
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IR-AGENT: EXPERT-INSPIRED LLM AGENTS FOR
STRUCTURE ELUCIDATION FROM INFRARED SPECTRA

Anonymous authors
Paper under double-blind review

ABSTRACT

Spectral analysis provides crucial clues for the elucidation of unknown materi-
als. Among various techniques, infrared spectroscopy (IR) plays an important
role in laboratory settings due to its high accessibility and low cost. However,
existing approaches often fail to reflect expert analytical processes and lack flex-
ibility in incorporating diverse types of chemical knowledge, which is essential
in real-world analytical scenarios. In this paper, we propose IR-Agent, a novel
multi-agent framework for molecular structure elucidation from IR spectra. The
framework is designed to emulate expert-driven IR analysis procedures and is
inherently extensible. Each agent specializes in a specific aspect of IR interpre-
tation, and their complementary roles enable integrated reasoning, thereby im-
proving the overall accuracy of structure elucidation. Through extensive experi-
ments, we demonstrate that IR-Agent not only improves baseline performance
on experimental IR spectra but also shows strong adaptability to various forms
of chemical information. The source code for IR-Agent is available at https:
//anonymous.4open.science/r/IR-Agent-ICLR26-CD59.

1 INTRODUCTION

Spectral analysis provides critical clues for the elucidation of unknown materials (Huang et al., 2021;
Li & Kang, 2020). In particular, spectroscopic techniques such as Infrared Spectroscopy (IR), Mass
Spectrometry (MS), and Nuclear Magnetic Resonance Spectroscopy (NMR) are widely used for
elucidating molecular structures (Li & Kang, 2020). For example, IR reveals details about chemical
bonds and substructures (Griffiths, 2006), MS offers molecular weight and fragmented molecular
structures (Lee, 1998), and NMR provides in-depth structural information, including stereochemistry
(Li & Kang, 2020; Klein, 2013). Although IR spectroscopy lacks comprehensive chemical information
such as molecular weight, stoichiometry, and stereochemical details compared to MS and NMR, it is
frequently utilized in the initial phase of analysis due to its low cost, speed, and high accessibility in
laboratory settings (Coates et al., 2000; Mistek & Lednev, 2018). Despite the ease and affordability of
acquiring IR spectra, their interpretation remains a challenging and time-consuming task that requires
extensive domain knowledge and expert experience (Varmuza et al., 1999; Jung et al., 2023).

To automate IR spectra analysis, various machine learning (ML)-based approaches have been explored.
Early ML approaches for IR spectra analysis primarily focus on identifying functional groups,
achieving high predictive accuracy. Specifically, convolutional neural network (CNN) architectures
are employed to classify functional groups from IR spectra (Jung et al., 2023; Wang et al., 2023),
and the M-order Markov property is utilized to construct IR spectrum graphs for tasks such as
material class classification and functional group detection (Na & Rho, 2024). While functional group
classification enables rapid and simple characterization of compounds, it remains insufficient for
tasks such as material discovery or identification of unknown material, underscoring the necessity of
complete molecular structure elucidation.

More specifically, molecular structure elucidation—which aims to generate the full SMILES represen-
tation of an unknown molecule—requires more comprehensive molecular information such as atomic
composition, bonding information, and the connectivity of substructures, making it a substantially
more complex task compared to functional group classification (Xue et al., 2023). As a result, only
a few recent studies have explored early approaches, including predicting molecular structures as
SMILES sequences by leveraging Transformer models with chemical formula information (Alberts
et al., 2024a; Wu et al., 2025), exploring reinforcement learning with IR spectra alone (Ellis et al.,
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2023), and extending such methods to integrate both IR and NMR spectra (Devata et al., 2024).
Despite these early advances, these methods generally rely on fixed and predefined input formats,
which restricts their flexibility in accommodating diverse types of chemical information.

In real-world analytical scenarios, IR spectra are often accompanied by diverse chemical information,
such as atom types inferred from synthesis pathways, the number of carbon atoms, or molecular
scaffolds (i.e., the molecular skeleton structure). However, existing methods struggle to flexibly
incorporate such information, since accommodating new types of inputs typically requires redesigning
and retraining the model (Alberts et al., 2024a; Jung et al., 2023; Devata et al., 2024). This highlights
the need for a framework that can seamlessly integrate a wide range of chemical inputs.

Recently, by representing chemical information in natural language, Large Language Models (LLMs)
have been effectively utilized in the field of biochemistry. For instance, LLMs have been used to
generate molecular structures in the string representation of molecules (i.e., SMILES) from text-
based descriptions (Edwards et al., 2022) and even modify molecular structures based on specified
conditions (Li et al., 2024; Liu et al., 2024a). These successes highlight that an LLM-based framework
is well-suited for building a more flexible and extensible IR spectrum-based structure elucidation
system.

On the other hand, beyond the various types of chemical information, IR spectra analysis involves
comprehensively integrating knowledge from diverse sources. Specifically, during the process, experts
interpret IR absorption tables to infer local substructures and bonding patterns from peak positions
(Socrates, 2004; Larkin, 2017), and retrieve structurally similar molecules from spectral databases
to provide global contextual clues (Moldoveanu & Rapson, 1987). Similar to expert workflows, a
successful system should accurately perform each of these tasks—extracting critical information
from multiple sources—and ultimately integrate the results in a coherent reasoning process to predict
the molecular structure. However, it is widely known that relying on a single LLM to perform all
sub-tasks simultaneously can result in suboptimal information extraction and may be inadequate for
handling complex reasoning tasks (Chen et al., 2024; Sun et al., 2023).

To this end, we propose IR-Agent, a novel LLM-based multi-agent framework specifically designed
to emulate expert analytical processes and seamlessly incorporate various types of knowledge into
the structure elucidation workflow based on IR spectra. Rather than relying on a single LLM to
process all types of knowledge at once, our framework adopts modeling with specialized sub-agents
tailored to each type of knowledge. More specifically, we design a multi-agent framework composed
of the following: (1) a Table Interpretation Expert that performs table-guided absorption analysis
to extract local structural information from the target IR spectrum; (2) a Retriever Expert that
identifies similar spectra from spectra databases to provide global contextual structural information;
and (3) a Structure Elucidation Expert that produces the final structure prediction by integrating
the analyses from both expert agents, each contributing complementary information for complete
structure elucidation. This integrative analysis within a multi-agent framework enables effective
molecular structure elucidation by extracting relevant information from each knowledge source
and performing collaborative reasoning. A further appeal of IR-Agent is its flexibility: when new
knowledge becomes available, the system does not need a complete redesign or retraining. Instead, it
can be easily extended by incorporating the additional information through updated prompts to guide
the agent’s reasoning process. Our main contributions in this study are as follows:

• We introduce IR-Agent, a novel multi-agent framework for molecular structure elucidation from
infrared (IR) spectra. This framework models expert-driven IR spectrum analysis processes and is
designed to be highly extensible.

• While each agent specializes in a specific aspect of IR spectrum analysis, their complementary roles
enable an integrative analysis process, ultimately improving molecular structure elucidation from
IR spectrum.

• Through extensive experimentation, we show that our proposed framework not only improves
baseline performance on experimental IR spectra but also exhibits strong adaptability to diverse
types of chemical information.

To the best of our knowledge, this is the first work to leverage the LLM agents framework for
molecular structure elucidation from IR spectra.
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2 RELATED WORKS

2.1 MACHINE LEARNING FOR IR SPECTRA ANALYSIS

ML-based approaches for IR spectra have shown effectiveness in functional group identification,
structural feature extraction, and molecular structure elucidation. CNNs have been applied to func-
tional group classification (Jung et al., 2023; Wang et al., 2023), while GNNs have been used on
spectrum graphs derived from the M-order Markov property for material classification and functional
group detection (Na & Rho, 2024). Beyond functional groups, ML has also been extended to full
molecular structure elucidation. Transformer-based models are widely used: Alberts et al. (2024a)
convert downsampled IR spectra into text, and Wu et al. (2025) apply patch-based self-attention with
data augmentation. Unlike these approaches, which assume access to ground-truth chemical formulas,
our setting relies solely on the IR spectrum. Additionally, reinforcement learning has been applied
to structure elucidation using IR spectra (Ellis et al., 2023), with subsequent work extending this
approach to incorporate both IR and NMR spectra (Devata et al., 2024). More recently, large language
models have been explored for structure elucidation tasks with multi-modal spectral inputs, including
IR, MS, and NMR spectra (Guo et al., 2024). Unlike prior work, IR-Agent aims to incorporate expert
analytical processes and adopts a multi-agent framework, which offers high architectural flexibility.

