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Abstract

Warning: This paper contains examples of001
very offensive content. The widespread use002
of social media necessitates reliable and effi-003
cient detection of offensive content to mitigate004
harmful effects. Although sophisticated mod-005
els perform well on individual datasets, they of-006
ten fail to generalize due to varying definitions007
and labeling of "offensive content." In this pa-008
per, we introduce HateCOT, an English dataset009
with over 52,000 samples from diverse sources,010
featuring explanations generated by GPT-3.5-011
Turbo and curated by humans. We demonstrate012
that pretraining on HateCOT significantly en-013
hances the performance of open-source Large014
Language Models on three benchmark datasets015
for offensive content detection in both zero-016
shot and few-shot settings, despite differences017
in domain and task. Additionally, HateCOT fa-018
cilitates effective K-shot fine-tuning of LLMs019
with limited data and improves the quality of020
their explanations, as confirmed by our hu-021
man evaluation. Our repository is available022
at [REDACTED].023

1 Introduction024

As social media has become indispensable to mod-025

ern discourse, this channel of communication has026

amplified the propagation of offensive content.027

Speech that promotes hateful sentiments thrives on028

such platforms, leading to real and significant harm029

on their audience (Giachanou and Rosso, 2020;030

Saha et al., 2019). However, “offensive content”031

is still a contested construct, as what is and is not032

allowed varies by platform. In research, different033

approaches analyze semantically similar but still034

distinct concepts: Cyber-bullying, Toxicity, Sexist,035

Racist, Hate etc. (Poletto et al., 2021; Fortuna et al.,036

2021; Nghiem et al., 2024), further highlighting037

this contestedness.038

Compounding the challenge, reliable detection039

of offensive content typically requires significant040

amounts of data. Sophisticated models tend to be041

data-hungry, and the process of curating a dataset 042

tailored to a specific use case can be costly, time- 043

consuming, and emotionally challenging for anno- 044

tators (Founta et al., 2018; Toraman et al., 2022). 045

The typical pipeline consists of collecting samples 046

based on topic-relevant key words, then recruiting 047

either crowdworkers or experts to annotate data 048

before developing classification models (Paullada 049

et al., 2021). Each step incurs investment and may 050

inject subtle idiosyncrasies proportionate to the size 051

of the downstream dataset, further limiting trans- 052

ferable usefulness to related tasks (Fortuna et al., 053

2021). The size of a dataset also does not necessar- 054

ily guarantee cross-domain transferrability (Poletto 055

et al., 2021; Fortuna et al., 2021). 056

In practical settings, users may desire trans- 057

parency from social media platforms. Therefore, 058

the ability to provide human-understandable justifi- 059

cation based on platform-specific policy becomes 060

an attractive feature for content moderation. Nev- 061

ertheless, current techniques often still fail to offer 062

intuitive explanatory signals (Yadav et al., 2023; 063

Babaeianjelodar et al., 2022; Ibrahim et al., 2022). 064

In this work, we attempt to simultaneously re- 065

duce the cost of data curation, enhance cross- 066

dataset generalization, and address the necessity 067

of explainable decisions for offensive content de- 068

tection. Specifically, our main contributions are: 069

1. We release HateCOT (Hate-related Chains- 070

of-Thought), a dataset of over 52, 000 samples 071

consisting of input text, a hate speech label, 072

and an explanation for that label. This corpus 073

is constructed by merging eight datasets with 074

explanations created by using GPT-3.5-Turbo 075

to augment human annotations. 076

2. We demonstrate the benefits of using Hate- 077

COT as a pretraining corpus before finetuning 078

on a target domain. Empirical results across 079

3 datasets show that open-source Large Lan- 080

guage Models (LLMs) can effectively lever- 081
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age definitions to adapt to new tasks using082

