

ARTS: ALLEVIATING HALLUCINATIONS IN LARGE VISION–LANGUAGE MODELS VIA REDUNDANCY-AWARE TOKEN SELECTION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Large Vision–Language Models (LVLMs) demonstrate significant potential in
 014 multimodal tasks, yet they are prone to hallucinations, where generated outputs
 015 deviate from the visual evidence. A mainstream approach to mitigate hallucina-
 016 tions in LVLMs is to develop training-free decoding strategies. Most of these
 017 methods posit that hallucinations stem from **insufficient attention to relevant**
 018 **information** and therefore focus on strengthening the model’s utilization of in-
 019 formative content. Beyond this perspective, we reveal a new source of hallucina-
 020 tion: **Visual tokens in intermediate decoder layers often become redundant or**
 021 **noisy, thereby misleading multimodal reasoning.** Next, we evaluate commonly
 022 used token-importance metrics and observe that they cannot effectively identify
 023 redundant visual tokens in this context. To address this problem, we introduce
 024 **ARTS**, a decoding strategy that first reintegrates the original visual embeddings
 025 to enrich essential visual information, and then employs a novel sink-token-based
 026 method to select important visual tokens in intermediate decoder layers. Exten-
 027 sive experiments on multiple benchmarks and LVLM architectures demonstrate
 028 that our approach consistently reduces hallucinations and improves factual align-
 029 ment.

1 INTRODUCTION

030 Large Vision-Language Models (LVLMs) have recently shown remarkable potential and widely used
 031 in various open-ended visual understanding tasks such as image captioning, visual question answer-
 032 ing, and multimodal dialogue (Ye et al., 2023; Lee et al., 2024; Li et al., 2023a; Liu et al., 2023b;
 033 Zhu et al., 2023). However, hallucination is still a critical limitation of current LVLMs (Yin et al.,
 034 2024; Liu et al., 2023a) — generating text that appears fluent and coherent but includes incorrect or
 035 image-irrelevant content. Such hallucinations severely compromise reliability and trustworthiness,
 036 thereby constraining their adoption in real-world scenarios Chen et al. (2024b).

037 One mainstream strategy to address hallucinations in LVLMs is through training-free methods that
 038 operate solely at inference, such as contrastive decoding (Chuang et al., 2023; Wang et al., 2024c;
 039 Leng et al., 2024; Favero et al., 2024; Huo et al., 2024), which contrast outputs from different model
 040 states (e.g., original vs. perturbed inputs, or shallow vs. deep layers) to suppress spurious responses
 041 and enhance factual grounding. Another line of work (Wang et al., 2025; 2024b; Tang et al., 2025b)
 042 aggregates information from multiple decoder layers to maintain semantic consistency and mitigate
 043 information loss during the decoding process. A further approach (Huang et al., 2024b; Kang et al.,
 044 2025; Tang et al., 2025a) redistributes attention from “sink tokens” to more informative visual or
 045 textual content, improving the model’s focus on relevant evidence. These approaches effectively
 046 mitigate hallucinations by enhancing the model’s utilization of informative content. However, they
 047 operate under a common assumption that hallucinations primarily stem from insufficient attention
 048 to relevant information. This leads to a fundamental question: ***Beyond insufficient attention to***
 049 ***relevant information, could hallucinations also arise from the model processing redundant or***
 050 ***misleading information that conflicts with accurate visual evidence?***

051 To investigate this hypothesis, we conduct layer-wise token pruning experiments across different
 052 stages of LVLM processing, as shown in Figure 1b. Our findings reveal a surprising pattern: Ran-

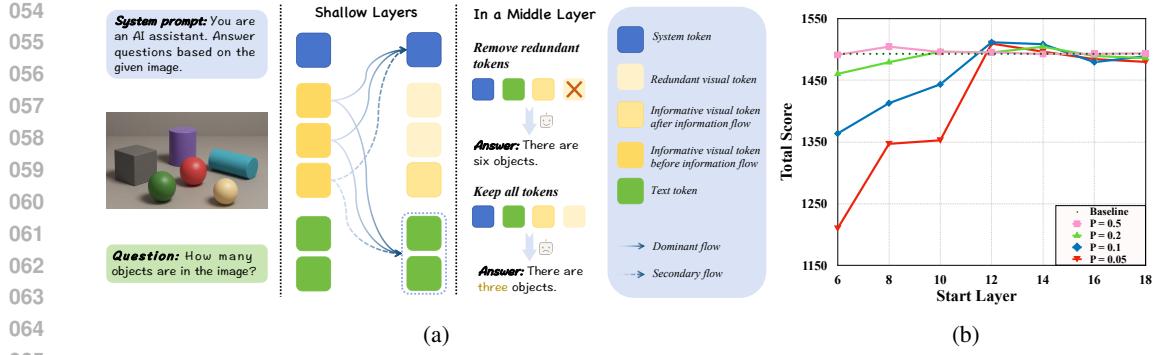


Figure 1: (a) Illustration of visual information flow and redundancy in LVLMs. In shallow layers, visual information flows into system and text tokens. In the intermediate layers, most visual tokens become redundant while only a few still preserve meaningful visual signals. Pruning these tokens prevents redundant information from further propagating into textual representations, thereby reducing hallucinations. (b) Performance of LLaVA-1.5-7B on MME dataset Fu et al. (2024) under random visual token pruning with different retain ratios across layers. The subsequent layers exhibit a similar trend to layer 16, with scores remaining slightly below the baseline.

domly pruning visual tokens in intermediate layers (12-14) actually improves model performance. This uncovers a new source of hallucinations, arising from redundant or weakly aligned visual tokens in intermediate layers that disrupt multimodal reasoning. Recognizing this issue naturally raises a critical methodological question: ***How can we systematically distinguish between informative and redundant visual tokens in intermediate layers, where traditional importance metrics may no longer apply?*** We first evaluate two widely used token-importance metrics, originally designed for accelerating inference of LVLMs, in this context as shown in Section 3.2 and find their significant limitations: **1. Visual-CLS attention** (Zhang et al., 2024a;b; Wang et al., 2024a; Huang et al., 2024a) shows limited effectiveness because CLS tokens aggregate primarily visual information but lack the cross-modal context necessary for accurate importance assessment in multimodal scenarios. **2. Visual-Text attention** (Hu et al., 2024; Xing et al., 2024; Chen et al., 2025; Zhao et al., 2025; Cao et al., 2023; Zhang et al., 2024c) also proves to be insufficient because text tokens aggregate limited information in intermediate layers, making them poor indicators of the importance of visual tokens. These limitations underscore the necessity of developing new, principled criteria for identifying informative visual tokens in intermediate layers of LVLMs.

