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Abstract

The expansion of neural network sizes and the enhanced resolution of modern image sensors
result in heightened memory and power demands to process modern computer vision models.
In order to deploy these models in extremely resource-constrained edge devices, it is crucial
to reduce their peak memory, which is the maximum memory consumed during the execution
of a model. A naive approach to reducing peak memory is aggressive down-sampling of
feature maps via pooling with large stride, which often results in unacceptable degradation
in network performance. To mitigate this problem, we propose residual encoded distillation
(ReDistill) for peak memory reduction in a teacher-student framework, in which a student
network with less memory is derived from the teacher network using aggressive pooling.
We apply our distillation method to multiple problems in computer vision including image
classification and diffusion-based image generation. For image classification, our method
yields 4x-5x theoretical peak memory reduction with less degradation in accuracy for most
CNN based architectures. Additionally, our method yields improved test accuracy for tiny
vision transformer (ViT) based models distilled from large CNN based teacher architectures.
For diffusion-based image generation, our proposed distillation method yields a denoising
network with 4x lower theoretical peak memory while maintaining decent diversity and
fidelity for image generation. Experiments demonstrate our method’s superior performance
compared to other feature-based and response-based distillation methods when applied to
the same student network.

1 Introduction

Convolutional neural networks (CNN) and vision transformers (ViT) have demonstrated impressive capa-
bilities across diverse computer vision tasks such as image recognition (Simonyan & Zisserman (2014)),
object detection (Redmon & Farhadi (2018)), semantic segmentation (Long et al. (2015)), and image gen-
eration (Creswell et al. (2018)). However, the ever-growing network size and image resolution of modern
imaging sensors pose significant challenges in deploying neural networks on standard edge devices with limited
memory footprint. For example, a standard STM32H5 MCU provides only 640 KB of SRAM and 2 MB of
Flash storage. These constraints make it impractical to execute off-the-shelf deep learning models: ResNet-50
surpasses the storage limit by 44×, while MobileNetV2 exceeds the peak memory limit by 8×. Even the int8
quantized version of MobileNetV2 surpasses the memory limit by 2×, underscoring a substantial disparity
between desired and available hardware capacity. Hence, it is very important to reduce the peak memory
during inference for edge deployment. Note that our primary focus in this work is reducing peak memory
usage, as there are exsisting solutions for addressing other metrics, such as parameter count and the number
of operations when deploying CV models at the extreme edge. Similar to (Lin et al. (2021); Chowdhery et al.
(2019)), we estimate the theoretical peak memory by summing the size of the input & output allocation
for each operation (e.g., convolution, non-linear activation, pooling). Through empirical measurements, we
determined that peak memory usage is predominantly influenced by the initial layers of convolutional neural
networks (CNNs) that are characterized by large feature maps. For U-shaped CNN architectures, however,
the last few layers also significantly contribute to peak memory consumption.
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Figure 1: (a) Left: For ImageNet classification, our
distillation method significantly reduces the theoretical
peak memory of ResNet-based models while achieving
accuracy better than existing distillation methods. (b)
Right: For diffusion-based image generation, our dis-
tilled network with 4× lower theoretical peak memory
generates images indistinguishable from the generated
images of a teacher network.

A naive approach to reducing peak memory is aggres-
sive downsampling via pooling with large kernel size
and large stride, which often leads to unacceptable
degradation of network performance due to loss of
information in small feature maps. Given a teacher
network with large peak memory, we propose resid-
ual encoded distillation (ReDistill) to train a stu-
dent network with significantly lower peak memory.
This student network can be considered a variant
of the teacher network with aggressive pooling. We
demonstrate the effectiveness of our methods for
multiple problems including image classification and
diffusion-based image synthesis. For image classifica-
tion with ResNet-based models shown in Fig. 1 (a),
our method reduces the theoretical peak memory
by 4−5× with a less accuracy drop compared to
existing distillation methods. Additionally, we also
show improved distillation from CNNs to transform-
ers. For diffusion-based image generation shown in
Fig. 1 (b), our distilled network generates images
similar to original networks, yet the theoretical peak
memory is reduced by 4× on average.

Our ReDistill method outperforms existing response-based or feature-based distillation methods regarding the
accuracy-memory trade-off. Our method differs from these existing counterparts in four regards. Firstly, our
distillation method is tailored for peak memory reduction. In contrast, existing distillation techniques focus
on transferring knowledge from a high-capability teacher network with a large number of parameters to a
student network with fewer parameters. Our student networks apply a large kernel size and stride in the initial
pooling layers with the same number of parameters as the teacher networks, while consuming significantly
lower peak memory. Secondly, the student network, utilizing aggressive pooling, has fewer pooling layers
and consequently fewer stages than the teacher network, resulting in mismatched features at different stages
between the two. We add novel non-linear mapping modules termed residual encoded distillation (RED)
blocks between the teacher and student network during both training and inference. Thirdly, our proposed
RED block is lightweight and effective with additive residual learning and multiplicative gating mechanism.
We optimize the trade-off between peak memory and accuracy, while it slightly increases the model size due
to extra parameters. Lastly, we align teacher and student network features asynchronously at pooling layers
with matching feature sizes, while previous approaches align features at different stages of the networks.

Our key contributions are summarized below.

• We propose ReDistill, a distillation framework tailored for reducing the peak memory of convolutional
neural networks. Our method allows aggressive downsampling of feature maps via pooling layers with
a large stride for a student network while incurring a less accuracy drop. To the best of our knowledge,
ReDistill is the first distillation method focused on peak memory reduction for efficient deep learning.

• The core of our ReDistill framework is a residual encoded distillation (RED) block to align features between
high-peak-memory teacher networks and low-peak-memory student networks. Our RED block is based on
a multiplicative gating mechanism and additive residual learning and is shown simple and effective for
peak memory reduction with minimum computational overhead.