zero-shot and few-shot settings via finetuning083

and in-context learning .084

3. We assess the quality of explanations gener-085

ated by our finetuned models with respect to086

the criteria described in their corresponding087

definitions. These insights showcase LLM-088

generated explanations as a means to enhance089

transparency in content moderation.090

2 Related Works091

2.1 Offensive Speech Detection092

Offensive speech detection has attracted consider-093

able interest from the research community. Earlier094

approach typically investigated coarse-grained la-095

bels (e.g. Hate vs Not Hate) while subsequent096

efforts explored more diverse facets of offensive097

speech at higher granularity (Founta and Specia,098

2021; Poletto et al., 2021; Vidgen and Derczyn-099

ski, 2020). Increasingly more advanced models100

emerged over time with the diversity of datasets.101

Cross-domain generalization, however, still re-102

mains a relevant challenge in the area. Fortuna103

et al. (2021) found empirically that cross-dataset104

transference is highly dependent on semantic sim-105

ilarity between their label spaces. Recent works106

have pretrained Transformer-based models, such as107

HateBERT and fBERT, on specialized corpora to108

enhance generalization to various levels of success109

(Caselli et al., 2021; Sarkar et al., 2021).110

2.2 LLMs in Offensive Speech Classification111

Zampieri et al. (2023) assessed a range of open-112

sourced LLMs on zero-shot prompting on the Of-113

fensEval task and found their performance trailing114

by a wide margin behind trained existing finetuned115

BERT-based systems. Chiu et al. (2021) and Han116

and Tang (2022) used the proprietary GPT-3 on117

a set of different datasets and noted that informa-118

tive contexts and examples could boost the model’s119

performance to competitive levels on a different120

set of data. Similarly, Roy et al. (2023) found that121

adding explanation to pipeline could result in 10122

to 20% boost in performance of LLMs over base-123

lines. (Yang et al., 2023)’s study found that training124

LLMs with step-by-step reasoning grounded by an-125

notations could improve predictive power.126

Pretrained language models have exhibited re-127

markable ability in text generation (Celikyilmaz128

et al., 2020). Recent large-size LLMs such as129

GPT-3 and later models are capable of astound- 130

ingly fluent, convincing and knowledge-infused 131

outputs (Zhang et al., 2023). LLMs with hundreds 132

of billions of parameters even exhibit reasoning 133

capabilities (Wei et al., 2022, 2021), leading to 134

a flurry of research on prompting techniques to 135

harness their prowess, such as Chain-of-thought 136

(COT), Tree-of-thought etc. (Yao et al., 2023; Diao 137

et al., 2023). An interesting line of research lever- 138

ages LLMs to efficiently generate high volumes of 139

synthetic data for tasks with training resource is 140

scarce (Puri et al., 2020; Bao et al., 2023; White- 141

house et al., 2023). We build upon these works to 142

construct a dataset that can induce smaller LLMs 143

to efficiently adapt to new categories of offensive 144

content by leveraging their provided definitions. 145

3 Building HateCOT 146

We first describe the process to identify the candi- 147

date datasets from literature, and the procedure to 148

obtain annotation-guided explanations from these 149

samples (Section 3.1). We then perform a set of 150

validation experiments to optimize the data’s pa- 151

rameters for downstream tasks before augmenting 152

our corpus to its eventual size (Section 3.2). 153

3.1 Data Selection 154

Datasets for Training. We use the following cri- 155

teria to filter existing corpora related to offensive 156

speech detection: 157

▷ Size: datasets should contain more than 5,000 158

samples to ensure adequate size for subse- 159

quent sampling. 160

▷ Label: datasets should contain diverse label 161

space that address different facets of offen- 162

sive language. Both neutral and non-neutral 163

categories should be included for parity. 164

▷ Definition: each dataset should have the as- 165

sociated definitions with each label available 166

(Figure 6). This criteria is important to gener- 167

ate informative explanations. 168

▷ Target / Rationale: the dataset should provide 169

the a) targets and/or b) rationales, which are 170

fragments of free texts by human annotators to 171

convey some understanding of the correspond- 172

ing post. Figure 4 shows several examples of 173

rationales, demonstrating their unsuitability to 174

be used as explanations in their native format. 175

These criteria significantly reduce the number of 176

eligible candidates since many do not provide the 177

required annotation on target and definition. Table 178
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1a lists the 8 selected datasets.179

Datasets for Evaluation. Using similar criteria,180

we select 3 additional datasets with different la-181

bel spaces and definitions for downstream testing182

(details in Table 1b).183

HateCheck was created by Röttger et al. (2021)184

with the explicit goal of evaluating hate speech de-185

tection models. 10 trained annotators labelled the186

dataset using a binary schema: Hateful and Non-187

hateful, with the reported inter-annotator agree-188

ment coefficient to be 0.93.189

HateXplain was primarily collected from Twit-190

ter and the Gab platform (Mathew et al., 2021).191

In addition to the labels Hate, Offensive, Normal,192

annotators also provide justification for their se-193

lection by highlighting the span of tokens, called194

rationales, that contribute to their decision.195

Latent_Hate was created on the premise that196

offensive speech classifiers tend to bias towards197

covert negative sentiment (ElSherief et al., 2021a).198

After discarding the augmented portion from the199

Social_Bias dataset to avoid contamination, 22,584200

samples collected from Twitter remained. This201

dataset contains 3 coarse-grained labels Not Hate,202

Explicit Hate, Implicit Hate, while a subset con-203

tains 6 fine-grained categories, which we refer to204

as Implicit_Hate in subsequent test regimens.205

Obtaining Annotation-Guided Explanation. In-206

spired by Yang et al. (2023)’s work that shows that207

GPT-3.5 could augment human-written rationales208

to create coherent texts that are still faithful to the209

original content, we use the prompt template in Fig-210

ure 1 to generate the explanation, which is guided211

by the available annotations on label, target, and212

rationale from the chosen corpora. For datasets that213

contain multiple annotations per sample, we select214

the ultimate label via majority voting and concate-215

nate annotations on the targets and/or rationales216

into a single string delimited by "|".217

We use GPT-3.5-Turbo, accessed via the Ope-218

nAI’s API, to generate explanations due to this219

model’s affordability and its capability to follow in-220

structions and generate coherent outputs (Ye et al.,221

2023a; Koubaa, 2023). For each of the 8 training222

datasets, we first randomly select and qualitatively223

analyze 20 samples to ensure the generated expla-224

nations are a) stylistically coherent, b) consistent225

with the provided labels, and c) congruent with the226

criteria denoted by the definitions. If deemed un-227

satisfactory, we iteratively adjust the input prompt228

until the quality threshold is achieved. Appendix229

A.4 describes this quality assurance process and230

Figure 1: Template used to obtain explanations from
GPT-3.5-Turbo guided by human-annotated rationales.

the final prompts for different scenarios. 231

3.2 Optimization of Synthesized Corpus 232

Extending previous works (Magister et al., 2022; 233

Ho et al., 2022), we are interested in optimizing 2 234

parameters central to the construction of our cor- 235

pus: the distribution of neutral vs. non-neutral 236

classes in the data and the number of explanations 237

per sample. The former has been noted to influ- 238

ence predictive powers (Rathpisey and Adji, 2019; 239

Casula and Tonelli, 2020). The latter, also referred 240

to as degree of reasoning diversity, could improve 241

knowledge distillation (Ho et al., 2022). We use 242

the open-source model Llama 2 Chat-HF of 7 bil- 243

lion parameters (hereby referred to as Llama 7B) 244

(Touvron et al., 2023) to perform tuning experi- 245

ments in this stage due to its manageable size and 246

strong classification performance. These empirical 247

findings then guide the final augmentation process. 248

3.2.1 Optimization Procedure 249

Below are the experiments we perform on a sample 250

of the collected data to optimize these parameters. 251

Description of Procedure. We choose 1,000 sam- 252

ples from each of the eight training datasets based 253

on the following distribution: 20% are selected 254

from neutral samples (categories that do not indi- 255

cate any offensive content, e.g., Not Hate, Normal), 256

while the remaining samples are evenly distributed 257

among the non-neutral categories. Inspired by Ho 258

et al. (2022) that diverse reasoning paths could im- 259

prove knowledge distillation, we collect 4 alterna- 260

tive explanations, or degree of reasoning diversity, 261

generated by GPT-3.5-Turbo for these samples us- 262

ing temperature 0.7, resulting in 32,000 samples. 263

Figure 5 illustrates the Alpaca-styled template 264
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Dataset Total
Size

