

000 001 002 003 004 005 IR-AGENT: EXPERT-INSPIRED LLM AGENTS FOR 006 STRUCTURE ELUCIDATION FROM INFRARED SPECTRA 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Spectral analysis provides crucial clues for the elucidation of unknown materials. Among various techniques, infrared spectroscopy (IR) plays an important role in laboratory settings due to its high accessibility and low cost. However, existing approaches often fail to reflect expert analytical processes and lack flexibility in incorporating diverse types of chemical knowledge, which is essential in real-world analytical scenarios. In this paper, we propose IR-Agent, a novel multi-agent framework for molecular structure elucidation from IR spectra. The framework is designed to emulate expert-driven IR analysis procedures and is inherently extensible. Each agent specializes in a specific aspect of IR interpretation, and their complementary roles enable integrated reasoning, thereby improving the overall accuracy of structure elucidation. Through extensive experiments, we demonstrate that IR-Agent not only improves baseline performance on experimental IR spectra but also shows strong adaptability to various forms of chemical information. The source code for IR-Agent is available at <https://anonymous.4open.science/r/IR-Agent-ICLR26-CD59>.

1 INTRODUCTION

Spectral analysis provides critical clues for the elucidation of unknown materials (Huang et al., 2021; Li & Kang, 2020). In particular, spectroscopic techniques such as Infrared Spectroscopy (IR), Mass Spectrometry (MS), and Nuclear Magnetic Resonance Spectroscopy (NMR) are widely used for elucidating molecular structures (Li & Kang, 2020). For example, IR reveals details about chemical bonds and substructures (Griffiths, 2006), MS offers molecular weight and fragmented molecular structures (Lee, 1998), and NMR provides in-depth structural information, including stereochemistry (Li & Kang, 2020; Klein, 2013). Although IR spectroscopy lacks comprehensive chemical information such as molecular weight, stoichiometry, and stereochemical details compared to MS and NMR, it is frequently utilized in the initial phase of analysis due to its low cost, speed, and high accessibility in laboratory settings (Coates et al., 2000; Mistek & Lednev, 2018). Despite the ease and affordability of acquiring IR spectra, their interpretation remains a challenging and time-consuming task that requires extensive domain knowledge and expert experience (Varmuza et al., 1999; Jung et al., 2023).

To automate IR spectra analysis, various machine learning (ML)-based approaches have been explored. Early ML approaches for IR spectra analysis primarily focus on identifying functional groups, achieving high predictive accuracy. Specifically, convolutional neural network (CNN) architectures are employed to classify functional groups from IR spectra (Jung et al., 2023; Wang et al., 2023), and the M-order Markov property is utilized to construct IR spectrum graphs for tasks such as material class classification and functional group detection (Na & Rho, 2024). While functional group classification enables rapid and simple characterization of compounds, it remains insufficient for tasks such as material discovery or identification of unknown material, underscoring the necessity of complete molecular structure elucidation.

More specifically, molecular structure elucidation—which aims to generate the full SMILES representation of an unknown molecule—requires more comprehensive molecular information such as atomic composition, bonding information, and the connectivity of substructures, making it a substantially more complex task compared to functional group classification (Xue et al., 2023). As a result, only a few recent studies have explored early approaches, including predicting molecular structures as SMILES sequences by leveraging Transformer models with chemical formula information (Alberts et al., 2024a; Wu et al., 2025), exploring reinforcement learning with IR spectra alone (Ellis et al.,

054 2023), and extending such methods to integrate both IR and NMR spectra (Devata et al., 2024).
 055 Despite these early advances, these methods generally rely on fixed and predefined input formats,
 056 which restricts their flexibility in accommodating diverse types of chemical information.
 057

058 In real-world analytical scenarios, IR spectra are often accompanied by diverse chemical information,
 059 such as atom types inferred from synthesis pathways, the number of carbon atoms, or molecular
 060 scaffolds (i.e., the molecular skeleton structure). However, existing methods struggle to flexibly
 061 incorporate such information, since accommodating new types of inputs typically requires redesigning
 062 and retraining the model (Alberts et al., 2024a; Jung et al., 2023; Devata et al., 2024). This highlights
 063 the need for a framework that can seamlessly integrate a wide range of chemical inputs.
 064

065 Recently, by representing chemical information in natural language, Large Language Models (LLMs)
 066 have been effectively utilized in the field of biochemistry. For instance, LLMs have been used to
 067 generate molecular structures in the string representation of molecules (i.e., SMILES) from text-
 068 based descriptions (Edwards et al., 2022) and even modify molecular structures based on specified
 069 conditions (Li et al., 2024; Liu et al., 2024a). These successes highlight that an LLM-based framework
 070 is well-suited for building a more flexible and extensible IR spectrum-based structure elucidation
 071 system.
 072

073 On the other hand, beyond the various types of chemical information, IR spectra analysis involves
 074 comprehensively integrating knowledge from diverse sources. Specifically, during the process, experts
 075 interpret IR absorption tables to infer local substructures and bonding patterns from peak positions
 076 (Socrates, 2004; Larkin, 2017), and retrieve structurally similar molecules from spectral databases
 077 to provide global contextual clues (Moldoveanu & Rapson, 1987). Similar to expert workflows, a
 078 successful system should accurately perform each of these tasks—extracting critical information
 079 from multiple sources—and ultimately integrate the results in a coherent reasoning process to predict
 080 the molecular structure. However, it is widely known that relying on a single LLM to perform all
 081 sub-tasks simultaneously can result in suboptimal information extraction and may be inadequate for
 082 handling complex reasoning tasks (Chen et al., 2024; Sun et al., 2023).
 083

084 To this end, we propose **IR-Agent**, a novel LLM-based multi-agent framework specifically designed
 085 to emulate expert analytical processes and seamlessly incorporate various types of knowledge into
 086 the structure elucidation workflow based on IR spectra. Rather than relying on a single LLM to
 087 process all types of knowledge at once, our framework adopts modeling with specialized sub-agents
 088 tailored to each type of knowledge. More specifically, we design a multi-agent framework composed
 089 of the following: (1) a **Table Interpretation Expert** that performs table-guided absorption analysis
 090 to extract local structural information from the target IR spectrum; (2) a **Retriever Expert** that
 091 identifies similar spectra from spectra databases to provide global contextual structural information;
 092 and (3) a **Structure Elucidation Expert** that produces the final structure prediction by integrating
 093 the analyses from both expert agents, each contributing complementary information for complete
 094 structure elucidation. This integrative analysis within a multi-agent framework enables effective
 095 molecular structure elucidation by extracting relevant information from each knowledge source
 096 and performing collaborative reasoning. A further appeal of **IR-Agent** is its flexibility: when new
 097 knowledge becomes available, the system does not need a complete redesign or retraining. Instead, it
 098 can be easily extended by incorporating the additional information through updated prompts to guide
 099 the agent’s reasoning process. Our main contributions in this study are as follows:
 100

- 101 • We introduce **IR-Agent**, a novel multi-agent framework for molecular structure elucidation from
 102 infrared (IR) spectra. This framework models expert-driven IR spectrum analysis processes and is
 103 designed to be highly extensible.
- 104 • While each agent specializes in a specific aspect of IR spectrum analysis, their complementary roles
 105 enable an integrative analysis process, ultimately improving molecular structure elucidation from
 106 IR spectrum.
- 107 • Through extensive experimentation, we show that our proposed framework not only improves
 108 baseline performance on experimental IR spectra but also exhibits strong adaptability to diverse
 109 types of chemical information.

110 To the best of our knowledge, this is the first work to leverage the LLM agents framework for
 111 molecular structure elucidation from IR spectra.
 112

108

2 RELATED WORKS

109

2.1 MACHINE LEARNING FOR IR SPECTRA ANALYSIS

110 ML-based approaches for IR spectra have shown effectiveness in functional group identification,
 111 structural feature extraction, and molecular structure elucidation. CNNs have been applied to func-
 112 tional group classification (Jung et al., 2023; Wang et al., 2023), while GNNs have been used on
 113 spectrum graphs derived from the M-order Markov property for material classification and functional
 114 group detection (Na & Rho, 2024). Beyond functional groups, ML has also been extended to full
 115 molecular structure elucidation. Transformer-based models are widely used: Alberts et al. (2024a)
 116 convert downsampled IR spectra into text, and Wu et al. (2025) apply patch-based self-attention with
 117 data augmentation. Unlike these approaches, which assume access to ground-truth chemical formulas,
 118 our setting relies solely on the IR spectrum. Additionally, reinforcement learning has been applied
 119 to structure elucidation using IR spectra (Ellis et al., 2023), with subsequent work extending this
 120 approach to incorporate both IR and NMR spectra (Devata et al., 2024). More recently, large language
 121 models have been explored for structure elucidation tasks with multi-modal spectral inputs, including
 122 IR, MS, and NMR spectra (Guo et al., 2024). Unlike prior work, IR-Agent aims to incorporate expert
 123 analytical processes and adopts a multi-agent framework, which offers high architectural flexibility.
 124

125

2.2 LLM AGENTS FOR SCIENCE

126 LLM agents have demonstrated strong capabilities across various scientific domains. For example,
 127 ChemCrow(Bran et al., 2023) employs an LLM agent to autonomously perform tasks typically
 128 conducted by chemists, using a range of external tools. Similarly, Coscientist(Boiko et al., 2023)
 129 autonomously handles experimental design, planning, and execution of complex experiments by
 130 integrating internet search, code execution, and laboratory automation. Moreover, LLM agents
 131 have been applied to diverse fields such as materials science(Zhang et al., 2024) and biomedical
 132 domain, including applications in drug discovery(Inoue et al., 2024) and the design of biological
 133 experiments(Roohani et al., 2024). In addition, recent work has explored the use of multi-agent
 134 frameworks to effectively tackle drug discovery tasks(Lee et al., 2025; Liu et al., 2024b), highlighting
 135 the growing interest in collaborative LLM-based systems for complex scientific workflows. While
 136 LLM agents have not yet been applied to spectra-related tasks, their integration with external tools
 137 presents high potential for extensibility and effectiveness, as demonstrated in other scientific domains.
 138 This work aims to initiate exploration in this direction by positioning LLM agents as a viable solution
 139 for spectral analysis.
 140

141

3 PRELIMINARIES

142

3.1 PROBLEM SETUP

143 **Task Description.** Given an IR spectrum $\mathcal{X} \in \mathbb{R}^{1 \times L}$ of a molecule as input, where L denotes the
 144 number of absorbance values corresponding to wavenumber positions, IR-Agent predicts the raw
 145 SMILES representation of the molecule, a process known as molecular structure elucidation. While
 146 some studies (Wu et al., 2025; Alberts et al., 2024a) assume that the ground-truth chemical formula is
 147 always available along with the IR spectrum, our setting considers only the IR spectrum. In practice,
 148 obtaining the exact formula of an unknown material is often unrealistic. Although mass spectrometry
 149 (MS) is commonly employed, it is costly and time-consuming (Vas & Vekey, 2004), difficult to
 150 interpret (Rolland & Prell, 2021), and still leaves the derivation of an exact formula as a highly
 151 non-trivial challenge (Böcker & Dührkop, 2016; Goldman et al., 2023). Thus, we adopt a setting
 152 where the chemical formula is not used, employing a translator that directly predicts SMILES from
 153 IR spectra. Since our framework can also incorporate supplementary *chemical information*—such
 154 as atom types, carbon counts, or scaffold structures—we further explore its applicability to more
 155 informed settings (Section 4.4). More details about analysis settings are provided in the AppendixA.2.
 156

157 **Tools.** In this paper, we specifically design tools to support task-specific analysis as follows:
 158

- 159 • *IR Peak Table Assigner* extracts the peaks from the spectrum and finds relevant substructures from
 160 the IR absorption table.
- 161 • *IR Spectra Retriever* retrieves IR spectra from the IR Spectra Database that are similar to a given
 162 input spectrum.