2.2 LLM AGENTS FOR SCIENCE

LLM agents have demonstrated strong capabilities across various scientific domains. For example,
ChemCrow(Bran et al., 2023) employs an LLM agent to autonomously perform tasks typically
conducted by chemists, using a range of external tools. Similarly, Coscientist(Boiko et al., 2023)
autonomously handles experimental design, planning, and execution of complex experiments by
integrating internet search, code execution, and laboratory automation. Moreover, LLM agents
have been applied to diverse fields such as materials science(Zhang et al., 2024) and biomedical
domain, including applications in drug discovery(Inoue et al., 2024) and the design of biological
experiments(Roohani et al., 2024). In addition, recent work has explored the use of multi-agent
frameworks to effectively tackle drug discovery tasks(Lee et al., 2025; Liu et al., 2024b), highlighting
the growing interest in collaborative LLM-based systems for complex scientific workflows. While
LLM agents have not yet been applied to spectra-related tasks, their integration with external tools
presents high potential for extensibility and effectiveness, as demonstrated in other scientific domains.
This work aims to initiate exploration in this direction by positioning LLM agents as a viable solution
for spectral analysis.

3 PRELIMINARIES

3.1 PROBLEM SETUP

Task Description. Given an IR spectrum X ∈ R1×L of a molecule as input, where L denotes the
number of absorbance values corresponding to wavenumber positions, IR-Agent predicts the raw
SMILES representation of the molecule, a process known as molecular structure elucidation. While
some studies (Wu et al., 2025; Alberts et al., 2024a) assume that the ground-truth chemical formula is
always available along with the IR spectrum, our setting considers only the IR spectrum. In practice,
obtaining the exact formula of an unknown material is often unrealistic. Although mass spectrometry
(MS) is commonly employed, it is costly and time-consuming (Vas & Vekey, 2004), difficult to
interpret (Rolland & Prell, 2021), and still leaves the derivation of an exact formula as a highly
non-trivial challenge (Böcker & Dührkop, 2016; Goldman et al., 2023). Thus, we adopt a setting
where the chemical formula is not used, employing a translator that directly predicts SMILES from
IR spectra. Since our framework can also incorporate supplementary chemical information—such
as atom types, carbon counts, or scaffold structures—we further explore its applicability to more
informed settings (Section 4.4). More details about analysis settings are provided in the AppendixA.2.

Tools. In this paper, we specifically design tools to support task-specific analysis as follows:

• IR Peak Table Assigner extracts the peaks from the spectrum and finds relevant substructures from
the IR absorption table.

• IR Spectra Retriever retrieves IR spectra from the IR Spectra Database that are similar to a given
input spectrum.
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Tools

SE Expert

Ret ExpertIR Spectra

(a) Overall Framework

(c) Ret Expert

TI Expert

Similarity Search
𝓐𝓐

𝐓𝐓𝐓𝐓𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄

Output SMILES

Structural information from similar spectra

(b) TI Expert IR Absorption Table
(3550, 3200): "alcohol (O-H)",
(3500, 3400): "primary amine (N-H)",
(3400, 3300): "aliphatic primary amine (N-H)“,

(730, 665): "cis-disubstituted alkene (C=C)",
(690, 515): "halo compound (C-Br)", 
(600, 500): "halo compound (C-I)",

✓

✓

✓
...

Structural information from the IR Absorption Table
𝓐𝓐

𝐑𝐑
𝐑𝐑𝐑𝐑𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄

𝑪𝑪

1. CCOc1ccc(F)cc1  
2. CCOc1ccc(OCC)cc1   

3. COc1ccc(F)cc1

10. CCCOc1ccc(OCC)cc1
...

✓

𝓐𝓐𝐓𝐓𝐈𝐈 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄, 𝓐𝓐𝐑𝐑𝐑𝐑𝐑𝐑 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄, 𝑪𝑪
Generate 

Top-10 SMILES

Based on 

Identify substructures that are present both in 
the IR interpretation and the corresponding 
Translator Output ~ 

Translator Output(𝑪𝑪) & Table interpretation

Retrieved SMILES & Cosine Similarity
Analyze the SMILES of candidate spectra, 
and extract their structural information ~

IR Spectra Translator

IR Peak Table Assigner
/IR  Absorption Table

IR Spectra Retriever/Database

Figure 1: Overview of IR-Agent. (a) Overall framework. Given an unknown IR spectrum, IR-
Agent first utilizes the IR Spectra Translator to generate candidate structures in SMILES format.
The Table Interpretation (TI) Expert then extracts local structural information by referencing the IR
absorption table through the IR Peak Table Assigner. In parallel, the Retriever (Ret) Expert obtains
global structural features from similar spectra retrieved by the IR Spectra Retriever from a database.
The Structure Elucidation (SE) Expert integrates analyses from both experts to produce the final
predicted molecular structures. (b) Detailed view of the Table Interpretation (TI) Expert. (c) Detailed
view of the Retriever (Ret) Expert.

External Knowledge. We also use external knowledge to support task-specific analysis as follows:

• IR Absorption Table summarizes the characteristic absorption frequencies associated with different
molecular functional groups.

• The IR Spectra Database contains a variety of IR spectra along with their corresponding molecules
in SMILES format.

Additional details on the tools and external knowledge are provided in the Appendix A.

3.2 IR SPECTRA TRANSLATOR

To begin with, we introduce an IR Spectra Translator, a Transformer-based model (Vaswani et al.,
2017) that proposes an initial pool of SMILES candidates from a target IR spectrum. Specifically,
given the target IR spectrum X , we obtain a set of SMILES candidates C as follows:

C = {s1, . . . , sK} = Transformer(X ), (1)

where K denotes the number of SMILES candidates generated by the Translator using beam search
decoding. Since deriving reliable SMILES directly from thousands of real-valued IR absorbance
measurements is challenging for LLMs, this module seeds the downstream reasoning process with
plausible starting structures, which are subsequently expanded and revised. Additional details on the
IR Spectra Translator are provided in Appendix A.2.

4 PROPOSED METHOD: IR-AGENT

In this section, we introduce IR-Agent, a multi-agent framework for molecular structure elucidation
from IR spectra that mimics expert analytical processes through specialized expert agents. Our
framework combines off-the-shelf LLMs with analytical tools to support an integrative analysis
process. It is composed of the following expert agents: (1) the Table Interpretation (TI) Expert,
which employs an IR absorption table to identify substructures from SMILES sequences (Section 4.1);
(2) the Retriever (Ret) Expert, which extracts structural information from retrieved spectra (Section
4.2); and (3) the Structure Elucidation (SE) Expert, which provides a ranked list of SMILES based
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on the outputs from both the Retriever Experts and Table Interpretation Experts (Section 4.3). The
overall framework is presented in Figure 1.

4.1 TABLE INTERPRETATION (TI) EXPERT

The use of IR absorption tables is grounded in decades of experimental validation and theoretical
development, offering reliable and interpretable structural insights. Importantly, this approach cap-
tures fine-grained localized structural features, such as substitution patterns, cis/trans isomerism,
and conjugation, which makes it a crucial component in structure elucidation. However, effective
utilization of these tables requires accurate identification of spectral peaks, which is challenging to an
LLM agent because: (1) it may infer peak positions from spectral images, but only approximately and
often without sufficient precision; and (2) it struggles to detect peaks directly from high-dimensional
numerical absorbance data, which typically consists of thousands of values.

To address this limitation, the TI Expert agent employs the IR Peak Table Assigner tool, which extracts
peaks from the spectrum by simply comparing the absorbance of neighboring wavenumbers and then
assigns corresponding substructures to each peak based on its wavenumber range, by referring to the
IR absorption table. An example output of the IR Peak Table Assigner is: “Peaks observed between
1200 and 1000 cm−1 are typically associated with fluoro compounds (C–F).” Specifically, given the
task-specific prompt PTI Expert, the IR Absorption Table (T), and IR Peak Table Assigner, the agent is
defined as follows:

ATI Expert = TI Expert (PTI Expert, IR Peak Table Assigner(X ,T), C) , (2)

where C denotes the SMILES candidates generated by the IR spectra Translator. ATI Expert includes
the potential substructures that can be included in the SMILES string.

Despite its utility, table-based interpretation has inherent limitations: IR spectra often contain noise,
and multiple substructures may exhibit absorption within the same wavenumber region, leading
to ambiguity in peak assignment. To mitigate the possible misinterpretation, we design a prompt
PTI Expert that guides the agent to compare the output of the IR Peak Table Assigner with the SMILES
candidates C, identify shared substructures, and generate a confidence level along with a brief rationale
for each identified substructure (e.g., substructure → confidence → brief rationale). By doing so,
the agent enhances the reliability of the table-based interpretation for target spectra. Details of IR
Absorption Table, IR Peak Table Assigner, the textual prompt are provided in Appendix A.3,A.4, and
E, respectively.