Sample
Size

Platform Target Ration. Selected Labels

Salminen et al. (2018) 137,098 5, 418 Y, F ✓ Hateful, Neutral
Qian et al. (2019) 34,000 5, 034 G ✓ Not Hate, Hate
Sap et al. (2019) 44,671 6, 033 G, R, T ✓ ✓ Not Offensive, Offensive
Vidgen et al. (2021a) 27,494 6, 717 R ✓ ✓ Neutral, Person Directed Abuse, Affiliation

Directed Abuse, Identity Directed Abuse
Vidgen et al. (2021b) 10,152 7, 209 S ✓ None, Derogation, Dehumanization, Ani-

mosity, Support, Threatening
Sachdeva et al. (2022) 135,556 7, 272 Y, T, R ✓ Not Hate speech, Hate Speech
Hartvigsen et al.
(2022)

274,186 7, 239 S ✓ Benign, Toxic

Toraman et al. (2022) 100,000 7, 215 T ✓ Normal, Offensive, Hate

Total - 52, 137

(a) Datasets used to create training corpus. Sample Size denotes the number of chosen samples from corresponding dataset
included in the training corpus.

Dataset Total
Size

Split
Ratio

K
val

K
test

Platform Target Ration. Selected Labels

HateCheck 3,728 50:50 300 500 S ✓ Non-hateful, Hateful
HateXplain 20,148 60:40 200 400 G, T ✓ ✓ Normal, Offensive, Hate
Latent_Hate 19,112 60:40 200 400 T ✓ ✓ Not Hate, Explicit Hate, Implicit Hate
Implicit_Hate 4,153 60:40 - 150 T ✓ ✓ White Grievance, Incitement to Vi-

olence, Inferiority Language, Irony,
Stereotypes and Misinformation, Threat-
ening and Intimidation

(b) Datasets for testing

Table 1: Sample Size denotes the number of entries in the final corpus. Target and Ration. indicates the availability
of annotation on Target or Rationale in the dataset. For Platform, F: Facebook, Y: Youtube, G: Gab, R: Reddit, S:
Synthetic, T: Twitter. K val and K test represent the number of sampler per class drawn during development of the
training corpus and final testing, respectively. Full definitions in Table 6 and 7.

to format each post with its corresponding label,265

generated explanation, definitions along with the in-266

struction into blocks of an input prompt (Taori et al.,267

2023). Using the described corpus, we supervised268

finetune Llama 7B via LoRA techniques (technical269

details specified in Appendix A.2) (Hu et al., 2021).270

Then, we perform zero-shot classification using the271

same template to prompt the finetuned model to272

generate the explanation and label for posts drawn273

from the test datasets HateCheck, HateXplain, La-274

tent_Hate. We omit Implicit_Hate at this stage due275

to this set’s markedly different 6-label space. For276

this part, posts are drawn using K-shot sampling277

(equal number of samples for each class) on the278

Validation portion of the test data, based on the279

values of K val shown in Table 2b.280

Experiment Configurations. For the first experi-281

ment, the training data is split into subsets whose282

distribution between the neutral (NE) class and non-283

neutral class(es) (NN) described by the following284

formula: NN = R ∗NE, where R ∈ {1, 2, 3, 4} 285

is the ratio coefficient. We set the number of ex- 286

planations per sample to 2 , the smallest value 287

that still enables the benefit of reasoning diversity. 288

For the second experiment, we construct the sub- 289

sets by varying the degree of reasoning diversity 290

D ∈ {1, 2, 3, 4} of each post. 291

Answer Extraction. We extract the generated ex- 292

planation and predicted labels after their respective 293

tags. If the models generate multiple items from 294

the dataset’s label space, we select the first admis- 295

sible label. If no acceptable output is obtained, we 296

randomly select an item in the label space. 297

3.2.2 Insights and Augmentation 298

We report Llama 7B’s macro F1-scores on the vali- 299

dation set of each configuration in Table 2. A bal- 300

anced distribution between neutral and non-neutral 301

classes in the training corpus is beneficial, as re- 302

flected by the substantially high mean F1-score 303
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of 0.643 when R=1. On the other hand, having 3304

explanations per sample (D=3) achieves the best305

overall performance across 3 test sets, consistent306

with Ho et al. (2022)’s findings on the benefit of307

multiple reasoning paths. However, performance308

markedly degrades when D=4. Our manual anal-309

ysis reveals that the quality of generated outputs310

deteriorates as the degree of diversity increases,311

consequently affecting the performance of models312

trained on this data.313

Guided by these empirical findings, we augment314

the training corpus by selecting approximately315

1,800 extra samples from each of the 8 datasets316

while preserving the 1:1 balanced ratio of neutral317

to non-neutral classes. Then, we collect 3 explana-318

tions per sample using the described mechanism,319

resulting in a final corpus of 52,137 samples (Table320

1a), hereby referred to as HateCOT.321

R=1 R=2 R=3 R=4
HateCheck 0.879 0.750 0.650 0.574
HateXplain 0.534 0.533 0.495 0.528
Latent_Hate 0.516 0.473 0.456 0.408
Average 0.643 0.585 0.534 0.503

(a) Results for Ratio configurations (R)
D=1 D=2 D=3 D=4

HateCheck 0.851 0.879 0.864 0.783
HateXplain 0.549 0.534 0.597 0.607
Latent_Hate 0.480 0.516 0.477 0.465
Average 0.627 0.643 0.646 0.618

(b) Results for number of explanations per sample (D)

Table 2: Macro F1-scores for different configurations
of distribution between neutral vs. non-neutral classes
(top) and number of explanations per sample (bottom)
on validation set. Best average performance in bold.