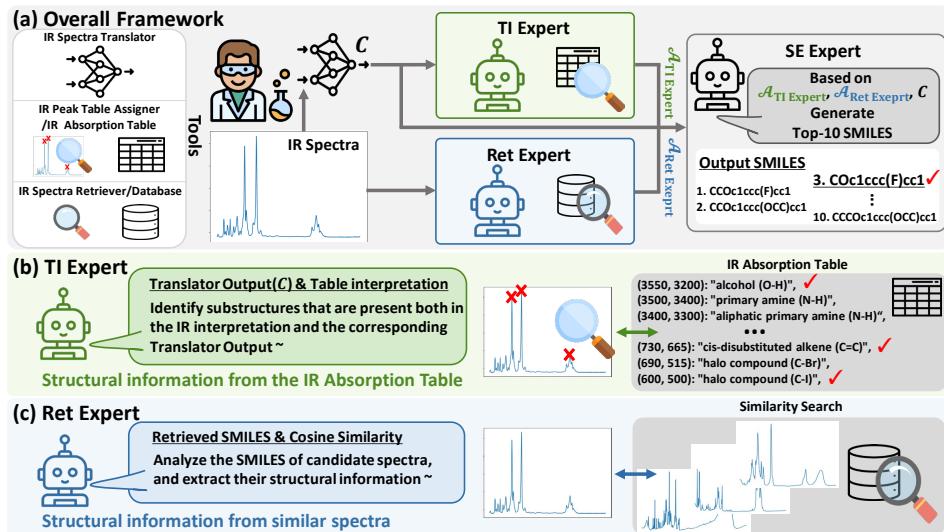


Figure 1: Overview of IR-Agent. (a) Overall framework. Given an unknown IR spectrum, IR-Agent first utilizes the IR Spectra Translator to generate candidate structures in SMILES format. The Table Interpretation (TI) Expert then extracts local structural information by referencing the IR absorption table through the IR Peak Table Assigner. In parallel, the Retriever (Ret) Expert obtains global structural features from similar spectra retrieved by the IR Spectra Retriever from a database. The Structure Elucidation (SE) Expert integrates analyses from both experts to produce the final predicted molecular structures. (b) Detailed view of the Table Interpretation (TI) Expert. (c) Detailed view of the Retriever (Ret) Expert.

External Knowledge. We also use external knowledge to support task-specific analysis as follows:

- *IR Absorption Table* summarizes the characteristic absorption frequencies associated with different molecular functional groups.
- The *IR Spectra Database* contains a variety of IR spectra along with their corresponding molecules in SMILES format.

Additional details on the tools and external knowledge are provided in the Appendix A.

3.2 IR SPECTRA TRANSLATOR

To begin with, we introduce an IR Spectra Translator, a Transformer-based model (Vaswani et al., 2017) that proposes an initial pool of SMILES candidates from a target IR spectrum. Specifically, given the target IR spectrum \mathcal{X} , we obtain a set of SMILES candidates \mathcal{C} as follows:

$$\mathcal{C} = \{s_1, \dots, s_K\} = \text{Transformer}(\mathcal{X}), \quad (1)$$

where K denotes the number of SMILES candidates generated by the Translator using beam search decoding. Since deriving reliable SMILES directly from thousands of real-valued IR absorbance measurements is challenging for LLMs, this module seeds the downstream reasoning process with plausible starting structures, which are subsequently expanded and revised. Additional details on the IR Spectra Translator are provided in Appendix A.2.

4 PROPOSED METHOD: IR-AGENT

In this section, we introduce IR-Agent, a multi-agent framework for molecular structure elucidation from IR spectra that mimics expert analytical processes through specialized expert agents. Our framework combines off-the-shelf LLMs with analytical tools to support an integrative analysis process. It is composed of the following expert agents: (1) the **Table Interpretation (TI) Expert**, which employs an IR absorption table to identify substructures from SMILES sequences (Section 4.1); (2) the **Retriever (Ret) Expert**, which extracts structural information from retrieved spectra (Section 4.2); and (3) the **Structure Elucidation (SE) Expert**, which provides a ranked list of SMILES based

216 on the outputs from both the Retriever Experts and Table Interpretation Experts (Section 4.3). The
 217 overall framework is presented in Figure 1.
 218

219 **4.1 TABLE INTERPRETATION (TI) EXPERT**
 220

221 The use of IR absorption tables is grounded in decades of experimental validation and theoretical
 222 development, offering reliable and interpretable structural insights. Importantly, this approach cap-
 223 tures fine-grained localized structural features, such as substitution patterns, cis/trans isomerism,
 224 and conjugation, which makes it a crucial component in structure elucidation. However, effective
 225 utilization of these tables requires accurate identification of spectral peaks, which is challenging to an
 226 LLM agent because: (1) it may infer peak positions from spectral images, but only approximately and
 227 often without sufficient precision; and (2) it struggles to detect peaks directly from high-dimensional
 228 numerical absorbance data, which typically consists of thousands of values.
 229

230 To address this limitation, the TI Expert agent employs the IR Peak Table Assigner tool, which extracts
 231 peaks from the spectrum by simply comparing the absorbance of neighboring wavenumbers and then
 232 assigns corresponding substructures to each peak based on its wavenumber range, by referring to the
 233 IR absorption table. An example output of the IR Peak Table Assigner is: “Peaks observed between
 234 1200 and 1000 cm^{-1} are typically associated with fluoro compounds (C–F).” Specifically, given the
 235 task-specific prompt $\mathbf{P}_{\text{TI Expert}}$, the IR Absorption Table (\mathbf{T}), and IR Peak Table Assigner, the agent is
 236 defined as follows:

$$\mathcal{A}_{\text{TI Expert}} = \text{TI Expert}(\mathbf{P}_{\text{TI Expert}}, \text{IR Peak Table Assigner}(\mathcal{X}, \mathbf{T}), \mathcal{C}), \quad (2)$$

237 where \mathcal{C} denotes the SMILES candidates generated by the IR spectra Translator. $\mathcal{A}_{\text{TI Expert}}$ includes
 238 the potential substructures that can be included in the SMILES string.

239 Despite its utility, table-based interpretation has inherent limitations: IR spectra often contain noise,
 240 and multiple substructures may exhibit absorption within the same wavenumber region, leading
 241 to ambiguity in peak assignment. To mitigate the possible misinterpretation, we design a prompt
 242 $\mathbf{P}_{\text{TI Expert}}$ that guides the agent to compare the output of the IR Peak Table Assigner with the SMILES
 243 candidates \mathcal{C} , identify shared substructures, and generate a confidence level along with a brief rationale
 244 for each identified substructure (e.g., substructure \rightarrow confidence \rightarrow brief rationale). By doing so,
 245 the agent enhances the reliability of the table-based interpretation for target spectra. Details of IR
 246 Absorption Table, IR Peak Table Assigner, the textual prompt are provided in Appendix A.3,A.4, and
 247 E, respectively.

248 **4.2 RETRIEVER (RET) EXPERT**
 249

250 Although the local structural information provided by the TI Expert is valuable, it is often insufficient
 251 to uniquely determine the complete molecular structure. This limitation arises because IR spectra
 252 offer vibrational information localized to specific functional groups or substructures, rather than
 253 providing a direct mapping to the full molecular structure (Coates et al., 2000; Griffiths, 2006). To
 254 overcome this limitation, we draw inspiration from the typical reasoning process of human experts,
 255 who frequently consult spectral databases to identify structurally similar reference compounds when
 256 analyzing unknown spectra (Moldoveanu & Rapson, 1987). Accordingly, we propose the Retriever
 257 (Ret) Expert agent, which leverages known molecular structures associated with similar IR spectra to
 258 provide global structural context, effectively linking local substructures to a more complete molecular
 259 structure.

260 Specifically, the Ret Expert agent utilizes the IR Spectra Retriever tool to identify spectra that are
 261 similar to the target IR spectrum. The IR Spectra Retriever adopts a simple yet effective approach:
 262 (1) it computes the cosine similarity between the target spectrum and all spectra in the database; (2)
 263 it then retrieves the top- N most similar spectra, each associated with its corresponding SMILES
 264 structure. The output of IR Spectra Retriever for the target spectrum(\mathcal{X}) is defined as follows:

$$\{\text{candi}_1 : \text{sim}_1, \dots, \text{candi}_N : \text{sim}_N\} = \text{IR Spectra Retriever}(\mathcal{X}), \quad (3)$$

265 where candi_i denotes the SMILES corresponding to the i -the retrieved spectrum, and sim_i denotes its
 266 cosine similarity to the the target spectrum. Given task-specific prompt $\mathbf{P}_{\text{Ret Expert}}$ and the retrieval
 267 output, the agent is defined as follows:
 268

$$\mathcal{A}_{\text{Ret Expert}} = \text{Ret Expert}(\mathbf{P}_{\text{Ret Expert}}, \text{IR Spectra Retriever}(\mathcal{X})). \quad (4)$$

270 The output of the Ret Expert, i.e., $\mathcal{A}_{\text{Ret Expert}}$, includes shared structural features among the top- N
 271 retrieved SMILES. Given the SMILES and the cosine similarity between the target spectrum and the
 272 retrieved spectrum, the Ret Expert automatically identifies common substructures while assigning
 273 higher weight to spectra with increased similarity. These structural features provide global contextual
 274 clues that guide molecular structure reasoning. The complete prompt is provided in Appendix E.
 275

276 4.3 STRUCTURE ELUCIDATION (SE) EXPERT

277 Finally, the Structure Elucidation (SE) Expert conducts integrative structure reasoning based on both
 278 $\mathcal{A}_{\text{TI Expert}}$ and $\mathcal{A}_{\text{Ret Expert}}$, as follows:

$$279 \mathcal{A}_{\text{SE Expert}} = \text{SE Expert}(\mathbf{P}_{\text{SE Expert}}, \mathcal{A}_{\text{TI Expert}}, \mathcal{A}_{\text{Ret Expert}}, \mathcal{C}), \quad (5)$$

280 where $\mathcal{A}_{\text{SE Expert}}$ includes a final ranked list of the top- K predicted molecular structures. By utilizing
 281 the information provided by both agents, the SE expert agent is able to perform a comprehensive
 282 reasoning process that integrates both local and global molecular structures. Moreover, structural
 283 features consistently identified by both agents can serve as reliable cues for the SE expert agent in
 284 molecular structure elucidation.