4.2 RETRIEVER (RET) EXPERT

Although the local structural information provided by the TI Expert is valuable, it is often insufficient
to uniquely determine the complete molecular structure. This limitation arises because IR spectra
offer vibrational information localized to specific functional groups or substructures, rather than
providing a direct mapping to the full molecular structure (Coates et al., 2000; Griffiths, 2006). To
overcome this limitation, we draw inspiration from the typical reasoning process of human experts,
who frequently consult spectral databases to identify structurally similar reference compounds when
analyzing unknown spectra (Moldoveanu & Rapson, 1987). Accordingly, we propose the Retriever
(Ret) Expert agent, which leverages known molecular structures associated with similar IR spectra to
provide global structural context, effectively linking local substructures to a more complete molecular
structure.

Specifically, the Ret Expert agent utilizes the IR Spectra Retriever tool to identify spectra that are
similar to the target IR spectrum. The IR Spectra Retriever adopts a simple yet effective approach:
(1) it computes the cosine similarity between the target spectrum and all spectra in the database; (2)
it then retrieves the top-N most similar spectra, each associated with its corresponding SMILES
structure. The output of IR Spectra Retriever for the target spectrum(X ) is defined as follows:

{candi1 : sim1, . . . , candiN : simN} = IR Spectra Retriever(X ), (3)

where candii denotes the SMILES corresponding to the i-the retrieved spectrum, and simi denotes its
cosine similarity to the the target spectrum. Given task-specific prompt PRet Expert and the retrieval
output, the agent is defined as follows:

ARet Expert = Ret Expert (PRet Expert, IR Spectra Retriever(X )) . (4)

5
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The output of the Ret Expert, i.e., ARet Expert, includes shared structural features among the top-N
retrieved SMILES. Given the SMILES and the cosine similarity between the target spectrum and the
retrieved spectrum, the Ret Expert automatically identifies common substructures while assigning
higher weight to spectra with increased similarity. These structural features provide global contextual
clues that guide molecular structure reasoning. The complete prompt is provided in Appendix E.

4.3 STRUCTURE ELUCIDATION (SE) EXPERT

Finally, the Structure Elucidation (SE) Expert conducts integrative structure reasoning based on both
ATI Expert and ARet Expert, as follows:

ASE Expert = SE Expert (PSE Expert,ATI Expert,ARet Expert, C) , (5)
where ASE Expert includes a final ranked list of the top-K predicted molecular structures. By utilizing
the information provided by both agents, the SE expert agent is able to perform a comprehensive
reasoning process that integrates both local and global molecular structures. Moreover, structural
features consistently identified by both agents can serve as reliable cues for the SE expert agent in
molecular structure elucidation.

4.4 INCORPORATING VARIOUS CHEMICAL INFORMATION INTO AGENT REASONING

In real-world analytical scenarios, IR spectra are often accompanied by various types of chemical
information, necessitating approaches that are capable of integrating this additional information. As
the IR-Agent framework is based on LLM agents, it is not constrained by fixed input formats as in
conventional ML approaches, and can flexibly incorporate various chemical information in textual
form. Specifically, rather than instantiating a separate agent for chemical information, we embed
chemical information directly into the reasoning prompts of all the agents. Moreover, to avoid the
complexity of prompt engineering, we simply append a concise sentence containing the relevant
chemical information to the original prompt. This lightweight strategy reduces the cost of adding
new agents and designing new prompts, while enabling each agent to perform its original task more
effectively by leveraging chemical information during reasoning. Therefore, IR-Agent is applicable
not only in scenarios where only IR spectral data is available, but also in cases where additional
chemical information is provided, thereby enhancing the flexibility and applicability of the framework
without requiring additional training or architectural modifications. We provide more details on the
prompt that incorporates chemical information in the Appendix E.

4.5 DISCUSSION: MULTI-AGENT FRAMEWORK FOR STRUCTURE ELUCIDATION

Our IR-Agent employs a multi-agent framework in which each LLM agent is assigned a distinct
sub-task within the overall structure elucidation process. Rather than employing a single LLM to
manage the entire reasoning pipeline, IR-Agent distributes the workload across specialized agents
with each agent focusing on a specific type of analytical reasoning, and integrates their outputs
to infer the final molecular structure. Each sub-task poses unique reasoning challenges: the TI
Expert performs precise local pattern recognition and chemical knowledge grounding to interpret
peak–substructure mappings; the Ret Expert needs to reason over spectral similarity and extract
structurally meaningful global patterns from retrieved candidates; and the SE Expert is tasked with
integrating these heterogeneous insights into a coherent molecular structure. When a single-agent
model attempts to perform all these sub-tasks simultaneously, it often struggles to distinguish and
prioritize relevant signals for each stage. For instance, local absorption features may be misinterpreted
by global context, or retrieved candidates may not be properly utilized when misleading substructure
signals are present. Additionally, the increased cognitive burden of handling diverse input information
(e.g., tables interpretation by peak region, retrieved SMILES) within a single context window can
result in incomplete reasoning, leading to degraded predictions. To evaluate the effectiveness of our
multi-agent framework in addressing these issues, we conduct a comparative analysis against its
single-agent counterpart, as presented in Section 5.2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. In this study, we primarily use a dataset of 9,052 experimental IR spectra from the NIST
database, which has been widely adopted in prior IR spectra modeling studies Jung et al. (2023);
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Na (2024); Wang et al. (2023). The use of experimental spectra is particularly important, as they
reflect the noise, peak broadening, and variability inherent in real-world measurements, making
them more representative of practical compound analysis scenarios. These spectra also reflect the
types of challenges typically encountered in laboratory settings, where structural elucidation requires
interpreting imperfect signals through expert knowledge and heuristics. Since our framework relies
heavily on absorption table interpretation and human-like reasoning with retrieval-based search,
experimental spectra provide a realistic and practical basis for evaluating its effectiveness in real-
world analytical workflows. Moreover, to ensure dataset diversity, we include spectra from all phases
(solid, liquid, and gas), do not exclude compounds with stereochemistry or ionic features, and impose
no restrictions on heavy-atom count or the presence of mixtures. Additional dataset details are
provided in Appendix B, and the performance of IR-Agent on both single compounds and mixtures
is reported in Appendix C.5.

External Knowledge. We use the IR Absorption Table available online1 and employ the training set
as an IR Spectra Database for retrieval.

Methods Compared. To validate the effectiveness of IR-Agent, we compare it with the standalone
Transformer model used as our IR Spectra Translator, showing that our framework provides addi-
tional gains in structure elucidation. We further evaluate a single-agent variant of IR-Agent, where
a single LLM agent simultaneously handles all sub-tasks. To assess the impact of the underlying
LLM, we vary the backbone model used in both the single-agent and multi-agent settings across
GPT-4o-mini, GPT-4o, and o3-mini. We also consider a setting where o3-mini is used to directly
generate a ranked list of 10 SMILES structures, relying solely on the input candidate set C.

Evaluation Protocol. We randomly split the dataset into train/valid/test of 80/10/10%. The IR Spectra
Translator is trained on this split prior to applying IR-Agent. We adopt Top-K exact match accuracy
as the evaluation metric to assess the effectiveness of the proposed method. This metric checks
whether the correct SMILES is included among the top K generated candidates, comparing structures
after conversion to the InChI representation (Heller et al., 2015). We report the average performance
across three independent experiments.

5.2 RESULTS OF STRUCTURE ELUCIDATION

Table 1: Overall model performance for
structure elucidation from IR spectra.