• For image classification tasks, our distillation method outperforms state-of-the-art response-based or
feature-based distillation methods when applied to the same student network assigned with a large pooling
stride as shown in extensive experiments with multiple datasets. Our method yields about 4× ∼ 5×
reduction in theoretical peak memory with a slight decrease in the classification accuracies for CNN based
models. Additionally, our method improves the accuracy of compact ViT-based models, when distilled
from large CNNs.
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• We also show the versatility of our distillation method for denoising diffusion probabilistic models for
image generation. For a U-Net based denoising network, our method reduces the theoretical peak memory
by 4× by downsampling the feature maps of the first few encoder layers and last few decoder layers while
maintaining the fidelity and diversity of synthesized images.

2 Related Work

Memory-constrained deep learning: Limited memory capacity in GPU cards and edge platforms
has been a critical hurdle in CNN training and inference. Multiple GPUs can be utilized through model
and data parallelism (Langer et al. (2020)) to mitigate the memory bottleneck. Other solutions include
optimization methods such as network quantization (Hubara et al. (2016)), compression (Han et al. (2016b)),
and pruning (Molchanov et al. (2017); Lu et al. (2024)) which focus on maintaining essential bits of weights
or parameters while minimizing accuracy loss. To produce correct outputs with compressed data, these
solutions are typically designed with specialized accelerators to accommodate meta-data processing (Han
et al. (2016a)). There are also CNNs specifically designed for resource-constrained applications such as
variants of MobileNet (Howard et al. (2019)) and SqueezeNet (Iandola et al. (2017)). These approaches to
memory-constrained deep learning are orthogonal to our ReDistill framework, which focuses on peak memory
reduction during inference. Nevertheless, recent work has explored neural architecture search (NAS) to create
networks with minimized peak memory (Lin et al. (2020)). Reference (Lin et al. (2021)) takes this a step
further by leveraging NAS to introduce patch-based inference and network redistribution (Lin et al. (2021)),
consequently shifting the receptive field to later stages. While NAS significantly exacerbates the training
complexity, patch-based inference necessitates compiler libraries that may not be compatible with standard
GPUs, and incurs additional computation and latency overhead. Another recent work (Chen et al. (2023))
proposed self-attention-based pooling to aggressively compress the activation maps in the first few layers to
reduce the peak memory, at the cost of increased compute complexity.
Knowledge distillation for image classification can be roughly categorized into two groups: response-
based KD and feature-based KD. Response-based KD methods derive the distillation loss by leveraging the
logit outputs from the fully connected layers of the student model and the teacher model. For example,
KD (Hinton et al. (2015)) distills knowledge by matching the prediction probability distributions of the
student architecture and the teacher architecture. DKD (Zhao et al. (2022)) decouples the classical KD loss
into two parts, target class knowledge distillation (TCKD) and non-target class knowledge distillation (NCKD)
enhancing training efficiency and flexibility. MLLD (Jin et al. (2023)) performs logit distillation through a
multi-level alignment based on instance prediction, input correlation, and category correlation, delivering
state-of-the-art performance. In contrast, feature-based KD methods (Adriana et al. (2015); Zagoruyko
& Komodakis (2016); Passalis & Tefas (2018); Lee et al. (2018); Tung & Mori (2019); Ahn et al. (2019))
reduce the disparity between features in the teacher and student models, compelling the student model
to replicate the teacher model at the feature level. RKD (Park et al. (2019)) employs a relation potential
function to convey information from the teacher’s features to the student’s features. ReviewKD (Chen et al.
(2021)) aggregates knowledge of the teacher from different stages into one stage of the student, the so-called
‘knowledge review’, which achieved impressive performance. KCD (Li et al. (2022)) iteratively condenses a
compact knowledge set from the teacher to guide the student learning by the Expectation-Maximization (EM)
algorithm, which would empower and be easily applied to other knowledge distillation algorithms. Existing
methods focus on the distillation from a high-capacity teacher model with a large amount of parameters
to an efficient student model with limited parameters. In this work, the student model, employing a large
kernel size and stride in the initial pooling layer possesses the same number of parameters as the teacher
architecture but incurs significantly lower peak memory.
Knowledge distillation has gained popularity in the realm of diffusion models. For example, One
Step Diffusion (Yin et al. (2023)) defines two score functions, one of the target distribution and the other
of the synthetic distribution produced by a one-step generator. By minimizing the KL divergence between
these two score functions, the one-step generator is enforced to match the diffusion model at the distribution
level and achieves impressive performance. Adversarial Diffusion (Sauer et al. (2023)) utilizes both score
distillation loss and adversarial loss. The score distillation loss occurs between the teacher diffusion sampler
with a large number of T steps and the student diffusion sampler with one or two steps. Meanwhile, the
adversarial loss originates from a discriminator trained to differentiate between generated samples and real
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images. Auto Diffusion (Li et al. (2023)) searches for the optimal time steps and compressed models in
a unified framework to achieve effective image generation for diffusion models. In summary, existing KD
methods for diffusion models mainly focus on time step reduction and model compression. Our method offers
a unique approach by minimizing the size of intermediate activation maps, that is orthogonal to and easily
integrated with existing methods.

