating syn-
thetic GSM8K variants (Cobbe et al. 2021), our controlled
generation isolates representational properties required for
general reasoning from question-specific memorization ef-
fects. Template details and example problems are provided
in Appendix .

Rationale: Synthetic generation offers three advantages:
(1) eliminates data contamination, (2) enables algorithmic
verification with known ground-truth parameters, and (3)
scales to large sample sizes for robust statistical analysis.
Prior work demonstrates that synthetic benchmarks effec-
tively reveal model reasoning capabilities (Mirzadeh et al.
2025) while avoiding artifacts of human-authored datasets.

Completion Generation and Labeling For each model,
we generate a single completion for every problem using
sampling (temperature T ∈ [0.6, 0.7], top p = 0.95). Fi-
nal answers are extracted from within \boxed{} delimiters.
Each completion is labeled as correct if the extracted an-
swer matches the ground truth (allowing a tolerance of ±1
for rounding), and incorrect otherwise. Problems where no
valid answer can be extracted are omitted from further anal-
ysis.

Balancing procedure: To ensure fair comparison across
models with different accuracy distributions, we identify the
intersection of problems answered by all models, then sam-
ple equal numbers of correct and incorrect examples per
model. This produces balanced training sets where each
model contributes identical sample sizes with equal class
distribution, removing confounding variables. Data is split
70/15/15 into train/validation/test sets, stratified by label.

Activation Extraction Activation extraction captures the
model’s internal state at the precise moment it has completed
reasoning but not yet committed to an answer.

Probe position: We extract hidden states at the token im-
mediately preceding \boxed{}. This position is chosen for
two reasons: (1) all answers follow this delimiter, ensuring

the model has completed reasoning before answer articula-
tion, and (2) the delimiter tokenizes consistently across ex-
amples, unlike final answers which may span variable to-
ken lengths. We tokenize the full generated text and locate
\boxed{ in the token sequence.

Batched extraction with position preservation: We pro-
cess completions in batches of 16–32. To maintain consis-
tent token positions across variable-length sequences, we ap-
ply right padding (padding appended after sequences) rather
than left padding, ensuring extraction positions remain un-
changed relative to sequence start. Each sequence receives
an attention mask with 1s for real tokens and 0s for padding.

Layer-wise representations: For each
batch, we perform a single forward pass with
output hidden states=True and extract ac-
tivations from all L transformer layers. We collect
hidden states[1:L+1]—the outputs of transformer
blocks 1 through L—omitting hidden states[0]
(input embeddings) and architecture-specific post-
normalization states that may reduce probe effectiveness.
This yields tensors of shape [L×N ×D], where N is batch
size and D is hidden dimension (4096).

Probe Training For each layer ℓ ∈ {1, . . . , L}, we train
logistic regression probe fℓ : RD → {0, 1} to predict binary
answer correctness from the D-dimensional hidden state hℓ.
The probe is defined as:

fℓ(hℓ) = σ(w⊤
ℓ hℓ + bℓ) (1)

where wℓ ∈ RD is the weight vector, bℓ ∈ R
is the bias term, and σ(x) = 1/(1 + e−x) is the
sigmoid function. Following best practices (Belinkov
2022), we use 5-fold cross-validation to select regular-
ization strength C from {0.001, 0.01, 0.1, 1.0, 10.0}, with
class weight=’balanced’ to handle residual class
imbalance.

We report test set accuracy as the primary metric. Our
methodology assumes the linear representation hypothe-
sis (Zhu, Dai, and Sui 2024): if correct answer information
exists in a layer’s representations, a simple linear classifier
should reliably extract it. Higher probe accuracy indicates
more robust linear separability between correct and incor-
rect answer representations.

Results: Layer-Wise Probe Accuracy
Motivation. We hypothesize that the improved mathemati-
cal reasoning ability of reasoning-capable models on mathe-
matical benchmarks stems from developing clearer internal
representations of correctness—i.e., representations that are
more linearly separable and consistently structured across
samples. To test this, we train linear probes to classify cor-
rect vs. incorrect solutions at each layer, using probe accu-
racy as a proxy for representation clarity.

