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ABSTRACT

With the powerful representation ability of neural networks, deep clustering (DC)
has been widely studied in machine learning communities. However, current re-
search on DC has rarely laid emphasis on the inter-cluster representation struc-
tures, i.e. ignoring the performance degradation caused by the low uncorrelation
between different clusters. To tackle this problem, a Uniform quasi-Low-rank Hy-
persphere Embedding based DC (ULHE-DC) method is proposed herein, which
promotes learning an inter-cluster uniform and intra-cluster compact representa-
tion in a novel geometric manner. Specifically, clusters are uniformly distributed
on a unit hypersphere via minimizing the hyperspherical energy of the centroids,
and the embeddings belonging to the same cluster are simultaneously collapsed to
a quasi-low-rank subspace through intra-cluster correlation maximization. Addi-
tionally, a pre-training based optimization scheme is proposed, in which an auto-
encoder (AE) is pre-trained and the parameters of the encoder of AE are inher-
ited to initialize the feature extractor for clustering, aiming at engaging the model
learning cluster-oriented representation more efficiently. Experimental results val-
idate the strong competitiveness of the proposed method, compared with several
state-of-the-art (SOTA) benchmarks.

1 INTRODUCTION

Clustering is widely studied in numerous machine learning communities (Ehsan & René, 2013;
Mathilde et al., 2018), such as computer vision, data mining, etc. As an unsupervised learning (Xu
& Wunsch, 2005) based technology, clustering aims at learning a partition, ensuring similar samples
belonging to the same cluster while grouping dissimilar ones into different clusters, and naturally
possesses the technological advantage (i.e. annotation-free) compared with supervised learning.
Conventional clustering methods, such as k-means (MacQueen, 1967), Gaussian mixture model
(GMM) (Bishop, 2006), kernel k-means (Liu et al., 2016) and spectral clustering (SC) (Ng et al.,
2001), group samples based on the intrinsically similar features or linear transformation of the raw
data. However, these methods suffer from issues caused by the inflexibility of the hand-crafted
feature or the incapacity to model the non-linear nature, and generally come under the performance
degeneration and high computational complexity when dealing with high-dimensional and large-
scale data.

Noting the superiority of deep neural networks (DNNs) on the ability of nonlinear representation,
deep clustering (DC) methods have been proposed recently, which integrate deep learning to ef-
fectively learn more discriminative representation and capture the non-linear property. In general,
the basic framework of DC typically comprises the auxiliary loss and clustering loss, respectively
learning feasible features and inducing the cluster formation of feature embeddings. Specifically,
the auxiliary loss can generally be the reconstruction loss (Dizaji et al., 2017; Lv et al., 2021), the
variational loss (Jiang et al., 2017), or the adversarial loss (Mukherjee et al., 2019). The clustering
loss can be the loss of any existing clustering algorithms, such as k-means, GMM, and hierarchical
clustering. Nonetheless, DC needs to tackle with the following two optimization problems: 1) Intra-
cluster compactness minimization. Features of samples belonging to the same cluster should be
highly correlated. 2) Inter-cluster discriminability maximization. Samples belonging to different
clusters should be embedded in the feature space with extremely low correlation.
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However, most existing DC approaches mainly focus on the first issue and learn suitable embed-
dings with the DNNs trained through a clustering-oriented loss function, which causes that hard
samples near the cluster boundaries cannot supply enough representation guidance. In addition, few
researches on DC explicitly pay attention to the second problem. Coincidentally, recent studies (Hu
et al., 2014; De et al., 2016) on the supervised tasks have similar properties, which performed the
minimization of the Euclidean distance between the deep intra-class embeddings but keeping the
inter-class ones apart. More recently, an orthogonal low-rank embedding (OLE) (Lezama et al.,
2018) loss was proposed to encourage the neural networks to learn more discriminative features,
subspaces of which are intra-class low-rank regularized but inter-class orthogonalized at the same
time. The OLE promotes the network to learn one-dim representations for each category but lim-
its the utilization of the whole space, compared with the uniform embeddings of cluster centroids.
Besides, the nuclear norm in the OLE loss function is non-smooth, which potentially raises difficul-
ties during the gradient descent based optimization. To alleviate these problems, a representation
learning framework based on maximal coding rate reduction (Yu et al., 2020) was proposed to learn
subspaces with maximal dimensions, trained with a determinant based smooth loss. Whereas, the
determinant operator will result in the computational complexity explosion when the batch size is
relatively large.