4 Experiments on Test Sets322

We perform experiments to answer 3 questions.323

First, does HateCOT improve zero-shot classifica-324

tion of open-sourced LLMs on unseen datasets?325

Second, how much data is necessary to enable com-326

petitive performance via in-domain finetuning af-327

ter pretraining on HateCOT? Finally, is in-context328

learning a viable alternative to finetuning?329

Models In addition to Llama 7B in Section 3.2.1,330

the following open-sourced models are selected.331

▷ Llama 13B A larger variant of the instruction-332

tuned Llama 7B with 13 billion parameters.333

▷ OPT-IML Based on the original OPT (Open334

Pre-trained Transformer Language Models)335

(Zhang et al., 2022), this encoder-only model336

contains 1.3 billion parameters and was fur-337

ther trained on the Instruction MetaLearning 338

(IML) dataset (Iyer et al., 2022). 339

▷ Flan-T5-L Chung et al. (2022) further 340

instruction-finetuned the encoder-decoder T5 341

family of models (Raffel et al., 2020). We use 342

the Large version of 780 million parameters. 343

▷ COT-T5-XL A variant of the Flan-T5-XL 344

(3 billion parameters), this model is further 345

finetuned on the CoT dataset, a collection of 346

1.8 million samples augmented with chain-of- 347

thought-style explanations (Kim et al., 2023a). 348

4.1 Zero-shot Classification 349

We prompt the models to perform classification 350

with no in-context examples via 2 modes: No Ex- 351

planation, where the model directly predicts the 352

label for the input, and With Explanation, where a 353

justification is required before the predicted label. 354

We finetune the base models using only HateCOT 355

and evaluate their performance on the 4 test sets as 356

in Section 3.2.2 (more details in Appendix A.2). 357

From results presented in Figure 2a, the smaller 358

models Flan-T5-L and OPT-IML are unable to gen- 359

erate explanations when prompted. In contrast, 360

their scaled-up counterparts could follow instruc- 361

tions at all settings. Asking base (off-the-shelve) 362

models to generate an explanation before the la- 363

bel results in observable boost to Llama models on 364

HateCheck and HateXPlain, but actually hampers 365

performance on Latent_Hate and its derivative Im- 366

plicit_Hate, which are notably challenging due to 367

its covert nature (ElSherief et al., 2021b). 368

Model Choice Matters Pretraining on HateCOT 369

unanimously enables all models to generate ex- 370

planations. While smaller models receive no ob- 371

servable boost, larger models (COT-T5-XL, Llama 372

7B, Llama 13B) are considerably enhanced com- 373

pared to their base counterparts. With the ex- 374

ception of HateXplain, the HateCOT-pretrained 375

version of COT-T5-XL attains an increment in F1 376

scores of 7.6% on HateXplain and 9.5% on La- 377

tent_Hate over the base counterpart without ex- 378

planations. Similarly, Llama 7B observes 23.9%, 379

25.6%, 10% increment on HateCheck, HateXplain 380

and Latent_Hate, respectively. These statistics 381

are 27.9%, 118.5%, and 10.2% for Llama 13B. 382

Notably, all models yield non-competitive perfor- 383

mance on Implicit_Hate. 384

The reduced performance of HateCOT- 385

pretrained models compared to their base 386

counterparts without explanations (e.g.: Flan-T5-L 387

and OPT-IML on almost all test sets) is in line 388
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with literature as COT-style prompting tends to389