3 Proposed Method

3.1 Preliminaries

Knowledge Distillation We are given a dataset X , a high-capacity teacher architecture T and a to-learned
student architecture S. For an input image x sampled from X , πT (x) and πS(x) denote the outputs or
intermediate features of the teacher and student, respectively. The knowledge distillation task aims to
optimize the student’s parameters ŵ:

ŵ = arg min
w

∑
x∈X

L(πS(x; w), πT (x)), (1)

where w denotes the trainable weights of πS and L denotes the loss function defined by different knowledge
distillation methods. For instance, Reference (Hinton et al. (2015)) defines πS and πT as the logit outputs
(without applying the softmax function) of the student and the teacher, while L as the Kullback-Leibler
divergence between πS and πT after applying the softmax function with temperature tp:

LKL =
∑
x∈X

KL(softmax(πS(x)
tp

), softmax(πT (x))
tp

). (2)

Some other methods (Zagoruyko & Komodakis (2016); Park et al. (2019); Chen et al. (2021)) define different
πS and πT , such as the intermediate activation maps from various stages of the student and teacher, or
different L, like the p-norm, to achieve various distillation methods.
Denoising Diffusion Probabilistic Models Diffusion models (Ho et al. (2020)) are latent variable models
of the form pθ(x0) :=

∫
pθ(x0:T )dx1:T , where x1, ..., xT are latents of the same dimensionality as the data

x0 ∼ q(x0). The joint distribution pθ(x0:T ) is defined as a Markov chain with learned Gaussian transition
starting at p(xT ) = N (xT ; 0, I), where T is the maximum time step. In the training process, we are given a
noisy input xt which is derived from the data x0 and noise ϵ ∼ N (0, I):

xt =
√

ᾱtx0 +
√

1 − ᾱtϵ, (3)

where ᾱt :=
∏t

s=1(1 − βs), and βs is the forward process variances fixed as constant in DDPM (Ho et al.
(2020)). The loss of diffusion model is generally defined as follows:

Ldiff = ||ϵ − ϵθ(xt, t)||22. (4)

The noisy input xt, accompanied by a time step embedding t, is input into a denoising autoencoder, specifically
a U-Net network as in (Ho et al. (2020)), to estimate the noise component ϵθ(xt, t).

3.2 Proposed Distillation Framework

Our proposed framework is illustrated in Fig. 2. To reduce the activation peak memory, the initial pooling
layer of the student is assigned with a larger pooling stride. However, we still keep the same spatial dimensions
of the input activations to the final fully connected layer. Thus, the student has fewer pooling layers but
with a larger pooling stride at the initial pooling layer compared to the teacher.

Take an input image x ∈ RH×W ×C as the example. The teacher and the student network are divided into
several stages by pooling layers as shown in Fig. 2. We assume that all pooling layers of the teacher have
the same pooling stride ρ for simplicity. The initial pooling layer of the student at stage 1 is assigned with
a stride kρ. Hence, the student feature map fS

1 ∈ R
H
kρ × W

kρ ×C1 at the output of this pooling layer has the
same spatial dimension as the teacher feature map fT

k ∈ R
H
kρ × W

kρ ×Ck at the output of the k-th pooling layer.
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Figure 2: Our proposed residual encoded distillation framework (ReDistill). RED blocks are incorporated
into the student model following the pooling layers to minimize the discrepancy between the down-sampled
features of the student and teacher models.

Then the matched feature maps fS
1 and fT

k will be fed into the residual encoded distillation (RED) block
illustrated in Fig. 3, to compute the distillation loss. The output fD

1 is to be fed into the following layers of
the student network.

Homogeneously, the feature map fS
2 of the student at stage 2 also has the same spatial dimension as the

feature map fT
k+1 of the teacher at stage k + 1. They are fed into another RED block to calculate distillation

loss and output fD
2 to the following layers. This process is repeated until the last pooling layer pT (◦; ρ) at

stage n of the teacher. We assume the size of the output feature map fT
n of the teacher is identical to the

output feature map fS
i of the student at stage i, where i − 1 + k = n. The following pooling layers of the

student at stages i + 1, i + 2, ..., n are all assigned with stride 1. Hence, these pooling layers do not change
the spatial dimension and are similar to standard convolution. As a result, the final aggregated features of
the student and the teacher have the same spatial dimensions.

3.3 Residual Encoded Distillation Block

𝑓𝒯 ℒ𝑅𝐸𝐷

RED Block

𝑓ℛ
𝑓𝒮 𝑓𝒟

Residual 

Encoder

logit
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Figure 3: Residual Encoded Distillation (RED) Block.
We use a logit module for the multiplicative gating
mechanism and a residual encoder for additive residual
learning.

The proposed Residual Encoded Distillation (RED)
Block, depicted in Fig. 3, serves as the central module
of our framework. It is designed to ensure that the
output of a pooling layer closely resembles the distri-
bution of the input while preserving essential features
at a reduced spatial dimension. To accomplish this,
the RED Block is designed to be lightweight, en-
abling it to modify the feature space distribution of
the student’s pooling layer effectively. This allows the
student model to learn the down-sampled features
of the teacher model. Meanwhile, this block intro-
duces non-linearity to the pooling layer, enabling the
student’s pooling layer to aggregate features like a
standard pooling layer and adjust the feature distribution similar to a convolutional layer with an activation
function. Specifically, we use a logit module for the multiplicative gating mechanism and a residual encoder
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for additive residual learning. The residual encoded distillation block could be formulated as follows:

fD = r(fS) + fS ∗ l(fS), (5)
r(·) = ReLU6(BN(Conv3×3(·))), (6)
l(·) = Sigmoid(BN(Conv1×1(·))), (7)

where fS is the feature map from the student model. l(·) denotes the logit module consisting of a 1 × 1
convolution layer, a batch norm layer, and a sigmoid activate function. The logit module generates element-
wise weights f̂S like a gate to suppress non-significant components of fS . r(·) denotes the residual encoder
module consisting of a 3×3 convolution layer, a batch norm layer, and a relu-6 activation function. The
residual encoder module yields the residual item fR. We hypothesize that the output of the student pooling
layers might lack some crucial information compared to the teacher’s down-sampled features, which could be
compensated by the residual item fR.