285 4.4 INCORPORATING VARIOUS CHEMICAL INFORMATION INTO AGENT REASONING

286 In real-world analytical scenarios, IR spectra are often accompanied by various types of chemical
 287 information, necessitating approaches that are capable of integrating this additional information. As
 288 the IR-Agent framework is based on LLM agents, it is not constrained by fixed input formats as in
 289 conventional ML approaches, and can flexibly incorporate various chemical information in textual
 290 form. Specifically, rather than instantiating a separate agent for chemical information, we embed
 291 chemical information directly into the reasoning prompts of all the agents. Moreover, to avoid the
 292 complexity of prompt engineering, we simply append a concise sentence containing the relevant
 293 chemical information to the original prompt. This lightweight strategy reduces the cost of adding
 294 new agents and designing new prompts, while enabling each agent to perform its original task more
 295 effectively by leveraging chemical information during reasoning. Therefore, IR-Agent is applicable
 296 not only in scenarios where only IR spectral data is available, but also in cases where additional
 297 chemical information is provided, thereby enhancing the flexibility and applicability of the framework
 298 without requiring additional training or architectural modifications. We provide more details on the
 299 prompt that incorporates chemical information in the Appendix E.

300 4.5 DISCUSSION: MULTI-AGENT FRAMEWORK FOR STRUCTURE ELUCIDATION

301 Our IR-Agent employs a multi-agent framework in which each LLM agent is assigned a distinct
 302 sub-task within the overall structure elucidation process. Rather than employing a single LLM to
 303 manage the entire reasoning pipeline, IR-Agent distributes the workload across specialized agents
 304 with each agent focusing on a specific type of analytical reasoning, and integrates their outputs
 305 to infer the final molecular structure. Each sub-task poses unique reasoning challenges: the TI
 306 Expert performs precise local pattern recognition and chemical knowledge grounding to interpret
 307 peak–substructure mappings; the Ret Expert needs to reason over spectral similarity and extract
 308 structurally meaningful global patterns from retrieved candidates; and the SE Expert is tasked with
 309 integrating these heterogeneous insights into a coherent molecular structure. When a single-agent
 310 model attempts to perform all these sub-tasks simultaneously, it often struggles to distinguish and
 311 prioritize relevant signals for each stage. For instance, local absorption features may be misinterpreted
 312 by global context, or retrieved candidates may not be properly utilized when misleading substructure
 313 signals are present. Additionally, the increased cognitive burden of handling diverse input information
 314 (e.g., tables interpretation by peak region, retrieved SMILES) within a single context window can
 315 result in incomplete reasoning, leading to degraded predictions. To evaluate the effectiveness of our
 316 multi-agent framework in addressing these issues, we conduct a comparative analysis against its
 317 single-agent counterpart, as presented in Section 5.2.

318 5 EXPERIMENTS

321 5.1 EXPERIMENTAL SETUP

322 **Datasets.** In this study, we primarily use a dataset of 9,052 experimental IR spectra from the NIST
 323 database, which has been widely adopted in prior IR spectra modeling studies Jung et al. (2023);

Na (2024); Wang et al. (2023). The use of experimental spectra is particularly important, as they reflect the noise, peak broadening, and variability inherent in real-world measurements, making them more representative of practical compound analysis scenarios. These spectra also reflect the types of challenges typically encountered in laboratory settings, where structural elucidation requires interpreting imperfect signals through expert knowledge and heuristics. Since our framework relies heavily on absorption table interpretation and human-like reasoning with retrieval-based search, experimental spectra provide a realistic and practical basis for evaluating its effectiveness in real-world analytical workflows. **Moreover, to ensure dataset diversity, we include spectra from all phases (solid, liquid, and gas), do not exclude compounds with stereochemistry or ionic features, and impose no restrictions on heavy-atom count or the presence of mixtures. Additional dataset details are provided in Appendix B, and the performance of IR-Agent on both single compounds and mixtures is reported in Appendix C.5.**

External Knowledge. We use the IR Absorption Table available online¹ and employ the training set as an IR Spectra Database for retrieval.

Methods Compared. To validate the effectiveness of IR-Agent, we compare it with the standalone **Transformer** model used as our IR Spectra Translator, showing that our framework provides additional gains in structure elucidation. We further evaluate a single-agent variant of IR-Agent, where a single LLM agent simultaneously handles all sub-tasks. To assess the impact of the underlying LLM, we vary the backbone model used in both the **single-agent** and **multi-agent** settings across **GPT-4o-mini**, **GPT-4o**, and **o3-mini**. We also consider a setting where o3-mini is used to directly generate a ranked list of 10 SMILES structures, relying solely on the input candidate set \mathcal{C} .

Evaluation Protocol. We randomly split the dataset into train/valid/test of 80/10/10%. The IR Spectra Translator is trained on this split prior to applying IR-Agent. We adopt Top- K exact match accuracy as the evaluation metric to assess the effectiveness of the proposed method. This metric checks whether the correct SMILES is included among the top K generated candidates, comparing structures after conversion to the InChI representation (Heller et al., 2015). We report the average performance across three independent experiments.

5.2 RESULTS OF STRUCTURE ELUCIDATION

Effectiveness of IR-Agent. As shown in Table 1, we observe the following: **(1)** Comprehensive reasoning based on the analyses from the TI Expert and the Ret Expert leads to more accurate molecular structure predictions. Given the candidate set \mathcal{C} ($K = 3$) generated by the IR Spectra Translator, IR-Agent achieves higher Top- K accuracy compared to the standalone Transformer model, which functions as the IR Spectra Translator in our system. This improvement is attributed to the complementary insights provided by both experts. Their collaborative analyses enable the Structure Elucidation (SE) Expert to refine the candidates and generate more accurate final structures. **(2)** The multi-agent framework consistently outperforms the single-agent approach. Compared to the single-agent version of IR-Agent, in which a single LLM handles all tasks simultaneously, the multi-agent version, where each expert agent is responsible for a specific sub-task, demonstrates more consistent and superior performance in the structure elucidation task. This observation is further supported by the following finding: While using a more advanced LLM backbone generally leads to improved performance, the multi-agent version of IR-Agent (GPT-4o) achieves comparable or even superior accuracy compared to the single-agent system built on o3-mini, despite the former relying on a simpler model. This trend is also observed when comparing the multi-agent system (GPT-4o-mini) with the single-agent version (GPT-4o). This result underscores the effectiveness of the multi-agent framework in handling the molecular structure elucidation, demonstrating its strength in performing integrative analysis beyond what a single-agent can achieve.

Table 1: Overall model performance for structure elucidation from IR spectra.

Method	Agent	Top-K Accuracy			
		Top-1	Top-3	Top-5	Top-10
Transformer	-	0.098 (0.007)	0.169 (0.000)	0.176 (0.003)	0.176 (0.003)
IR-Agent (GPT-4o-mini)	single	0.072 (0.008)	0.118 (0.002)	0.133 (0.002)	0.157 (0.003)
	multi	0.093 (0.005)	0.152 (0.003)	0.167 (0.005)	0.176 (0.005)
IR-Agent (GPT-4o)	single	0.083 (0.004)	0.135 (0.002)	0.165 (0.007)	0.194 (0.008)
	multi	0.093 (0.007)	0.153 (0.005)	0.177 (0.005)	0.204 (0.005)
IR-Agent (o3-mini)	single	0.087 (0.006)	0.153 (0.005)	0.179 (0.002)	0.197 (0.004)
	multi	0.103 (0.005)	0.178 (0.007)	0.199 (0.004)	0.216 (0.001)

¹https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table

378
379
380 Table 2: Overall model performance with various chemical information.
381
382
383
384
385
386
387

Chemical Information	o3-mini				IR-Agent (single) (o3-mini)				IR-Agent (multi) (o3-mini)			
	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10
No Knowledge	0.073 (0.010)	0.131 (0.011)	0.157 (0.011)	0.185 (0.005)	0.087 (0.010)	0.153 (0.011)	0.179 (0.011)	0.197 (0.005)	0.103 (0.005)	0.178 (0.007)	0.199 (0.004)	0.216 (0.001)
Scaffold	0.096 (0.002)	0.160 (0.006)	0.177 (0.003)	0.198 (0.003)	0.112 (0.003)	0.195 (0.009)	0.208 (0.008)	0.228 (0.010)	0.118 (0.003)	0.208 (0.009)	0.232 (0.008)	0.258 (0.010)
Carbon Count	0.105 (0.009)	0.158 (0.014)	0.186 (0.014)	0.214 (0.013)	0.121 (0.003)	0.177 (0.008)	0.194 (0.010)	0.219 (0.009)	0.123 (0.003)	0.190 (0.005)	0.215 (0.009)	0.252 (0.007)
Atom Types	0.104 (0.011)	0.182 (0.007)	0.209 (0.005)	0.237 (0.003)	0.123 (0.006)	0.208 (0.003)	0.235 (0.011)	0.266 (0.009)	0.127 (0.006)	0.213 (0.003)	0.250 (0.011)	0.278 (0.009)

388
389 **Structure Elucidation with Chemical Information.** It is worth noting that **IR-Agent** is primarily
390 developed with the assumption that the IR spectrum is the only available information; however, in
391 practice, supplementary analyses often provide additional chemical data that can be leveraged to
392 support structure elucidation (Alberts et al., 2024b). To reflect this practical scenario, we consider
393 three types of chemical information: atom types, scaffold (i.e., molecular backbone), and carbon
394 count. In each case, the relevant chemical information is appended as a textual sentence to the
395 prompt of the corresponding expert agent as described in Section 4.4. From Table 2, we make the
396 following observations: **(1)** Even a brief textual prompt containing chemical information can enhance
397 the model’s ability to predict accurate molecular structures. Without requiring any architecture
398 modifications or retraining, **IR-Agent** is able to successfully incorporate additional information
399 into each expert’s reasoning process through prompt-based interaction, leveraging the inherent
400 reasoning capabilities of LLMs. **(2)** Among the various types of chemical information, we observe
401 that incorporating **Atom Types** information enables the model to generate more accurate molecular
402 structures compared to other types of chemical information. This is due to the inherent challenge
403 of determining the exact set of constituent elements solely from an IR spectrum. **(3)** However,
404 incorporating any form of chemical information consistently improved performance over using
405 only IR spectra (**No Knowledge**), highlighting the importance of a flexible framework capable
406 of integrating various types of available chemical information. In conclusion, each expert in **IR-**
407 **Agent** plays a distinct and effective role in structure elucidation while flexibly integrating various
408 forms of chemical information, demonstrating the potential extensibility of the multi-agent framework
409 for spectral analysis tasks. Further experiments evaluating the robustness of **IR-Agent** to ambiguous
410 chemical information are provided in Appendix C.3.