favor larger models (Wei et al., 2022; Wang et al.,390

2024; Suzgun et al., 2023). Even the reduced391

F1 scores of COT-T5-XL on HateXPlain and392

Implicit_Hate is consistent with this model’s393

suboptimal performance relative to its larger394

variants, as showcased in Kim et al. (2023b).395

These results serve as an empirical reference for396

researchers to select the appropriate model size for397

their respective task.398

4.2 In-Domain Finetuning399

We further finetune COT-T5-XL, Llama 7B, Llama400

13B using data from the training portions of the401

test datasets, including Implicit_Hate. To simu-402

late low-resource settings, we choose 256 samples403

uniformly at random from each class, then aug-404

ment them with explanations as described in Sec-405

tion 3.1. Both the Base and Pretrained versions of406

the models are then finetuned using various K-shot407

∈ {32, 64, 128, 256} training data from this pool.408

In Figure 2b, the general superiority of finetun-409

ing models after HateCOT over their base coun-410

terpart indicates enhanced generalizability with411

limited in-domain data. However, too little train-412

ing data (K≤64) may impair models’ performance413

compared to the zero-shot setting, likely a result of414

attempting to optimize a large number of parame-415

ters on limited signals. Stable gains are attained at416

K=128, and at K=256, significant boost over the417

non-finetuned zero-shot results are observed.418

Interestingly, decoder-only models (Llama) con-419

siderably outperform encoder-decoder COT-T5-XL420

on the 2 and 3-way classification tasks, yet the421

reverse is observed for the nuanced 6-way Im-422

plicit_Hate. On this task, only COT-T5-XL con-423

sistently scales with the increment in training data424

to reach the max F1 score of 0.56, while Llama425

models plateau at sub-0.3 range even at K=256.426

We further select the best performing model at427

K=256 for each dataset and finetune their Base428

versions with the entire training data and no ex-429

planations no definition. In Figure 2b and Table430

3, in-domain finetuning after HateCOT achieves431

competitive results even with only a fraction of432

the full training data. Furthermore, prompting for433

explanations enables Llama 13B and COT-T5-XL434

to attain performance that surpasses using the full435

training data on Latent_Hate and Implicit_Hate.436

4.3 In-context Learning 437

As an alternative to in-domain finetuning, we in- 438

vestigate the models’ performance using in-context 439

learning (ICL), when a number of complete exam- 440

ples are provided as part of the input prompt. We 441

select 1 sample from each class in the training data 442

of each dataset, then obtain its the associated ex- 443

planation from GPT-3.5-Turbo. The sets of post, 444

explanation and label are arranged in the same for- 445

mat in the same template shown in Figure 5. We 446

run inference for classification results over 5 seeds, 447

which also randomly permutes their order. 448

Figure 2c shows the mean, minimum and maxi- 449

mum values of macro F1 scores over the seeds for 450

the base, HateCOT-pretrained only (Pretrained), 451

and in-domain finetuned (K=256) versions of 452

Llama 7B and Llama 13B. COT-T5-XL regularly 453

generates overly repetitive outputs, and thus omit- 454

ted. The range of F1 scores is large regardless of 455

settings, an observation in line with the variance 456

of in-context learning in literature (Lu et al., 2022; 457

Dong et al., 2022). Unsurprisingly, base models’ 458

performances tend to be inferior to their finetuned 459

counterpart. Interestingly, the max F1 scores of 460

finetuned models with ICL are not appreciably bet- 461

ter than those in the zero-shot counterparts (Fig- 462

ure 2b). In contrast, except for Llama 7B on Ha- 463

teXplain, the best scores of pretrained models ap- 464

proach those of the finetuned models–particularly 465

for Llama 13B. 466

This finding suggests another advantage of pre- 467

training on HateCOT: boosting performance via 468

ICL without additional in-domain finetuning, an 469

area that has attracted growing attention (Min et al., 470

2021; Wang et al., 2023; Ye et al., 2023b). Nev- 471

ertheless, there exists the trade-off: ICL examples 472

with explanations extend significantly the context 473

length, and ICL inferencing takes considerably 474

more time compared to zero-shot, making the latter 475

more resource-efficient overall. 476

4.4 Assessment and Recommendations 477

From empirical observations, we make the follow- 478

ing recommendations to construct a cost-efficient 479

pipeline for classifier on novel domains: 480

▷ The most consistent benefit of HateCOT is 481

its capacity to enable data-efficient in-domain 482

finetuning following pretraining. 483

▷ Practitioners should choose models of suf- 484

ficient number of parameters for the task. 485

Larger instruction-tuned LLMs appear to 486
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(a) Macro F1 scores of LLMs in zero-shot setting using 3 configurations. Base refers to out-of-the-box models, +HateCOT
denotes their pretrained counterpart on our dataset. FT5L: Flan-T5-L, CT5XL: COT-T5-XL. Results for Base Flan-T5-L and
OPTIML models for With Explanation settings omitted to reflect their inability to generate explanation according to the prompt.

(b) Macro F1 scores for models in zero-shot setting with explanation after K-shot in-domain finetuning at various values of K.
Dashed line represents finetuned base models, solid line represents models pre-trained on HateCOT, then in-domain finetuned.
For each dataset, the horizontal dashed line represents the base version of the best performing model at K=256 which is finetuned
using the entire training data without any rationale for comparison, denoted as Best model (Full data, No. exp).

(c) Min, max and mean of macro F1 scores for Llama 7B and Llama 13B over 5 seed using in-context learning. Pretrained denotes
models finetuned on HateCOT only. Finetuned denotes ICL performed on models that have been both HateCOT-pretrained then
K=256 shot in-domain finetuned.

Figure 2: Performance resutls of LLMs on test sets in various settings.

Dataset Best Model
@K=256

F1
@K=256

F1 Base
+ Full F1 % Data Size

@K=256
Data Size

Full Data %

HateCheck LLAMA 13B 0.95 0.99 96% 512 1,864 27%
HateXplain LLAMA 13B 0.64 0.72 89% 768 12,088 6%
Latent_Hate LLAMA 13B 0.66 0.64 103% 768 11,460 7%
Implicit_Hate COT-T5-XL 0.56 0.38 147% 1,536 2,707 57%

Table 3: Comparison of performance metrics for the best performing models finetuned using K=256 in-domain post
HateCOT vs. finetuned on the full training set and no explanation nor definition. F1% denotes the percentage of
macro F1 score of the K=256 finetuned model over that of the model trained on full data. Similarly, Data % denotes
the percentage of data size used by the K=256 regimen over the full data.

more effectively capitalize on HateCOT pre-487

training regimen before in-domain finetuning.488

▷ Instead of devoting resources to curate sub-489

stantial training data, practitioners could focus490

on obtaining high quality annotations for rep-491

resentative rationales, and augment them into492

explanations using their LLM of choice. Al- 493

ternatively, practitioners may choose to curate 494

the explanations organically to achieve cer- 495

tain desired thematic qualities. This process 496

may be iterated until targeted performance is 497

reached according to some guiding metrics 498
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with acceptable quality of explanation.499