Addressing the above issues, a Uniform quasi-Low-rank Hypersphere Embedding based DC
(ULHE-DC) method is proposed in this paper, including pretraining and clustering two stages.
Firstly, an autoencoder is trained by minimizing the reconstruction and normalizing each embed-
ding on the unit hypersphere, transforming data to low dimensional representation space. Then, the
encoder is finetuned by using the basic clustering loss. Additionally, the ULHE is designed as a
regularizer for the clustering loss, composed of the minimization of the hyperspherical energy be-
tween cluster centroids and the maximization of the correlation between members of each cluster,
which respectively stimulate the learning preference of the model to uniformly embed the cluster
centroids on hypersphere, enhancing the inter-cluster discriminability and diversity, and generate
quasi-low-rank and compact embeddings of members belonging to the same cluster. In particular,
the formulation of ULHE based loss is smooth and computationally friendly. Main contributions
can be summarized as follows:

• A novel framework named Uniform quasi-Low-rank Hypersphere Embedding based DC
(ULHE-DC) is proposed to optimize the cluster-oriented presentation structure, which can
be efficiently implemented with a mini-batch based learning strategy.

• ULHE is established to enhance the inter-cluster discriminability and diversity with min-
imizing the hyperspherical energy, encouraging the centroids being uniformly embedded
on the hypersphere; meanwhile, it enforces the feature embeddings of the same cluster
squashed in a quasi-low-rank subspace through the maximization of intra-cluster correla-
tion.

• Extensive experiments validate the effectiveness and superiority of ULHE-DC via compar-
ing with several state-of-the-art (SOTA) DC approaches on four benchmarks.

2 RELATED WORK

Deep Clustering. DC is a family of clustering algorithms that adopt DNNs to learn cluster-oriented
representations. From the perspective of the type of DNNs, DC approaches can be divided into four
categories: AE-based, Variational autoencoder (VAE) (Kingma & Welling, 2013) based, generative
adversarial network (GAN) (Goodfellow et al., 2014) based, and clustering DNN (CDNN) based.
As an extensively studied branch of DC, AE-based DC integrates prior knowledge into the objective
function of AE. The clustering loss functions are mainly the objective of k-means (Yang et al., 2017;
Fard et al., 2020), the variant objective of k-means (Jabi et al., 2021), or the other kinds of loss (Ji
et al., 2017). The superiority of AE-based DC is that the scheme of conventional clustering and
the regularization of feature embedding can be reasonably employed to the training procedure of
AE. VAE-based DC (Jiang et al., 2017; Dilokthanakul et al., 2016) prefers learning a representation,
which follows a predefined distribution of the cluster structure, but suffers from high computational
complexity. GAN-based methods (Chen et al., 2016; Zhou et al., 2018; Mukherjee et al., 2019)
enforce the embedding of the deep feature in a similar way as VAE-based ones. However, the model
collapse problem and the training challenge of GAN also exist. CDNN-based algorithms (Peng
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et al., 2017; Guérin & Boots, 2018; Deng et al., 2023) train the extractor merely with the clustering
loss, which may result in obtaining corrupted feature space, that is, a convergent loss possibly makes
no sense. Recently, those existing DC approaches have been proposed mainly from the perspective
of network architectures, various clustering loss or tricks in deep learning. The proposed ULHE reg-
ularizer is introduced to restrain the latent embeddings, which keeps intra-cluster members compact
and inter-cluster ones relatively uniform on a unit hypersphere.

Minimum Hyperspherical Energy (MHE). Drawing inspiration from the Thomson problem in
physics, MHE (Liu et al., 2018) is defined to seek the equilibrium state of the distribution of mutually
repelling electrons through minimizing the potential energy. More generally, lower energy indicates
more diverse and more uniform distribution. MHE has been extensively researched, which shows
noteworthy effectiveness in many applications. MHE was firstly proposed and used as a generic
regularization for neural networks in (Liu et al., 2018), regularizing the networks to avoid represen-
tation redundancy. Analogously, the compressive minimum hyperspherical energy (Lin et al., 2020)
and the hyperspherical uniformity regularization (Liu et al., 2021) were established. A MHE-based
active learning algorithm (Cao et al., 2023) was designed to effectively characterize the decision
boundaries for data learning. Besides, MHE has been widely applied in image recognition (Chen
et al., 2020; Li et al., 2020), speaker verification, adversarial robustness (Pang et al., 2019), etc. In
DC, maximizing the inter-cluster discriminability is approximated to enhance the diversity of clus-
ters, which can be implemented through embedding the centroids as evenly as possible, and MHE
provides a solution from a geometric perspective.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

Given an unlabeled dataset X = {xi ∈ RD}Ni=1, deep clustering aims to assign N samples to K
clusters. Note thatK is priorly given in this study. In deep clustering, samples are generally mapped
to a much lower dimension feature space with an embedding network Fw := xi → zi, zi ∈ Rd(d�
D). With parameters w well optimized by minimizing the clustering loss function, the embedding
network is expected to extract more suitable feature for clustering.

The proposed ULHE-DC method aims to learn cluster-oriented features based on an AE networks
and includes the pretraining and clustering two stages. Firstly, the AE is pretrained to extract fea-
sible features with the reconstruction loss Lrec and a normalized loss Lnorm to embed data on
a unit hypersphere. After pretraining, ULHE-DC finetunes the encoder part of AE both with the
clustering objective and the ULHE based regularization loss Lunif and Lcmpt, making the learned
representations cluster-friendly.