411
412

5.3 IN-DEPTH ANALYSIS

413 **Ablation Studies.** To assess the contribution of each ex-
414 pert agent, we conduct ablation studies by selectively re-
415 moving them from the system. As shown in Table 3, relying
416 solely on the IR Spectra Translator without any expert
417 assistance (**No Experts**) results in a significant drop in per-
418 formance. Furthermore, using only one expert (i.e., either
419 the **TI Expert only** or **Ret Expert only**) underperforms
420 compared to the case where both experts are employed.
421 When only the TI Expert is used, the system struggles to
422 capture global structural patterns, whereas the Ret Expert
423 alone often fails to extract fine-grained local information
424 from the IR Absorption Table. Nevertheless, the Ret Ex-
425 pert alone achieves slightly better performance than the TI Expert alone, as it can access a broader
426 range of structural patterns by leveraging multiple retrieved SMILES candidates, resulting in richer
427 overall structural information. These results highlight that utilizing both TI and Ret Experts is es-
428 sential for providing complementary structural insights, enabling effective integrative analysis for
429 structure elucidation.

430 **Sensitivity Analysis: Number of SMILES candidates \mathcal{C} .** Moreover, we investigate how vary-
431 ing the number of SMILES candidates \mathcal{C} affects performance. As shown in Figure 2 (a), the
432 performance of **IR-Agent** improves as \mathcal{C} increase up to 3 or 5, but tends to decline be-
433 yond that point. This degradation may be attributed to the introduction of noisy candidates,
434 which can hinder the experts’ reasoning. In particular, the TI Expert is required to manu-
435 ally align information from the IR absorption table with an increasing number of candidates,

436
437 Table 3: Ablation study of **IR-Agent** (o3-
438 mini).

Expert	Top-K Accuracy			
	Top-1	Top-3	Top-5	Top-10
No Expert	0.073 (0.010)	0.131 (0.011)	0.157 (0.011)	0.185 (0.005)
TI Expert only	0.089 (0.011)	0.154 (0.004)	0.171 (0.002)	0.190 (0.002)
Ret Expert only	0.098 (0.003)	0.169 (0.006)	0.188 (0.001)	0.211 (0.003)
IR-Agent (TI + Ret)	0.103 (0.005)	0.178 (0.007)	0.199 (0.004)	0.216 (0.001)

432 which raises the risk of incorporating irrelevant or
 433 misleading structural features. These results suggest
 434 that selecting an appropriate number of SMILES can-
 435 didates is crucial for effective expert reasoning.

436 **Performance of IR-Agent using the Transferred**
 437 **IR Spectra Translator.** As our framework is com-
 438 patible with various IR spectra translators for gen-
 439 erating initial SMILES candidates, we replace our
 440 original translator with one that was pretrained on a
 441 large-scale simulated IR dataset(Alberts et al., 2024b)
 442 (790k spectra) and subsequently finetuned on our ex-
 443 perimental data. Although simulated and experimen-
 444 tal spectra differ in nature, the pretrained translator captures rich spectral patterns from large-scale
 445 simulated data, which remain beneficial when transferred and adapted to experimental data through
 446 fine-tuning. Figure 2 (b) shows that the transferred translator alone achieves strong performance.
 447 When integrated into our framework, it leads to further improvements, highlighting the robustness of
 448 our method to different spectra translator choices.

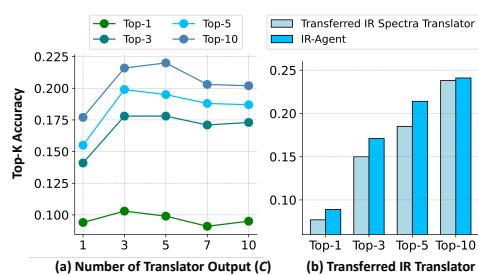


Figure 2: In-depth Analysis results.

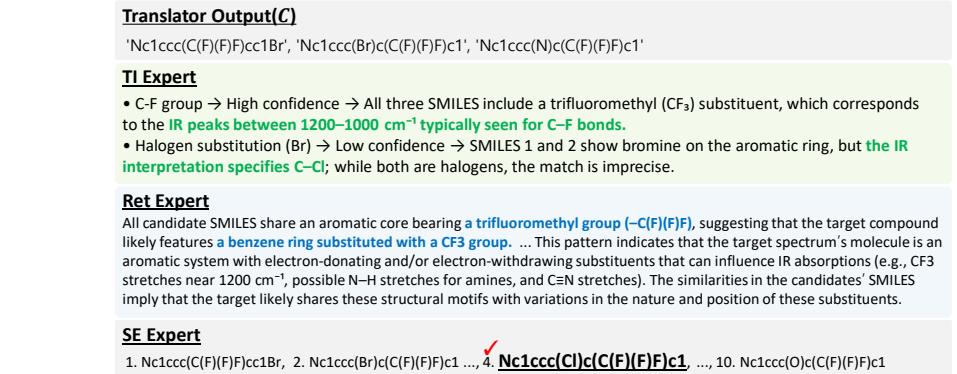


Figure 3: Outputs of expert agents in IR-Agent during the structure elucidation process.

462 **Case Study.** In Figure 3, we present how IR-Agent performs the structure elucidation process. The
 463 TI Expert identifies local substructures by comparing the IR absorption table interpretation with the
 464 output of the IR Spectra Translator. For instance, the TI Expert infers the presence of a C-F group
 465 with high confidence, as both the Translator output and the table interpretation consistently point
 466 to C-F bonds. In contrast, the presence of a halogen substitution such as Br is inferred with low
 467 confidence, since the table interpretation refers to C-Cl bonds, which are not found in the Translator
 468 output.

469 On the other hand, the Ret Expert extracts global structural patterns from the retrieved candidates,
 470 identifying a benzene ring substituted with a CF₃ group as a dominant motif, which serves as the
 471 broader structural context. Based on the complementary analyses from both experts, the SE Expert
 472 successfully infers the complete molecular structure of the target spectrum.

6 CONCLUSION

473 In this paper, we propose IR-Agent , a novel multi-agent framework for structure elucidation from
 474 IR spectra that mimics the expert analytical process. To achieve this, we design a system composed
 475 of three specialized agents: a Table Interpretation (TI) Expert that extracts local substructures from
 476 the IR absorption table; a Retriever (Ret) Expert that provides global structural cues from retrieved
 477 candidates; and a Structure Elucidation (SE) Expert that integrates both sources of information to
 478 infer the final molecular structure. Furthermore, our framework supports the integration of chemical
 479 information in a lightweight and concise manner, which highlights its practicality in real-world ana-
 480 lytical scenarios. Through extensive experiments including diverse chemical information conditions,
 481 we demonstrate both the effectiveness of IR-Agent in structure elucidation and the flexibility of the
 482 multi-agent framework in adapting to various analytical scenarios.

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
496
497
In this work, we present **IR-Agent**, a multi-agent system that automates molecular structure elucidation
498 from IR spectra by emulating expert analytical processes. The reasoning capabilities of individual
499 agents, each equipped with distinct knowledge, contribute to a more effective structure elucidation
500 pipeline, with clearly defined and specialized reasoning steps. Unlike prior methods, the proposed
501 multi-agent framework offers the flexibility to incorporate various types of chemical information,
502 making it adaptable to a wide range of analytical scenarios. While our approach demonstrates promis-
503 ing performance in structure elucidation, it relies on large language model (LLM) agents, which
504 may occasionally produce hallucinated outputs or misinterpret information. Therefore, it is essential
505 that this framework be used under the supervision of domain experts when applied to real-world IR
506 spectral analysis.507
508
REPRODUCIBILITY STATEMENT509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
To facilitate reproduction of the experimental results, we include all details in the main paper
and appendix, and provide the accompanying code in an anonymized format. In addition, the
computational resources are described in Appendix A.

540 REFERENCES
541

- 542 Marvin Alberts, Teodoro Laino, and Alain C Vaucher. Leveraging infrared spectroscopy for automated
543 structure elucidation. *Communications Chemistry*, 7(1):268, 2024a.
- 544 Marvin Alberts, Oliver Schilter, Federico Zipoli, Nina Hartrampf, and Teodoro Laino. Unraveling
545 molecular structure: A multimodal spectroscopic dataset for chemistry. *Advances in Neural
546 Information Processing Systems*, 37:125780–125808, 2024b.
- 547 Sebastian Böcker and Kai Dührkop. Fragmentation trees reloaded. *Journal of cheminformatics*, 8(1):
548 5, 2016.
- 549 Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
550 with large language models. *Nature*, 624(7992):570–578, 2023.
- 551 Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
552 Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. *arXiv preprint
553 arXiv:2304.05376*, 2023.
- 554 Pei Chen, Boran Han, and Shuai Zhang. Comm: Collaborative multi-agent, multi-reasoning-path
555 prompting for complex problem solving. *arXiv preprint arXiv:2404.17729*, 2024.
- 556 John Coates et al. Interpretation of infrared spectra, a practical approach. *Encyclopedia of analytical
557 chemistry*, 12:10815–10837, 2000.
- 558 Sriram Devata, Bhuvanesh Sridharan, Sarvesh Mehta, Yashaswi Pathak, Siddhartha Laghuvarapu,
559 Girish Varma, and U Deva Priyakumar. Deepspinn–deep reinforcement learning for molecular
560 structure prediction from infrared and ^{13}C nmr spectra. *Digital Discovery*, 3(4):818–829, 2024.
- 561 Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
562 between molecules and natural language. *arXiv preprint arXiv:2204.11817*, 2022.
- 563 Joshua Dean Ellis, Razib Iqbal, and Keiichi Yoshimatsu. Deep q-learning-based molecular graph
564 generation for chemical structure prediction from infrared spectra. *IEEE Transactions on Artificial
565 Intelligence*, 5(2):634–646, 2023.
- 566 Samuel Goldman, Jiayi Xin, Joules Provenzano, and Connor W Coley. Mist-cf: chemical formula
567 inference from tandem mass spectra. *Journal of Chemical Information and Modeling*, 64(7):
568 2421–2431, 2023.
- 569 Peter R Griffiths. Introduction to vibrational spectroscopy. *Handbook of vibrational spectroscopy*,
570 2006.
- 571 Kehan Guo, Bozhao Nan, Yujun Zhou, Taicheng Guo, Zhichun Guo, Mihir Surve, Zhenwen Liang,
572 Nitesh Chawla, Olaf Wiest, and Xiangliang Zhang. Can llms solve molecule puzzles? a multimodal
573 benchmark for molecular structure elucidation. *Advances in Neural Information Processing
574 Systems*, 37:134721–134746, 2024.
- 575 Stephen R Heller, Alan McNaught, Igor Pletnev, Stephen Stein, and Dmitrii Tchekhovskoi. Inchi, the
576 iupac international chemical identifier. *Journal of cheminformatics*, 7:1–34, 2015.
- 577 Zhaorui Huang, Michael S Chen, Cristian P Woroch, Thomas E Markland, and Matthew W Kanan.
578 A framework for automated structure elucidation from routine nmr spectra. *Chemical Science*, 12
579 (46):15329–15338, 2021.
- 580 Yoshitaka Inoue, Tianci Song, and Tianfan Fu. Drugagent: Explainable drug repurposing agent with
581 large language model-based reasoning. *arXiv preprint arXiv:2408.13378*, 2024.
- 582 Guwon Jung, Son Gyo Jung, and Jacqueline M Cole. Automatic materials characterization from
583 infrared spectra using convolutional neural networks. *Chemical Science*, 14(13):3600–3609, 2023.
- 584 David R Klein. *Organic chemistry*. Wiley Global Education, 2013.
- 585 Peter Larkin. *Infrared and Raman spectroscopy: principles and spectral interpretation*. Elsevier,
586 2017.