3.4 Loss Function

The RED loss first calculates the mean value alongside the channel dimension and then minimizes the cosine
distance between the teacher’s feature map fT and the RED block’s output fD, which is formulated as
follows:

LRED(fT , fD) = dcos{

∑
c∈CT

fT
c

|CT | ,

∑
c∈CS

fD
c

|CS | }, (8)

where fD is calculated by Equation 5, and dcos denotes the cosine distance measurement. CT and CS denote
the channel dimension of teacher’s feature map fT and the RED block’s output fD, respectively. The final
loss function of the proposed method is as follows:

L = Ltask +
I∑

i=1

αLREDi , (9)

where Ltask is the vanilla loss from the task, such as the Binary-Cross-Entropy (BCE) loss for image
classification. I denotes the number of RED blocks. α is an experimental hyper-parameter to scale RED loss.

3.5 Distillation for Diffusion Model

In this section, we introduce how to integrate the proposed distillation framework into a U-Net based denoising
network described in DDPM (Ho et al. (2020)), as shown in Fig. 4. For convenience, let’s assume the teacher
model is a U-Net with two down-sample layers, each having a stride of 2, while the student is a U-Net with
the aggressive pooling setting, i.e., it just has one down-sample layer with the stride 4. We use the output
fS

down from the down-sample layer of the student model and the output fT
down from the second down-sample

layer of the teacher model, as they share the same spatial dimension. fS
down and fT

down are input into a RED
block incorporated into the student model, producing the output fD

down, which is then fed into the subsequent
convolutional layers. Symmetrically, the student model has one up-sample layer with an expansion ratio of
×4, while the teacher model has two up-sample layers, each with an expansion ratio of ×2. The input fS

up of
the student’s up-sample layer and the input fT

up of the teacher’s first up-sample are input into another RED
block, producing the output fD

up. This output replaces the fS
up as the new input of the student’s up-sample

layer. For DDPM distillation, the loss function is defined as Equation 9 while the Ltask is replaced by Ldiff

defined in Equation 4.

4 Experiments

In Sections 4.1 and 4.2, datasets and implementation details for image classification and image generation
tasks are introduced separately. In Sections 4.3, 4.4 and 4.5, we conduct experiments on various vision tasks
to illustrate the effectiveness of the proposed method with the state-of-the-art distillation methods under
different backbone architectures and datasets. We also compare the memory footprint of our method with
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Figure 4: ReDistill for denosing network in DDPM (Ho et al. (2020)). We integrate RED blocks into the
student model after the down-sampling layer in the encoder and before the up-sample layer in the decoder.

the teacher and the student architectures, and deploy our method on the edge device. Results are reported
in Section 4.6. At last, some ablation study related with module discussion, loss function, and distillation
strategy are reported in Section 4.7.

4.1 Datasets

Datasets for Image Classification 1) STL10 (Coates et al. (2011)) contains 5K training images with
10 classes and 8K testing images of resolution 96 × 96 pixels. Specifically, we resize the image resolution to
128 × 128 pixels for aggressive pooling. 2) ImageNet (Russakovsky et al. (2015)) is a widely-used dataset of
classification, which provides 1.2 million images for training and 50K images for validation over 1,000 classes.
We keep the same resolution of 224 × 224 pixels as the origin for aggressive pooling.

Datasets for Image Generation 1) CIFAR-10 (Krizhevsky et al. (2009)) comprises 60,000 color images
of 32x32 resolution across 10 classes, with each class containing 6,000 images. The dataset is divided into
50,000 training images and 10,000 test images. We keep the original resolution of 32 × 32 in our experiments.
2) Celeb-A (Liu et al. (2015)) is a large-scale face attributes dataset containing over 200,000 celebrity
images, each annotated with 40 attributes. We use the resized resolution of 64 × 64 which is widely used in
diffusion-based methods (Song et al. (2020); Bao et al. (2023)) in our experiments.

4.2 Implementation Details and Baselines

Details for Image Classification Different from traditional distillation tasks, we only modify the pooling
layer strides instead of the depth and width of the network to get the student model, which is called the
aggressive pooling setting. The advantage of the aggressive pooling setting is to reduce the peak memory and
also reduce the computational complexity and inference time of the network. Specifically, we increase the
first pooling layer stride ×2 ∼ ×8 times and adjust the last several pooling layer strides to ensure the final
output of the student model with the same information density as the teacher model. All experiments are
implemented in Pytorch and evaluated on 4 NVIDIA A100 GPUs.

On STL10 dataset, we experiment with three representative and widely-used network architectures, including
MobileNetV2 (Sandler et al. (2018)), MobileNetV3 (Howard et al. (2019)), and ResNext (Xie et al. (2017)).
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Table 1: Top-1 accuracy (%) on ImageNet. The 3rd and 4th columns show the results with identical teacher
and student architecture families, while the 5th column shows the results with different teacher and student
architectures.

Method

Teacher ResNet18 ResNet50 ResNet152
Top1 Acc. (%) 69.75 76.13 78.32

Student ResNet18×4 ResNet50×4 MbNetV2×2
Top1 Acc. (%) 61.79 69.50 62.65

Response
KD (Hinton et al. (2015)) 63.63 70.60 62.85
DKD (Zhao et al. (2022)) 63.22 - 66.27
MLLD (Jin et al. (2023)) 64.66 70.77 68.36

Feature

FitNet (Adriana et al. (2015)) 62.13 71.77 60.79
RKD (Park et al. (2019)) 61.49 66.88 -

ReviewKD (Chen et al. (2021)) 63.30 70.22 63.07
CRD (Tian et al. (2020)) 64.01 71.07 65.60

RED (ours) 65.23 73.23 68.89
‘-’ denotes we do not get reasonable results for the student architecture with the distillation method
under the aggressive pooling setting.