3.2 BASIC DEEP CLUSTERING MODEL

Pretraining Stage. The AE, composed of the encoder network Fw(·) and the decoder network
Gθ(·), is trained towards minimizing the sum of Lrec and Lnorm, which are respectively formulated
as

Lrec = Exi∼X ‖xi −Gθ(Fw(xi))‖22 (1)

and
Lnorm = Exi∼X (‖Fw(xi)‖2−1)2, (2)

where ‖·‖2 denotes the l2-norm projection, and the whole pretraining loss is

Lnorm−rec = Lrec + Lnorm. (3)

In pretraining, the encoder Fw(·), serves as a powerful feature extractor to transform the data xi to
a low dimensional embedding zi. As the pretraining scheme is not task-oriented, hence zi is not
suitable for clustering and Fw(·) needs to be finetuned with a clustering loss.

Clustering Stage. On account of the representation embedded on hypersphere, the clustering objec-
tive is similar to that of k-means, in which the Euclidean distance is replaced by the cosine distance,
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and can be defined as

min
w,M,s

Exi∼X 1−cos(Fw(xi),Msi),s.t.si∈{0,1}K,1Tsi=1. (4)

where M = {mk|mk ∈ Rd×1}Kk=1 ∈ Rd×K denotes the centroid matrix, i.e. each column corre-
sponding to a cluster center, si ∈ RK×1 is the assignment of xi and 1 is a column vector with all the
elements set to 1. First and foremost, the centroid matrix M is initialized with a variant of k-means,
the objective of which can be rewritten as

min
M,s

Exi∼X 1−cos(Fw(xi),Msi),s.t.si∈{0,1}K,1Tsi=1. (5)

It performs clustering through alternatively updating the assignments s and cluster centroids M re-
spectively with

sj,i =

1, if j = argmin
k={1,2,...,K}

1−cos(Fw(xi),mk)

0, otherwise,
(6)

where sj,i is the j-th element of si, mk is the k − th cluster centroid, and

mk = Norm

(∑
i∈Ck

Fw(xi)
‖Fw(xi)‖

)
, (7)

where Ck is the index set of samples assigned to the k-th cluster and Norm(·) is the function
to normalize the norm of a vector to 1. Nevertheless, the above updation of cluster centroids is
problematic, since the current samples in the mini-batch is not enough to model the global cluster
structure and the assignments might change. To alleviate this problem, the k-th centroid m(t)

k in the
t-th iteration is updated by the weighted m(t−1)

k and the temporary centroid m̂(t)
k of newly assigned

samples as follows:

m(t)
k = Norm

(
m(t−1)
k +

K|C(t)k |
N

m̂(t)
k

)
, (8)

where |C(t)k | is denoted as the number of samples assigned to the k-th cluster in the t-th iteration and
m̂(t)
k can be calculated by Eq. (7).

With the basic deep clustering model, it implements clustering via alternatively optimizing Eq. (4)
to learn cluster-oriented representation and updating the assignments s the centroids matrix M re-
spectively by Eq. (6) and Eq. (8). In contrast to the supervised learning, it can not guarantee that
samples currently assigned to the same cluster remain in the same one during the whole clustering
stage. Therefore, it makes restricted contribution to learning discriminative and diverse inter-cluster
representation structures merely relying on optimizing the basic clustering objective in Eq. (4). To
accomplish this aim, a ULHE based regularization loss is added to the above objective.

3.3 UNIFORM QUASI-LOW-RANK HYPERSPHERICAL EMBEDDING

Towards learning a more cluster-friendly representation, the ULHE regularizer is incorporated to
the clustering objective mentioned above, which indeed includes an inter-cluster uniformity loss,
enhancing the centroids uniformly embedded within the representation space, and an intra-cluster
compactness loss, enforcing a quasi-low-rank constraint on features of the same cluster.

Inter-cluster Uniformity Regularization. Aiming at ensuring the discriminability and diversity
between clusters, it is intuitive that all the clusters are expected to be uniformly distributed in the
representation space. Inspired by the well-known Thomson problem, the goal can be accomplished
with the minimization of the potential energy of all the centroids. Given K cluster centroids, i.e.
M = [m1,m2, ...,mK ]T, then their hyperspherical energy can be formulated as

Ev(mk|Kk=1) : =

K∑
i=1

K∑
j=1

fv(‖mi −mj‖)

=


∑

i>j
‖mi −mj‖−v, v > 0∑

i>j
log(‖mi −mj‖−1), v = 0

,

(9)
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where fv(·) is an energy function. It is obvious that the argument of the hyperspherical energy
function Ev only contains the parameter of the encoder network, namely, w. Hence, the minimization
problem is equivalent to optimizing w. In order to simplifying the problem, v is set to 2. Then, the
optimization is defined as

argmin
w

E2(mk|Kk=1) =
∑

i>j
‖mi −mj‖−2, (10)

which can be simplified to

argmin
w

E2(mk|Kk=1) =
∑

i>j
‖mi −mj‖−2

=
∑

i>j
1/
(
‖mi‖2+‖mj‖2−2mi

Tmj

)
=
∑

i>j
1/
[
2(1−mi

Tmj)
]
,

due to ‖mk‖ = 1, for k = 1, 2, ...,K. More specifically, as a result of

sum(1/
[
2(1−MTM

]
) =

∑
i>j,i=j,i<j

1/
[
2(1−mi

Tmj)
]
,

where sum(·) is a function to calculate the sum of all the elements of a matrix,∑
i>j