Method Agent
Top-K Accuracy

Top-1 Top-3 Top-5 Top-10

Transformer - 0.098 0.169 0.176 0.176
(0.007) (0.000) (0.003) (0.003)

IR-Agent single 0.072 0.118 0.133 0.157
(0.008) (0.002) (0.002) (0.003)

(GPT-4o-mini) multi 0.093 0.152 0.167 0.176
(0.005) (0.003) (0.005) (0.005)

IR-Agent single 0.083 0.135 0.165 0.194
(0.004) (0.002) (0.007) (0.008)

(GPT-4o) multi 0.093 0.153 0.177 0.204
(0.007) (0.005) (0.005) (0.005)

IR-Agent single 0.087 0.153 0.179 0.197
(0.006) (0.005) (0.002) (0.004)

(o3-mini) multi 0.103 0.178 0.199 0.216
(0.005) (0.007) (0.004) (0.001)

Effectiveness of IR-Agent. As shown in Table 1, we ob-
serve the following: (1) Comprehensive reasoning based
on the analyses from the TI Expert and the Ret Expert
leads to more accurate molecular structure predictions.
Given the candidate set C (K = 3) generated by the IR
Spectra Translator, IR-Agent achieves higher Top-K ac-
curacy compared to the standalone Transformer model,
which functions as the IR Spectra Translator in our sys-
tem. This improvement is attributed to the complementary
insights provided by both experts. Their collaborative anal-
yses enable the Structure Elucidation (SE) Expert to refine
the candidates and generate more accurate final structures.
(2) The multi-agent framework consistently outperforms
the single-agent approach. Compared to the single-agent
version of IR-Agent, in which a single LLM handles all
tasks simultaneously, the multi-agent version, where each expert agent is responsible for a specific
sub-task, demonstrates more consistent and superior performance in the structure elucidation task.
This observation is further supported by the following finding: While using a more advanced LLM
backbone generally leads to improved performance, the multi-agent version of IR-Agent (GPT-4o)
achieves comparable or even superior accuracy compared to the single-agent system built on o3-mini,
despite the former relying on a simpler model. This trend is also observed when comparing the
multi-agent system (GPT-4o-mini) with the single-agent version (GPT-4o). This result underscores
the effectiveness of the multi-agent framework in handling the molecular structure elucidation,
demonstrating its strength in performing integrative analysis beyond what a single-agent can achieve.

1https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_
Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_
Table
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Table 2: Overall model performance with various chemical information.

Chemical Information
o3-mini IR-Agent (single)

(o3-mini)
IR-Agent (multi)

(o3-mini)

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

No Knowledge 0.073 0.131 0.157 0.185 0.087 0.153 0.179 0.197 0.103 0.178 0.199 0.216
(0.010) (0.011) (0.011) (0.005) (0.010) (0.011) (0.011) (0.005) (0.005) (0.007) (0.004) (0.001)

Scaffold 0.096 0.160 0.177 0.198 0.112 0.195 0.208 0.228 0.118 0.208 0.232 0.258
(0.002) (0.006) (0.003) (0.003) (0.003) (0.009) (0.008) (0.010) (0.003) (0.009) (0.008) (0.010)

Carbon Count 0.105 0.158 0.186 0.214 0.121 0.177 0.194 0.219 0.123 0.190 0.215 0.252
(0.009) (0.014) (0.014) (0.013) (0.003) (0.008) (0.010) (0.009) (0.003) (0.0005) (0.009) (0.007)

Atom Types 0.104 0.182 0.209 0.237 0.123 0.208 0.235 0.266 0.127 0.213 0.250 0.278
(0.011 (0.007) (0.005) (0.003) (0.006) (0.003) (0.011) (0.009) (0.006) (0.003) (0.011) (0.009)

Structure Elucidation with Chemical Information. It is worth noting that IR-Agent is primarily
developed with the assumption that the IR spectrum is the only available information; however, in
practice, supplementary analyses often provide additional chemical data that can be leveraged to
support structure elucidation (Alberts et al., 2024b). To reflect this practical scenario, we consider
three types of chemical information: atom types, scaffold (i.e., molecular backbone), and carbon
count. In each case, the relevant chemical information is appended as a textual sentence to the
prompt of the corresponding expert agent as described in Section 4.4. From Table 2, we make the
following observations: (1) Even a brief textual prompt containing chemical information can enhance
the model’s ability to predict accurate molecular structures. Without requiring any architecture
modifications or retraining, IR-Agent is able to successfully incorporate additional information
into each expert’s reasoning process through prompt-based interaction, leveraging the inherent
reasoning capabilities of LLMs. (2) Among the various types of chemical information, we observe
that incorporating Atom Types information enables the model to generate more accurate molecular
structures compared to other types of chemical information. This is due to the inherent challenge
of determining the exact set of constituent elements solely from an IR spectrum. (3) However,
incorporating any form of chemical information consistently improved performance over using
only IR spectra (No Knowledge), highlighting the importance of a flexible framework capable
of integrating various types of available chemical information. In conclusion, each expert in IR-
Agent plays a distinct and effective role in structure elucidation while flexibly integrating various
forms of chemical information, demonstrating the potential extensibility of the multi-agent framework
for spectral analysis tasks. Further experiments evaluating the robustness of IR-Agent to ambiguous
chemical information are provided in Appendix C.3.

5.3 IN-DEPTH ANALYSIS

Table 3: Ablation study of IR-Agent (o3-
mini).

Expert
Top-K Accuracy

Top-1 Top-3 Top-5 Top-10

No Expert 0.073 0.131 0.157 0.185
(0.010) (0.011) (0.011) (0.005)

TI Expert only 0.089 0.154 0.171 0.190
(0.011) (0.004) (0.002) (0.002)

Ret Expert only 0.098 0.169 0.188 0.211
(0.003) (0.006) (0.001) (0.003)

IR-Agent
(TI + Ret)

0.103 0.178 0.199 0.216
(0.005) (0.007) (0.004) (0.001)

Ablation Studies. To assess the contribution of each ex-
pert agent, we conduct ablation studies by selectively re-
moving them from the system. As shown in Table 3, rely-
ing solely on the IR Spectra Translator without any expert
assistance (No Experts) results in a significant drop in per-
formance. Furthermore, using only one expert (i.e., either
the TI Expert only or Ret Expert only) underperforms
compared to the case where both experts are employed.
When only the TI Expert is used, the system struggles to
capture global structural patterns, whereas the Ret Expert
alone often fails to extract fine-grained local information
from the IR Absorption Table. Nevertheless, the Ret Ex-
pert alone achieves slightly better performance than the TI Expert alone, as it can access a broader
range of structural patterns by leveraging multiple retrieved SMILES candidates, resulting in richer
overall structural information. These results highlight that utilizing both TI and Ret Experts is es-
sential for providing complementary structural insights, enabling effective integrative analysis for
structure elucidation.

Sensitivity Analysis: Number of SMILES candidates C. Moreover, we investigate how vary-
ing the number of SMILES candidates C affects performance. As shown in Figure 2 (a), the
performance of IR-Agent improves as C increase up to 3 or 5, but tends to decline be-
yond that point. This degradation may be attributed to the introduction of noisy candidates,
which can hinder the experts’ reasoning. In particular, the TI Expert is required to manu-
ally align information from the IR absorption table with an increasing number of candidates,

8
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Figure 2: In-depth Analysis results.

which raises the risk of incorporating irrelevant or
misleading structural features. These results suggest
that selecting an appropriate number of SMILES can-
didates is crucial for effective expert reasoning.

Performance of IR-Agent using the Transferred
IR Spectra Translator. As our framework is com-
patible with various IR spectra translators for gen-
erating initial SMILES candidates, we replace our
original translator with one that was pretrained on a
large-scale simulated IR dataset(Alberts et al., 2024b)
(790k spectra) and subsequently finetuned on our ex-
perimental data. Although simulated and experimen-
tal spectra differ in nature, the pretrained translator captures rich spectral patterns from large-scale
simulated data, which remain beneficial when transferred and adapted to experimental data through
fine-tuning. Figure 2 (b) shows that the transferred translator alone achieves strong performance.
When integrated into our framework, it leads to further improvements, highlighting the robustness of
our method to different spectra translator choices.

Ret Expert

TI Expert

✓
SE Expert

• C‐F group → High confidence → All three SMILES include a trifluoromethyl (CF₃) substituent, which corresponds 
to the IR peaks between 1200–1000 cm⁻¹ typically seen for C–F bonds.
• Halogen substitution (Br) → Low confidence → SMILES 1 and 2 show bromine on the aromatic ring, but the IR 
interpretation specifies C–Cl; while both are halogens, the match is imprecise.

All candidate SMILES share an aromatic core bearing a trifluoromethyl group (–C(F)(F)F), suggesting that the target compound 
likely features a benzene ring substituted with a CF3 group. ... This pattern indicates that the target spectrum’s molecule is an 
aromatic system with electron‐donating and/or electron‐withdrawing substituents that can influence IR absorptions (e.g., CF3 
stretches near 1200 cm⁻¹, possible N–H stretches for amines, and C≡N stretches). The similarities in the candidates’ SMILES 
imply that the target likely shares these structural motifs with variations in the nature and position of these substituents.