Reasoning Models Exhibit Representation Clarity
Figure 1 reveals substantial differences in how correctness
information is encoded across model types. Models trained
with reinforcement learning from verifiable rewards—
DeepSeek-Math-7B-RL and Olmo-3-Think—achieve



Figure 1: Layer-wise probe accuracy for predicting an-
swer correctness across model families. Reasoning mod-
els (DeepSeek-Math-7B-RL, Olmo-3-Think) achieve higher
probe accuracy (83–98%) and earlier emergence compared
to base and instruction-tuned models (DeepSeek-Math-
Instruct, Olmo-3-Instruct) (75–90%). Notable late-layer re-
gression appears in final layers for all models.

markedly higher probe accuracy (83–98%) compared to
instruction-tuned models (75–90%). This 8 percentage
point gap, combined with noticeably reduced variance
between individual samples (tighter scatter in Figure 1),
suggests that RL and chain-of-thought training could lead
to representations with linear separability between correct
and incorrect answer states (Zhang et al. 2025; Park, Choe,
and Veitch 2024).

Immediate emergence in reasoning models. Reasoning-
capable models exhibit remarkably high probe accuracy
from the very first layer, with test accuracies of 70% at layer
0 compared to 65% for Instruct models. Both Olmo-3-Think
and DeepSeek-Math-7B-RL maintain ∼94–95% accuracy
throughout layers 15–29. This immediate availability of
correctness information contrasts sharply with instruction-
tuned models, where probe accuracy gradually improves
from ∼65% to ∼66–80% and 84–90% for DeepSeek-Math-
Instruct and Olmo-3-Instruct respectively over 28 layers.
Defining an emergence layer ℓemerge as the first layer achiev-
ing > 80% test accuracy, we find ℓemerge = 0 and 2
for DeepSeek-Math-RL and Olmo-3-Think respectively, and
ℓemerge = 6 and 1 for DeepSeek-Math-Instruct and Olmo-
3-Instruct respectively. The threshold for emergence layer
must be dynamically defined based on accuracy across all
models, as some thresholds are crossed by all models from
layer 0. Despite similar emergence layers for the Olmo-3
family, the Think model achieves higher overall accuracy.

Pre-training and training objectives matter. The Olmo-
3-Instruct model, fine-tuned from the base model using the
Dolci Instruct SFT dataset, outperforms DeepSeek-Math-
7B-Instruct. This demonstrates that a more robust and di-
verse dataset for pre-training and SFT can still provide sig-
nificant performance increases, which is supported by our
probe findings where the accuracy for Olmo-3-Instruct is
significantly higher (Mosbach et al. 2020; Zhou and Sriku-

mar 2022). DeepSeek-Math-7B-RL and Olmo-3-Think sub-
stantially outperform their instruction-tuned counterparts,
demonstrating that reasoning-specific training objectives—
not merely scale or general fine-tuning—are key to develop-
ing clear correctness representations.

Representation Clarity as a Mechanism for Better
Mathematical Reasoning
Our results provide a potential mechanistic explanation for
why RL-trained and chain-of-thought models outperform
instruction-tuned models on mathematical benchmarks: they
develop fundamentally clearer internal representations of
correctness. The high probe accuracy (75–95%) indicates
that these models encode correctness as robust, linearly-
separable features (Park, Choe, and Veitch 2024; Jiang et al.
2024). This clarity likely enables more reliable access to cor-
rectness signals during autoregressive generation, leading to
more consistent correct outputs.

Caveats. Our probing methodology has an important lim-
itation: it requires the model to produce a sufficiently bal-
anced distribution of correct and incorrect answers. When
the correct-to-incorrect ratio deviates substantially from
50:50, the probe risks learning to predict the majority class
rather than genuinely detecting representational differences.
This dependency means our findings are most reliable for
models operating near their capability boundaries, where
both outcomes occur with reasonable frequency.

Layer-Wise Mean Ablations
We aim to investigate the criticality each layer has upon
the mathematical reasoning capabilities of DeepSeek-Math
models through systematic activation patching. Our method-
ology employs mean ablation interventions to replace layer
activations with their corresponding mean values computed
from a reference dataset (GSM8K training data). This ap-
proach follows the established activation patching protocols
introduced by Zhang and Nanda (2023).

Experimental Setup
We evaluate the DeepSeek-Math-7B-Instruct and
DeepSeek-Math-7B-RL models on 20 GSM8K prob-
lems per model. For each layer ℓ ∈ {0, 1, . . . , L − 1}, we
replace the activation hℓ with its corresponding reference
mean activation µℓ and measure the resulting degradation
in accuracy.

Evaluation Metric
Accuracy Drop (AD): This metric quantifies the change
in model accuracy relative to the baseline performance.
For each layer ℓ, we compute: ADℓ = Accbase − Accabl

ℓ ,
where Accbase is the baseline accuracy (without ablation),
and Accabl

ℓ is the accuracy measured when the activations at
layer ℓ are replaced by µℓ. Larger values of ADℓ indicate
higher importance of that layer in mathematical reasoning.