1/
[
2(1−mi

Tmj)
]
=
∑

i<j
1/
[
2(1−mi

Tmj)
]

and
∑
i=j 1/

[
2(1−mi

Tmj)
]
= 0, the inter-cluster uniformity regularization loss can be formu-

lated as
Lunif (w) = sum(1/(1−MTM)), (11)

according to Eq. (10). Note that the centroid matrix M in Lunif is computed with samples in the
current mini-batch to accommodate the batch optimization.

Intra-cluster Compactness Regularization. Considering that Lunif is calculated with centroids
in the mini-batch, it may be unstable while the intra-cluster embeddings are not enough compact.
Consequently, it is of great necessity that the learned intra-cluster features should be highly cor-
related and coherent, i.e. each cluster should only span a low-rank subspace. which is equiv-
alent to maximizing the intra-cluster hyperspherical energy. Or rather, the total linear correla-
tion (or similarity) of feature vectors between each other should be as high as possible. Let
Zk = {Fw(xi)|i ∈ Ck} ∈ Rd×|Cik| denote the embedding matrix of data in the k-th cluster, and
it is readily comprehensible that the larger intra-cluster energy is, the more compact feature embed-
dings zi are, as opposed to MHE. Moreover, maximization of the intra-cluster energy means that the
cosine similarity of features in the same cluster should be at a high level, which can be formulated
as

Lcmpt(w) =
1

K

K∑
k=1

sum(1− ZT
kZk). (12)

Next, a brief proof is given to indicate that minimizing Lcmpt provides a guidance for Fw(·) to
learn a quasi-low-rank structure in the intra-cluster representations. According to the Eckart-Young
Theorem, suppose Zk = A = UΣVT is the singular value decomposition (SVD) of intra-cluster
embeddings Zk, with singular values σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0. Let r < R = rank(A) and the
truncated matrix Ar =

∑r
i=1 σiuiv

T
i , then for any matrix B of rank r, the minimal error of Frobenius

norm is achieved with Ar:

min
rank(B)=r

‖A− B‖2F = ‖A− Ar‖2F =
∑p

i=r+1
σ2
i ,

where ‖ · ‖F denotes the Frobenius norm projection. That is, Ar is the best low-rank approximation
of A and the error ‖Ar−B‖2F can be further minimized through the optimization of w. In the case of
the limit situation, suppose r = 1, it indicates that rank(Zk) ≈ 1 if

∑p
i=2 σ

2
i has been minimized to

a small value, which means that the embeddings {Fw(xi)|i ∈ Ck} maintain a relatively small cosine
distance between each other. Due to ‖Fw(xi)‖2 = 1, the formulation 1

2sum(1 − ZT
kZk) is indeed

the total cosine distance of samples in the k-th cluster. Therefore, minimizing the intra-cluster
compactness regularization loss Eq. (12) will squash the examples in the same cluster to a quasi-
low-rank subspace, compared with the OLE. Besides, it avoids the extremely complex computation
of singular value of Zk.
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3.4 OPTIMIZATION

The training procedure can be clearly compartmentalized to two stage, i.e. the pretraining and
clustering stage. In the following, the optimization strategy and stopping criterion are introduced.
Furthermore, the computational complexity is analyzed.

Optimization Strategy. In the pretraining stage, the encoder Fw(·) can be directly optimized by the
SGD optimizer and backpropagation. During clustering, the assignments s and the centroid matrix
M are respectively updated with Eq. (6) and Eq. (8) when w fixed. Then with s and M fixed, w is
updated by minimizing the weighted objective

min
w

Exi∼X [1− cos(Fw(xi),Msi)] + λ0Lnorm

+λ1Lunif+λ2Lcmpt, s.t.si∈{0, 1}K ,1Tsi=1,
(13)

where λ0, λ1 and λ2 are weights to balance the basic clustering objective (4), the normalized loss
Lnorm, the inter-cluster uniformity regularization loss Lunif and the intra-cluster compactness reg-
ularization loss Lcmpt.
Stopping Criterion. For the sake of obtaining a stable but not degenerated model, the clustering
training will stop, if the change rate of cluster assignments between two successive iterations is
lower than a manually set threshold η. Then, the stopping criterion is defined as

1− sum(s(t−1) � s(t))/N < η, (14)

where � is signfied as an element-wise multiplication operator for two matrices.