5 Quality of Explanations500

In addition to the enhanced classification prowess,501

we investigate whether pretraining on HateCOT502

also improves the quality of explanation LLMs.503

To this end, the following 2 human quality assur-504

ance (QA) experiments are conducted. In QA 1,505

we assess if human annotators prefer the explana-506

tions generated by the base or HateCOT-pretrained507

LLMs (COT-T5-XL, Llama 7B, Llama 13B). In QA508

2, we perform in-domain K-shot finetuning on the509

aforementioned models and examine how anno-510

tators evaluate their generated explanations. An511

additional assessment of Target Identification is512

presented in Appendix A.6.513

5.1 QA 1: Base vs. Pretrained514

From the outputs of the test sets generated by the 3515

LLMs, we select 50 samples uniformly at random516

whose explanations from the Base and HateCOT-517

pretrained versions agree on the predicted label, for518

a total of 150 samples and 300 explanations. We519

then recruit 13 annotators from the crowdsource520

platform Amazon Mechanical Turk and solicit their521

annotation on these explanations (Appendix A.5).522

Using the template in Figure 6, we ask the annota-523

tors to indicate their preferred explanation that bet-524

ter suits the purpose of content moderation based525

on fluency, soundness and the alignment with the526

definition of the chosen label. Each post is anno-527

tated by 5 humans, resulting in 750 annotations.528

In Table 4, we observe that the raw frequency529

count for explanations generated by the HateCOT-530

pretrained models exceed their base version’s. Sim-531

ilarly, even when tallying by majority vote–where532

the explanation is chosen by at least 3 out of 5533

annotators–preference for those generated by the534

Pretrained models still prevails. We note that the535

preference margin is smaller for Llama 13B Pre-536

trained, likely due to this model’s already strong537

generative capabilities.538

5.2 QA 2: Inter-model Comparison539

Inspired by Wang et al. (2023); Lin et al. (2023);540

Yang et al. (2023), we assess the quality of expla-541

nations generated by finetuned models (K=256) on542

the following criteria:543

▷ Persuasiveness: how convincingly the expla-544

nation justifies its chosen label for the post.545

▷ Soundness: how valid and logical is the ex-546

planation with respect to the label’s definition.547

Human (Frequency Count) Human (Majority Vote)

Model Base Pretrained Base Pretrained

COT-T5-XL 62 (24.8%) 188 (75.2%) 6 (12%) 44 (88%)
Llama 7B 109 (43.6%) 141 (56.4%) 19 (38%) 31 (62%)
Llama 13B 114 (45.6%) 136 (54.4%) 22 (44%) 28 (56%)

Table 4: Comparison of Base and Pretrained models
in Human Evaluation. Frequency Count : count per
annotation; Majority Vote indicates aggregate count by
the version is preferred by at least 3 out of 5 annotators.

Figure 3: Heatmap for the average rating of explanations
by finetuned Model (x-axis) and Dataset (y-axis) on 3
criteria from 1 (least) to 5 (very). Overall indicates
average scores aggregated over all datasets. Triplets of
scores italicized and in bold are those whose p-value <
0.05 by one-way ANOVA test that compare ratings of
3 models across the dataset on that row. Italicized-only
scores indicate marginal significance (p-value ≈ 0.07).

For this QA task, we recruit 6 annotators also 548

from Amazon Mechanical Turk (Appendix A.5). 549

Using the template in Figure 7, we collect their nu- 550

merical ratings on a scale from 1 (least) to 5 (very) 551

on these criteria for 50 posts per model per dataset, 552

for a total of 600 annotations. Figure 3 displays the 553

mean ratings for each model-dataset pair, as well 554

as Overall scores averaged across all datasets. The 555

average Ovearall ratings for both Persuasiveness 556

and Soudness are above 3.2 out of 5, indicating 557

generally positive reception by human evaluators. 558

Interestingly, there exists a degree of correlation 559

between the models’ better classification perfor- 560

mance (Figure 2b) and higher mean ratings on each 561

dataset, a useful artifact to calibrate models. These 562

ratings may serve as benchmarks for future works. 563

6 Conclusion 564

We show empirically that our HateCOT dataset con- 565

siderably enhances offensive speech detection even 566

with limited training data while producing high- 567

quality explanations. We invite future research to 568

explore other benefits of LLM-augmented data and 569

extend them to other related low-resource areas. 570
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7 Limitations571

We first acknowledge that our work is restricted572

to English corpora, a common limitation among573

literature on offensive speech (Yin and Zubiaga,574

2021; Poletto et al., 2021). However, our approach575

sets a proof-of-concept for researchers to construct576

similar corpus in other languages by leveraging ex-577

isting resources. Furthermore, our developmental578

pipeline is considerably more data-efficient than579

conventional approaches (Section 4.1, 4.2), poten-580

tially lowering the barrier of entry for practition-581

ers without access to abundant resources. There-582

fore, this work invites further expansion on mul-583

tilingual datasets, particularly to develop corpora584

with clearly defined definitions to facilitate synergy585

with other research.586

Second, due to computational limitations, we587

could not perform experiments on larger open-588

source models. With the development of newer,589

more powerful models, it is reasonable to expect590

their performance to further improve though the591

use of this dataset of our corpus, as demonstrated592

by our empirical results.593

Finally, we recognize the risk of propagating im-594

plicit biases that LLMs are known to carry (Cheng595

et al., 2023; Gupta et al., 2023). However, we note596

that the approach of using LLMs (GPT-3.5-Turbo597

in this paper) to bridge the logical gaps in original598

rationales has been shown to produce outputs less599

prone to logical failures (Yang et al., 2023). Biases600

in Pretrained Language Models have been attract-601

ing much attention in the research community. We602

invite further works to consider our approach to603

reduce hallucinations and biases in text generation.604

8 Ethics Statement605

We acknowledge the potential malicious usage of606

our corpus to generate content capable of evading607

detection, or jeopardizing classifiers’ performance.608
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A Appendix 969