Table 2: Top-1 accuracy (%) on STL10 with identical teacher and student architecture family.

Method

T: MbNetV2 T: MbNetV3-Small T: ResNext18
Distill Time
(s/epoch)

85.34 83.74 85.12
S: MbNetV2×4 S: MbNetV3-S×4 S: ResNext18×4

76.18 71.27 79.07
KD (Hinton et al. (2015)) 79.26 71.56 81.27 3.23
FitNet (Adriana et al. (2015)) 78.55 71.93 80.21 3.28
AT (Zagoruyko & Komodakis (2016)) 81.35 75.88 82.90 3.33
SP (Tung & Mori (2019)) - 72.42 77.59 3.31
VID (Ahn et al. (2019)) 77.53 71.83 76.99 3.40
RKD (Park et al. (2019)) 78.00 67.27 75.80 3.33
AB (Heo et al. (2019)) 80.79 72.94 81.42 3.69
FT (Kim et al. (2018)) 74.74 72.11 80.64 3.35
NST (Huang & Wang (2017)) 82.66 76.11 81.89 9.33
RED (ours) 83.97 77.31 84.80 3.88

‘-’ denotes that we do not get reasonable results for the student architecture with the distillation method under the aggressive
pooling setting.

The proposed method is compared with several distillation methods (Hinton et al. (2015); Adriana et al.
(2015); Zagoruyko & Komodakis (2016); Tung & Mori (2019); Ahn et al. (2019); Park et al. (2019); Heo
et al. (2019); Kim et al. (2018); Huang & Wang (2017)). Specifically, the student architecture is trained from
scratch as being distilled from pre-trained teacher architecture by different methods for 300 epochs. The
batch size is set to 8 and dropout rate is set to 0.2. The SGD with momentum equal to 0.9 is used as the
optimizer. The initial learning rate is set to 0.01 which is reduced by factor 0.2 at the 180th, 240th and 270th

epoch, respectively. The α in Equation 9 is set to 50.

On ImageNet dataset, we experiment on the MobileNetV2 (Sandler et al. (2018)), and ResNet (He et al.
(2016)), which are widely used in distillation benchmarks (Jin et al. (2023); Chen et al. (2021); Tian et al.
(2020)). The proposed method is compared with response-based methods like KD (Hinton et al. (2015)),
DKD (Zhao et al. (2022)), MLLD (Jin et al. (2023)) and feature-based methods like FitNet (Adriana et al.
(2015)), RKD (Park et al. (2019)), ReviewKD (Chen et al. (2021)) and CRD (Tian et al. (2020)). All these
methods are widely used in knowledge distillation and, to the best of our knowledge, yield SOTA performance.
We use the same experiment settings as (Jin et al. (2023)) but keep training for 300 epochs and decay the
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Table 3: Top-1 accuracy (%) on STL10 with different teacher and student architecture.

Method

T: ResNext18 T: ResNext18 T: MbNetV2
85.12 85.12 85.34

S: MbNetV2×4 S: MbNetV3-Small×4 S: MbNetV3-Small×4
76.18 71.27 71.27

KD (Hinton et al. (2015)) 78.14 69.98 70.95
FitNet (Adriana et al. (2015)) 80.46 73.23 72.88
AT (Zagoruyko & Komodakis (2016)) 80.63 74.58 73.39
SP (Tung & Mori (2019)) 67.56 63.91 -
VID (Ahn et al. (2019)) 74.40 69.19 71.69
RKD (Park et al. (2019)) 70.63 72.10 68.78
AB (Heo et al. (2019)) 81.46 73.98 75.20
FT (Kim et al. (2018)) 77.33 69.79 66.85
NST (Huang & Wang (2017)) 79.09 65.04 73.26
RED (ours) 83.23 77.15 77.19

‘-’ denotes that we don’t get reasonable results for the student architecture with the distillation method under the
aggressive pooling setting.

learning rate at the 180th, 240th and 270th epoch with factor 0.1, since the student architectures with the
aggressive pooling setting generally require more epochs to converge. The α in Equation 9 is set to be 1.

Details for Image Generation For the teacher model, we keep the same experiment settings as DDPM (Ho
et al. (2020)) with applying T = 1000, β1 = 10−4, βT = 0.02, and the U-Net backbone with 4 different feature
map resolutions (32 × 32 to 4 × 4 for CIFAR-10, while 64 × 64 to 8 × 8 for Celeb-A). For the student model,
we increase the first pooling layer stride of the U-Net backbone ×2 times while adjusting the last pooling
layer stride to keep the same latent feature resolution. The same stride modification is symmetrically applied
to the up-sample layers of the U-Net, and thus with 3 different feature map resolutions (16 × 16 to 4 × 4
for CIFAR-10, while 32 × 32 to 8 × 8 for Celeb-A). For our method, the RED blocks are inserted after not
only the down-sample layers but also the up-sample layers. For CIFAR-10 dataset, we train all models 800K
iterations and sample 50K images for FID (Heusel et al. (2017)) & IS (Salimans et al. (2016)) evaluation. For
Celeb-A dataset, we train all models 250K iterations and sample 50K images for FID (Heusel et al. (2017)) &
IS (Salimans et al. (2016)) evaluation. All experiments are implemented in Pytorch and evaluated on an
NVIDIA 4090 GPU.