- 594 Namkyeong Lee, Edward De Brouwer, Ehsan Hajiramezanali, Tommaso Biancalani, Chanyoung
 595 Park, and Gabriele Scalia. Rag-enhanced collaborative llm agents for drug discovery. *arXiv*
 596 *preprint arXiv:2502.17506*, 2025.
- 597
- 598 Terrence A Lee. *A beginner's guide to mass spectral interpretation*. John Wiley & Sons, 1998.
- 599 Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei, Hui Liu, Jiliang Tang, and Qing Li. Empower-
 600 ing molecule discovery for molecule-caption translation with large language models: A chatgpt
 601 perspective. *IEEE transactions on knowledge and data engineering*, 2024.
- 602
- 603 Qingxin Li and CongBao Kang. A practical perspective on the roles of solution nmr spectroscopy in
 604 drug discovery. *Molecules*, 25(13):2974, 2020.
- 605
- 606 Shengchao Liu, Jiongxiao Wang, Yijin Yang, Chengpeng Wang, Ling Liu, Hongyu Guo, and Chaowei
 607 Xiao. Conversational drug editing using retrieval and domain feedback. In *The twelfth international*
 608 *conference on learning representations*, 2024a.
- 609
- 610 Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu Zhao, Yingzhou Lu, and Yue Zhao. Drugagent:
 611 Automating ai-aided drug discovery programming through llm multi-agent collaboration. *arXiv*
 612 *preprint arXiv:2411.15692*, 2024b.
- 613
- 614 Ewelina Mistek and Igor K Lednev. Ft-ir spectroscopy for identification of biological stains for
 615 forensic purposes. 2018.
- 616
- 617 Serban Moldoveanu and Carl A Rapson. Spectral interpretation for organic analysis using an expert
 618 system. *Analytical Chemistry*, 59(8):1207–1212, 1987.
- 619
- 620 Gyoung S Na. Deep learning for generating phase-conditioned infrared spectra. *Analytical Chemistry*,
 621 96(49):19659–19669, 2024.
- 622
- 623 Gyoung S Na and Ye Cheol Rho. Learning m -order spectrum graphs to identify unknown chemical
 624 compounds from infrared spectroscopy data. In *2024 9th International Conference on Big Data*
 625 *Analytics (ICBDA)*, pp. 134–143. IEEE, 2024.
- 626
- 627 Amber D Rolland and James S Prell. Approaches to heterogeneity in native mass spectrometry.
 628 *Chemical reviews*, 122(8):7909–7951, 2021.
- 629
- 630 Yusuf Roohani, Andrew Lee, Qian Huang, Jian Vora, Zachary Steinhart, Kexin Huang, Alexander
 631 Marson, Percy Liang, and Jure Leskovec. Biodiscoveryagent: An ai agent for designing genetic
 632 perturbation experiments. *arXiv preprint arXiv:2405.17631*, 2024.
- 633
- 634 George Socrates. *Infrared and Raman characteristic group frequencies: tables and charts*. John
 635 Wiley & Sons, 2004.
- 636
- 637 Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, and Lingpeng Kong. Corex:
 638 Pushing the boundaries of complex reasoning through multi-model collaboration. *arXiv preprint*
 639 *arXiv:2310.00280*, 2023.
- 640
- 641 K Varmuza, PN Penchev, and H Scsibrany. Large and frequently occurring substructures in organic
 642 compounds obtained by library search of infrared spectra. *Vibrational Spectroscopy*, 19(2):407–412,
 643 1999.
- 644
- 645 György Vas and Karoly Vekey. Solid-phase microextraction: a powerful sample preparation tool prior
 646 to mass spectrometric analysis. *Journal of mass spectrometry*, 39(3):233–254, 2004.
- 647
- 648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 649 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 650 *systems*, 30, 2017.
- 651
- 652 Tianyi Wang, Ying Tan, Yu Zong Chen, and Chunyan Tan. Infrared spectral analysis for prediction of
 653 functional groups based on feature-aggregated deep learning. *Journal of Chemical Information*
 654 *and Modeling*, 63(15):4615–4622, 2023.
- 655
- 656 Wenjin Wu, Ales Leonardis, Jianbo Jiao, Jun Jiang, and Linjiang Chen. Transformer-based models
 657 for predicting molecular structures from infrared spectra using patch-based self-attention. *The*
 658 *Journal of Physical Chemistry A*, 2025.

- 648 Xi Xue, Hanyu Sun, Minjian Yang, Xue Liu, Hai-Yu Hu, Yafeng Deng, and Xiaojian Wang. Ad-
649 vances in the application of artificial intelligence-based spectral data interpretation: a perspective.
650 *Analytical Chemistry*, 95(37):13733–13745, 2023.
651
652 Huan Zhang, Yu Song, Ziyu Hou, Santiago Miret, and Bang Liu. Honeycomb: A flexible llm-based
653 agent system for materials science. *arXiv preprint arXiv:2409.00135*, 2024.
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702

703

704

705 *Supplementary Material*

706

707 *-IR-Agent: Expert-Inspired LLM Agents for Structure Elucidation from Infrared*

708 *Spectra -*

709

710	A Implementation Details	15
711	A.1 IR Spectra Preprocessing	15
712	A.2 IR Spectra Translator	15
713	A.3 IR Absorption Table	16
714	A.4 IR Peak Table Assigner	18
715	A.5 LLM Agents	18
716		
717	B Dataset	19
718		
719	C Further Analysis	19
720	C.1 Performance Comparison Across Different Beam Widths	19
721	C.2 Robustness of LLMs to Prompt Variations	19
722	C.3 Robustness of LLMs to ambiguous chemical information	20
723	C.4 Deterministic Workflow of IR-Agent vs. the ReAct Framework	20
724	C.5 The scope of IR-Agent	21
725	C.6 Additional Case Studies	21
726		
727	D Limitations & Future Work	22
728		
729	E Prompt Templates for Expert Agents	22
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 **A IMPLEMENTATION DETAILS**
757758 Implementation details of IR-Agent are presented in this section.
759760 **A.1 IR SPECTRA PREPROCESSING**
761762 We convert spectra from transmittance to absorbance using the standard formula:
763

764
$$A = -\log_{10}(T) \quad (6)$$

765 where T denotes the transmittance and A denotes the absorbance. To avoid mathematical errors
766 during the logarithmic transformation and ensure numerical stability, any zero-valued entries are
767 replaced with a small positive constant, 10^{-10} .
768769 **A.2 IR SPECTRA TRANSLATOR**
770771 **Analysis Setting Details.** While some studies (Alberts et al., 2024a; Wu et al., 2025) assume that
772 the ground-truth chemical formula is always provided together with the IR spectrum, our framework
773 relies solely on the IR spectrum. This assumption holds only if mass spectrometry (MS), performed
774 alongside IR spectroscopy, can provide an accurate chemical formula. In reality, however, obtaining a
775 ground-truth chemical formula is rarely straightforward, owing to several obstacles:
776

- 777
- **Cost and Time:** Generating high-quality MS data demands labor-intensive, time-consuming, and
778 often expensive sample preparation (Vas & Vekey, 2004).
 - **Interpretation Complexity:** MS spectra are notoriously challenging to interpret because of complex
779 fragmentation patterns, overlapping peaks, and intrinsic resolution limits of the instrument
780 (Rolland & Prell, 2021).
 - **Non-Trivial Formula Derivation:** Even with high-quality spectra, determining the exact formula
781 remains difficult. For example, studies on benchmark datasets such as NPLIB1—explicitly
782 designed for this task—report Top-1 accuracies of only 48% (Böcker & Dührkop, 2016) and 71%
783 (Goldman et al., 2023), underscoring the difficulty of precise formula determination.

784 Given these challenges, it is impractical to assume that the ground-truth chemical formula is always
785 available for an unknown material. Accordingly, we adopt a setting where the chemical formula is not
786 used by default (Ellis et al., 2023), and instead employ a SMILES translator that predicts molecular
787 structures directly from IR spectra without formula information.
788789 **Model Implementation Details.** We represent the IR spectrum as a 1D sequence $\mathcal{X} \in \mathbb{R}^{1 \times L}$,
790 where L is the number of absorbance values aligned with wavenumber positions. This input is then
791 passed through a learnable linear transformation to produce a higher-dimensional feature sequence
792 $\mathbf{x} \in \mathbb{R}^{L \times d}$. To inject positional information, we define a learnable positional embedding matrix
793 $\mathbf{P} \in \mathbb{R}^{L \times d}$, where each row \mathbf{P}_i corresponds to the positional embedding at the i -th wavenumber. The
794 input to the Transformer encoder is computed as:
795

796
$$\mathbf{z}_i = \mathbf{x}_i + \mathbf{P}_i, \quad \text{for } i = 1, \dots, L. \quad (7)$$

797 The resulting spectrum representations $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^L \in \mathbb{R}^{L \times d}$ are first fed into the Transformer
798 encoder and subsequently into the Transformer decoder, which autoregressively generates the target
799 molecular sequence. The model is trained to maximize the likelihood of the ground-truth output
800 tokens given the input spectrum by minimizing the following cross-entropy (CE) loss:
801

802
$$\mathcal{L}_{\text{CE}} = -\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \log p_{\theta}(y_t^{(n)} \mid y_{<t}^{(n)}, \mathcal{X}^{(n)}), \quad (8)$$

803

804 where N is the number of training examples, T_n is the length of the target sequence for the n -th
805 example, $y_t^{(n)}$ denotes the t -th token in the ground-truth molecular SMILES for the n -th example,
806 and p_{θ} denotes the model’s predicted probability distribution parameterized by θ , where θ represents
807 the learnable parameters of the translator. This objective corresponds to the standard next-token
808 prediction loss widely used in training language models (Vaswani et al., 2017).
809

810
811 Training Details. The Translator is implemented in Python 3.11.10 and PyTorch 2.5.1. We use the
 812 Adam optimizer for model training. The model is trained for up to 300 epochs, with early stopping
 813 applied if the best validation BLEU score does not improve for 25 consecutive epochs. All the
 814 experiments are conducted on a 48GB NVIDIA RTX A6000.