Computational Complexity. Finally, the computational complexity of the proposed ULHE-DC
is analyzed. Suppose Ñ denotes the maximum number of neurons in each layer of the AE and
the pretraining epochs is T1, then the time complexity of pretraining AE is O(T1Ñ2N). For the
clustering stage, the time complexity of the initialization of M and s is O(T2KdN), where T2 is the
iterations of the mentioned variant of k-means, and those of updating s and M are O(TKdN) and
O(TdN), respectively. Via minimizing Eq. (13), w is updated with a relatively high computational
complexity O(TÑ2dN2/K), due to the matrix multiplication in the ULHE based regularization
loss. The total time complexity of ULHE-DC is O(T1Ñ2N + (T2 + T )KdN + TÑ2dN2/K)).
Though the total time complexity is not linear to the number of samples N , the efficiency can be
improved through the mini-batch optimization.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Benchmark Datasets. To validate the proposed method performing well on various datasets, four
image datasets are chosen to conduct the experiments , details of which are described as follows. The
first dataset is MNIST-full (Yann et al., 1998), which totally consists of 70,000 handwritten digits,
including 10 categories and each monochrome image with the size of 28 × 28. The second one is
MNIST-test, which only contains the testing set of MNIST-full, namely 10,000 samples. USPS is
selected as the third, composed of 9298 16×16 handwritten digit images in total and divided into 10
classes, which is then split into 7291 training images and 2007 test images. The last one is Fashion
(Han et al., 2017), which is more complicated and collects 70,000 28 × 28 gray images, including
10 categories of articles on Zalando.

Evaluation Metrics. The clustering ACCuracy (ACC) and Normalized Mutual Information (NMI)
are applied as standard metrics to evaluate clustering approaches. The metric of ACC is defined as
the best mapping between ground truth y and cluster assignments ŷ, which can be formulated as

ACC = max
m

∑N
i=1 1(yi = m(ŷi))

N
, (15)

where yi and ŷi are respectively the true label and the cluster assignment of sample xi, and m is an
over all one to one mappings between true labels and cluster assignments. which can be efficiently
calculated by the Hungarian algorithm (Kuhn, 2005). The metric of NMI, measuring the normalized
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Table 1: Comparison of clustering performances on four datasets. The best value and the second best vale
are respectively highlighted in bold and underlined. The result of ULHE-DC is acquired with λ0 = 2.00,
λ1 = 0.08 and λ2 = 0.40.

Methods MNIST-full MNIST-test USPS Fashion
ACC NMI ACC NMI ACC NMI ACC NMI

k-means 0.5381 0.5047 0.5446 0.5013 0.6754 0.6307 0.4720 0.5114
GMM 0.4270 0.3563 0.5142 0.4815 0.5631 0.5373 0.5692 0.5615

SC 0.6560 0.7310 0.6600 0.7040 0.6490 0.7940 0.5080 0.5750
DEC 0.8630 0.8340 0.8560 0.8300 0.7620 0.7670 0.5180 0.5460

JULE∗ 0.9640 0.9130 0.9610 0.9150 0.9500 0.9130 0.5630 0.6080
DEPICT∗ 0.9650 0.9170 0.9630 0.9150 0.9241 0.9098 0.4406 0.4213

ClusterGAN 0.9500 0.8900 – – – – 0.6300 0.6400
VaDE 0.9389 0.8734 – – 0.5660 0.5120 0.5780 0.630
DAC∗ 0.9780 0.9350 – – – – – –

DSC-DAN∗ 0.9780 0.9410 0.9800 0.9460 0.8690 0.8570 0.6620 0.6450
DDC-DA∗ 0.9690 0.9410 0.9700 0.9270 0.9770 0.9390 0.6090 0.6610

SENet∗ 0.9680 0.9180 – – – – 0.6970 0.6630
DeepDPM 0.9793 0.9381 – – 0.8950 0.8817 0.6242 0.6772

DCCF∗ 0.9741 0.9332 – – 0.8553 0.8251 0.6212 0.6458
DML-DSL∗ 0.9636 0.9124 – – – – 0.6320 0.6480

ULHE-DC 0.9836 0.9613 0.9812 0.9485 0.9788 0.9371 0.6440 0.6739
±0.0015 ±0.0023 ±0.0027 ±0.0014 ±0.0019 ±0.0030 ±0.0125 ±0.0287

similarity between the ground truth and the cluster assignment of the same sample, is defined as

NMI =
I(y, ŷ)

max{H(y), H(ŷ)}
, (16)

where I(·) and H(·) denotes the mutual information and entropy, respectively. Both of the two
metrics are normalized to the range of [0, 1]. Note that the higher the metrics are, the better the
clustering performance is.