4.3 CNN-based Image Classification

Table 1 shows the results on the ImageNet (Russakovsky et al. (2015)) dataset, with the setting that the
teacher model and student model are in identical architecture families or different architectures. ‘×n’ denotes
we increase the 1st pooling layer stride of this architecture with n times, and the best results are highlighted
in boldface. Our method achieves the best performance compared with different response-based and feature-
based distillation methods, no matter for identical architecture family knowledge distillation, as shown in the
3rd and 4th columns of Table 1, or different architecture knowledge distillation, as shown in the 5th column of
Table 1. We find some distillation methods perform even worse than the student model itself without any
distillation since these methods are not specially designed for the aggressive pooling setting, and would be
sensitive to the resolution of the feature maps, like FitNet, or require multi-scale feature maps, like RKD. In
our aggressive pooling setting, the student model has lower activation resolution and fewer pooling layers,
i.e., limited-scale feature maps, which impede the performance of traditional distillation methods.

Table 2 shows the classification results on STL10 dataset with the setting that the teacher model and student
model are in identical architecture family. Same as ImageNet, ‘×n’ denotes we increase the 1st pooling layer
stride of this architecture with n times, and the best results are highlighted in boldface. Under the identical
architecture family setting, our method performs the best among all state-of-the-art distillation methods. We
also measure the average distillation time for different distillation methods, as shown in the last column of
Table 2. Our method achieves similar time consumption compared to most distillation methods. For different
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architecture knowledge distillation, as shown in Table 3, our method achieves better performance compared
with other distillation methods as well.

4.4 ViT-based Image Classification

Table 4: Evaluated of our proposed ReDistill method on
Vision Transformers (Vaswani et al. (2017)). We keep the
same teacher network RegNetY-160 (Radosavovic et al.
(2020)) as in DeiT (Touvron et al. (2021)) for ImageNet.

Dataset Method Top1 Acc. (%)

STL10

T: MbNetV2 85.34
S: ViT-B-16 65.65

DeiT 66.60
RED (ours) + DeiT 71.63

ImageNet

T: RegNetY-160 82.97
S: ViT-T-16 71.34

DeiT 72.47
RED (ours) + DeiT 72.52

It is interesting to explore the possibility of com-
bining the proposed method with existing distil-
lation methods in vision transformer pre-training.
In ViT (Vaswani et al. (2017)), the patch embed-
ding layer can be seen as a special pooling layer
since it re-arranges the image pixels by patch-
wise and the resolution decreases by the square of
patch size in the spatial dimension, even though
it increases in the channel dimension. Specifically,
we insert a RED block after the patch embedding
layer to apply the proposed distillation framework.
Then the modified ViT model is integrated with
DeiT (Touvron et al. (2021)), a widely-used distil-
lation method for ViT pre-training. DeiT utilizes
the logit output of CNN-based teacher model, e.g.,
RegNetY-160 (Radosavovic et al. (2020)), to supervise a distill token that interacts with other tokens, which
is orthogonal to and easily combined with our method. As shown in Table 4, our method brings improvements
to DeiT on STL10 dataset and ImageNet dataset. Due to implementation specifics, all models are not applied
with EMA (Hunter (1986)), leading to results slightly different from those reported in the original paper.
ViT doesn’t have a good performance on STL10 dataset because transformer-based model usually requires a
large amount of data for pre-training (Touvron et al. (2021)). Even DeiT fails to perform well on STL10
dataset due to the limited training set and it might be insufficient to utilize merely the logit output of the
CNN-based teacher model. Our method provides a new perspective to utilize the features of CNN-based
models for ViT pre-training and achieves obvious improvements when combined with DeiT.

We leave a thorough investigation of peak memory reduction for transformers as future work. Unlike CNNs
with peak memory at the first few layers with large feature maps, the peak memory of transformers can be
dominated by attention maps, which are of size N × N for N tokens. Our distillation method is intended to
reduce the peak memory of convolutional neural networks.

4.5 Image Generation

Table 5: Results on U-Net (Ronneberger et al. (2015))
based DDPM (Ho et al. (2020)).

Dataset Method IS FID

CIFAR10
T: U-Net w/ DDPM 9.06 ±0.10 7.23

S: U-Net×2 w/ DDPM 7.93 ± 0.09 21.49
S w/ RED (ours) 8.53 ± 0.07 12.88

Celeb-A
T: U-Net w/ DDPM 2.97 ± 0.04 19.61

S: U-Net×2 w/ DDPM 2.77 ± 0.02 23.03
S w/ RED (ours) 2.88 ± 0.03 21.43

Quantitative Results Table 5 shows the results
on CIFAR10 (Krizhevsky et al. (2009)) dataset and
Celeb-A (Liu et al. (2015)) dataset. Our method
reduces the fidelity degradation of the student
model with a first pooling stride that is twice that
of the teacher model. Specifically, our method
achieves 8.61 lower FID and 0.6 higher IS score
than the student model on CIFAR10 dataset, while
1.6 lower FID and 0.11 higher IS score than the
student model on Celeb-A, respectively. Due to
implementation specifics, the models are not aug-
mented with EMA (Hunter (1986)), leading to results slightly different from those in the original paper.

Visualization To further illustrate how the proposed method improves the fidelity of image generation, we
visualize some samples generated by the teacher model, the student model, and our method. Specifically,
we utilize the same noise item ϵt in each time step for all these three models. In this way, the generated
images are expected to be visually similar if the two models have comparable capabilities. As shown in
Fig. 5, generally, the images generated by our method are semantically closer to those generated by the
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Figure 5: Generated images on CIFAR10 and Celeb-A with the same noise item ϵt for all models. Generally,
our results are semantically closer to the teacher’s.
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Figure 6: Memory footprint for each layer in teacher and student networks (top-all: STL10 classification task;
bottom-left, bottom-mid: ImageNet classification task; bottom-right: Celeb-A generation task). The student
model is the teacher model’s modified version of being assigned with the aggressive pooling strategy and
enhanced with our proposed RED blocks, representing our method.

teacher model although in some cases, they are closer to those generated by the student model. Due to the
high capability of the teacher model, our method, as an intermediate model from the teacher to the student,
achieves higher fidelity than the student model.
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Table 6: Edge Device Deployment. We analyze the theoretical Peak Memory (T-PkMem), and measure
actual GPU Peak Memory (A-PkMem), Model Size (MS), Maximum Power (MxP), and Latency for models
on an NVIDIA Jetson TX2 device. For theoretical Peak Memory analysis, the batch size is assumed to be
1. For each actual measurement, the batch size (BS) is reported in the table and set to the maximum load
allowed by the device, which is restricted by the teacher. The 1st-9th rows are for models we use in STL10
classification, and the 10th-18th row are for models we use in ImageNet classification, while the last 3 rows
are for models we use in image generation task.