815 **816 Hyperparameters.** For the Translator, we use a batch size of 16, hidden dimension $d = 128$, and
 817 a learning rate of 0.001 with a linear scheduler and 8,000 warm-up steps. The model consists of 2
 818 encoder layers and 2 decoder layers, and the number of retrieved spectra (N) is set to 10. A beam
 819 width of 3 is chosen to reflect a practical decoding setting with moderate computational cost. A
 820 comparison of performance across larger beam widths is provided in Section C.1. Note that when the
 821 model fails to generate the desired number of outputs, we apply greedy decoding to supplement the
 822 remaining outputs and guarantee a fixed output size. We perform a grid search over learning rates
 823 $\{0.0001, 0.0005, 0.001\}$, batch sizes $\{16, 32, 64\}$, and hidden dimensions $\{64, 128\}$, and report test
 824 performance based on the best model selected according to validation set results.

825 A.3 IR ABSORPTION TABLE

826 Table 4 shows the IR absorption table used in this paper, which is available online². For wavenumber
 827 entries specified as single points rather than ranges, we convert them into ranges by applying a
 828 $\pm 5 \text{ cm}^{-1}$ window around each point.

829 Table 4: Wavenumber Range and Substructure Assignments

830 Wavenumber (cm^{-1})	831 Substructure
832 3700–3584	alcohol (O–H)
833 3550–3200	alcohol (O–H)
834 3500–3400	primary amine (N–H)
835 3400–3300	aliphatic primary amine (N–H)
836 3330–3250	aliphatic primary amine (N–H)
837 3350–3310	secondary amine (N–H)
838 3100–2900	carboxylic acid (O–H)
839 3200–2700	alcohol (O–H)
840 3000–2800	amine salt (N–H)
841 3333–3267	alkyne (C–H)
842 3100–3000	alkene (C–H)
843 3080–2840	alkane (C–H)
844 2830–2695	aldehyde (C–H)
845 2600–2550	thiol (S–H)
846 2354–2344	carbon dioxide (O=C=O)
847 2285–2250	isocyanate (N=C=O)
848 2260–2222	nitrile (C≡N)
849 2260–2190	disubstituted alkyne (C≡C)
850 2175–2140	thiocyanate (S–C=N)
851 2160–2120	azide (N=N=N)
852 2155–2145	ketene (C=C=O)
853 2145–2120	carbodiimide (N=C=N)
854 2140–2100	monosubstituted alkyne (C≡C)
855 2140–1990	isothiocyanate (N=C=S)
856 2005–1995	ketenimine (C=C=N)
857 2000–1900	allene (C=C=C)
858 2000–1650	aromatic compound (C–H)
859 1818–1750	anhydride (C=O)
1815–1785	acid halide (C=O)
1800–1770	conjugated acid halide (C=O)

860 Continued on next page

861
 862 ²https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 4: Wavenumber Range and Substructure Assignments

Wavenumber (cm ⁻¹)	Substructure
1780–1770	conjugated anhydride (C=O)
1770–1780	vinyl/phenyl ester (C=O)
1765–1755	carboxylic acid (C=O)
1750–1735	esters (C=O)
1750–1740	cyclopentanone (C=O)
1740–1720	aldehyde (C=O)
1730–1715	α,β -unsaturated ester (C=O)
1725–1715	conjugated anhydride (C=O)
1725–1705	aliphatic ketone (C=O)
1720–1706	carboxylic acid (C=O)
1710–1685	conjugated aldehyde (C=O)
1710–1680	conjugated acid (C=O)
1695–1685	primary amide (C=O)
1690–1640	imine/oxime (C=N)
1685–1675	tertiary amide (C=O)
1685–1666	conjugated ketone (C=O)
1678–1668	trans-disubstituted alkene (C=C)
1675–1665	tetrasubstituted alkene (C=C)
1662–1626	cis-disubstituted alkene (C=C)
1658–1600	alkene (vinylidene) (C=C)
1655–1645	δ -lactam (C=O)
1650–1600	conjugated alkene (C=C)
1650–1580	amine (N–H)
1650–1566	cyclic alkene (C=C)
1648–1638	monosubstituted alkene (C=C)
1620–1610	α,β -unsaturated ketone (C=C)
1550–1500	nitro compound (N–O)
1470–1460	alkane (methylene group) (C–H)
1455–1445	alkane (methyl group) (C–H)
1440–1395	carboxylic acid (O–H)
1420–1330	alcohol (O–H)
1415–1380	sulfate (S=O)
1410–1380	sulfonyl chloride (S=O)
1390–1380	aldehyde (C–H)
1390–1310	phenol (O–H)
1385–1380	alkane (gem dimethyl) (C–H)
1380–1370	alkane (methyl group) (C–H)
1372–1335	sulfonate (S=O)
1372–1290	nitro compound (N–O)
1370–1365	alkane (gem dimethyl) (C–H)
1370–1335	sulfonamide (S=O)
1350–1342	sulfonic acid (S=O)
1350–1300	sulfone (S=O)
1342–1266	aromatic amine (C–N)
1310–1250	aromatic ester (C–O)
1300–1250	phosphorus oxide (P–O)
1275–1200	alkyl aryl ether (C–O)
1250–1195	phosphorus oxide (P–O)
1250–1020	amine (C–N)
1225–1200	vinyl ether (C–O)
1210–1163	ester (C–O)
1205–1124	tertiary alcohol (C–O)
1204–1177	sulfonyl chloride (S=O)
1200–1185	sulfate (S=O)
1200–1000	fluoro compound (C–F)

Continued on next page

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

Table 4: Wavenumber Range and Substructure Assignments

Wavenumber (cm ⁻¹)	Substructure
1195–1168	sulfonate (S=O)
1170–1155	sulfonamide (S=O)
1165–1150	sulfonic acid (S=O)
1160–1120	sulfone (S=O)
1150–1085	aliphatic ether (C–O)
1124–1087	secondary alcohol (C–O)
1085–1050	primary alcohol (C–O)
1075–1020	alkyl aryl ether (C–O)
1075–1020	vinyl ether (C–O)
1070–1030	sulfoxide (S=O)
1050–1040	anhydride (CO–O–CO)
995–985	monosubstituted alkene (C=C)
915–905	monosubstituted alkene (C=C)
980–960	trans-disubstituted alkene (C=C)
895–885	alkene (vinylidene) (C=C)
840–790	trisubstituted alkene (C=C)
760–540	halo compound (C–Cl)
730–665	cis-disubstituted alkene (C=C)
690–515	halo compound (C–Br)
600–500	halo compound (C–I)
750–700	monosubstituted benzene derivative
710–690	monosubstituted benzene derivative

A.4 IR PEAK TABLE ASSIGNER

The IR Peak Table Assigner consists of two main components: (1) extracting peaks from the input spectrum, and (2) identifying relevant substructures using the IR Absorption Table (Table 4). To extract peaks, we use the `find_peaks` function from SciPy³, setting the hyperparameters to `height=1` and `distance=50`. This allows us to identify wavenumber positions where the absorbance exhibits local maxima, which we refer to as peaks. After extracting the peaks, we assign the corresponding substructures based on the IR absorption table, and generate textual interpretations. For example, if a peak is found within the range of (1200, 1000) cm⁻¹, the interpretation might be: "Peaks observed between 1200 and 1000 cm⁻¹ are typically associated with fluoro compounds (C–F)."

A.5 LLM AGENTS

System Setup. Our agent system is implemented using Python 3.11.10, with `langchain` 0.3.25, `langchain-openai` 0.2.11, and `langgraph` 0.2.59. We utilize three LLMs: GPT-4o-mini⁴, GPT-4o⁵, and o3-mini⁶. For GPT-4o-mini, we use the `gpt-4o-mini-2024-07-18` model with a temperature setting of 0.8. For GPT-4o, we use `gpt-4o-2024-08-06`, also with a temperature of 0.8. For o3-mini, we use `o3-mini-2025-01-31` with default settings and medium reasoning mode.

Computational Cost Analysis. In Table 5, we summarize the cost per LLM, along with input and output token counts. Although the output length for both the TI and Ret Experts is constrained to fewer than 300 tokens, we observe that o3-mini, which is designed as a reasoning model, tends to generate a higher number of output tokens due to reasoning tokens that are not explicitly reflected in the final output. The overall API cost for a single run of IR-Agent increases in the order of GPT-4o-mini, GPT-4o, and o3-mini. Additionally, we find that LLMs with more intricate reasoning processes

³https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html

⁴<https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>

⁵<https://openai.com/index/hello-gpt-4o/>

⁶<https://openai.com/index/openai-o3-mini/>

972
973
974 Table 5: Computational cost analysis comparison across different LLMs.
975
976
977
978
979
980
981
982
983

Computational cost & Tokens	GPT-4o-mini	GPT-4o	o3-mini
Input cost (per 1M token)	\$0.15	\$ 2.50	\$1.10
Output cost (per 1M token)	\$0.6	\$10.00	\$4.40
Average input token	1500	1500	1400
Average output token	600	600	4400
Avg. cost per call (IR-Agent)	\$0.0006	\$0.0097	\$0.0209
TI Expert (sec)	3.6	5.6	16.2
Ret Expert (sec)	6.2	5.5	8.2
SE Expert (sec)	3.2	2.7	18
IR-Agent(single, sec)	3.9	2.8	13.5

984
985
986 generally exhibit longer average runtimes per sample. Since the TI and Ret Experts can be operated in
987 parallel, the total runtime for IR-Agent is determined by whichever of these two is slower, along with
988 the time required for the SE Expert. The IR-Agent (single), which performs all tasks at once, is much
989 faster than the multi-agent approach. However, its performance is lower compared to the multi-agent
990 setup, indicating a trade-off between speed and accuracy. The complete process—which involves
991 interpreting the IR absorption table, extracting key features from retrieved SMILES, and leveraging
992 this information to generate the final SMILES candidates—naturally requires a considerable amount
993 of time. While the current LLM inference speed is not sufficient for high-throughput or large-scale
994 applications, IR-Agent is still faster than manual expert analysis. Thus, it can serve as an effective tool
995 for offering structural suggestions before a human expert undertakes detailed spectrum interpretation.
996

997

B DATASET

998

1000 **Preprocessing Details.** Unlike prior work (Alberts et al., 2024a; Wu et al., 2025), we do not exclude
1001 compounds with stereochemistry or ionic states, nor do we restrict the heavy atom count to between
1002 6 and 13 or limit elemental composition to C, H, N, O, S, P, and halogens. Instead, the NIST dataset
1003 we use contains 9,052 spectra with diverse phase compositions—56% gas, 20% liquid, and 24%
1004 solid—capturing broader chemical diversity. The heavy atom count ranges from 3 to 68 (mean: 13.4,
1005 median: 12.0), which is substantially higher and more variable than in previous datasets. No filtering
1006 is imposed based on stereochemistry, charge state, or elemental composition; all spectra are retained.
1007 Consequently, our dataset exhibits higher SMILES token diversity and better reflects real-world
1008 experimental conditions. Following Na (2024), we apply polynomial interpolation over wavenumbers
1009 ranging from 500–4000 cm⁻¹ to obtain a structured format, addressing the inconsistent number of
1010 absorbance points across samples. For spectra recorded in transmittance mode, intensity values are
1011 converted to absorbance using a standard conversion A.1.

