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Abstract—We investigate the approximation error of func-
tions with continuous and piecewise-linear (CPWL) represen-
tations. We focus on the CPWL search spaces generated by
translates of box splines on two-dimensional regular lattices.
We compute the approximation error in terms of the stepsize,
length ratio, and angle that define the lattice. Our results
show that hexagonal lattices are optimal, in the sense that they
minimize the asymptotic approximation error.

Index Terms—Approximation error bounds, Cartesian grids,
continuous and piecewise linear, Fourier-domain analysis,
hexagonal grids.

I. INTRODUCTION

CONTINUOUS and piecewise-linear (CPWL) represen-
tations play a fundamental role in signal processing,

computer graphics, and computational mathematics [1]–[3].
They are widely appreciated for their simplicity, computa-
tional efficiency, and ability to approximate complex struc-
tures. They are also of interest in machine learning because
they encompass the same class of functions generated by
neural networks with the rectified linear unit (ReLU) activa-
tion functions [4]. Box splines extend univariate B-splines
to multiple dimensions and provide a structured framework
for the construction of CPWL search spaces [5]–[9].

A significant body of research investigates the approx-
imation error associated with CPWL representations [10],
[11]. However, much of this work focuses on the upper
bounds of the error, and less attention is paid to the exact
form of the asymptotic error. Fourier-domain methods such
as [12] provide powerful tools to analyze such asymptotic
behaviors. However, their final results are limited to the one-
dimensional scenario.

In this paper, we focus on the two-dimensional case. We
rely on box splines to construct each CPWL function over
a domain that is partitioned by triangulations where the
vertices are on regular lattices. These lattices and the edges
of the triangulation form an underlying grid for each CPWL
function. Cartesian and hexagonal grids are the well-known
examples. Cartesian grids are simple to use, whilst hexagonal
grids are known to have better sampling properties [13]–
[15]. Our goal is to investigate the effect of the grid on the
approximation error. Our main contributions are as follows.
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Science Foundation, Grant 200020 219356.

1) Computation of the approximation error for a general
grid: We compute the approximation error for a box-
spline-based CPWL search space with a general grid
in terms of its length ratio, angle, and stepsize. We
provide this result in Theorem 1. In Theorem 2, we
present an upper bound for the dominant term of this
error in the asymptotic regime. Notably, we compute
an asymptotic error constant that depends on the length
ratio and the angle that define the grid.

2) Optimality of the hexagonal grid: We show that the
asymptotic error constant is minimized for the hexag-
onal grid. We present examples that validate this result.

3) Relation to ReLU neural networks: We provide in The-
orem 3 a concise representation of box splines as two-
layer neural networks with ReLU activation functions.
To our knowledge, this is the simplest construction of
two-dimensional box splines with ReLU functions.

In Section II, we define our basis function and its as-
sociated CPWL search spaces, and present our proposed
parameterization for the grid. We then formally define the
approximation error. In Section III, we present our results
for the computation and analysis of this approximation error.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Definition of the CPWL Basis Function

Let {ξn}3n=1 be three vectors, where {ξn}2n=1 are linearly
independent and ξ3 = ξ1 + ξ2. We refer to Ξ as the grid
matrix and define it as Ξ = [ξ1 ξ2] ∈ R2×2. In this paper, we
define our basis function BΞ through its Fourier transform
as

B̂Ξ(ω) = |detΞ|
3∏

r=1

sinc

(
ξ⊤r ω

2

)
, (1)

where |detΞ| is the determinant of Ξ and sinc(ω) = sinω
ω .

Note that BΞ is a shifted CPWL box spline that is centered
around the origin.

If we choose Ξ = I (identity matrix), we obtain the
Cartesian basis with Fourier transform

φ̂(ω) = sinc

(
ω1 + ω2

2

) 2∏
r=1

sinc
(ωr

2

)
. (2)

The formula for the spatial evaluation of φ ensues, with

φ(x) = max
(
1+min(x1, x2, 0)−max(x1, x2, 0), 0

)
, (3)



taken from [9]. The basis BΞ can be expressed in terms of
the (centered) Cartesian box spline φ as BΞ(x) = φ(Ξ−1x).
This follows from a simple change of variable in the Fourier
domain. In Figure 1, we present two examples of (centered)
box splines: Cartesian box spline with ΞCart = T I, and
hexagonal box spline with ΞHex = TDHex with DHex =

(
√
3
2 )−0.5

[
1 −0.5

0
√
3
2

]
for some T > 0.