To overcome these limitations, we propose **ARTS** (Redundancy-AwaRe Token Selection) that leverages sink-visual attention, representing a novel application of sink tokens. Recent studies (Wang et al., 2023; Chen et al., 2024a; Huang et al., 2024b) have identified sink tokens as special positions that attract disproportionate attention and serve as global information aggregators, accumulating knowledge from across the entire sequence. We further validate this in Section 4. While prior works (Huang et al., 2024b; Kang et al., 2025; Tang et al., 2025a) primarily focused on mitigating the negative effects of sink tokens by reallocating attention away from them, we propose the first approach to harness sink tokens as anchors for importance calculation. Our key insight is that sink tokens, having aggregated rich cross-modal information by intermediate layers, provide superior queries for assessing visual token relevance. Additionally, we reintegrate original visual embeddings before selection to ensure that essential visual information is preserved, creating a comprehensive framework that both eliminates harmful redundancy and maintains critical visual signals. Extensive experiments on multiple benchmarks demonstrate that our method substantially reduces visual hallucinations and improves factual accuracy in diverse LVLMs without additional training. Our key contributions are as follows:

- We identify a new source of hallucinations in LVLMs: In intermediate layers, most visual tokens carry redundant information that misleads the model reasoning and induces hallucinations.
- We demonstrate that existing token-importance metrics cannot effectively identify informative visual tokens at intermediate layers.

108 • We propose a novel approach that leverages cross attention between visual tokens and sink
 109 tokens to identify redundancy while reintegrating the original visual information, thereby
 110 alleviating hallucinations.

112 **2 RELATED WORK**

114 **Large Vison Language Models** LVLMs have evolved from BERT-style multimodal encoders (Lu
 115 et al., 2019; Tan & Bansal, 2019) to decoder-based systems that feed visual tokens into pretrained
 116 LLMs for unified generation (Touvron et al., 2023; Chiang et al., 2023). End-to-end pretraining im-
 117 proved cross-modal alignment (Jia et al., 2021; Radford et al., 2021), and instruction-tuned systems
 118 such as LLaVA and InstructBLIP advanced open-ended tasks (Liu et al., 2023b; Dai et al., 2023).
 119 Subsequent work explored scaling and token-efficiency: LLaVA-1.5 redesigned the vision–language
 120 connector (Liu et al., 2024); BLIP-2, InstructBLIP, and MiniGPT-4 employed learnable query trans-
 121 formers to fuse modalities and reduce image tokens (Li et al., 2023a; Dai et al., 2023; Zhu et al.,
 122 2023); InternVL combined a stronger vision encoder, dynamic high-resolution input, and high-
 123 quality bilingual data (Chen et al., 2024c). In parallel, the mPLUG-Owl family adopts a modular
 124 design with modality collaboration, improving instruction following and multimodal reasoning (Ye
 125 et al., 2023; 2024b;a). In our experiments, we evaluate on InstructBLIP2, MiniGPT-4, LLaVA-1.5,
 126 and mPLUG-Owl.

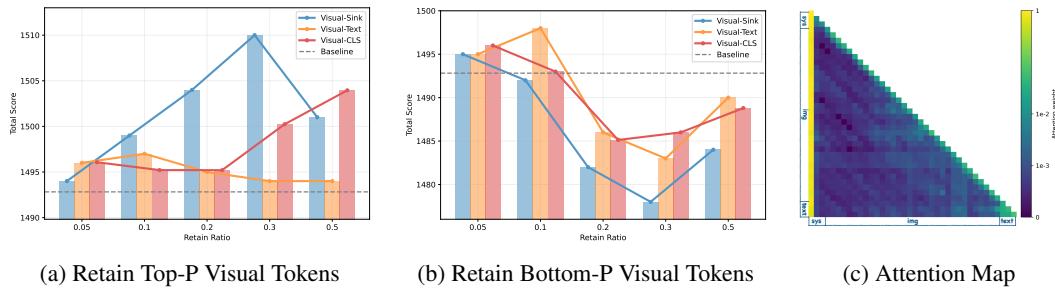
127 **Mitigating Hallucinations in LVLMs** Recent research has investigated training-free approaches
 128 to hallucination mitigation, with a focus on generation-time interventions at inference. DoLa
 129 (Chuang et al., 2023) contrasts logits from shallow and deep layers to surface factual knowledge,
 130 while VCD (Leng et al., 2024) extends this idea to LVLMs by comparing outputs from original and
 131 perturbed visual inputs. Other inference-time strategies refine consistency across layers: DAMO
 132 (Wang et al., 2025) enforces cross-layer agreement with momentum updates, DCLA (Tang et al.,
 133 2025b) aggregates hidden states as semantic references. Additional works mitigate hallucination by
 134 reducing reliance on sink tokens (Huang et al., 2024b; Kang et al., 2025; Tang et al., 2025a).

136 **Token Pruning in LVLMs** Token reduction has been widely studied as a way to reduce the com-
 137 putational burden of LVLMs by discarding redundant visual tokens. FastV (Chen et al., 2024a) first
 138 pointed out this redundancy and removed tokens with low attention scores after the early layers of
 139 the LLM. Among existing methods, one line of work computes attention between visual tokens and
 140 text tokens, using the resulting weights as importance scores to progressively prune less relevant
 141 tokens (Huo et al., 2024; Xing et al., 2024; Chen et al., 2025; Zhao et al., 2025; Cao et al., 2023;
 142 Zhang et al., 2024c). Another line instead measures the attention between visual tokens and a global
 143 “[CLS] token” that summarizes the visual input, ranking and discarding tokens with the lowest rel-
 144 evance (Zhang et al., 2024a;b; Wang et al., 2024a; Huang et al., 2024a). While these approaches
 145 achieve substantial acceleration by reducing the number of tokens processed, they frequently incur
 146 a degradation in performance.