Translator Output(𝑪𝑪)
'Nc1ccc(C(F)(F)F)cc1Br', 'Nc1ccc(Br)c(C(F)(F)F)c1', 'Nc1ccc(N)c(C(F)(F)F)c1'

1. Nc1ccc(C(F)(F)F)cc1Br, 2. Nc1ccc(Br)c(C(F)(F)F)c1 ..., 4. Nc1ccc(Cl)c(C(F)(F)F)c1, ..., 10. Nc1ccc(O)c(C(F)(F)F)c1

Figure 3: Outputs of expert agents in IR-Agent during the structure elucidation process.

Case Study. In Figure 3, we present how IR-Agent performs the structure elucidation process. The
TI Expert identifies local substructures by comparing the IR absorption table interpretation with the
output of the IR Spectra Translator. For instance, the TI Expert infers the presence of a C–F group
with high confidence, as both the Translator output and the table interpretation consistently point
to C–F bonds. In contrast, the presence of a halogen substitution such as Br is inferred with low
confidence, since the table interpretation refers to C–Cl bonds, which are not found in the Translator
output.

On the other hand, the Ret Expert extracts global structural patterns from the retrieved candidates,
identifying a benzene ring substituted with a CF₃ group as a dominant motif, which serves as the
broader structural context. Based on the complementary analyses from both experts, the SE Expert
successfully infers the complete molecular structure of the target spectrum.

6 CONCLUSION

In this paper, we propose IR-Agent , a novel multi-agent framework for structure elucidation from
IR spectra that mimics the expert analytical process. To achieve this, we design a system composed
of three specialized agents: a Table Interpretation (TI) Expert that extracts local substructures from
the IR absorption table; a Retriever (Ret) Expert that provides global structural cues from retrieved
candidates; and a Structure Elucidation (SE) Expert that integrates both sources of information to
infer the final molecular structure. Furthermore, our framework supports the integration of chemical
information in a lightweight and concise manner, which highlights its practicality in real-world ana-
lytical scenarios. Through extensive experiments including diverse chemical information conditions,
we demonstrate both the effectiveness of IR-Agent in structure elucidation and the flexibility of the
multi-agent framework in adapting to various analytical scenarios.

9
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In this work, we present IR-Agent, a multi-agent system that automates molecular structure elucida-
tion from IR spectra by emulating expert analytical processes. The reasoning capabilities of individual
agents, each equipped with distinct knowledge, contribute to a more effective structure elucidation
pipeline, with clearly defined and specialized reasoning steps. Unlike prior methods, the proposed
multi-agent framework offers the flexibility to incorporate various types of chemical information,
making it adaptable to a wide range of analytical scenarios. While our approach demonstrates promis-
ing performance in structure elucidation, it relies on large language model (LLM) agents, which
may occasionally produce hallucinated outputs or misinterpret information. Therefore, it is essential
that this framework be used under the supervision of domain experts when applied to real-world IR
spectral analysis.
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A IMPLEMENTATION DETAILS

Implementation details of IR-Agent are presented in this section.

A.1 IR SPECTRA PREPROCESSING

We convert spectra from transmittance to absorbance using the standard formula:

A = − log10(T ) (6)

where T denotes the transmittance and A denotes the absorbance. To avoid mathematical errors
during the logarithmic transformation and ensure numerical stability, any zero-valued entries are
replaced with a small positive constant, 10−10.

A.2 IR SPECTRA TRANSLATOR

Analysis Setting Details. While some studies (Alberts et al., 2024a; Wu et al., 2025) assume that
the ground-truth chemical formula is always provided together with the IR spectrum, our framework
relies solely on the IR spectrum. This assumption holds only if mass spectrometry (MS), performed
alongside IR spectroscopy, can provide an accurate chemical formula. In reality, however, obtaining a
ground-truth chemical formula is rarely straightforward, owing to several obstacles:

• Cost and Time: Generating high-quality MS data demands labor-intensive, time-consuming, and
often expensive sample preparation (Vas & Vekey, 2004).

• Interpretation Complexity: MS spectra are notoriously challenging to interpret because of complex
fragmentation patterns, overlapping peaks, and intrinsic resolution limits of the instrument
(Rolland & Prell, 2021).

• Non-Trivial Formula Derivation: Even with high-quality spectra, determining the exact formula
remains difficult. For example, studies on benchmark datasets such as NPLIB1—explicitly
designed for this task—report Top-1 accuracies of only 48% (Böcker & Dührkop, 2016) and 71%
(Goldman et al., 2023), underscoring the difficulty of precise formula determination.

Given these challenges, it is impractical to assume that the ground-truth chemical formula is always
available for an unknown material. Accordingly, we adopt a setting where the chemical formula is not
used by default (Ellis et al., 2023), and instead employ a SMILES translator that predicts molecular
structures directly from IR spectra without formula information.

Model Implementation Details. We represent the IR spectrum as a 1D sequence X ∈ R1×L,
where L is the number of absorbance values aligned with wavenumber positions. This input is then
passed through a learnable linear transformation to produce a higher-dimensional feature sequence
x ∈ RL×d. To inject positional information, we define a learnable positional embedding matrix
P ∈ RL×d, where each row Pi corresponds to the positional embedding at the i-th wavenumber. The
input to the Transformer encoder is computed as:

zi = xi +Pi, for i = 1, . . . , L. (7)

The resulting spectrum representations Z = {zi}Li=1 ∈ RL×d are first fed into the Transformer
encoder and subsequently into the Transformer decoder, which autoregressively generates the target
molecular sequence. The model is trained to maximize the likelihood of the ground-truth output
tokens given the input spectrum by minimizing the following cross-entropy (CE) loss:

LCE = − 1

N

N∑
n=1

Tn∑
t=1

log pθ(y
(n)
t | y(n)<t ,X (n)), (8)

where N is the number of training examples, Tn is the length of the target sequence for the n-th
example, y(n)t denotes the t-th token in the ground-truth molecular SMILES for the n-th example,
and pθ denotes the model’s predicted probability distribution parameterized by θ, where θ represents
the learnable parameters of the translator. This objective corresponds to the standard next-token
prediction loss widely used in training language models (Vaswani et al., 2017).
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Training Details. The Translator is implemented in Python 3.11.10 and PyTorch 2.5.1. We use the
Adam optimizer for model training. The model is trained for up to 300 epochs, with early stopping
applied if the best validation BLEU score does not improve for 25 consecutive epochs. All the
experiments are conducted on a 48GB NVIDIA RTX A6000.

Hyperparameters. For the Translator, we use a batch size of 16, hidden dimension d = 128, and
a learning rate of 0.001 with a linear scheduler and 8,000 warm-up steps. The model consists of 2
encoder layers and 2 decoder layers, and the number of retrieved spectra (N ) is set to 10. A beam
width of 3 is chosen to reflect a practical decoding setting with moderate computational cost. A
comparison of performance across larger beam widths is provided in Section C.1. Note that when the
model fails to generate the desired number of outputs, we apply greedy decoding to supplement the
remaining outputs and guarantee a fixed output size. We perform a grid search over learning rates
{0.0001, 0.0005, 0.001}, batch sizes {16, 32, 64}, and hidden dimensions {64, 128}, and report test
performance based on the best model selected according to validation set results.

A.3 IR ABSORPTION TABLE

Table 4 shows the IR absorption table used in this paper, which is available online 2. For wavenumber
entries specified as single points rather than ranges, we convert them into ranges by applying a
±5 cm−1 window around each point.

Table 4: Wavenumber Range and Substructure Assignments

Wavenumber (cm−1) Substructure
3700–3584 alcohol (O–H)
3550–3200 alcohol (O–H)
3500–3400 primary amine (N–H)
3400–3300 aliphatic primary amine (N–H)
3330–3250 aliphatic primary amine (N–H)
3350–3310 secondary amine (N–H)
3100–2900 carboxylic acid (O–H)
3200–2700 alcohol (O–H)
3000–2800 amine salt (N–H)
3333–3267 alkyne (C–H)
3100–3000 alkene (C–H)
3080–2840 alkane (C–H)
2830–2695 aldehyde (C–H)
2600–2550 thiol (S–H)
2354–2344 carbon dioxide (O=C=O)
2285–2250 isocyanate (N=C=O)
2260–2222 nitrile (C≡N)
2260–2190 disubstituted alkyne (C≡C)
2175–2140 thiocyanate (S–C=N)
2160–2120 azide (N=N=N)
2155–2145 ketene (C=C=O)
2145–2120 carbodiimide (N=C=N)
2140–2100 monosubstituted alkyne (C≡C)
2140–1990 isothiocyanate (N=C=S)
2005–1995 ketenimine (C=C=N)
2000–1900 allene (C=C=C)
2000–1650 aromatic compound (C–H)
1818–1750 anhydride (C=O)
1815–1785 acid halide (C=O)
1800–1770 conjugated acid halide (C=O)