A.1 Data Pre-Processing 970

The datasets used in this work are released by their 971

respective authors for research purpose. Aware 972

of the risk of containing confidential in social me- 973

dia data, we anonymize posts during the curation 974

process by replacing user handles with the string 975

’<user>’. Our many layers of randomization pro- 976

vides further protection with respect to privacy. 977

A.2 Technical Specification 978

A.2.1 Inferencing 979

We used OpenAI’s API to access the publicly avail- 980

able version of GPT-3.5 in November 2023, and 981

GPT-4 in January 2024. To obtain explanations 982

from the former (as described in 3.2.2), we choose 983

temperature among candidates {0.3, 0.5, 0.7} and 984

settle on the last value during inference. This value 985

is selected based on literature and multiple itera- 986

tions of qualitative analysis of outputs (Yang et al., 987

2023; Kim et al., 2023a). For GPT-4 and other 988

open-source models, we use greedy decoding. 989

A.2.2 Finetuning 990

To train models, we employ both full supervise 991

finetuning (FLAN-T5-Large, OPT-IML) and LoRA 992

parameter-efficient techniques (all other models). 993

LoRA models set to 8-bit quantization using the 994

BitsandByes library. Training FLAN-T5-Large, 995

OPT-IML, LLAMA 7B models was done on 2 996

Nvidia RTX A6000 GPUs, whereas COT-T5-XL, 997

Llama 13B used 4 GPUs. Hyperparameters for the 998

following candidates are tuned on the validation 999
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set of sampling K=64 shots from the leftover train-1000

ing samples by optimizing macro F1-score metric.1001

Options in bold indicate final chosen values among1002

multiple across all models to finetune on HateCOT.1003

• Learning rate: {5e-5, 1e-4, 3e-4}1004

• Training Epochs: {1, 2, 3}1005

• LoRA Rank: {16, 32, 64} (alpha=rank*2)1006

• LoRA Target Modules: {Q, V}1007

• Batch size: 21008

• Gradient Accumulation Step: 21009

For in-domain K-shot finetuning, the values above1010

remain the same except for the following varia-1011

tions in Learning Rates, which is set to 1e-4 for1012

HateCheck, HateXplain, Latent_Hate, and 3e-41013

otherwise.1014

A.3 Variants of Prompt Template for1015

Explanation1016

The 8 datasets introduced in Section 3.1 may not1017

always have annotations on all required fields; thus,1018

we modify the first sentence in the Instruction block1019

in Figure 5 with the following variants when appro-1020

priate:1021

• Only Target is available: ’Provide a brief para-1022

graph to explain step-by-step how the post1023

targets the specified group or entity, and how1024

that leads to the specified Label based on the1025

given Definitions.’1026

• Both Target and Rationale are available: ’By1027

elaborating on the provided Annotation, pro-1028

vide a brief paragraph to explain step-by-step1029

how the post targets the specified group or en-1030

tity, and how that leads to the specified Label1031

based on the given Definitions.’1032

A.4 Quality Review of Sample Explanations1033

Elaborating on the criteria outlined in Section 3.1,1034

we review the quality of the generated explanation1035

by GPT-3.5-Turbo on the following items:1036

• Grammatically correct1037

• Succinct in their justification of the chosen1038

label.1039

• Persuasive and logical in their reasoning for1040

the chosen label1041

We discard explanations that are too verbose,1042

and/or not choosing the label already provided by1043

human annotation (fortunately, this scenario hap-1044

pens rarely, likely due to the presence of existing1045

rationales guiding the extra generated outputs). We1046

also remove explanations that conjure incorrect1047

and/or irrelevant facts to the context to discourage1048

hallucination and encourage a high degree of perti- 1049

nent to the post at hand. 1050

Dataset COT-T5-XL Llama 7B Llama 13B

HateCheck 94.5 % 96.5 % 93.5 %
HateXplain 71.0 % 74.0 % 74.0 %
Latent_Hate 50.5 % 51.0 % 44.5 %

Table 5: Percentage out of 200 samples per dataset,
where explanations correctly identify at least 1 of the
targets listed by human annotators by each model.

A.5 Human Annotation for QA Experiment 1051

A.5.1 QA 1 1052

With approved IRB, we recruit 13 crowdsource 1053

workers using the Amazon Mechanical Turk plat- 1054

form to annotate 50 samples per model, for a total 1055

of 150 data points for the task described in Section 1056

5.1. The annotators was paid a fair wage at $15 per 1057

hour, and forewarned about the nature of the task. 1058

Annotators must be fluent English speakers. We 1059

also limit each annotator to no more than 100 posts 1060

(60% of the total 150 samples per model) to main- 1061

tain diversity of opinions. We observe that pref- 1062

erence for explanations generated by Pretrained 1063

models remains consistent with GPT-4’s. 1064

The demographic breakdown of the 13 annota- 1065

tors are described below: 1066

• Gender: Female (8), Male (5) 1067

• Age: 18-29 (2), 30-39 (4), 40-49 (4), 50+ (3) 1068

• Education: High School (2), 2-year college 1069

(5), 4-year college (4), Master’s or Higher (2) 1070

A.5.2 QA 2 1071

For this experiment, each annotation task consists 1072

of the explanations generated by 3 models are 1073

grouped by the sample. This division resutls in 1074

200 tasks. 6 Amazon Mechanical Turk workers 1075

are recruited, with similar qualification criteria as 1076

described above. 1077

The demographic breakdown of the 6 annotators 1078

are described below: 1079

• Gender: Female (3), Male (3) 1080

• Age: 18-29 (1), 30-39 (2), 40-49 (3) 1081

• Education: 2-year college (2), 4-year college 1082

(4) 1083
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A.6 QA 3: Target Identification1084

We investigate the in-domain finetuned models’ ca-1085

pabilities to identify the target of the sentiments1086

expressed by the post. We also randomly select1087

200 samples from each dataset that have the Target1088

variable annotated by humans, then ask GPT-4 to1089

judge whether the explanations from the models1090

mention at least one of the listed targeted groups1091

using the template in Figure 8. Note that we en-1092

courage GPT-4 to consider potential variance of1093

expression and not restrict to exact matches.1094

Table 5 shows the percentage of accuracy on this1095

task. Similar levels of descending performances1096

are observed in the presented order of test datasets.1097

However, this observation may be an artifact of the1098

differences between the annotations targets among1099

datasets: HateCheck has a limited number of dis-1100

crete categories while Latent_hate contains mul-1101

tiple combinations of free-text labels. We urge1102

practitioners to consider this factor while curating1103

training data if target identification is desired.1104
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Dataset Definition

Salminen et al.,
2018

Neutral : A post that is not offensive to any group of people. Hateful: An offensive post,
motivated, in whole or part, by the writer’s bias against an aspect of a group of people.