4.2 EXPERIMENTAL SETTING

About the network structure, ULHE-DC includes seven hidden fully connected layers with dimen-
sions 500, 500, 2000, 10, 2000, 500, 500 respectively, the input and output dimensions of which are
those of the input samples. In addition, all the hidden layers are activated by the rectified linear unit
(ReLU) (Glorot et al., 2011).The experiments are all implemented with the PyTorch 2.0 framework
on a single NVIDIA GeForce RTX 4090 with 24-GB RAM. In the pretraining stage, the AE is end-
to-end trained wirh the SGD optimizer, the momentum of which was set to 0.90, and the batch size,
the learning rate and training epochs are respectively set to 256, 0.10 and 1000. During clustering,
the optimizer and batch size is with the same setting as above, while the learning rate and training
iterations are changed to 0.002 and 300. Besides, hyperparameters λ0, λ1 and λ2 are respectively
set to 2.00, 0.08 and 0.40 to balance the components of Eq. (13). The threshold η in Eq. (14) were
set to 0.001. To stable the process of clustering, a simple self-paced learning (Kumar et al., 2010)
schedule was introduced, in which samples were orderly fed into the model in three batches from
easy to hard and the sample weights were updated every 100 epochs. More specifically, the closer
the sample is to the cluster center, the easier it is. To obtain stable experiment results of the proposed
method, all experiments were carried out five times on each dataset.

4.3 PERFORMANCE COMPARISON

The clustering performance of the proposed method, ULHE-DC, is compared with several base-
line and SOTA DC approaches, which include k-means (MacQueen, 1967), GMM (Bishop, 2006),
SC (Ng et al., 2001), deep embedded clustering (DEC) (Xie et al., 2016), joint unsupervised learn-
ing (JULE) (Yang et al., 2016), deep embedded regularized clusTering (DEPICT) (Dizaji et al.,

7
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Table 2: Clustering performance with different regularization loss functions on MNIST-full.

Model ULHE Loss Metrics
Lunif Lcmpt ACC NMI

1 – – 0.9186 ± 0.0020 0.8747 ± 0.0035
2 X – 0.9372 ± 0.0041 0.9011 ± 0.0089
3 – X 0.9665 ± 0.0012 0.9329 ± 0.0018
4 X X 0.9836 ± 0.0015 0.9613 ± 0.0023

2017), clustering with GAN (ClusterGAN) (Mukherjee et al., 2019), variational deep embedding
(VaDE) (Jiang et al., 2017), deep adaptive clustering (DAC) (Chang et al., 2017), dual AE based deep
spectral clustering (DSC-DAN) (Yang et al., 2019), deep density-based clustering (DDC-DA) (Ren
et al., 2020), SC with self-expressive network (SENet) (Zhang et al., 2021), deep nonparametric
clustering method (DeepDPM) (Ronen et al., 2022), contractive feature representation based DC
(DCCF) (Cai et al., 2022) and deep Multirepresentation Learning (DML-DSL) (Sadeghi & Arman-
fard, 2023). The clustering results of all methods are reported in Table 1. As far as the baseline
algorithms are concerned, all the reported results were acquired through running the released code
except the ones of methods marked by (*) on top, which are excerpted from the corresponding paper.
Results marked by “–” denotes that they are unavailable from the paper.

As shown in Table 1, DC approaches, from DEC to ULHE-DC, outperform the conventional ones
(k-means, GMM and SC) by a large margin in most situations, benefiting from the superior ability
of feature extraction. Moreover, even on the most difficult dataset Fashion, ULHE-DC exceeds the
best of shallow clustering methods GMM by 7.48% and 11.24%, respectively on ACC and NMI.
Compared with other DC methods, it can be noticed that ULHE-DC achieves the best performance
in terms of ACC or NMI on all the four datasets, except NMI on USPS and ACC on Fashion.
Especially when performing on the dataset MNIST-full and MNIST-test, the SOTA accuracies are
both increased to 98.00%. In particular, on the most widely used MNIST-full, it exceeds the sec-
ond best DeepDPM performance by 0.43% and 2.03% on ACC and NMI, respectively. Even with
regard to the Fashion, which is the most difficult among the four datasets, ACC of ULHE-dc is
not the best whereas comparable, but what is more remarkable is that ULHE-DC exceeds SENet
by a margin of 1.09% on NMI. Considering the different inter-class discriminability, hard sam-
ples can be more easily assigned with incorrect but the same label, because of the implement of
Intra-cluster Compactness Regularization. That is, the distribution of {p(y|ŷ; y 6= ŷ)}K−1 is un-
balanced, so the conditional entropy H(y|ŷ) is relatively small. Moreover, NMI can be written as
NMI = 2I(y, ŷ)/(H(y)+H(ŷ)) = 2(H(y)−H(y|ŷ))/(H(y)+H(ŷ)).Due to the fact that datasets
in the experiments are balanced, the denominators of NMIs on different methods are approximate
while the ACCs close to each other. Hence, the enhancement in NMI is more noteworthy.

4.4 ABLATION STUDY

Two key components exist in the proposed ULHE-DC, the inter-cluster uniformity regularization
loss Lunif and the intra-cluster compactness regularization loss Lcmpt. To analyze the contribution
of the components, the ablation study is conducted on MNIST-full. As shown in Table 2, different
strategies of training models are: 1) Mode-1, the pretrained Fw(·) with the clustering objective Lclus
(Eq. (4)), named Fw(·) + Lclus; 2) Mode-2 w/o Lcmpt, ULHE-DC trained only without Lcmpt; 3)
Mode-3 w/o Lunif , ULHE-DC trained only without Lunif ; 4) Mode-4, ULHE-DC trained by the
clustering objective Eq.(13). Table 2 represents the performance of different strategies for training
our model, with λ0, λ1 and λ2 respectively set to 2.00, 0.08 and 0.40.