147 **3 EMPIRICAL PRIMER**

149 **3.1 VISUAL REDUNDANCY HYPOTHESIS**

151 We begin by examining the effect of randomly pruning visual tokens at different decoder layers,
 152 as shown in Figure 1b and find that only pruning visual tokens at mid layers (12-14) consistently
 153 improves model performance even at a relatively small retain ratio of 0.05, while similar pruning in
 154 shallow layers degrades performance and deeper layer pruning has minimal effect. This is because,
 155 during shallow layer processing, visual information progressively flows from visual tokens into
 156 textual representations, as established by (Chen et al., 2024a; Yin et al., 2025). Toward the end
 157 of this information transfer, many intermediate-layer visual tokens retain redundant or incomplete
 158 representations that no longer align with the integrated multimodal context, as shown in Figure 1a.
 159 Pruning them at this stage prevents such redundant information from further propagating into textual
 160 representations and allows the remaining informative visual evidence to interact more coherently
 161 with textual representations, which in turn mitigates hallucinations. Hence, a natural question we
 ask: **Are there more effective strategies for pruning visual tokens beyond random pruning?**

162 3.2 RE-EXAMINING EXISTING PRUNING METHODS AT MID LAYERS
163

174 Figure 2: (a) (b): Comparison of three visual token selection methods by retaining Top-P visual
175 tokens 2a and Bottom-P visual tokens 2b at the 13th decoder layer of LLaVA-1.5-7B on Perception
176 Subset of MME (Fu et al., 2024) dataset. (c) Attention maps at the 13th decoder layer of LLaVA-
177 1.5-7B.

179 To answer the question in Section 3.1, we first evaluate two widely used token-importance metrics
180 in our context: (i) visual–text attention, which is typically applied in shallow decoder layers, and (ii)
181 visual–CLS attention, which is commonly used within the image encoder (details in Appendix B).
182 Since our findings reveal that visual token redundancy emerges primarily in the middle layers, we
183 re-examine the effectiveness of these metrics at intermediate depths. We retain visual tokens with
184 the highest and lowest scores computed by the two methods under varying retain ratios. As shown
185 in Figure 2a and 2b, visual–text attention is almost incapable of identifying informative tokens, as
186 evidenced by the fact that when retaining top-p tokens, model performance shows only negligible
187 changes across different retention ratios. Visual-CLS attention also shows restricted effectiveness as
188 evidenced by the limited improvement of perception scores when the retain ratio increases.

189 The performance of visual-CLS attention method is limited because the CLS token only aggregates
190 visual information while lacking information from text tokens, which are critical for multimodal
191 understanding. For visual–text attention method, we analyze attention maps from a middle decoder
192 layer, as shown in Figure 2c. Prior works (Wang et al., 2023; Chen et al., 2024a; Huang et al.,
193 2024b) suggests that column-wise attention weights reflect the degree of information aggregated by
194 each token, with tokens that exhibit disproportionately large column-wise attention weights being
195 referred to as “sink tokens”. In Figure 2c, it is obvious that text tokens exhibit much lower attention
196 weights than sink tokens. This indicates that text tokens carry limited aggregated information in the
197 middle layers, making visual–text attention ineffective for selecting important visual tokens.

198 4 SINK TOKENS AS AN ANCHOR FOR TOKEN IMPORTANCE ESTIMATION
199

200 While most text tokens in intermediate layers receive uniformly low attention, sink tokens attract
201 disproportionately high column-wise attention. Previous work (Huang et al., 2024b) suggests that
202 sink tokens aggregate global information and this aggregation behavior may result in the loss of
203 important visual evidence and potentially lead to hallucinations. To mitigate this issue, they first
204 locate sink tokens and then attempt to relocate attention away from them toward visual tokens. To
205 identify sink tokens, Huang et al. (2024b) computes column-wise attention sums and then selects
206 those exceeding a manually specified threshold. Another location method typically assumes that the
207 first token (for example, BOS) is always the sink token (Xiao et al., 2023). However, such strate-
208 gies suffer from two limitations: (i) the sink position is not always fixed, as sinks may emerge at
209 different layers or vary across inputs, and (ii) proper thresholds may differ across models or tasks.
210 To overcome these issues, we propose a novel 2-means clustering-based method adaptively parti-
211 tions tokens into high and low aggregation groups, enabling robust and generalizable sink detection
212 without prior assumptions. (Details are provided in Section 5.1)

213 To further validate that sink tokens can act as global information aggregators, we compare the effect
214 of removing sink tokens with other tokens on LLaVA-1.5-7B, and find that eliminating sink tokens
215 causes a much larger performance drop. In our settings, the token sequence consists of the first 35
positions as system tokens, followed by visual tokens and text tokens. We first remove the sink

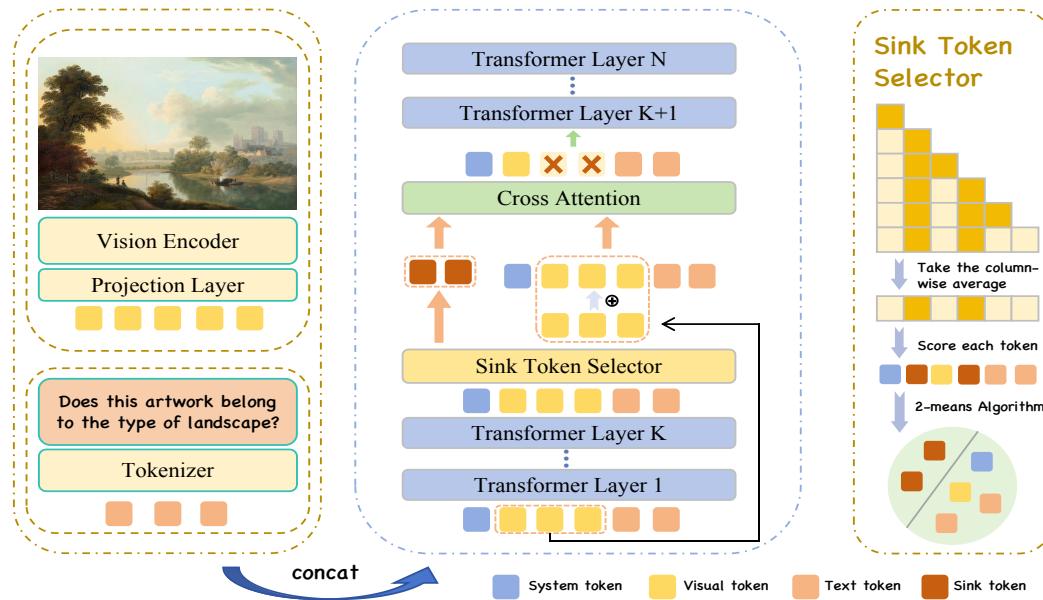
216
 217 Table 1: Perception score on MME and accuracy on POPE (MS-COCO popular setting) after pruning
 218 tokens at the 13th decoder layer in LLaVA-1.5-7B. Sink tokens are first pruned, and subsequently they
 219 are retained while other tokens are pruned in a cumulative manner—starting with system tokens,
 220 then extending to visual tokens, and finally to text tokens.