B. CPWL Search Space

We define the CPWL search space

VΞ =

{∑
k∈Z2

c [k]BΞ (·−Ξk) : c [·] ∈ ℓ2(Z2)

}
, (4)

or equivalently ,

VΞ =

{∑
k∈Z2

c [k]φ
(
Ξ−1·− k

)
: c [·] ∈ ℓ2(Z2)

}
. (5)

There, we have used the Cartesian box spline φ and the
relation BΞ(x) = φ(Ξ−1x). The translated basis functions
{BΞ(·−Ξk)}k∈Z2 form a Riesz basis of VΞ, which guaran-
tees a unique link between each mapping s : R2 → R and its
expansion coefficients c. It can further reproduce any affine
mapping [7]. The domain of each function s ∈ VΞ thus con-
sists of triangles with vertices located on the regular lattice
{Ξk}k∈Z2 . This lattice and the edges of the triangulation
form an underlying grid for each function. The grid lines
are parallel to the directions ξ1, ξ2, and ξ3 = ξ1+ξ2 where
we had that Ξ = [ξ1 ξ2].

C. Parameterization of the Grid Matrix

We parameterize Ξ by the the scalar λ > 0, the angle
0 < δ < 2π and, the stepsize T as

Ξ =
T√

λ sin δ

[
λ cos δ
0 sin δ

]
. (6)

Here, δ controls the angle between the two vectors of
the grid and λ is the ratio of their lengths. It follows
that |detΞ| = T 2, which ensures that the number of grid
points per area remains invariant for grids constructed with
different parameters λ and δ. This invariance allows for a
fair comparison of grids. Our parameterization encompasses
the Cartesian grid matrix ΞCart with λ = 1, δ = π

2 , and
the hexagonal grid matrix ΞHex with λ = 1, δ = 2π

3 . We
represent the central parts of the grids constructed with
ΞCart and ΞHex in Figure 2.

D. Formulation of the Problem

For f ∈ L2(R2), we are interested in the minimum L2-
error solution

fCPWL := argmin
s∈VΞ

∥f − s∥L2
. (7)

Fig. 1. (Centered) Cartesian (left) and hexagonal (µ = (
√
3

2
)−0.5) (right)

box splines.

Fig. 2. Cartesian grid with ΞCart = [ξ1 ξ2] =

[
T 0
0 T

]
(left)

and hexagonal grid with ΞHex = [ξ1 ξ2] =

[
µT −0.5µT

0 0.5
√
3µT

]
and

µ = (
√
3

2
)−0.5 (right). The highlighted region depicts the support of the

corresponding box splines φΞCart
and φΞHex

.

This solution could be computed through the projector
PVΞ

as

fCPWL(x) = PVΞ
{f}(x) (8)

=
∑
k∈Z2

〈
f,

1

|detΞ|
ϕ(Ξ−1·− k)

〉
L2

φ(Ξ−1x− k), (9)

which is taken from [16] and is a classic result in approxi-
mation theory [17]–[19]. The dual basis ϕ is defined through
its Fourier transform

ϕ̂(ω) =
φ̂(ω)

Aφ(ω)
, (10)

with
Aφ(ω) =

∑
k∈Z2

|φ̂(ω + 2πk)|2 . (11)

We define
ϵΞ(f) = ∥f − PVΞ

{f}∥L2
. (12)

In this paper, we want to quantify the error ϵΞ(f) in terms
of the stepsize T , the length ratio λ and the angle δ found
in (6). In simple words, we want to quantify the effect of
the grid on the approximation error.

III. METHODS

We first present our results for the computation of the
error ϵΞ(f) and define an asymptotic error constant that
depends on the length ratio and the angle of the grid.
Then, we investigate the effect of the grid parameters on the
approximation error. Mainly, we show that the asymptotic



error constant is minimized for hexagonal grids. Finally, we
relate our findings to the approximation that results from
ReLU neural networks.

A. Computation of the Approximation Error

We first present an explicit formula for Aφ in Proposition
1, which is crucial for the calculation of the error. Then, in
Theorem 1, we provide our result for the computation of
ϵΞ(f). Finally, in Theorem 2, we provide an upper bound
for the dominant term which involves the asymptotic error
constant C(λ, δ).

Proposition 1. Let φ be the Cartesian box spline. Then, one
has that

Aφ(ω) =
1

2
+

1

6

(
cos(ω1)+cos(ω2)+cos(ω1+ω2)

)
. (13)

Proof. The cumbersome computation of the infinite sum in
(11) is simplified by the equality∑

k∈Z2

∣∣φ̂(ω + 2πk)2
∣∣ = DTFT

{(
φ ∗ φ(−·)

)(
k
)}

. (14)

To compute the autocorrelation sequence a[k] =
(
φ ∗

φ(−·)
)(
k
)
, k ∈ Z2, we use the spatial evaluation of φ

in (3) and compute the result integrals to obtain that

a[k] =


1
2 , k = 0
1
12 , k ∈ {(0,±1), (±1, 0), (−1,−1), (1, 1)}
0, otherwise.