Some conclusions can be observed from Table 2. Above all, applying the inter-cluster uniformity
regularization via adding Lunif to Model-1 and Model-3 could consistently improve the perfor-
mance with the increase of 1.86% and 1.71% on ACC, respectively. It is mainly because that mini-
mizing Lunif could assist the model to learn more discriminative and diverse inter-cluster represen-
tations. However, Lunif is relatively sensitive while the members of the same cluster are dispersed
in a subspace, which results in the degradation of performance stability. Secondly, the intra-cluster
compactness regularization makes more contribution for the clustering performance. Comparing
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(a) ACC (b) NMI

Figure 1: ACC and NMI of ULHE-DC with different λ1 and λ2 on MNIST-full.

Table 3: Clustering performance with different hyperparameter settings on MNIST-full.

λ2

Res. λ1 0.02 0.05 0.08 0.13 0.20
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

0.10 0.9422 0.9122 0.9543 0.9343 0.9615 0.9589 0.9519 0.9531 0.9490 0.9502
0.25 0.9479 0.9179 0.9608 0.9608 0.9752 0.9532 0.9624 0.9624 0.9546 0.9546
0.40 0.9540 0.9011 0.9768 0.9588 0.9836 0.9613 0.9733 0.9633 0.9657 0.9607
0.60 0.9477 0.9077 0.9699 0.9299 0.9811 0.9321 0.9681 0.9381 0.9610 0.9410
0.80 0.9345 0.8845 0.9474 0.9074 0.9661 0.9161 0.9580 0.9180 0.9563 0.9363

with the basic clustering model in this paper, the results of ACC and NMI are respectively improved
by margins of 4.79% and 5.82%. Moreover, the ablation study of ULHE-DC suggests that these two
types of representation regularization are complementary to each other, and better performance as
shown in the last row of Table 2 can be yielded by combining them.

4.5 HYPERPARAMETER ANALYSIS

An orthogonal investigation on hyperparameter (λ1 and λ2) sensitivity is also conducted on MNIST-
full. Due to the limit of computing resource and time consumption, either of λ1 and λ2 is set to 5
values, which are around the corresponding empirical best values and results of the 25 experiments
are shown in Table 3, in which the above table and the other one respectively represents the results
of ACC and NMI from different settings of λ1 and λ2, i.e. λ1 ∈ {0.02, 0.05, 0.08, 0.13, 0.20} and
λ2 ∈ {0.10, 0.25, 0.40, 0.60, 0.80}. As seen from Figure 1, λ1 is more sensitive than λ2 on both
ACC and NMI, and it is not appropriate to set λ1 with a relatively large value. In brief, it intuitively
demonstrates that ULHE-DC maintains acceptable results and relative stability with most reasonable
and empirical settings.

CONCLUSION

In this paper, a uniform quasi-low rank embedding based deep clustering method (ULHE-DC) is
proposed. To address the problem of low uncorrelation between different clusters, an inter-cluster
uniformity regularization is applied to enhance the discriminability and diversity of the represen-
tation structures, which is implemented via the minimization of the hyperspherical energy of the
centroids. Additionally, ULHE-DC establishes an intra-cluster compactness regularization to em-
bed features of the same cluster in a quasi-low-rank subspace, and simultaneously improve the in-
stability potentially existing in the optimization of the uniformity regularization loss. Furthermore,
an efficient mini-batch based optimization strategy is designed for ULHE to yield better clustering
performance. The experimental results show that ULHE-DC outperforms those SOTA approaches.
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A FRAMEWORK OF ULHE-DC

The proposed ULHE-DC method, which performs image clustering based on deep learning, in-
cludes two stages, i.e. pretraining and clustering. In the pretraining stage, a fully connected AE is
pretrained with the normalized loss Lnorm and the reconstruction loss Lrec to learn feasible fea-
tures. In particular, Lnorm enforces the data points embedded on a unit hypersphere. For clustering,
the task-specific representation is learned towards the optimization of the clustering objective and
the weighted sum of inter-cluster uniformity loss Lunif and intra-cluster compactness loss Lcmpt,
simultaneously updating the assignments and centroids. Lunif encourages the distribution of cluster
centroids as uniform as possible, while Lcmpt is designed to improve the intra-cluster compactness.
The framework is shown as Figure 2.

Figure 2: ULHE-DC Framework.

B THEORETICAL AND APPLIED ANALYSIS OF THE EXPONENT v IN MHE

In Sec. 3.3, the exponent v of the hyperspherical energy has been set to 2. Herein, two aspects of
explanations explanation are given.