Metric	Baseline		System Tokens (Total=33)				Sys+Vis Tokens	Text Tokens	
	All	Sink removed	Drop-5	Drop-15	Drop-25	Drop-All		Drop-5	Drop-10
MME	1491.56	1211.55	1489.44	1490.33	1489.55	1485.42	1500.69	1501.96	1467.33
POPE	86.04	50.24	84.19	84.68	85.62	85.24	85.86	84.41	70.67

221
 222 tokens, as shown in Table 1, and find that the model performance drops significantly; for example,
 223 the accuracy of POPE (Li et al., 2023b) decreases by 35.8%. Conversely, when sink tokens are
 224 retained while progressively discarding all system and visual tokens, model performance remains
 225 stable or even improves. Although dropping text tokens leads to gradual performance degradation
 226 on MME dataset, pruning 10 text tokens still results in 1467.33 points, far higher than 1211.55 points
 227 when sink tokens are pruned. These results confirm that LVLMs rely on sink tokens as the primary
 228 carriers of global information, whereas most system and visual tokens contribute little. Therefore,
 229 by leveraging attention between these sink tokens and visual tokens, we can obtain more reliable
 230 importance scores for distinguishing informative visual tokens from redundant ones, as illustrated
 231 in Figure 2a and 2b.
 232

233 5 METHOD

234 Building on the findings above, we propose a novel decoding strategy **ARTS** to mitigate hallucinations
 235 in LVLMs. It mainly consists of two steps: (i) localizing sink tokens using 2-means algorithm
 236 and (ii) reinjecting original visual embeddings to enhance visual information and utilizing visual-
 237 sink cross attention to identify and prune redundant visual tokens in middle decoder layers. The
 238 overall framework of ARTS is shown in Figure 3.



267 Figure 3: Architecture of the proposed ARTS. At intermediate layer K, sink tokens are first located
 268 using the 2-means algorithm, then the original visual information is reinjected. Next, we use cross-
 269 attention between updated visual tokens and sink tokens to identify and prune redundant visual
 tokens.

270 5.1 SINK TOKEN LOCALIZATION
271

272 The hidden states at an intermediate decoder layer K are denoted as $H \in \mathbb{R}^{L \times d}$, where $L = L_t + L_v$
273 is the total number of tokens, consisting of L_t text tokens and L_v visual tokens and d is the hidden
274 dimension. We further define the index sets \mathcal{T} for text positions and \mathcal{V} for visual positions.

275 We first define $\bar{A}_K \in \mathbb{R}^{L \times L}$ as the head-averaged self-attention map at decoder layer K , where each
276 row corresponds to a query position and each column corresponds to a key position. To quantify
277 how strongly each position attracts attention from the entire sequence, we compute the column-wise
278 sum of \bar{A}_K , aggregating attention received across all query positions:

$$279 \quad c_j = \sum_{i=1}^L \bar{A}_K[i, j], \quad j = 1, \dots, L. \quad (1)$$

280 We then identify sink positions by running *2-means* on the scalar set $\{c_j\}_{j=1}^L$ with Euclidean dis-
281 tance (Details can be found in Appendix D). Then, we define the set of sink positions \mathcal{S} as those
282 belonging to the cluster with the larger center.

286 5.2 VISUAL INFORMATION ENHANCEMENT AND INFORMATIVE TOKEN SELECTION
287

288 Before computing importance scores for visual tokens, we reinforce their representations by rein-
289 jecting the original embeddings into the hidden states at layer K , thereby restoring visual details that
290 are consistently lost during the aggregation process into sink tokens, as observed in (Huang et al.,
291 2024b). Formally, for each visual token index $i \in \mathcal{V}$, we modify its layer- K hidden state by adding
292 the original visual embedding $V_{\text{orig},i}$:

$$293 \quad \tilde{H}_i = \begin{cases} H_i + V_{\text{orig},i}, & i \in \mathcal{V}, \\ H_i, & i \in \mathcal{T}, \end{cases}$$

297 Using these enhanced visual hidden states \tilde{H}_V , we then compute the cross-attention between sink
298 tokens H_S and visual tokens \tilde{H}_V at layer K (For notational simplicity and clarity, we omit the linear
299 projections W_Q and W_K and directly use \tilde{H}_V and H_S .):
300

$$301 \quad \bar{A}_{K,S \rightarrow V} = \text{softmax} \left(\frac{H_S \tilde{H}_V^\top}{\sqrt{d}} \right) \in \mathbb{R}^{L_s \times L_v},$$

305 We then compute an importance score for each visual token by averaging its normalized attention
306 weight across all sink tokens. Specifically, for each visual token $i \in \mathcal{V}$ we define:

$$307 \quad r_i = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \bar{A}_{K,S \rightarrow V}[s, i], \quad \forall i \in \mathcal{V},$$

310 where r_i represents the importance score of token i , reflecting the average attention it receives
311 from the sink tokens. Collecting these values in order of visual token indices yields a score vector
312 $r_V \in \mathbb{R}^{L_v}$.

313 Finally, given a retain ratio $p \in (0, 1]$, we determine the number of visual tokens to retain as
314 $k = \lfloor p \cdot L_v \rfloor$. We preserve the top- k visual tokens in their original order and discard the rest, while
315 all text tokens \mathcal{T} remain intact.

316 6 EXPERIMENT
317319 6.1 SETUP
320

321 **Datasets** We evaluate our method on four datasets that explicitly target hallucination in LVLMs.
322 MME (Fu et al., 2024) provides a comprehensive evaluation suite of 14 tasks, which are grouped into
323 perception and cognition to measure both comprehensive hallucination and higher-level reasoning.
Each task contributes up to 200 points, resulting in maximum scores of 2000 for perception and 800

for cognition. POPE (Li et al., 2023b) introduces a scalable framework for detecting object hallucinations, leveraging SEEM-based annotations on MS-COCO (Lin et al., 2014), A-OKVQA Schwenk et al. (2022) and GQA (Hudson & Manning, 2019). In addition, we evaluate the generalization of our method on two real-world VQA benchmarks: VizWiz (Gurari et al., 2018), which contains noisy and ambiguous images, and MM-Vet (Yu et al., 2023), which assesses multimodal models across six core capabilities—recognition, knowledge, spatial awareness, language generation, OCR, and math—with GPT-4 (Achiam et al., 2023) used as the automatic evaluator. Together, these datasets provide a comprehensive testbed for evaluating hallucinations of LVLMs in open-domain settings.