Pearson Correlation Coefficient (r): This statistic mea-
sures the linear correlation between layer depth and accu-
racy drop. A positive r indicates that deeper layers are more



critical to performance, while a value near zero implies that
importance is distributed evenly across the network.

Implementation
We extract final answers using pattern matching on the
\boxed{...} notation. All generations use fixed decod-
ing parameters (temperature = 0.1, top p = 0.9). Prompts en-
force structured, step-by-step reasoning to ensure that math-
ematical problem-solving processes are made explicit.

Results and Analysis

Figure 2: Accuracy Drop (AD) across layers for DeepSeek-
Math-7B-Instruct and DeepSeek-Math-7B-RL.

Layer Criticality Patterns
As shown in Figure 2, the two DeepSeek vari-
ants exhibit distinct computational architectures.
DeepSeek-Math-7B-RL (baseline acc. 70%) ex-
hibits a significant positive correlation between layer depth
and intervention impact (r = 0.47, p < 0.01), with AD
ranging from −0.15 to +0.15. This indicates that deeper
layers become increasingly critical for mathematical rea-
soning. In contrast, DeepSeek-Math-7B-Instruct
(baseline accuracy: 65%) demonstrates a weak negative
correlation (r = −0.11, p = 0.55), with AD ranging from
−0.20 to +0.05, suggesting relatively flat layer importance
with slight emphasis on early layers.

Layer Criticality Interpretation
These contrasting patterns reflect distinct computational
strategies shaped by training objectives. The RL-trained
model shows higher early-layer impact combined with pro-
gressive deepening, indicating hierarchical reasoning archi-
tecture with concentration in layers 9-18 and 22-26. Con-
versely, the instruction-tuned model displays a distributed
reasoning profile, suggesting that supervision across full rea-
soning trajectories encourages balanced layer utilization and
introduces redundancy that enhances robustness to perturba-
tions.

Convergence and Divergence Points
Both models exhibit similar vulnerability across layers 0–10
(AD ≈ -0.15 to 0.00), indicating shared foundational mech-
anisms likely responsible for arithmetic operations and core
reasoning primitives. Beyond layer 15, however, their trajec-
tories diverge sharply, demonstrating that training methodol-
ogy fundamentally reshapes higher-order mathematical rea-
soning. This divergence has implications for performance
optimization and failure mode identification.

Token Variability in Mathematical
Problem-Solving

We investigate whether the representational differences ob-
served in our previous findings manifest in downstream be-
haviours such as token variability between RL and SFT
models.

Experimental Setup
Models: We evaluate four models spanning two architec-
tural families:

DeepSeekMath family: DeepSeekMath-Instruct,
DeepSeekMath-RL (Shao et al. 2024)

Olmo 3 family: Olmo-3-Instruct,
Olmo-3-Thinking (Olmo et al. 2025).

Data and Methodology. We evaluate on 50 problems
from GSM8K-Platinum (Vendrow et al. 2025), generating
50 independent responses per problem per model (15,000
responses per model). We measure answer correctness, in-
put tokens, and output tokens (including reasoning tokens
for LRMs). Full experimental details are provided in Ap-
pendix .

Evaluation Metrics. For each problem, we compute:
(1) answer consistency, the proportion of runs producing
correct answers; (2) token coefficient of variation (CV),
computed across the 50 responses per problem as CV =
σtokens/µtokens, where σtokens and µtokens are the standard
deviation and mean of output token counts respectively. We
use CV rather than raw standard deviation to enable fair
comparison across model families with different baseline
output lengths (LRMs typically generate 5–10× more to-
kens than SFT models). Since all responses contain at least
hundreds of tokens, the mean is never near zero, avoiding
the instability that CV exhibits when µ → 0; and (3) median
output tokens, including reasoning tokens for LRMs.

Results: Divergent Variability Patterns
Model families exhibit fundamentally different variabil-
ity profiles. Figure 3b reveals that DeepSeek-Math-RL ex-
hibits high variability across difficulty levels, peaking in the
40–60% accuracy region (CV ≈ 1.3) and remaining el-
evated even at capability boundaries (CV ≈ 0.95 at 0–
20%, CV ≈ 0.35 at 80–100%). DeepSeek-Math-Instruct
shows consistently lower variability across all bins. In con-
trast, Figure 3a shows both Olmo-3-Thinking and Olmo-
3-Instruct maintain remarkably consistent low variability
(CV = 0.1–0.125) in the bins where data exists (0–20%



(a) Olmo 3 models (b) DeepSeek-Math models

Figure 3: Token coefficient of variation by accuracy range across model families. (a) Olmo-3-Thinking and Olmo-3-Instruct
maintain consistent low variability (CV = 0.1–0.125) across all bins where data exists. (b) DeepSeek-Math models exhibit
decreasing variability, with the highest variability observed in the hardest-difficulty region (0–20%) and decreasing to the
lowest at 80–100%, demonstrating compression inefficiency at capability boundaries.

and 80–100%), suggesting qualitatively different generation
strategies.