Model Theoretical Analysis Actural Measurement
T-PkMem (MB) BS A-PkMem (GB) MS (MB) MxP (mW) Latency (ms)

T: MbNetV2 7.50
20

2.30 13.50 1830 221.53 ± 2.34
S: MbNetV2×8 0.51 0.78 13.50 458 49.51 ± 1.98
S w/ RED (ours) 0.51 0.81 14.25 534 55.43 ± 1.80
T: MbNetV3-Small 1.41

50
2.30 9.75 1526 195.63 ± 1.09

S: MbNetV3-Small×4 0.31 1.10 9.75 611 69.76 ± 1.55
S w/ RED (ours) 0.31 1.10 10.18 687 83.74 ± 1.40
T: ResNext18 5.00

50
2.40 21.47 3276 448.38 ± 6.97

S: ResNext18×4 0.75 1.10 21.47 1450 173.23 ± 1.92
S w/ RED (ours) 0.75 1.20 25.56 2058 275.02 ± 3.25
T: ResNet18 3.83

50
2.70 44.63 3273 395.42 ± 4.21

S: ResNet18×4 0.77 1.20 44.63 1297 151.59 ± 1.50
S w/ RED (ours) 0.77 1.30 48.72 1830 208.43 ± 1.53
T: ResNet50 9.19

10
2.00 97.70 2591 293.81 ± 1.09

S: ResNet50×4 2.30 1.00 97.70 1068 125.49 ± 1.17
S w/ RED (ours) 2.30 1.10 160.44 2136 246.68 ± 1.73
T: ResNet152 9.19

8
2.8 230.20 3880 612.03 ± 3.55

S: MobileNetV2×2 1.15 0.71 16.23 305 23.98 ± 0.84
S w/ RED (ours) 2.30 0.87 32.73 611 72.65 ± 1.01
T: UNet w/ DDPM 3.50

30
2.90 133.09 4257 684.31 ± 5.39

S: UNet×2 w/ DDPM 0.88 1.30 133.09 1983 249.92 ± 3.76
S w/ RED (ours) 0.88 1.40 149.92 2362 304.97 ± 1.87

4.6 Memory Footprint and Edge Device Deployment

Memory Footprint To intuitively demonstrate the peak memory reduction enabled by our proposed
method, we trace the memory footprint in layer-wise for all identical architecture family teacher-student
pairs, as shown in Fig. 6. Compared to CNN models with vanilla pooling, our method with aggressive
pooling settings achieves significantly lower memory consumption, particularly in the initial layers where
peak memory usage occurs. For DDPM, which utilizes a U-Net architecture with both down-sampling and
up-sampling layers, our method reduces memory consumption in both the initial layers and the final layers
where peak memory usage occurs.

Edge Device Deployment In Table 6, we measure theoretical peak memory consumption, actual peak
memory consumption, and other efficiency related metrics like model size, maximum power, and latency,
for all the models we use in STL10 & ImageNet classification and image generation tasks. Specifically, the
1st-9th rows are for models we use in STL10 classification, and the 10th-18th row are for models we use in
ImageNet classification, while the last 3 rows are for models we use in image generation task. We estimate
the theoretical peak memory by summing the size of the input & output allocation for each operation, and
assume a batch size of 1 for theoretical estimation to emulate most inference use-cases, similar to (Lin et al.
(2021); Chowdhery et al. (2019)). Our method achieves 3.9 × ∼14.7× reduction in theoretical peak memory
for image classification, and 4× reduction in theoretical peak memory for image generation, as shown in
Table 6. In addition to the theoretical peak memory, we also measure the actual peak memory consumed on
an NVIDIA Jetson TX2 device. Moreover, we measure the maximum GPU power (to ensure we satisfy the
power budget of edge devices), model size and latency incurred by the baseline teacher, student, and our
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RED models on the same edge GPU. Our models yield similar peak memory as the student models (due to
similar levels of aggressive striding) and ∼2×∼3.2× lower peak memory for image classification and ∼2×
lower peak memory for image generation tasks compared to the teacher models. Note that our theoretical
and measured peak memory reduction factors are different due to varying device setups and buffer allocations.
However, our models incur worse latency and power compared to the student models due to the additional
RED blocks, and improved latency compared to the teacher models.

4.7 Ablation Study

Table 7: Module Discussion on STL10 dataset with
MbNetV3-Small with α=50, and cosine distance
for the RED loss. LM denotes Logit Module, and
RE denotes Residual Encoder.

Method RED block Top1 Acc. (%)LM RE Shortcut
w/o LM - ✓ ✓ 76.66
w/o RE ✓ - ✓ 72.30
w/o Shortcut ✓ ✓ - 52.42
w/o RED block - - - 69.31
RED (ours) ✓ ✓ ✓ 77.31

Module Discussion As shown in Table 7, we con-
duct the ablation study on STL10 dataset with the
MobileNetV3-Small backbone by removing the logit mod-
ule, residual encoder, shortcut, and the whole RED block,
respectively. The performance of our proposed model
slightly degrades without the logit module but seriously
degrades without the residual encoder, which illustrates
that the residual encoder plays a more significant role in
the RED block. Without RED blocks, the student model
has poor performance when only applying RED loss on
the student activation maps and teacher activation maps,
which illustrates the necessity to integrate RED blocks
into the student model. Naively stacking the logit module
and residual encoder, i.e., without Shortcut, performs even worse than without RED blocks, illustrating the
effectiveness of our designed shortcuts in the logit module and residual encoder.