Firstly, v is not suitable to be set with a large value in theory. Given K cluster centroids, i.e.
M = [m1,m2, ...,mK ]T, the hyperspherical energy Ev(mk|Kk=1) can be written as follows,

Ev(mk|Kk=1) : =

K∑
i=1

K∑
j=1

fv(‖mi −mj‖)

=


∑

i>j
‖mi −mj‖−v, v > 0∑

i>j
log(‖mi −mj‖−1), v = 0

.

Definition 1 The neighborhood set of the k-th centroid mk, signed as U(k), is composed of the
indexes of several centroids. If k′ ∈ U(k), it should satisfy the condition 0 < ‖mk′ −mk‖ < ε.
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According to Definition 1, for any k ∈ {1, 2, . . . ,K} and v > 0, it can be obtained that

Ev(mk|Kk=1) =
∑

i>j
‖mi −mj‖−v

=

K∑
i=1

∑
i>j,j∈U(i)

‖mi −mj‖−v +
K∑
i=1

∑
i>j,j∈U(i)

‖mi −mj‖−v,

where U(i) is the complementary set of U(i), i.e. U(i) + U(i) = {1, 2, . . . ,K}. Hence, if v is set
with a large value, then

‖mi −mj‖−vj∈U(i) > ‖mi −mj‖−vj∈U(i)
.

Actually, the left and right terms of the above inequation respectively denote the local and the ap-
proximately global hyperspherical energy. When K and v are relatively large, the minimization of
Ev(mk|Kk=1) will tend to make the distribution of cluster centers more locally uniform, rather than
globally.

Secondly, in the formulation of Ev(mk|Kk=1), the calculation of Euclidean distance between the cen-
troids is necessary. But when v = 2, MHE can be derived into a concise and intuitive formulation,
free of the complex arithmetic exponent.

C LEARNING STRATEGY OF ULHE-DC

The training procedure can be clearly compartmentalized to two stage and the summarization of the
whole algorithm is presented in Algorithm. 1.

Algorithm 1 Uniform quasi-Low-rank Hypersphere Embedding based Deep Clustering (ULHE-
DC)
Input: Dataset X = {xi ∈ RD}Ni=1, the number of clusters K; Maximum iterations T .
Output: Clustering assignments s.
1: Step 1 Pretraining
2: Initialize w through minimizing Eq. (3), i.e.,

Lnorm−rec = Exi∼X ‖xi −Gθ(Fw(xi))‖22+Exi∼X (‖Fw(xi)‖2−1)2.
3: Initialize M and s through implementing the variant of k-means on the embedding Fw(xi).
4: Step 2 Clustering
5: Initialize hyperparameters λ0, λ1 and λ2.
6: for t = 1 to T do
7: Update the cluster assignments s with Eq. (6), i.e.,

sj,i =

1, if j = argmin
k={1,2,...,K}

1−cos(Fw(xi),mk)

0, otherwise.
8: Update the centroid matrix M with Eq. (8), i.e.,

m(t)
k = Norm

(
m(t−1)
k +

K|C(t)k |
N m̂(t)

k

)
.

9: Update the network parameters w with Eq. (13), i.e.,
min

w
Exi∼X [1− cos(Fw(xi),Msi)] + λ0Lnorm + λ1Lunif + λ2Lcmpt,

s.t.si ∈ {0, 1}K ,1Tsi = 1.

10: if 1− sum(s(t−1) � s(t))/N < η, then
11: Save the parameters w and stop training.
12: end if
13: end for

D CONSISTENCY OF HYPERSPHERE EMBEDDING AND CLUSTERING

One popular working assumption for deep clustering is that the distribution of each class has rela-
tively low-dimensional intrinsic structures, i.e. the equivalent structures of samples are invariant to
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(a) (b)

Figure 3: Cosine similarity between learned features before (left) and after (right) clustering.

certain classes of deformation. Results shown in Figure 3, Figure 4 (b) and (f), have coarsely sup-
ported the assumption. Specifically, we have conducted experiments on 5000 images (500 per class
and sorted by class) sampled from MNIST-test. Cosine similarity matrices between embeddings
before and after clustering were computed and plotted as heatmaps. Though the samples were pro-
jected into a hypersphere space, the discriminability of between-class features is relatively obvious
in the left of Figure 3, which is consistent with that (the right of Figure 3) after clustering of data.

E VISUALIZATION OF ANLATION STUDY

With the t-SNE technique (Laurens & Hinton, 2008), the corresponding clustering visualization on
a subset of MNIST-full is depicted in Figure 4, including that of the raw data and features extracted
by the pretrained Fw(·). It is mainly because that minimizing Lunif could assist the model to learn
more discriminative and diverse inter-cluster representations, which can be validated through the
observation of Figure 4(c) to Figure 4(f).

(a) Raw data (b) Fw(·) (c) Fw(·)+Lclus

(d) w/o Lcmpt (e) w/o Lunif (f) ULHE-DC

Figure 4: Visualization on a subset of MNIST-full with 2,000 examples for models in the ablation study.
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