Models and Baselines To ensure generality, we evaluate our method across four representative 7B-level LVLMs: LLaVA-1.5 (Liu et al., 2023b), mPLUG-Owl2 (Ye et al., 2024b), InstructBLIP Dai et al. (2023), and MiniGPT-4 (Zhu et al., 2023). In addition, we also conduct experiments on LLaVA-1.5-13B to examine scalability across different model sizes, which is reported in Appendix A.3. For baseline comparisons, we evaluate ARTS against six representative decoding methods, including VCD (Leng et al., 2024), DoLa (Chuang et al., 2023), DAMO (Wang et al., 2025), SID (Huo et al., 2024), and OPERA (Huang et al., 2024b), SPIN (Sarkar et al., 2025). All baselines are implemented with their official configurations. For OPERA, we reduce the beam size to 4 due to computational constraints while keeping all other settings identical to its official configuration. Moreover, all methods are evaluated under identical conditions with the decoding temperature fixed at zero for fair comparison. The detailed parameter settings of ARTS are provided in appendix C.

6.2 RESULTS

Results on Comprehensive Hallucination Dataset We assess the capability of ARTS to mitigate hallucinations using the perception subset of the MME benchmark, which consists of ten tasks specifically designed to evaluate hallucination. The cognition subset targets higher-level reasoning, and its results are deferred to Appendix A.2. To ensure a thorough and fair evaluation, we conduct experiments across multiple representative LVLMs. As shown in Table 6, ARTS consistently surpasses all baseline decoding strategies, achieving the highest overall scores on every model. Notably, it improves LLaVA-1.5-7B from 1491.56 to 1520.68 and mPLUG-Owl2 from 1459.54 to 1474.29, and achieves the largest relative gain on InstructBLIP with an increase of 63.22 points. On MiniGPT-4, ARTS significantly surpasses the strongest decoding method SID by 14.66 points. These results demonstrate that ARTS achieves consistent gains across diverse LVLMs, confirming its effectiveness in reducing hallucinations.

Table 2: Experimental results on MME dataset across LLaVA1.5, mPLUG-Owl2, InstructBLIP, MiniGPT4. (The total score is 2000)

Model	Vanilla	VCD	DAMO	DOLA	SID	OPERA	SPIN	ARTS
LLaVA-1.5	1491.56	1484.96	1513.51	1495.02	1513.85	1510.68	1500.13	1520.68
mPLUG-Owl2	1459.54	1311.52	1462.95	1456.31	1467.43	1464.81	1456.96	1474.29
InstructBLIP	1271.54	1162.34	1298.76	1274.25	1295.76	1290.82	1287.18	1334.76
MiniGPT4	731.87	725.65	737.26	742.23	749.72	744.23	739.08	764.38

Results on Object Hallucination Dataset To assess the effectiveness of our method in mitigating object-level hallucinations, we conduct experiments on the SEEM-annotated versions of MS-COCO, A-OKVQA, and GQA, as provided by the POPE benchmark. Following standard practice, we report two metrics, accuracy and F1 score, which jointly capture the consistency of object recognition across different models and decoding approaches. The results are summarized in Table 3, it is clear that ARTS consistently outperforms both vanilla decoding and strong baselines across datasets. On MiniGPT4 under the random setting, it improves MSCOCO F1 from 59.94% to 63.99%, a gain of 4.05%, clearly surpassing DAMO by 3.34%. On LLaVA-1.5-7B under the random setting, ARTS raises the F1 score in GQA from 87. 22% with Vanilla decoding to 88. 24%, surpassing the strongest baseline SID by 0.83%. These results underscore the superior performance of ARTS in mitigating object hallucinations.

Results on Generalized Dataset As shown in Table ??, ARTS achieves competitive results on two generalized datasets. On VizWiz, it reaches 50.42% overall accuracy and highest 75.16% in

378 Table 3: Experimental results of various decoding strategies on the SEEM-annotated MSCOCO, A-
 379 OKVQA and GQA datasets from POPE using four models: LLaVA-1.5 and MiniGPT4. The best
 380 values for each metric across all models and decoding strategies are highlighted in **bold**.
 381