Continued on next page

2https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_
Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_
Table
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Table 4: Wavenumber Range and Substructure Assignments

Wavenumber (cm−1) Substructure
1780–1770 conjugated anhydride (C=O)
1770–1780 vinyl/phenyl ester (C=O)
1765–1755 carboxylic acid (C=O)
1750–1735 esters (C=O)
1750–1740 cyclopentanone (C=O)
1740–1720 aldehyde (C=O)
1730–1715 α,β–unsaturated ester (C=O)
1725–1715 conjugated anhydride (C=O)
1725–1705 aliphatic ketone (C=O)
1720–1706 carboxylic acid (C=O)
1710–1685 conjugated aldehyde (C=O)
1710–1680 conjugated acid (C=O)
1695–1685 primary amide (C=O)
1690–1640 imine/oxime (C=N)
1685–1675 tertiary amide (C=O)
1685–1666 conjugated ketone (C=O)
1678–1668 trans–disubstituted alkene (C=C)
1675–1665 tetrasubstituted alkene (C=C)
1662–1626 cis–disubstituted alkene (C=C)
1658–1600 alkene (vinylidene) (C=C)
1655–1645 δ–lactam (C=O)
1650–1600 conjugated alkene (C=C)
1650–1580 amine (N–H)
1650–1566 cyclic alkene (C=C)
1648–1638 monosubstituted alkene (C=C)
1620–1610 α,β–unsaturated ketone (C=C)
1550–1500 nitro compound (N–O)
1470–1460 alkane (methylene group) (C–H)
1455–1445 alkane (methyl group) (C–H)
1440–1395 carboxylic acid (O–H)
1420–1330 alcohol (O–H)
1415–1380 sulfate (S=O)
1410–1380 sulfonyl chloride (S=O)
1390–1380 aldehyde (C–H)
1390–1310 phenol (O–H)
1385–1380 alkane (gem dimethyl) (C–H)
1380–1370 alkane (methyl group) (C–H)
1372–1335 sulfonate (S=O)
1372–1290 nitro compound (N–O)
1370–1365 alkane (gem dimethyl) (C–H)
1370–1335 sulfonamide (S=O)
1350–1342 sulfonic acid (S=O)
1350–1300 sulfone (S=O)
1342–1266 aromatic amine (C–N)
1310–1250 aromatic ester (C–O)
1300–1250 phosphorus oxide (P–O)
1275–1200 alkyl aryl ether (C–O)
1250–1195 phosphorus oxide (P–O)
1250–1020 amine (C–N)
1225–1200 vinyl ether (C–O)
1210–1163 ester (C–O)
1205–1124 tertiary alcohol (C–O)
1204–1177 sulfonyl chloride (S=O)
1200–1185 sulfate (S=O)
1200–1000 fluoro compound (C–F)

Continued on next page
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Table 4: Wavenumber Range and Substructure Assignments

Wavenumber (cm−1) Substructure
1195–1168 sulfonate (S=O)
1170–1155 sulfonamide (S=O)
1165–1150 sulfonic acid (S=O)
1160–1120 sulfone (S=O)
1150–1085 aliphatic ether (C–O)
1124–1087 secondary alcohol (C–O)
1085–1050 primary alcohol (C–O)
1075–1020 alkyl aryl ether (C–O)
1075–1020 vinyl ether (C–O)
1070–1030 sulfoxide (S=O)
1050–1040 anhydride (CO–O–CO)
995–985 monosubstituted alkene (C=C)
915–905 monosubstituted alkene (C=C)
980–960 trans–disubstituted alkene (C=C)
895–885 alkene (vinylidene) (C=C)
840–790 trisubstituted alkene (C=C)
760–540 halo compound (C–Cl)
730–665 cis–disubstituted alkene (C=C)
690–515 halo compound (C–Br)
600–500 halo compound (C–I)
750–700 monosubstituted benzene derivative
710–690 monosubstituted benzene derivative

A.4 IR PEAK TABLE ASSIGNER

The IR Peak Table Assigner consists of two main components: (1) extracting peaks from the input
spectrum, and (2) identifying relevant substructures using the IR Absorption Table (Table 4). To extract
peaks, we use the find_peaks function from SciPy3, setting the hyperparameters to height=1
and distance=50. This allows us to identify wavenumber positions where the absorbance exhibits
local maxima, which we refer to as peaks. After extracting the peaks, we assign the corresponding
substructures based on the IR absorption table, and generate textual interpretations. For example, if a
peak is found within the range of (1200, 1000) cm−1, the interpretation might be: "Peaks observed
between 1200 and 1000 cm−1 are typically associated with fluoro compounds (C–F)."

A.5 LLM AGENTS

System Setup. Our agent system is implemented using Python 3.11.10, with langchain 0.3.25,
langchain-openai 0.2.11, and langgraph 0.2.59. We utilize three LLMs: GPT-4o-mini4,
GPT-4o5, and o3-mini6. For GPT-4o-mini, we use the gpt-4o-mini-2024-07-18 model with
a temperature setting of 0.8. For GPT-4o, we use gpt-4o-2024-08-06, also with a temperature
of 0.8. For o3-mini, we use o3-mini-2025-01-31 with default settings and medium reasoning
mode.

Computational Cost Analysis. In Table 5, we summarize the cost per LLM, along with input and
output token counts. Although the output length for both the TI and Ret Experts is constrained to
fewer than 300 tokens, we observe that o3-mini, which is designed as a reasoning model, tends to
generate a higher number of output tokens due to reasoning tokens that are not explicitly reflected in
the final output. The overall API cost for a single run of IR-Agent increases in the order of GPT-4o-
mini, GPT-4o, and o3-mini. Additionally, we find that LLMs with more intricate reasoning processes

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
find_peaks.html

4https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
5https://openai.com/index/hello-gpt-4o/
6https://openai.com/index/openai-o3-mini/
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Table 5: Computational cost analysis comparison across different LLMs.

Computational cost & Tokens GPT-4o-mini GPT-4o o3-mini
Input cost (per 1M token) $0.15 $ 2.50 $1.10
Output cost (per 1M token) $0.6 $10.00 $4.40
Average input token 1500 1500 1400
Average output token 600 600 4400
Avg. cost per call (IR-Agent) $0.0006 $0.0097 $0.0209
TI Expert (sec) 3.6 5.6 16.2
Ret Expert (sec) 6.2 5.5 8.2
SE Expert (sec) 3.2 2.7 18
IR-Agent(single, sec) 3.9 2.8 13.5

generally exhibit longer average runtimes per sample. Since the TI and Ret Experts can be operated in
parallel, the total runtime for IR-Agent is determined by whichever of these two is slower, along with
the time required for the SE Expert. The IR-Agent (single), which performs all tasks at once, is much
faster than the multi-agent approach. However, its performance is lower compared to the multi-agent
setup, indicating a trade-off between speed and accuracy. The complete process—which involves
interpreting the IR absorption table, extracting key features from retrieved SMILES, and leveraging
this information to generate the final SMILES candidates—naturally requires a considerable amount
of time. While the current LLM inference speed is not sufficient for high-throughput or large-scale
applications, IR-Agent is still faster than manual expert analysis. Thus, it can serve as an effective tool
for offering structural suggestions before a human expert undertakes detailed spectrum interpretation.

B DATASET

Preprocessing Details. Unlike prior work (Alberts et al., 2024a; Wu et al., 2025), we do not exclude
compounds with stereochemistry or ionic states, nor do we restrict the heavy atom count to between
6 and 13 or limit elemental composition to C, H, N, O, S, P, and halogens. Instead, the NIST dataset
we use contains 9,052 spectra with diverse phase compositions—56% gas, 20% liquid, and 24%
solid—capturing broader chemical diversity. The heavy atom count ranges from 3 to 68 (mean: 13.4,
median: 12.0), which is substantially higher and more variable than in previous datasets. No filtering
is imposed based on stereochemistry, charge state, or elemental composition; all spectra are retained.
Consequently, our dataset exhibits higher SMILES token diversity and better reflects real-world
experimental conditions. Following Na (2024), we apply polynomial interpolation over wavenumbers
ranging from 500–4000 cm−1 to obtain a structured format, addressing the inconsistent number of
absorbance points across samples. For spectra recorded in transmittance mode, intensity values are
converted to absorbance using a standard conversion A.1.

C FURTHER ANALYSIS

C.1 PERFORMANCE COMPARISON ACROSS DIFFERENT BEAM WIDTHS

We validate the effectiveness of IR-Agent when using the IR Spectra Translator with larger beam
widths. As shown in Figure 4, increasing the beam width beyond the default setting of 3 improves the
performance of the Translator, thanks to the increased diversity in the decoding process. Moreover,
when integrated into our framework, IR-Agent consistently yields additional performance gains by
leveraging the SMILES candidates generated by the enhanced translator.