(15)
Now, to complete the proof and obtain (13), we use the
definition DTFT

{
a[k]

}
(ω) =

∑
k∈Z2 a[k]e−jk⊤ω and the

equality cos(·) = 1
2 (e

j· + e−j·).

Theorem 1. For a band-limited f ∈ W ρ
2 (Sobolov space of

order ρ) with ρ > 2 and for a general grid Ξ defined with
0 < T < 1 and λ and δ from (6), it holds that

ϵΞ(f) = ϵΞ,asym(f) +O(Tmin(ρ,3)), (16)

where

ϵΞ,asym(f) =
T 2

12
√
5

(∫
R2

⟨Hf (x),

[
α γ
0 β

]
⟩2dx

) 1
2

. (17)

There, Hf denotes the Hessian of f and

α =
cos2 δ + λ cos δ + λ2

|λ sin δ|
, β =

sin2 δ

|λ sin δ|
,

γ =
sin 2δ + λ sin δ

|λ sin δ|
. (18)

Proof. For a general grid Ξ, a change of variables lead to

ϵΞ(f) = ϵT I

(
f

(
1

T
Ξ·

))
. (19)

From Section 2.4 of [16], with f ∈ W ρ
2 and ρ > 2, it holds

that
ϵT I(f) = ϵdom,T I(f) +O(T ρ), (20)

where

ϵdom,T I(f) =
[ 1

4π2

∫
R2

ϵϕ,φ(ωT )
∣∣∣f̂(ω)

∣∣∣2 dω] 1
2

. (21)

The error kernel ϵϕ,φ is defined as

ϵϕ,φ(ω) = 1− |φ̂(ω)|2

Aφ(ω)
. (22)

In our case, from (2) and Proposition 1, (22) simplifies to

ϵϕ,φ(ω) = 1 (23)

−
∏2

r=1 sinc
2(ωr

2 )sinc2(ω1 + ω2)
1
2 + 1

6

(
cos(ω1) + cos(ω2) + cos(ω1 + ω2)

) .
(24)

By a Taylor series around 0, we get that

ϵϕ,φ(ωT ) =
T 4

720
(ω2

1 + ω1ω2 + ω2
2)

2 +O(T 6). (25)

Then, it follows that

ϵdom,T I(f)
2 = ϵTaylor,T I(f)

2 +O(T 6), (26)

where we used that
∫
R2 O(T 6)

∣∣∣f̂(ω)
∣∣∣2 dω = O(T 6) due to

f being band-limited, and

ϵTaylor,T I(f)
2 =

T 4

2880π2

∫
R2

(
(ω2

1 + ω1ω2 + ω2
2)f̂(ω)

)2
dω.
(27)

From (19) and (20), we have that

ϵΞ(f) = ϵTaylor,T I(f(
1

T
Ξ·)) +O(T ρ) +O(T 3)

= ϵTaylor,T I(f(
1

T
Ξ·)) +O(Tmin(ρ,3)). (28)

Next, we define D = 1
T Ξ and compute

ϵTaylor,T I(f(
1

T
Ξ·))2 =

1

4π2

∫
R2

ϵϕ,φ(ωT )
(
f̂(D−⊤ω)

)2
dω

=
1

4π2

∫
R2

ϵϕ,φ(D
⊤zT )

(
f̂(z)

)2
dz

=
T 4

2880π2

∫
R2

(
(αz21 + γz1z2 + βz22)f̂(z)

)2
dz

=
T 4

720

∫
R2

(
α
∂2f(x)

∂x2
1

+ γ
∂2f(x)

∂x1∂x2
+ β

∂2f(x)

∂x2
2

)2
dx

=
T 4

720

∫
R2

⟨Hf (x),

[
α γ
0 β

]
⟩2dx. (29)

For T < 1, ϵΞ,asym(f) is the dominant term of the error.
Moreover, in the asymptotic case T → 0, we have that
ϵΞ(f) = ϵΞ,asym(f). Now, we present an upper bound for
ϵΞ,asym(f).

Theorem 2. For ϵΞ,asym(f) under the same conditions as
there in Theorem (1), it holds that

ϵΞ,asym(f) ≤
1

12
√
5
C(λ, δ)T 2 ∥Hf∥F,L2

, (30)



Fig. 3. Error constant C(λ, δ) (left) and one-dimensional profiles of
C(λ, δ) for λ ∈ {0.25, 0.5, 1, 2, 4} (right). In both plots, we only show
C(λ, δ) where C(λ, δ) < 10 for better visual representation.

where we define the asymptotic error constant C(λ, δ) =

(α2 + β2 + γ2)
1
2 through α, β, and γ given in (1), along

with the mixed norm ∥A(·)∥F,L2
:=

( ∫
R2 ∥A(x)∥2F dx

) 1
2 .