382 Setting	383 Model	384 Decoding	385 MSCOCO		386 A-OKVQA		387 GQA	
			388 Accuracy	389 F1 Score	390 Accuracy	391 F1 Score	392 Accuracy	393 F1 Score
390	391 LLaVA-1.5	392 Vanilla	393 89.21	394 89.41	395 87.12	396 88.21	397 86.01	398 87.22
		VCD	399 88.47	400 87.56	401 86.01	402 85.35	403 84.10	404 85.23
		DoLa	405 89.13	406 88.23	407 86.24	408 87.57	409 85.29	410 86.81
		DAMO	411 90.10	412 89.49	413 87.31	414 88.59	415 86.47	416 87.03
		OPERA	417 89.61	418 89.03	419 87.04	420 88.33	421 86.22	422 87.21
		SID	423 90.02	424 89.32	425 87.19	426 88.68	427 86.32	428 87.41
		ARTS	429 89.94	430 89.90	431 87.50	432 89.02	433 87.03	434 88.24
395	396 Random	397 Vanilla	408 70.35	409 59.94	410 69.79	411 61.41	412 70.14	413 63.11
		VCD	414 68.43	415 57.76	416 67.62	417 59.28	418 67.13	419 60.69
		DoLa	420 70.44	421 59.91	422 67.21	423 60.21	424 68.34	425 62.21
		DAMO	426 71.01	427 60.65	428 70.82	429 62.97	430 70.35	431 63.21
		OPERA	432 69.15	433 59.11	434 70.41	435 62.82	436 69.38	437 62.16
		SID	438 71.53	439 61.27	440 71.03	441 62.59	442 70.44	443 63.03
		ARTS	444 72.21	445 63.99	446 71.76	447 65.36	448 70.52	449 63.62
401	402 LLaVA-1.5	403 Vanilla	414 86.04	415 86.13	416 80.10	417 83.02	418 74.21	419 79.01
		VCD	420 84.45	421 85.81	422 78.74	423 81.78	424 70.76	425 76.28
		DoLa	426 84.26	427 85.97	428 79.27	429 82.62	430 72.23	431 78.50
		DAMO	432 86.25	433 86.67	434 79.78	435 83.05	436 75.14	437 80.02
		OPERA	438 86.28	439 86.55	440 80.02	441 83.15	442 74.13	443 79.24
		SID	444 86.21	445 86.24	446 80.74	447 83.21	448 74.76	449 79.52
		ARTS	452 86.93	453 87.35	454 80.80	455 83.50	456 76.04	457 80.88
406	407 Popular	408 Vanilla	419 68.23	420 59.02	421 65.46	422 58.55	423 63.39	424 57.79
		VCD	426 65.62	427 56.12	428 62.38	429 55.34	430 62.17	431 56.58
		DoLa	432 67.15	433 57.37	434 63.33	435 56.62	436 61.02	437 55.45
		DAMO	438 68.31	439 60.03	440 66.04	441 59.98	442 63.21	443 57.81
		OPERA	444 67.33	445 58.74	446 64.49	447 58.01	448 63.12	449 57.44
		SID	452 68.43	453 60.08	454 66.63	455 60.31	456 64.02	457 58.22
		ARTS	458 68.32	459 60.87	460 67.26	461 61.75	462 64.24	463 58.78
409	410 LLaVA-1.5	411 Vanilla	422 79.07	423 81.15	424 69.03	425 75.30	426 66.19	427 72.12
		VCD	433 74.37	434 77.32	435 66.24	436 70.13	437 65.23	438 70.45
		DoLa	438 77.21	439 79.32	440 68.82	441 75.21	442 66.28	443 71.42
		DAMO	443 79.79	444 81.32	445 69.13	446 76.02	447 67.61	448 73.34
		OPERA	448 79.23	449 81.18	450 69.14	451 75.58	452 67.13	453 73.33
		SID	453 79.67	454 81.24	455 69.32	456 75.46	457 67.51	458 73.83
		ARTS	458 80.87	459 82.50	460 69.83	461 76.30	462 68.76	463 75.69
413	414 Adversarial	415 Vanilla	426 67.53	427 58.30	428 62.06	429 55.91	430 62.68	431 57.60
		VCD	433 65.13	434 55.62	435 60.86	436 52.58	437 59.48	438 54.27
		DoLa	438 66.48	439 56.39	440 61.73	441 55.67	442 61.79	443 56.62
		DAMO	443 67.28	444 58.14	445 61.48	446 54.87	447 62.99	448 58.01
		OPERA	448 67.57	449 58.49	450 62.01	451 56.24	452 62.84	453 57.40
		SID	453 67.85	454 59.17	455 62.05	456 56.68	457 63.04	458 57.92
		ARTS	458 68.35	459 60.30	460 62.86	461 58.23	462 63.18	463 58.13

419 the Unanswerable category. On MM-Vet, it obtains a total score of 29.2%, with 21.0% in OCR and
 420 24.4% in Spatial Reasoning. Compared with alternative decoding strategies, ARTS maintains robust
 421 and balanced performance across various tasks, underscoring its strong generalizability.
 422

424 7 ABLATION STUDIES

425 7.1 EFFECT OF REINJECTING ORIGINAL VISUAL EMBEDDINGS

426 We compare pruning with and without reinjecting the original visual embeddings on the MME per-
 427 ception task using LLaVA-1.5-7B. As shown in Figure 4a, reinjection consistently achieves higher
 428 scores across retention ratios, with the largest margin at $P = 0.3$, where it reaches 1520.7 compared
 429 to 1510.6 without reinjection. These results indicate that restoring original visual embeddings before
 430 pruning helps the model better preserve essential information.
 431

Table 4: Evaluation of ARTS and other decoding methods on LLaVA-1.5 using VizWiz and MM-Vet.

Decoding	VizWiz					MM-Vet						
	Number	Yes/No	Unans.	Other	Overall	Rec	OCR	Know	Gen	Spat	Math	Total
Vanilla	47.62	78.26	74.30	38.11	50.05	33.2	20.0	15.6	18.0	22.3	11.5	28.4
VCD	42.70	77.64	72.54	38.12	49.47	26.2	19.9	9.6	8.1	22.0	7.7	24.6
DoLa	53.33	80.00	69.64	37.36	48.43	32.3	19.4	16.8	14.9	23.5	7.7	28.5
DAMO	48.10	78.88	71.78	36.63	48.41	32.3	18.2	16.1	14.9	22.4	7.7	27.8
ARTS	49.05	77.87	75.16	38.30	50.42	32.7	21.0	16.7	15.5	24.4	11.5	29.2

7.2 SENSITIVITY OF HYPERPARAMETERS

We evaluate the sensitivity of the retain ratio P and the starting layer K on the MME perception benchmark (Fu et al., 2024) using LLaVA-1.5. As shown in Figure 4b, pruning visual tokens from earlier layers (e.g., $K = 11$) leads to a clear performance drop, with scores decreasing as the retention ratio decreases and reaching a minimum of 1255.9 at a ratio of 0.2. This is because visual tokens at shallow layers still contain rich visual information that is critical for subsequent reasoning. In contrast, pruning in the middle layers ($K = 12\text{--}14$) consistently improves performance across different retain ratios, suggesting that redundant information accumulates at this stage. For deeper layers ($K = 15\text{--}16$), the performance remains slightly lower than baseline across different ratios, indicating that redundant information has already fully flowed into text tokens. These findings highlight that moderate pruning in the mid-layers is most effective, while early pruning is detrimental and late pruning has little impact on overall model performance.