Empirical evidence for compression theory. Our find-
ings partially support Lee, Che, and Peng (2025)’s token
complexity framework. DeepSeek-Math-RL exhibits high
variability at capability boundaries (CV > 0.8), meaning
identical problems elicit vastly different response lengths—
precisely the calibration failure predicted by information-
theoretic analysis. Even at high accuracy where models
should reliably compress, non-trivial variability persists
(CV ≈ 0.35), indicating systematic deviation from op-
timal compression. However, the Olmo-3 family demon-
strates that consistent low variability is achievable across ac-
curacy extremes.

RL training shows variable impact on adaptive allo-
cation. Contrary to expectations, DeepSeek-Math-RL ex-
hibits substantially higher variability than DeepSeek-Math-
Instruct across all accuracy bins, suggesting that RL train-
ing in this case amplified rather than reduced output in-
consistency. In contrast, both Olmo-3-Thinking and Olmo-
3-Instruct maintain nearly identical low-variability profiles.
This divergence suggests that the relationship between train-
ing methodology and token allocation consistency is model-
dependent, likely influenced by the specific training pipeline
and reward structure rather than RL versus SFT alone.

Conclusion
We investigated the mechanistic basis of reinforcement
learning’s success in mathematical reasoning through in-
tegrated behavioural-mechanistic analysis. Our findings re-
veal a coherent picture: RL-trained models develop superior
representations that emerge earlier in the network; Specifi-
cally, in the DeepSeek model family, RL-trained models de-
velop representations that are more linearly separable and
emerge earlier while Olmo models show a similar pattern for
representation quality although with less pronounced differ-
ences in emergence timing. Linear probing shows RL mod-

els achieve higher accuracy in predicting answer correct-
ness, with representations emerging in earlier layers than
in SFT models, while ablation studies confirm these repre-
sentations are functionally critical. Token variability analy-
sis reveals model-dependent patterns: while Olmo-3 mod-
els maintain consistent generation across difficulty levels
regardless of training method, DeepSeek-Math-RL exhibits
higher variability than its SFT counterpart—suggesting that
the relationship between RL training and output consistency
depends on the specific training pipeline.

Multiple promising avenues emerge from this work. De-
signing reward structures that explicitly incentivize adap-
tive token allocation could better exploit RL’s potential.
Our layer-wise analysis focused on answer correctness; ex-
tending probing to intermediate reasoning steps could re-
veal how multi-step solutions are constructed and validated.
Scaling this analysis to larger models and diverse reason-
ing domains (code generation, scientific reasoning) would
test whether our findings generalize beyond mathematical
problem-solving. More broadly, developing methods to de-
tect and measure representation quality during training could
enable real-time assessment of model reliability – a criti-
cal need for deploying reasoning models in high-stakes do-
mains.
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Additional Token Variability Experimental
Details

Dataset: 50 problems randomly sampled from the GSM8K-
Platinum test split (Vendrow et al. 2025) (seed=42).

Generation parameters:
• DeepSeekMath-Instruct: Temperature T = 0.6, Max to-

kens = 4096
• DeepSeekMath-RL: Temperature T = 0.6, Max tokens =

4096
• Olmo-3-Instruct: Temperature T = 0.6, Top-p p = 0.95,

Max tokens = 32768
• Olmo-3-Think: Temperature T = 0.6, Top-p p = 0.95,

Max tokens = 32768
Model Inference: We use vLLM (Kwon et al. 2023) on a

single GH200 GPU for efficient execution.
Prompt Template:

System: Please reason step by step, and
put your final answer within \boxed{}.
User: {question}

Additional Details for Linear Probing
Problem templates: Each template instantiates a word
problem with randomized numerical parameters while main-
taining fixed logical structure:
1. Conditional probability: Calculate probability of turn-

ing in homework given sequential conditional events
(substitute teacher, class extension, personal extension).
Requires probability multiplication and complementary
probability computation. Answers range from 8–50%.