C.2 ROBUSTNESS OF LLMS TO PROMPT VARIATIONS

Table 6: Robustness of IR-Agent (o3-mini) to prompt variations.
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Figure 4: Performance of IR-Agent using Translator across different beam widths

Prompt
Top-K Accuracy

Top-1 Top-3 Top-5 Top-10

Prompt 1 0.110 0.168 0.194 0.214
(0.003) (0.005) (0.007) (0.005)

Prompt 2 0.100 0.182 0.201 0.222
(0.006) (0.004) (0.011) (0.006)

IR-Agent 0.103 0.178 0.199 0.216
(0.005) (0.007) (0.004) (0.001)

To evaluate the robustness of IR-Agent across different prompts, we curated new prompt variations for
each agent by rephrasing the originals. Specifically, we asked GPT-4o to “rephrase the given prompt
with the same semantics, but in a different structure,” and used the resulting two paraphrased versions
for additional experiments with IR-Agent. Notably, IR-Agent demonstrated robust performance
across these entirely paraphrased prompts, with results showing little deviation from the standard
deviation observed with the original prompts.

C.3 ROBUSTNESS OF LLMS TO AMBIGUOUS CHEMICAL INFORMATION

Table 7: Robustness of IR-Agent (o3-mini) to ambiguous chemical information.

Chemical Information
Top-K Accuracy

Top-1 Top-3 Top-5 Top-10

No Knowledge 2 0.103 0.178 0.199 0.216
(0.005) (0.007) (0.004) (0.001)

Ambiguous Carbon Num 0.091 0.188 0.213 0.249
(0.003) (0.003) (0.006) (0.005)

Exact Carbon Num 2 0.123 0.190 0.215 0.252
(0.003) (0.005) (0.009) (0.007)

In practical experimental settings, chemical information is often ambiguous or incomplete. To reflect
this, we also consider an “ambiguous carbon number” scenario, where the number of carbons is
provided as a range (i.e., exact carbon number ±1) rather than an exact value. We evaluate the
performance of IR-Agent under this setting with incomplete information. Experimental results show
that, as expected, the performance of IR-Agent drops when given an ambiguous carbon number
compared to the exact value. However, except for the Top-1 metric, the decrease in performance is
not significant, indicating that IR-Agent can still accurately predict the correct SMILES even when
only incomplete carbon information is available.

C.4 DETERMINISTIC WORKFLOW OF IR-AGENT VS. THE REACT FRAMEWORK

Table 8: Comparison of IR-Agent (GPT-4o) with ReAcT framework
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Workflow
Top-K Accuracy

Top-1 Top-3 Top-5 Top-10

ReAcT Framework 0.083 0.148 0.151 0.158
(0.004) (0.005) (0.003) (0.005)

IR-Agent 0.093 0.153 0.177 0.204
(0.007) (0.005) (0.005) (0.005)

IR-Agent follows a largely deterministic and fixed pattern, lacking the dynamic decision-making
characteristic of agent systems. Since experts necessarily refer to both IR absorption tables and
spectral databases when analyzing IR spectra, they rely on the combination of these two sources of
information for interpretation. Unlike common tasks such as question answering, structure elucidation
from IR spectra is highly specific and challenging, where faithfully emulating the expert reasoning
process is essential. Therefore, we aim to design a system that closely mirrors the analytical workflow
of domain experts. We conduct a comparative experiment using a ReAct agent framework, where
the LLM autonomously selects its actions. Specifically, we employ GPT-4o as the base LLM and
provided a set of SMILES candidates generated by the IR Spectra Translator. The available tools
include the IR Peak Table Assigner, IR Spectra Retriever, and an additional finish tool that enables
the agent to terminate tool selection and output the final SMILES. The maximum number of tool
calls is limited to five. In line with the ReAct framework, the agent iteratively goes through thought,
action (tool selection), and observation steps.

From our experimental results, we observe that IR-Agent demonstrates superior performance
compared to the ReAct framework. In the ReAct setting, the agent often successfully calls both
the IR Peak Table Assigner and the IR Spectra Retriever. However, we also found two common
failure modes: (1) the agent selects only the IR Peak Table Assigner, limiting itself to a narrow set
of information, and (2) the agent repeatedly selects the same tool (e.g., retriever, then table, then
table again), resulting in final SMILES predictions that are biased toward the information provided
by that tool alone. These observations suggest that, for the task of structure elucidation from IR
spectra, which requires substantial domain knowledge and careful emulation of expert reasoning,
a deterministic approach to tool selection—as implemented in IR-Agent—is necessary. Such a
deterministic agent process is effective in emulating the expert analysis workflow and highlights the
importance of guided, expert-like decision-making in this context

C.5 THE SCOPE OF IR-AGENT

Table 9: Performance of IR-Agent on Single Compounds and Mixtures

Type # Test Top-1 Top-3 Top-5 Top-10 MACCS RDK Morgan
Single 886 0.105(0.006) 0.183(0.008) 0.204(0.005) 0.221(0.001) 0.775(0.003) 0.603(0.003) 0.556(0.003)

Mixture 20 0.000 0.000 0.000 0.000 0.567(0.026) 0.310(0.043) 0.277(0.027)

Unlike previous studies(Alberts et al., 2024a; Wu et al., 2025; Jung et al., 2023) that typically restrict
their scope to single gas-phase materials, we aimed to design our model under a more realistic
and unconstrained setting using the NIST dataset. Consequently, our dataset (total: 9,052 spectra)
includes both single compounds (8,810) and mixtures (242). However, peak overlap in mixtures poses
a significant challenge for accurate prediction. Our empirical results show that although IR-Agent
performs exceptionally well on single compounds, it struggles with mixtures due to signal complexity
and limited training examples. Therefore, our IR-Agent focuses on handling single molecular
components, and we consider mixture analysis an important but challenging direction for future work
to further enhance the agent’s capabilities.

C.6 ADDITIONAL CASE STUDIES

In Figure 5, we present an additional case study for IR-Agent. The TI Expert infers the presence of
halogen atoms such as F and Cl with high confidence, based on the consistency between the translator
output and the table interpretation (e.g., C–F, C–Cl bonds). Additionally, the Ret Expert identifies a
structural pattern consisting of an aromatic ring substituted with one or more halogen atoms. Based
on these integrative analyses, the SE Expert accurately infers the complete molecular structure of the
target spectrum.
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Ret Expert

TI Expert

✓SE Expert

Most of the candidate SMILES show an aromatic ring decorated with electronegative substituents (primarily Cl, sometimes F or Br) and additional 
functional groups like –S (thiol/ thioether) or –OCH3. For example, the top candidate (Fc1ccc(S)c(Cl)c1) features a benzene ring with a fluorine, a chlorine, 
and a sulfur substituent. Other SMILES reinforce this pattern by having dichloro‐substitution (e.g., COc1ccc(Cl)c(Cl)c1) or a sulfur linker 
(SCc1ccc(Cl)c(Cl)c1).
Thus, it is likely that the target structure also consists of a substituted aromatic core bearing one or more halogen atoms (notably Cl) along with 
heteroatom substituents such as sulfur or methoxy groups. These features would match the vibrational modes found in the IR spectrum and justify the 
high cosine similarities observed.

Translator Output(𝑪𝑪)
'Fc1ccc(Cl)c(Br)c1', 'Fc1ccc(Br)c(Cl)c1', 'Fc1ccc(Cl)cc1Br'

• For Fc1ccc(Cl)c(Br)c1  
– C-F → High confidence → The “Fc” fragment indicates a fluorine directly bonded to the aromatic ring, matching the 1200–1000 cm⁻¹ fluoro absorption. 
– C-Cl → High confidence → The presence of a chlorine substituent on the ring is consistent with the halo (C–Cl) absorption at 760–540 cm⁻¹.  

• For Fc1ccc(Br)c(Cl)c1  
– C-F → High confidence → The fluorine substituent ("Fc") on the aromatic ring aligns with the 1200–1000 cm⁻¹ peak for C–F.  
– C-Cl → High confidence → The chloro substituent is present and explains the IR band at 760–540 cm⁻¹ for halo (C–Cl) compounds.  

• For Fc1ccc(Cl)cc1Br  
– C-F → High confidence → The aromatic fluorine (“Fc”) confirms the IR feature at 1200–1000 cm⁻¹ attributed to C–F bonds.  
– C-Cl → High confidence → The chlorine attached to the benzene ring supports the halo absorption observed at 760–540 cm⁻¹.