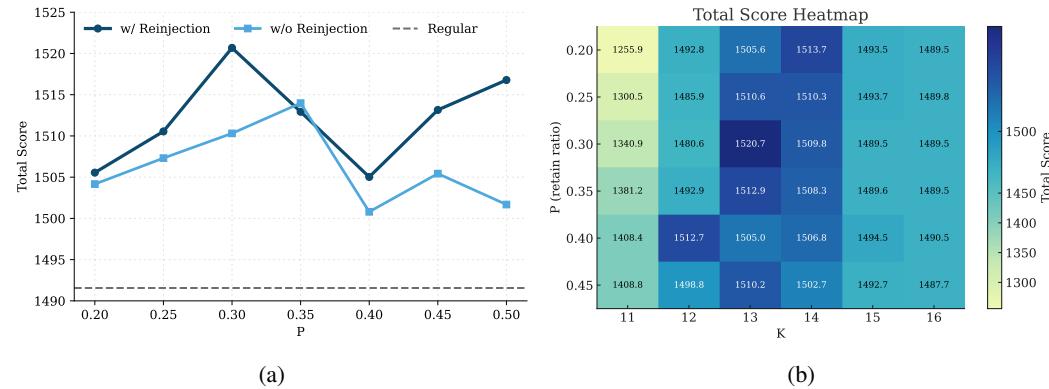


Figure 4: (a) Sensitivity of pruning performance to retain ratio P and starting layer K on the MME perception task using LLaVA-1.5-7B. (b) Effect of visual token reinjection on the MME perception task using LLaVA-1.5-7B.

8 CONCLUSION

In this paper, we introduced **ARTS**, a training-free approach to alleviating hallucinations in Large Vision-Language Models (LVLMs) by selectively retaining informative visual tokens at intermediate decoder layers. Our analysis revealed that, contrary to prior assumptions, most visual tokens at this stage become redundant or even misleading, and their removal can improve semantic coherence and reduce hallucinations. By reinjecting original visual information and leveraging sink-visual attention, ARTS effectively preserves essential visual information while reducing inherent redundancy. Extensive experiments across different LVLM architectures demonstrate that ARTS consistently improves factual accuracy and robustness, underscoring its potential to enhance the reliability and trustworthiness of multimodal systems.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Qingqing Cao, Bhargavi Paranjape, and Hannaneh Hajishirzi. Pumer: Pruning and merging tokens
492 for efficient vision language models. *arXiv preprint arXiv:2305.17530*, 2023.

493 Hanning Chen, Yang Ni, Wenjun Huang, Yezi Liu, SungHeon Jeong, Fei Wen, Nathaniel D Bas-
494 tian, Hugo Latapie, and Mohsen Imani. Vltp: Vision-language guided token pruning for task-
495 oriented segmentation. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vi-
496 sion (WACV)*, pp. 9353–9363. IEEE, 2025.

497 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
498 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
499 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.

500 Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund, Andrew James Willmott, Danny Birch,
501 Daniel Maund, and Jamie Shotton. Driving with llms: Fusing object-level vector modality for
502 explainable autonomous driving. In *2024 IEEE International Conference on Robotics and Au-
503 tomation (ICRA)*, pp. 14093–14100. IEEE, 2024b.

504 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
505 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
506 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer
507 vision and pattern recognition*, pp. 24185–24198, 2024c.

508 Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
509 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
510 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
511 2023), 2(3):6, 2023.

512 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
513 Decoding by contrasting layers improves factuality in large language models. *arXiv preprint
514 arXiv:2309.03883*, 2023.

515 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
516 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
517 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
518 2023.

519 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
520 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination
521 control by visual information grounding. In *Proceedings of the IEEE/CVF Conference on Computer
522 Vision and Pattern Recognition*, pp. 14303–14312, 2024.

523 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
524 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
525 benchmark for multimodal large language models, 2024.

526 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
527 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
528 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617,
529 2018.

530 Kai Huang, Hao Zou, Ye Xi, BoChen Wang, Zhen Xie, and Liang Yu. Ivtp: Instruction-guided
531 visual token pruning for large vision-language models. In *European Conference on Computer
532 Vision*, pp. 214–230. Springer, 2024a.

533 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
534 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
535 via over-trust penalty and retrospection-allocation. In *Proceedings of the IEEE/CVF Conference
536 on Computer Vision and Pattern Recognition*, pp. 13418–13427, 2024b.

540 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 541 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
 542 *vision and pattern recognition*, pp. 6700–6709, 2019.

543

544 Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang, Zhicheng Chen, and Peilin Zhao.
 545 Self-introspective decoding: Alleviating hallucinations for large vision-language models. *arXiv*
 546 *preprint arXiv:2408.02032*, 2024.

547

548 Chao Jia, Yinfai Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 549 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 550 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 551 PMLR, 2021.

552

553 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
 554 attention sink in large multimodal models. *arXiv preprint arXiv:2503.03321*, 2025.

555

556 Jusung Lee, Sungguk Cha, Younghyun Lee, and Cheoljong Yang. Visual question answering instruc-
 557 tion: Unlocking multimodal large language model to domain-specific visual multitasks. *arXiv*
 558 *preprint arXiv:2402.08360*, 2024.

559

560 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 561 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 562 coding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 563 nition*, pp. 13872–13882, 2024.

564

565 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 566 pre-training with frozen image encoders and large language models. In *International conference*
 567 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

568

569 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 570 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

571

572 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 573 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 574 *conference on computer vision*, pp. 740–755. Springer, 2014.

575

576 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large
 577 multi-modal model with robust instruction tuning. *CoRR*, 2023a.

578

579 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 580 *in neural information processing systems*, 36:34892–34916, 2023b.

581

582 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 583 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 584 (*CVPR*), pp. 26296–26306, June 2024.

585

586 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
 587 guistic representations for vision-and-language tasks. *Advances in neural information processing*
 588 *systems*, 32, 2019.

589

590 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 591 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 592 models from natural language supervision. In *International conference on machine learning*, pp.
 593 8748–8763. PmLR, 2021.

594

595 Sreetama Sarkar, Yue Che, Alex Gavin, Peter A Beerel, and Souvik Kundu. Mitigating hallu-
 596 cinations in vision-language models through image-guided head suppression. *arXiv preprint*
 597 *arXiv:2505.16411*, 2025.

598

599 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 600 A-okvqa: A benchmark for visual question answering using world knowledge. In *European*
 601 *conference on computer vision*, pp. 146–162. Springer, 2022.

594 Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
 595 formers. *arXiv preprint arXiv:1908.07490*, 2019.
 596

597 Feilong Tang, Zile Huang, Chengzhi Liu, Qiang Sun, Harry Yang, and Ser-Nam Lim. Interven-
 598 ing anchor token: Decoding strategy in alleviating hallucinations for mllms. In *The Thirteenth*
 599 *International Conference on Learning Representations*, 2025a.