Table 8: Loss Function Discussion on STL10 dataset with
ResNext18.

Method LRED LKD Top1 Acc. (%)
α Distance

w/o LRED 0 - - 82.26
Euclidean Distance 50 Euclidean - 82.66
α = 1 1 Cosine - 82.04
RED (ours) 50 Cosine - 84.80
REDw/oLRED

+KD 0 - ✓ 81.94
RED (ours)+KD 50 Cosine ✓ 84.82

Loss Function We also conduct the abla-
tion study for the proposed RED loss function,
an equally important portion of distillation.
The results are based on ResNext18 backbone
and STL10 dataset, as shown in Table 8. With-
out the RED loss, i.e. setting α to 0 and then
the loss function L = Ltask, the student model
is just integrated with RED blocks but with-
out distillation. In this circumstance, the poor
performance of the student model illustrates
the need to apply the loss of RED. The pro-
posed method performs worse when applying
the Euclidean distance instead of the cosine distance to calculate the RED loss. Averaging along the channel
dimension with different CT and CS in Equation 8 might mitigate the absolute difference in Euclidean
space, while cosine distance measures the angle between two vectors, preserving their relative difference.
By adjusting α from 50 to 1, the performance degradation shows that the proposed method is sensitive
to the hyper-parameter α in Equation 9. Besides, we evaluate the proposed method’s performance when
incorporated with other knowledge distillation methods, such as KD (Hinton et al. (2015)). Specifically, we
first evaluate the student model integrated with the proposed RED blocks by applying only KD loss, which is
denoted as ‘REDw/oLRED

+KD’. Then we apply both RED loss and KD loss into the same student model,
denoted as ‘RED (ours)+KD’. Performance improvement further illustrates the effectiveness of the proposed
RED loss, and it is orthogonal to existing methods.

Distillation Strategy We conduct the ablation study to compare different strategies during distillation,
including the feature alignment strategy and pooling stride of the initial layer. Specifically, we train the
ResNext18 network on the STL10 dataset with three different strategies while enlarging the stride of the first
pooling layer to ×2, ×4, and ×8. The results are shown in Table 9. ‘RED w/o Distillation’ is the baseline of
training an aggressive pooled ResNext18 without distillation. ‘RED w/ Stage-Align’ applies the traditional
stage-based feature alignment between the student and the teacher activations for distillation. ‘RED w/
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Pooling-Align’ is the proposed pooling-based feature alignment strategy. Compared to traditional stage-based
alignment, the proposed pooling-based alignment performs much better for the aggressive pooling strategy.

Table 9: Distillation Strategy Discussion on STL10 dataset with ResNext18.

Backbone: ResNext18 Top1 Acc. (%)
1st Pooling Stride ×2 ×4 ×8
RED w/o Distillation 81.43 79.07 73.16
RED w/ Stage-Align 80.59 81.99 74.00
RED w/ Pooling-Align (ours) 85.51 84.80 77.48

Table 10: Distillation w/o Aggressive
Pooling.

Method Top1 Acc. (%)
T: ResNext50 83.54
S: MbNetV3-Small 72.62
KD 77.06
FitNet 76.35
AT 76.76
SP 71.71
VID 74.83
RKD 73.96
AB 77.50
FT 71.71
NST 73.78
RED (ours) 79.71

Distillation w/o Aggressive Pooling In addition to aggres-
sive pooling, we conduct experiments to compare several distilla-
tion methods from the teacher network ResNext50 to the student
network MobileNetV3-Small without aggressive pooling on STL10
dataset. As shown in Table 10, our method still achieves the best
performance, illustrating the generalization ability of the proposed
distillation framework.

Comparison to Non-distillation Method We compare our
methods to quantization-aware-training (QAT) (Jacob et al.
(2018)) implemented in pytorch quantization package. For
ResNext18, we report the accuracy, latency and model size for
the teacher model, the quantized teacher model, and the student
model with 4× aggressive pooling distilled by our ReDistill frame-
work. As shown in Table 11, the proposed method achieves a lower
accuracy degradation and much lower latency compared to QAT.
Due to extra trainable RED blocks, the proposed model possesses
a larger model size.

Table 11: Comparison w/ Non-distillation Method.

Method Top1 Acc.(%) Latency (ms) Model Size (MB)
T: ResNext18 85.12 41.25 (±1.08) 21.470
T w/ QAT 83.37 37.79 (±0.27) 19.513
ResNext18 ×4 w/ RED (ours) 84.80 17.07 (±0.06) 25.557

5 Conclusions

We propose ReDistill, a novel residual encoded distillation method to reduce the peak memory of convolutional
neural networks during inference. Our method enables the deployment of these networks in edge devices,
such as micro-controllers with tight memory budget, while accommodating high-resolution images necessary
for intricate vision tasks. The reduced peak memory can also enable these networks to be implemented with
recently proposed in-sensor computing systems (Datta et al. (2022; 2023)), thereby significantly reducing
the bandwidth between the image sensor and the back-end processing unit. Our method is based on a
teacher-student distillation framework, where the student network using aggressive pooling with reduced
peak memory is distilled from the teacher network. For image classification, our method outperforms
existing response-based and feature-based distillation methods in terms of accuracy-memory trade-off. For
diffusion-based image generation, our method significantly reduces the peak memory of the denoising network
with slight degradation in the fidelity and diversity of the generated images. Our future works include
high-resolution image generation with our proposed method.
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