1012

C FURTHER ANALYSIS

10131015

C.1 PERFORMANCE COMPARISON ACROSS DIFFERENT BEAM WIDTHS

1016

1017 We validate the effectiveness of IR-Agent when using the IR Spectra Translator with larger beam
1018 widths. As shown in Figure 4, increasing the beam width beyond the default setting of 3 improves the
1019 performance of the Translator, thanks to the increased diversity in the decoding process. Moreover,
1020 when integrated into our framework, IR-Agent consistently yields additional performance gains by
1021 leveraging the SMILES candidates generated by the enhanced translator.
1022

1023

C.2 ROBUSTNESS OF LLMs TO PROMPT VARIATIONS

1024

1025 Table 6: Robustness of IR-Agent (o3-mini) to prompt variations.

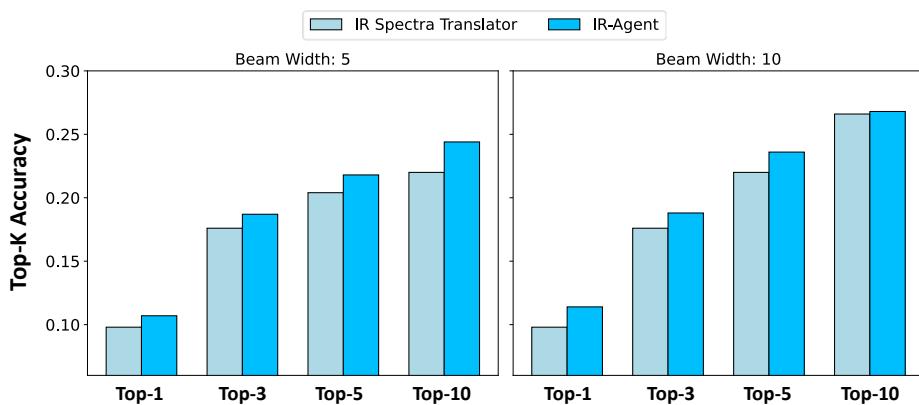


Figure 4: Performance of IR-Agent using Translator across different beam widths

Prompt	Top-K Accuracy			
	Top-1	Top-3	Top-5	Top-10
Prompt 1	0.110 (0.003)	0.168 (0.005)	0.194 (0.007)	0.214 (0.005)
Prompt 2	0.100 (0.006)	0.182 (0.004)	0.201 (0.011)	0.222 (0.006)
IR-Agent	0.103 (0.005)	0.178 (0.007)	0.199 (0.004)	0.216 (0.001)

To evaluate the robustness of IR-Agent across different prompts, we curated new prompt variations for each agent by rephrasing the originals. Specifically, we asked GPT-4o to “rephrase the given prompt with the same semantics, but in a different structure,” and used the resulting two paraphrased versions for additional experiments with IR-Agent. Notably, IR-Agent demonstrated robust performance across these entirely paraphrased prompts, with results showing little deviation from the standard deviation observed with the original prompts.

C.3 ROBUSTNESS OF LLMs TO AMBIGUOUS CHEMICAL INFORMATION

Table 7: Robustness of IR-Agent (o3-mini) to ambiguous chemical information.

Chemical Information	Top-K Accuracy			
	Top-1	Top-3	Top-5	Top-10
No Knowledge 2	0.103 (0.005)	0.178 (0.007)	0.199 (0.004)	0.216 (0.001)
Ambiguous Carbon Num	0.091 (0.003)	0.188 (0.003)	0.213 (0.006)	0.249 (0.005)
Exact Carbon Num 2	0.123 (0.003)	0.190 (0.005)	0.215 (0.009)	0.252 (0.007)

In practical experimental settings, chemical information is often ambiguous or incomplete. To reflect this, we also consider an “ambiguous carbon number” scenario, where the number of carbons is provided as a range (i.e., exact carbon number ± 1) rather than an exact value. We evaluate the performance of IR-Agent under this setting with incomplete information. Experimental results show that, as expected, the performance of IR-Agent drops when given an ambiguous carbon number compared to the exact value. However, except for the Top-1 metric, the decrease in performance is not significant, indicating that IR-Agent can still accurately predict the correct SMILES even when only incomplete carbon information is available.

C.4 DETERMINISTIC WORKFLOW OF IR-AGENT VS. THE REACT FRAMEWORK

Table 8: Comparison of IR-Agent (GPT-4o) with ReAcT framework

Workflow	Top-K Accuracy			
	Top-1	Top-3	Top-5	Top-10
ReAcT Framework	0.083 (0.004)	0.148 (0.005)	0.151 (0.003)	0.158 (0.005)
IR-Agent	0.093 (0.007)	0.153 (0.005)	0.177 (0.005)	0.204 (0.005)

IR-Agent follows a largely deterministic and fixed pattern, lacking the dynamic decision-making characteristic of agent systems. Since experts necessarily refer to both IR absorption tables and spectral databases when analyzing IR spectra, they rely on the combination of these two sources of information for interpretation. Unlike common tasks such as question answering, structure elucidation from IR spectra is highly specific and challenging, where faithfully emulating the expert reasoning process is essential. Therefore, we aim to design a system that closely mirrors the analytical workflow of domain experts. We conduct a comparative experiment using a ReAct agent framework, where the LLM autonomously selects its actions. Specifically, we employ GPT-4o as the base LLM and provided a set of SMILES candidates generated by the IR Spectra Translator. The available tools include the IR Peak Table Assigner, IR Spectra Retriever, and an additional finish tool that enables the agent to terminate tool selection and output the final SMILES. The maximum number of tool calls is limited to five. In line with the ReAct framework, the agent iteratively goes through thought, action (tool selection), and observation steps.

From our experimental results, we observe that IR-Agent demonstrates superior performance compared to the ReAct framework. In the ReAct setting, the agent often successfully calls both the IR Peak Table Assigner and the IR Spectra Retriever. However, we also found two common failure modes: (1) the agent selects only the IR Peak Table Assigner, limiting itself to a narrow set of information, and (2) the agent repeatedly selects the same tool (e.g., retriever, then table, then table again), resulting in final SMILES predictions that are biased toward the information provided by that tool alone. These observations suggest that, for the task of structure elucidation from IR spectra, which requires substantial domain knowledge and careful emulation of expert reasoning, a deterministic approach to tool selection—as implemented in IR-Agent—is necessary. Such a deterministic agent process is effective in emulating the expert analysis workflow and highlights the importance of guided, expert-like decision-making in this context

C.5 THE SCOPE OF IR-AGENT

Table 9: Performance of IR-Agent on Single Compounds and Mixtures

Type	# Test	Top-1	Top-3	Top-5	Top-10	MACCS	RDK	Morgan
Single	886	0.105(0.006)	0.183(0.008)	0.204(0.005)	0.221(0.001)	0.775(0.003)	0.603(0.003)	0.556(0.003)
Mixture	20	0.000	0.000	0.000	0.000	0.567(0.026)	0.310(0.043)	0.277(0.027)

Unlike previous studies (Alberts et al., 2024a; Wu et al., 2025; Jung et al., 2023) that typically restrict their scope to single gas-phase materials, we aimed to design our model under a more realistic and unconstrained setting using the NIST dataset. Consequently, our dataset (total: 9,052 spectra) includes both single compounds (8,810) and mixtures (242). However, peak overlap in mixtures poses a significant challenge for accurate prediction. Our empirical results show that although IR-Agent performs exceptionally well on single compounds, it struggles with mixtures due to signal complexity and limited training examples. Therefore, our IR-Agent focuses on handling single molecular components, and we consider mixture analysis an important but challenging direction for future work to further enhance the agent’s capabilities.

C.6 ADDITIONAL CASE STUDIES

In Figure 5, we present an additional case study for IR-Agent. The TI Expert infers the presence of halogen atoms such as F and Cl with high confidence, based on the consistency between the translator output and the table interpretation (e.g., C–F, C–Cl bonds). Additionally, the Ret Expert identifies a structural pattern consisting of an aromatic ring substituted with one or more halogen atoms. Based on these integrative analyses, the SE Expert accurately infers the complete molecular structure of the target spectrum.