1. Fc1ccc(Cl)c(Br)c1,  2. Fc1ccc(Br)c(Cl)c1, ... , 7. SCc1ccc(Cl)c(F)c1,  8. Fc1cc(OC)c(Cl)c1, 9. Fc1ccc(Cl)c(Cl)c1,  10. Fc1c(Cl)cc(Br)c1

Figure 5: Additional Case Study: Outputs of expert agents in IR-Agent.

D LIMITATIONS & FUTURE WORK

We focus on extracting local structural information based on interpretations from the IR absorption
table. However, accurate interpretation requires considering not only the peak positions, but also
the peak shapes and intensities. Since our framework refines and regenerates SMILES based on the
candidates provided by the IR Spectra Translator, its overall performance is naturally influenced by
the Translator. At the same time, the framework is designed to flexibly incorporate diverse types of
chemical information without requiring retraining or architectural modifications. Nevertheless, when
adapting to new spectral datasets, the IR Spectra Translator itself still needs to be retrained, as is the
case with prior approaches. An alternative approach would be to directly input the IR spectrum as
an image along with its raw spectral values into an LLM. With an effective prompting strategy or
collaboration with external tools, this would enable the model to capture peak shapes and intensities
during the interpretation of the IR absorption table, and to generate candidate SMILES without
requiring retraining when adapting to new spectral datasets, effectively functioning as a translator.

E PROMPT TEMPLATES FOR EXPERT AGENTS

In this section, we provide the prompt templates used for each agent described in Section 4. In
addition to the default setting without chemical information, we present modified prompt templates
that incorporate additional chemical information in three scenarios: atom types, scaffold, and carbon
count. For each case, a single sentence describing the given chemical information is appended to the
original prompt.
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Table 10: Prompt for Table Interpretation (TI) Expert (Section 4.1)

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing
infrared (IR) spectra.

Prompt: You have an IR absorption interpretation that suggests certain substructures (e.g.
nitrile, carbonyl, etc.), but this table-based mapping can be imprecise.

Given SMILES: {SMILES Candidates}
IR interpretation: {Table Interpretation}

Your task is to:
For each SMILES in the given SMILES list, identify substructures that are present both in
the IR interpretation and in the that SMILES.

Return a bulleted list in the format:
substructure → confidence → brief rationale

KEEP THE RESPONSE UNDER 300 TOKENS.
ONLY RETURN:
- A bulleted list of (substructure → confidence → brief rationale).

Table 11: Prompt for Table Interpretation (TI) Expert with Chemical Information(Section 4.4)

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing
infrared (IR) spectra.

Prompt: You have an IR absorption interpretation that suggests certain substructures (e.g.
nitrile, carbonyl, etc.), but this table-based mapping can be imprecise.

Given SMILES: {SMILES Candidates}
IR interpretation: {Table Interpretation}

The molecule corresponding to the target spectrum is known to include the following atom
types: {Atom Types}.
The molecule corresponding to the target spectrum is known to include the following
scaffold: {Scaffold}.
The molecule corresponding to the target spectrum is known to include exactly
{Carbon Count} carbon atoms.

Your task is to:
For each SMILES in the given SMILES list, identify substructures that are present both in
the IR interpretation and in the that SMILES.

Return a bulleted list in the format:
substructure → confidence → brief rationale

KEEP THE RESPONSE UNDER 300 TOKENS.
ONLY RETURN:
- A bulleted list of (substructure → confidence → brief rationale).
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 12: Prompt for Retriever (Ret) Expert (Section 4.2)

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing
infrared (IR) spectra.

Prompt: Your task is to analyze the SMILES of the candidate spectra, whose cosine
similarity to the target spectrum is high.

If the target spectrum and candidate spectra exhibit high similarity, the SMILES of the
target spectrum may have a similar structural characteristics to the SMILES of the candidate
spectrum.

SMILES of candidate spectra and their cosine similarities to the target spectrum:
{Output of IR Spectra Retriever}

Based on the SMILES list, extract the structural information to complement the SMILES of
the target spectrum.

Provide reasoning to support your analysis.

Let’s think step-by-step.

KEEP THE RESPONSE UNDER 300 TOKENS.

ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 13: Prompt for Retriever (Ret) Expert with Chemical Information (Section 4.4)

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing
infrared (IR) spectra.

Prompt: Your task is to analyze the SMILES of the candidate spectra, whose cosine
similarity to the target spectrum is high.

If the target spectrum and candidate spectra exhibit high similarity, the SMILES of the
target spectrum may have a similar structural characteristics to the SMILES of the candidate
spectrum.

SMILES of candidate spectra and their cosine similarities to the target spectrum:
{Output of IR Spectra Retriever}

The molecule corresponding to the target spectrum is known to include the following atom
types: {Atom Types}.
The molecule corresponding to the target spectrum is known to include the following
scaffold: {Scaffold}.
The molecule corresponding to the target spectrum is known to include exactly
{Carbon Count} carbon atoms.

Based on the SMILES list, extract the structural information to complement the SMILES of
the target spectrum.

Provide reasoning to support your analysis.

Let’s think step-by-step.

KEEP THE RESPONSE UNDER 300 TOKENS.

ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 14: Prompt for Structure Elucidation (SE) Expert (Section 4.3)

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing
infrared (IR) spectra.

Prompt: Your task is to refine the given SMILES list and generate a N candidate list that
aligns well with the IR spectrum while preserving structural diversity and plausibility.

The IR Absorption Table Agent provides potentially useful insights by interpreting the IR
spectrum and suggesting possible substructures based on known absorption patterns.

IR Spectrum Retriever Agent examines the structural features of candidate SMILES that
exhibit high cosine similarity to the target spectrum.

IR Absorption Table Agent Output: {ATI Expert}

IR Spectrum Retriever Agent Output (high-similarity spectra & analysis): {ARet Expert}

1) Identify the substructures that are common to both the IR table interpretation and at least
one SMILES in the list.

2) From the retriever agent output, extract structural information (e.g., recurring motifs /
scaffolds) suggested by high-similarity candidates.

3) Guided by the structural insights from steps 1 and 2, produce a refined Top-N list of
SMILES candidates.

4) Ensure the final list is chemically diverse and plausible—do not overfit to any single
interpretation.

Based on these analyses, regenerate a list of Top-N SMILES by refining the target smiles:
{SMILES Candidates}.

Let’s think step-by-step.

ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.

YOUR ANSWER FORMAT MUST BE AS FOLLOWS ONLY CONTAINING THE
SMILES:
1. SMILES_1, 2. SMILES_2, 3. SMILES_3, ..., N. SMILES_N
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1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 15: Prompt for Structure Elucidation (SE) Expert with Chemical Information (Section 4.4)

System Prompt: You are an expert organic chemist with specialized knowledge in analyzing
infrared (IR) spectra.

Prompt: Your task is to refine the given SMILES list and generate a N candidate list that
aligns well with the IR spectrum while preserving structural diversity and plausibility.

The IR Absorption Table Agent provides potentially useful insights by interpreting the IR
spectrum and suggesting possible substructures based on known absorption patterns.

IR Spectrum Retriever Agent examines the structural features of candidate SMILES that
exhibit high cosine similarity to the target spectrum.

IR Absorption Table Agent Output: {ATI Expert}

IR Spectrum Retriever Agent Output (high-similarity spectra & analysis): {ARet Expert}

The final predicted molecular structures are constrained to contain only the following atom
types:{Atom Types}.
The final predicted molecular structures must incorporate the specified scaffold {Scaffold}.
The final predicted molecular structures are required to contain exactly {Carbon Count}
carbon atoms.
1) Identify the substructures that are common to both the IR table interpretation and at least
one SMILES in the list.

2) From the retriever agent output, extract structural information (e.g., recurring motifs /
scaffolds) suggested by high-similarity candidates.

3) Guided by the structural insights from steps 1,2, and [{Atom Types}, {Scaffold}, {Carbon
Count}] constraint, produce a refined Top-N list of SMILES candidates.

4) Ensure the final list is chemically diverse and plausible—do not overfit to any single
interpretation.

Based on these analyses, regenerate a list of Top-N SMILES by refining the target smiles:
{SMILES Candidates}.

Let’s think step-by-step.

ONLY THE REQUESTED CONTENT SHOULD BE INCLUDED IN YOUR RESPONSE.

YOUR ANSWER FORMAT MUST BE AS FOLLOWS ONLY CONTAINING THE
SMILES:
1. SMILES_1, 2. SMILES_2, 3. SMILES_3, ..., N. SMILES_N
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