Qian et al., 2019 Not Hate : Does not contain any attack on people based on protected characteristics. Hate:
Contains direct attack on people based on protected characteristics such as race, ethnicity,
national origin, religious affiliation, sexual orientation, caste, sex, gender, gender identity, and
serious disease or disability.

Sap et al., 2019 Not Offensive : not offensive to anyone. Offensive : denotes the overall rudeness, disrespect,
or toxicity of a post. whether a post could be considered offensive to anyone.

Vidgen et al., 2021a Neutral: Content that does not fall into other categories, usually entirely unrelated to abuse,
hate, prejudice, or intolerance. Identity Directed Abuse: Content that directs abuse at an
identity, which relates to fundamental aspects of individuals’ social position, community and
self-representation. An identity includes but is not limited to religion, race, ethnicity, gender,
sexuality and sexual preferences, immigration status, nationality, ableness, physical appearance
and class. Affiliation Directed Abuse : Content that directs abuse at people who have a voluntary
affiliation with a profession, membership, association, ideology, or other well-defined group or
collective. Person Directed Abuse : Content that directs abuse at an identifiable person.

Vidgen et al., 2021b Derogation : content which explicitly attacks, demonizes, demeans or insults a group. Animosity
: content which expresses abuse against a group in an implicit or subtle manner. Threatening
: content which expresses intention to, support for, or encourages inflicting harm on a group,
or identified members of the group. Support For Hateful Entities : content which explicitly
glorifies, justifies or supports hateful actions, events, organizations, tropes and individuals
collectively, entities. Dehumanization : content which perceives or treats people as less than
human. Not Hate : content that falls into none of the other categories.

Basile et al., 2019 Hate Speech : language that is used to expresses hatred towards a targeted group or is intended
to be derogatory, to humiliate,or to insult the members of the group. may also be language that
threatens or incites violence. Offensive Language : may contain offensive terms but targets
disadvantaged social groups in a manner that is potentially harmful to them. Neither : language
that does not all into either of the other categories.

Hartvigsen et al.,
2022

Benign: Text that is not harmful nor offensive to anyone. Toxic: Text that could be seen as
harmful to anyone, may contain offensive, rude humor, insults, personal attacks, profanity,
aggression, may refer to targeted group with harmful intent that is expressed in stereotypes or
lewd manners

Toraman et al., 2022 Hate : target, incite violence against, threaten, or call for physical damage for an individual or a
group of people because of some identifying trait or characteristic. Offensive : humiliate, taunt,
discriminate, or insult an individual or a group of people in any form, including textual. Normal
: does not fall into any of the other categories.

Table 6: Labels and definitions of 8 datasets used to synthesize training corpus. Definitions are lifted directly from
their original works, with exceptions of minor adjustment for stylistic consistency.
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Dataset Definition
HateCheck Non-hateful: Language that does not contain any abusive sentiment targeted at a protected

group. Hateful: Abuse that is targeted at a protected group or at its members being a part of that
group. Protected groups include age, disability, gender identity, familial status, pregnancy, race,
national or ethnic origins, religion, sex or sexual orientation.

HateXplain Normal : neither hate speech nor offensive. Hate Speech : language which attacks, demeans,
offends, threatens, or insults a group based on race, ethnic origin, religion, disability, gender, age,
sexual orientation, or other traits. it is not the presence of certain words that makes the text hate
speech, rather you should look the context the word is used in the text. Offensive Language :
usage of rude, hurtful, derogatory, obscene or insulting language to upset or embarrass people.

Latent_Hate Not Hate : speech or actions that do not involve any form of hatred, prejudice, or discrimination
toward individuals or groups based on their characteristics. Explicit Hate: openly expressed,
direct forms of hatred and prejudice toward individuals or groups based on their characteristics.
Implicit Hate: coded or indirect language that disparages a person or group on the basis of
protected characteristics like race, gender, and cultural identity.

Implicit_hate White Grievance : includes frustration over a minority groups perceived privilege and casting
majority groups as the real victims of racism. This language is linked to extremist behavior and
support for violence. Incitement To Violence : includes flaunting in group unity and power
or elevating known hate groups and ideologies. Inferiority Language : implies one group or
individual is inferior to another, and it can include dehumanization, denial of a person’s humanity
, and toxic language that compares the target with disease, insects, animals . Related to assaults
on human dignity, dominance, and declarations of superiority of the in group. Irony : refers
to the use of sarcasm , humor, and satire to attack or demean a protected class or individual.
Stereotypes And Misinformation : associate a protected class with negative attributes such as
crime, or terrorism. includes misinformation that feeds stereotypes and vice versa, like holocaust
denial and other forms of historical negationism. Threatening And Intimidation : conveys
a speaker’s commitment to a target’s pain, injury, damage, loss or violation of rights, threats
related to implicit violation of rights and freedoms, removal of opportunities, and more subtle
forms of intimidation.

Table 7: Labels and definitions for 4 test datasets.
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(a) Example from Toraman et al. (2022)

(b) Example from Salminen et al. (2018)

(c) Example from Sap et al. (2019)

Figure 4: Examples drawn from our training corpora showing their native Post, Target and Rationale, along
with the corresponding GPT-3.5-Turbo-enhanced explanations. Due to their nature as fragmented annotations,
verbatim Rationales are not serviceable explanation, but can serve as guiding signals that leverage GPT’s generative
capabilities to construct legible passages with detailed justifications.
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Figure 5: Template used to prompt LLM for classification inference.

Figure 6: Template for QA Experiment 1. In this example, EXP_A is preferred.
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Figure 7: Template for QA Experiment 2.

Figure 8: Template for QA Experiment 3.
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