1134	Translator Output(C)
1135	'Fc1ccc(Cl)c(Br)c1', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(Cl)cc1Br'
1136	TI Expert
1137	<ul style="list-style-type: none"> • For <chem>Fc1ccc(Cl)c(Br)c1</chem> <ul style="list-style-type: none"> – C-F → High confidence → The “Fc” fragment indicates a fluorine directly bonded to the aromatic ring, matching the 1200–1000 cm⁻¹ fluoro absorption. – C-Cl → High confidence → The presence of a chlorine substituent on the ring is consistent with the halo (C-Cl) absorption at 760–540 cm⁻¹.
1138	
1139	<ul style="list-style-type: none"> • For <chem>Fc1ccc(Br)c(Cl)c1</chem> <ul style="list-style-type: none"> – C-F → High confidence → The fluorine substituent (“Fc”) on the aromatic ring aligns with the 1200–1000 cm⁻¹ peak for C-F. – C-Cl → High confidence → The chloro substituent is present and explains the IR band at 760–540 cm⁻¹ for halo (C-Cl) compounds.
1140	
1141	<ul style="list-style-type: none"> • For <chem>Fc1ccc(Cl)cc1Br</chem> <ul style="list-style-type: none"> – C-F → High confidence → The aromatic fluorine (“Fc”) confirms the IR feature at 1200–1000 cm⁻¹ attributed to C-F bonds. – C-Cl → High confidence → The chlorine attached to the benzene ring supports the halo absorption observed at 760–540 cm⁻¹.
1142	
1143	Ret Expert
1144	Most of the candidate SMILES show an aromatic ring decorated with electronegative substituents (primarily Cl, sometimes F or Br) and additional functional groups like –S (thiol/ thioether) or –OCH₃ . For example, the top candidate (<chem>Fc1ccc(S)c(Cl)c1</chem>) features a benzene ring with a fluorine, a chlorine, and a sulfur substituent. Other SMILES reinforce this pattern by having dichloro-substitution (e.g., <chem>COc1ccc(Cl)c(Cl)c1</chem>) or a sulfur linker (<chem>SCc1ccc(Cl)c(Cl)c1</chem>).
1145	
1146	Thus, it is likely that the target structure also consists of a substituted aromatic core bearing one or more halogen atoms (notably Cl) along with heteroatom substituents such as sulfur or methoxy groups. These features would match the vibrational modes found in the IR spectrum and justify the high cosine similarities observed.
1147	
1148	SE Expert
1149	1. <chem>Fc1ccc(Cl)c(Br)c1</chem> , 2. <chem>Fc1ccc(Br)c(Cl)c1</chem> , ..., 7. <chem>SCc1ccc(Cl)c(F)c1</chem> , 8. <chem>Fc1cc(OC)c(Cl)c1</chem> , 9. Fc1ccc(Cl)c(Cl)c1 , 10. <chem>Fc1c(Cl)cc(Br)c1</chem>
1150	

Figure 5: Additional Case Study: Outputs of expert agents in IR-Agent.

D LIMITATIONS & FUTURE WORK

We focus on extracting local structural information based on interpretations from the IR absorption table. However, accurate interpretation requires considering not only the peak positions, but also the peak shapes and intensities. Since our framework refines and regenerates SMILES based on the candidates provided by the IR Spectra Translator, its overall performance is naturally influenced by the Translator. At the same time, the framework is designed to flexibly incorporate diverse types of chemical information without requiring retraining or architectural modifications. Nevertheless, when adapting to new spectral datasets, the IR Spectra Translator itself still needs to be retrained, as is the case with prior approaches. An alternative approach would be to directly input the IR spectrum as an image along with its raw spectral values into an LLM. With an effective prompting strategy or collaboration with external tools, this would enable the model to capture peak shapes and intensities during the interpretation of the IR absorption table, and to generate candidate SMILES without requiring retraining when adapting to new spectral datasets, effectively functioning as a translator.

E PROMPT TEMPLATES FOR EXPERT AGENTS

In this section, we provide the prompt templates used for each agent described in Section 4. In addition to the default setting without chemical information, we present modified prompt templates that incorporate additional chemical information in three scenarios: atom types, scaffold, and carbon count. For each case, a single sentence describing the given chemical information is appended to the original prompt.

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188

1189 Table 10: Prompt for Table Interpretation (TI) Expert (Section 4.1)

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing infrared (IR) spectra.

Prompt: You have an IR absorption interpretation that suggests certain substructures (e.g. nitrile, carbonyl, etc.), but this table-based mapping can be imprecise.

Given SMILES: {SMILES Candidates}

IR interpretation: {Table Interpretation}

Your task is to:

For each SMILES in the given SMILES list, identify substructures that are present both in the IR interpretation and in the that SMILES.

Return a bulleted list in the format:

substructure → confidence → brief rationale

KEEP THE RESPONSE UNDER 300 TOKENS.

ONLY RETURN:

- A bulleted list of (substructure → confidence → brief rationale).

Table 11: Prompt for Table Interpretation (TI) Expert with Chemical Information(Section 4.4)

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing infrared (IR) spectra.

Prompt: You have an IR absorption interpretation that suggests certain substructures (e.g. nitrile, carbonyl, etc.), but this table-based mapping can be imprecise.

Given SMILES: {SMILES Candidates}

IR interpretation: {Table Interpretation}

The molecule corresponding to the target spectrum is known to include the following atom types: {Atom Types}.

The molecule corresponding to the target spectrum is known to include the following scaffold: {Scaffold}.

The molecule corresponding to the target spectrum is known to include exactly {Carbon Count} carbon atoms.

Your task is to:

For each SMILES in the given SMILES list, identify substructures that are present both in the IR interpretation and in the that SMILES.

Return a bulleted list in the format:

substructure → confidence → brief rationale

KEEP THE RESPONSE UNDER 300 TOKENS.

ONLY RETURN:

- A bulleted list of (substructure → confidence → brief rationale).

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

Table 12: Prompt for Retriever (Ret) Expert (Section 4.2)

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing infrared (IR) spectra.

Prompt: Your task is to analyze the SMILES of the candidate spectra, whose cosine similarity to the target spectrum is high.

If the target spectrum and candidate spectra exhibit high similarity, the SMILES of the target spectrum may have a similar structural characteristics to the SMILES of the candidate spectrum.

SMILES of candidate spectra and their cosine similarities to the target spectrum:
[\(Output of IR Spectra Retriever\)](#)

Based on the SMILES list, extract the structural information to complement the SMILES of the target spectrum.

Provide reasoning to support your analysis.

Let's think step-by-step.

KEEP THE RESPONSE UNDER 300 TOKENS.

ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

Table 13: Prompt for Retriever (Ret) Expert with Chemical Information (Section 4.4)

1310 **System Prompt:** You are an expert organic chemist with specialized knowledge in analyzing
1311 infrared (IR) spectra.
1312

1313 **Prompt:** Your task is to analyze the SMILES of the candidate spectra, whose cosine
1314 similarity to the target spectrum is high.
1315

1316 If the target spectrum and candidate spectra exhibit high similarity, the SMILES of the
1317 target spectrum may have a similar structural characteristics to the SMILES of the candidate
1318 spectrum.
1319

1320 SMILES of candidate spectra and their cosine similarities to the target spectrum:
1321 {Output of IR Spectra Retriever}
1322

1323 The molecule corresponding to the target spectrum is known to include the following atom
1324 types: {Atom Types}.
1325

1326 The molecule corresponding to the target spectrum is known to include the following
1327 scaffold: {Scaffold}.
1328

1329 The molecule corresponding to the target spectrum is known to include exactly
1330 {Carbon Count} carbon atoms.
1331

1332 Based on the SMILES list, extract the structural information to complement the SMILES of
1333 the target spectrum.
1334

1335 Provide reasoning to support your analysis.
1336

1337 Let's think step-by-step.
1338

KEEP THE RESPONSE UNDER 300 TOKENS.

ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350

1351

1352

1353

1354

1355

1356

1357

Table 14: Prompt for Structure Elucidation (SE) Expert (Section 4.3)

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing infrared (IR) spectra.

Prompt: Your task is to refine the given SMILES list and generate a N candidate list that aligns well with the IR spectrum while preserving structural diversity and plausibility.

The IR Absorption Table Agent provides potentially useful insights by interpreting the IR spectrum and suggesting possible substructures based on known absorption patterns.

IR Spectrum Retriever Agent examines the structural features of candidate SMILES that exhibit high cosine similarity to the target spectrum.

IR Absorption Table Agent Output: $\{\mathcal{A}_{\text{TI Expert}}\}$

IR Spectrum Retriever Agent Output (high-similarity spectra & analysis): $\{\mathcal{A}_{\text{Ret Expert}}\}$

1) Identify the substructures that are common to both the IR table interpretation and at least one SMILES in the list.

2) From the retriever agent output, extract structural information (e.g., recurring motifs / scaffolds) suggested by high-similarity candidates.

3) Guided by the structural insights from steps 1 and 2, produce a refined Top-N list of SMILES candidates.

4) Ensure the final list is chemically diverse and plausible—do not overfit to any single interpretation.

Based on these analyses, regenerate a list of Top-N SMILES by refining the target smiles: $\{\text{SMILES Candidates}\}$.

Let's think step-by-step.

ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.

YOUR ANSWER FORMAT MUST BE AS FOLLOWS ONLY CONTAINING THE SMILES:

1. SMILES_1, 2. SMILES_2, 3. SMILES_3, ..., N. SMILES_N

1404

1405

1406

1407

1408

1409 Table 15: Prompt for Structure Elucidation (SE) Expert with Chemical Information (Section 4.4)

1410

1411

1412 **System Prompt:** You are an expert organic chemist with specialized knowledge in analyzing
1413 infrared (IR) spectra.

1414

1415 **Prompt:** Your task is to refine the given SMILES list and generate a N candidate list that
1416 aligns well with the IR spectrum while preserving structural diversity and plausibility.

1417

1418 The IR Absorption Table Agent provides potentially useful insights by interpreting the IR
1419 spectrum and suggesting possible substructures based on known absorption patterns.

1420

1421 IR Spectrum Retriever Agent examines the structural features of candidate SMILES that
1422 exhibit high cosine similarity to the target spectrum.

1423

1424 IR Absorption Table Agent Output: $\{\mathcal{A}_{\text{TI Expert}}\}$

1425

1426 IR Spectrum Retriever Agent Output (high-similarity spectra & analysis): $\{\mathcal{A}_{\text{Ret Expert}}\}$

1427

1428 The final predicted molecular structures are constrained to contain only the following atom
1429 types: **{Atom Types}**.1430 The final predicted molecular structures must incorporate the specified scaffold **{Scaffold}**.
1431 The final predicted molecular structures are required to contain exactly **{Carbon Count}**
1432 carbon atoms.

1433

1434 1) Identify the substructures that are common to both the IR table interpretation and at least
1435 one SMILES in the list.

1436

1437 2) From the retriever agent output, extract structural information (e.g., recurring motifs /
1438 scaffolds) suggested by high-similarity candidates.

1439

1440 3) Guided by the structural insights from steps 1,2, and **{Atom Types}**, **{Scaffold}**, **{Carbon**
1441 **Count}**] constraint, produce a refined Top-N list of SMILES candidates.

1442

1443 4) Ensure the final list is chemically diverse and plausible—do not overfit to any single
1444 interpretation.

1445

1446 Based on these analyses, regenerate a list of Top-N SMILES by refining the target smiles:
1447 **{SMILES Candidates}**.

1448

1449 Let's think step-by-step.

1450

1451 ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.

1452

1453 YOUR ANSWER FORMAT MUST BE AS FOLLOWS ONLY CONTAINING THE
1454 SMILES:

1455

1456 1. SMILES_1, 2. SMILES_2, 3. SMILES_3, ..., N. SMILES_N

1457