Proof. Hölder’s inequality for matrices yields that

⟨Hf (x),

[
α γ
0 β

]
⟩2 ≤ ∥Hf (x)∥2F (α2 + β2 + γ2). (31)

Then, through (17), we have that

ϵΞ,asym(f)
2 ≤ T 4(α2 + β2 + γ2)

720

∫
R2

∥Hf (x)∥2F dx.

(32)B. Analysis of the Effect of the Grid

Now, we investigate the effect of the length ratio λ and
the angle δ on the error constant C(λ, δ). In Figure 3, we
plot C(λ, δ). We observe that for different values of δ, the
error constant is minimized at λ = 1. This suggests that the
equilateral grids perform better in terms of approximation
error. For such grids, the minimum of C(λ, δ) is

√
1.5 and

is achieved when λ = 1 and δ = 2π
3 or δ = 4π

3 , which
corresponds to a hexagonal grid. Note that

√
1.5 is also the

minimum value of C(λ, δ).
We now present explicit formulas for ϵΞ,asym(f) in the

case of the Cartesian (Ξ = ΞCart) and hexagonal (Ξ =
ΞHex) grids that are defined in Section II.1. In these two
cases, we illustrate the computation of ϵΞ,asym(f) for a
function f whose Fourier response is a disk function.

1) Error for the Cartesian and Hexagonal Grids: For the
Cartesian grid (λ = 1, δ = π

2 ), we have that α = β = γ = 1

and C(1, π
2 ) =

√
3; therefore, (17) simplifies to

ϵΞCart,asym(f)

=
T 2

12
√
5

(∫
R2

(∂2f(x)

∂x2
1

+
∂2f(x)

∂x1∂x2
+

∂2f(x)

∂x2
2

)2
dx

) 1
2

.

(33)

For the hexagonal grid (λ = 1, δ = 2π
3 ), we have that α =

β =
√
3
2 and γ = 0, which then yields the elegant formula

ϵΞHex,asym(f) =
T 2

8
√
15

(∫
R2

(∂2f(x)

∂x2
1

+
∂2f(x)

∂x2
2

)2
dx

) 1
2

=
T 2

8
√
15

∥∆f∥L2
. (34)

where ∆ represents the Laplacian operator. We recall that in
this case C(1, 2π

3 ) =
√
1.5, which is the minimum achieved

by C(λ, δ).
2) Error Computation for a Fourier Disk: In this exam-

ple, we define the function f through its Fourier transform
as

f̂(ω) =

{
c,

√
w2

1 + w2
2 ≤ ωmax

0, otherwise.
(35)

for some ωmax > 0 and c ∈ R. We then compute ϵΞ,asym(f)
for Cartesian and hexagonal grids with the help of (29) as

ϵΞCart,asym(f) =
T 2 |c|ω3

max√
7680π

ϵΞHex,asym(f) =
T 2 |c|ω3

max√
11520π

. (36)

Therefore, we have that ϵΞHex,asym(f) < ϵΞCart,asym(f) for
a Fourier disk. This observation confirms our claim that
hexagonal grids are better in terms of the approximation
error.

C. Box Splines as ReLU Networks

We now focus on interpolation with box splines on the
compact domain Ω = (0, 1)2. Consequently, each function
s ∈ VT I can be constructed using N = ( 1

T − 1)2 nonzero
basis functions for T < 1.

Theorem 3. We can represent the Cartesian box spline φ
using the ReLU(·) := max(·, 0) function as

φ(x) = ReLU(1−ReLU(x1−x2)−ReLU(x2)−ReLU(−x1))).
(37)

Proof. Let us enumerate all configurations of the inequality
between x1 and x2 and 0. Then, we observe that (3) and
(37) are equal in all cases.

While the relation between box splines and the ReLU
function has been investigated in many works [4], [20]–[22],
Theorem 3 provides the simplest representation for a two-
dimensional box spline (a.k.a finite-element basis) through
ReLU networks, up to our knowledge. Combining this theo-
rem with 5, we conclude that any s ∈ VT I can be constructed
using a ReLU network with two hidden layers and M = 4N
neurons in total. Moreover, the interpolation error decays at
the same rate as (33) where T = (0.5

√
M+1)2 now depends

on the total number of neurons M . One can generalize this
result to any spline BΞ by using BΞ(x) = φ(Ξ−1x), and
proper handling of the domain Ω.

IV. CONCLUSION

We have presented an analysis of the approximation error
with continuous and piecewise-linear (CPWL) representa-
tions using box splines on two-dimensional grids. By deriv-
ing explicit error bounds in terms of the grid parameters, we
have shown that hexagonal grids minimize the upper bound
of the asymptotic error, which emphasizes their optimality
in CPWL-based applications.
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