2. Student demographics: Given total students, age thresh-
old, and gender ratios stratified by age group, compute
total female students. Requires division, fraction mul-
tiplication, and subtraction. Answers range from 220–
3,986 students.

3. Sequential growth: Given initial water flow and mul-
tiplicative/additive growth rules over days, compute fi-
nal quantity. Requires tracking state across time steps
with doubling and addition. Answers range from 7,057–
25,513 gallons.

4. Counting with unit conversion: Track brownies (in
dozens) received and consumed across multiple events,
then convert to individual items. Requires dozen-to-unit
conversion, fraction addition/subtraction, and summa-
tion. Answers range from 1–231 brownies.

5. Cost calculation: Given base price and dependent pric-
ing rules (e.g., “leather seats cost one-third of the king
cab upgrade”), compute total cost. Requires chained frac-
tion operations and summation. Answers range from
$34, 490–$66, 846.

Each problem includes the instruction: “Please rea-
son step by step, and put your final answer within
\boxed{answer} as an integer.” Answers range from 100
to 10,000, ensuring consistent numerical magnitude. The
following are the graphs for the question each of the ques-
tion types

B.7 Per-Template Probe Accuracy Results
The following figures show layer-wise probe accuracy for
each of the five synthetic problem templates. Each figure
displays test set accuracy across all transformer layers for
the four models evaluated.

Figure 4: Probing classification accuracy vs. trans-
former layer. Cost Calculation Problem: DeepSeek-Math-
7B-RL, DeepSeek-Math-7B-Instruct, Olmo-3-Think, Olmo-
3-Instruct.

Sample Questions from each of the categories:
1. Conditional probability: Yasmine is trying

to decide whether they really need
to do their homework. There’s a
70% chance that tomorrow they’ll



Figure 5: Probing classification accuracy vs. transformer
layer. Student Demographics Problem: DeepSeek-Math-7B-
RL, DeepSeek-Math-7B-Instruct, Olmo-3-Think, Olmo-3-
Instruct

Figure 6: Probing classification accuracy vs. transformer
layer. Sequential Growth Problem: DeepSeek-Math-7B-
RL, DeepSeek-Math-7B-Instruct, Olmo-3-Think, Olmo-3-
Instruct

Figure 7: Probing classification accuracy vs. transformer
layer. Conditional Probability Problem: DeepSeek-Math-
7B-RL, DeepSeek-Math-7B-Instruct, Olmo-3-Think, Olmo-
3-Instruct

have a substitute teacher who won’t
collect the homework. Even if the
normal teacher comes in, there’s
a 60% chance she’ll give everyone
an extension. Even if the whole
class doesn’t get an extension,
there’s a 25% chance Yasmine can
convince the teacher their dog ate
their assignment and get a personal
extension. What is the percentage
chance that Yasmine will actually
have to turn in their homework
tomorrow? (Answer: 9%)

2. Student demographics: Brook Hills High
School currently enrolls 4,374
students. Half of these students
are over 18 years old, and one-fifth
of the students over 18 years old
are male. The remaining half of the
students are under 18 years old,
and 2/5 of the students under 18
are male. In total, how many female
students are enrolled at this school?
(Answer: 3,062 students)

3. Sequential growth: The amount of water
passing through a river at one point
in time is 5,904 gallons. After a day
of heavy rain, the amount of water
passing through the river doubles
at the same point. If the volume of
water passing through the river at
that point increases by 7,202 gallons
on the third day, calculate the total
amount of water passing through the
river at that point. (Answer: 19,010 gallons)

4. Counting with unit conversion: Quentin wanted
brownies for her birthday. She made
a batch for herself; nine dozen Nut
Brownies. At her office, they threw
her a party and sent her home with
9/10 dozen brownies. When she arrived
home, her friends were there to throw
her a surprise party and had 4 dozen
brownies waiting. During the party,
2 2/10 dozen brownies were eaten. How
many individual brownies did Quentin
have left over from the entire day?
(Answer: 140 brownies)

5. Cost calculation: Bill is ordering a new
truck. He has decided to purchase
a two-ton truck with several added
features: a king cab upgrade, a
towing package, leather seats,
running boards, and the upgraded
exterior light package. The base
price of the truck is $42,572, and
the other features are at extra cost.
The king cab is an extra $6,890,



leather seats are one-third the cost
of the king cab upgrade, running
boards are $500 less than the leather
seats, and the upgraded exterior
light package is $1,724. What is the
total cost of Bill’s new truck, in
dollars? (Answer: $55,278)

Reproducibility: Code and data is provided in the github
link