600 Kai Tang, Jinhao You, Xiuqi Ge, Hanze Li, Yichen Guo, and Xiande Huang. Mitigating halluci-
 601 nations via inter-layer consistency aggregation in large vision-language models. *arXiv preprint*
 602 *arXiv:2505.12343*, 2025b.
 603

604 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 605 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 606 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

607 Ao Wang, Fengyuan Sun, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. [cls] token tells
 608 everything needed for training-free efficient mllms. *arXiv preprint arXiv:2412.05819*, 2024a.
 609

610 Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and Huajun
 611 Chen. Mllm can see? dynamic correction decoding for hallucination mitigation. *arXiv preprint*
 612 *arXiv:2410.11779*, 2024b.
 613

614 Kaishen Wang, Hengrui Gu, Meijun Gao, and Kaixiong Zhou. Damo: Decoding by accumulating
 615 activations momentum for mitigating hallucinations in vision-language models. In *The Thirteenth*
 616 *International Conference on Learning Representations*, 2025.

617 Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
 618 words are anchors: An information flow perspective for understanding in-context learning. *arXiv*
 619 *preprint arXiv:2305.14160*, 2023.
 620

621 Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations in large
 622 vision-language models with instruction contrastive decoding. *arXiv preprint arXiv:2403.18715*,
 623 2024c.

624 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 625 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.
 626

627 Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
 628 He, Jiaqi Wang, Feng Wu, et al. Pyramiddrop: Accelerating your large vision-language models
 629 via pyramid visual redundancy reduction. *arXiv preprint arXiv:2410.17247*, 2024.

630 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and
 631 Jingren Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large
 632 language models. *arXiv preprint arXiv:2408.04840*, 2024a.
 633

634 Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
 635 Hu, Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models
 636 with multimodality. *arXiv preprint arXiv:2304.14178*, 2023.
 637

638 Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei
 639 Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality collabora-
 640 tion. In *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp.
 641 13040–13051, 2024b.

642 Hao Yin, Guangzong Si, and Zilei Wang. Lifting the veil on visual information flow in mllms:
 643 Unlocking pathways to faster inference. In *Proceedings of the Computer Vision and Pattern*
 644 *Recognition Conference*, pp. 9382–9391, 2025.
 645

646 Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao Wang, Dianbo Sui, Yunhang Shen, Ke Li,
 647 Xing Sun, and Enhong Chen. Woodpecker: Hallucination correction for multimodal large lan-
 guage models. *Science China Information Sciences*, 67(12):220105, 2024.

648 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
649 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*
650 *preprint arXiv:2308.02490*, 2023.

651

652 Qizhe Zhang, Aosong Cheng, Ming Lu, Renrui Zhang, Zhiyong Zhuo, Jiajun Cao, Shaobo Guo,
653 Qi She, and Shanghang Zhang. Beyond text-visual attention: Exploiting visual cues for effective
654 token pruning in vlms. *arXiv preprint arXiv:2412.01818*, 2024a.

655 Qizhe Zhang, Aosong Cheng, Ming Lu, Zhiyong Zhuo, Minqi Wang, Jiajun Cao, Shaobo Guo,
656 Qi She, and Shanghang Zhang. [cls] attention is all you need for training-free visual token prun-
657 ing: Make vlm inference faster. *arXiv e-prints*, pp. arXiv–2412, 2024b.

658

659 Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
660 dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsifi-
661 cation for efficient vision-language model inference. *arXiv preprint arXiv:2410.04417*, 2024c.

662 Shiyu Zhao, Zhenting Wang, Felix Juefei-Xu, Xide Xia, Miao Liu, Xiaofang Wang, Mingfu Liang,
663 Ning Zhang, Dimitris N Metaxas, and Licheng Yu. Accelerating multimodal large language
664 models by searching optimal vision token reduction. In *Proceedings of the Computer Vision and*
665 *Pattern Recognition Conference*, pp. 29869–29879, 2025.

666 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
667 hancing vision-language understanding with advanced large language models. *arXiv preprint*
668 *arXiv:2304.10592*, 2023.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A MORE EXPERIMENTS**
703704 **A.1 EXTRA POPE RESULTS ON MPLUG-OWL2 AND INSTRUCTBLIP**
705706 We further evaluate our ARTS on mPLUG-Owl2 and InstructBLIP using POPE dataset. As shown
707 in Table 5, our method nearly outperforms all baselines across MSCOCO, A-OKVQA, and GQA
708 under the three settings, demonstrating not only robustness to different evaluation protocols but also
709 generalizability across distinct LVLM architectures.
710711 Table 5: Experimental results of various decoding strategies on the SEEM-annotated MSCOCO, A-
712 OKVQA and GQA datasets from POPE using four models: InstructBLIP and mPLUG-Owl2. The
713 best values for each metric across all models and decoding strategies are highlighted in **bold**.
714

715 Setting	716 Model	717 Decoding	718 MSCOCO		719 A-OKVQA		720 GQA	
			721 Accuracy	722 F1 Score	723 Accuracy	724 F1 Score	725 Accuracy	726 F1 Score
727 Random	728 mPLUG-Owl2	729 Vanilla	86.44	85.13	87.12	86.77	86.10	85.13
		VCD	85.17	84.42	85.56	85.23	84.43	82.87
		DoLa	86.62	85.23	86.58	85.68	86.21	84.19
		DAMO	87.74	86.68	88.14	87.82	86.92	85.85
		OPERA	87.32	86.14	87.91	87.91	86.31	85.17
		SID	87.19	86.33	87.98	88.14	87.01	86.04
		ARTS	87.97	87.06	88.90	88.78	86.90	86.18
729 Popular	730 InstructBLIP	731 Vanilla	87.23	85.84	88.51	88.18	86.12	87.16
		VCD	84.24	83.09	83.44	82.13	81.24	82.23
		DoLa	87.17	85.89	86.64	87.01	84.21	85.17
		DAMO	87.99	86.98	87.21	87.45	86.76	87.19
		OPERA	87.74	86.23	87.02	87.13	86.13	86.79
		SID	88.03	86.90	87.85	88.01	86.65	87.14
		ARTS	88.60	87.76	88.93	89.06	87.33	87.47
731 Adversarial	732 mPLUG-Owl2	733 Vanilla	84.43	84.12	83.72	84.02	79.04	80.13
		VCD	82.28	82.14	80.23	80.43	77.13	78.34
		DoLa	83.87	82.16	82.24	82.89	80.01	80.78
		DAMO	85.02	85.23	83.87	84.19	79.03	79.82
		OPERA	84.98	84.89	83.89	83.87	80.11	80.27
		SID	85.17	85.02	83.77	83.35	79.34	79.14
		ARTS	86.97	86.21	84.47	84.97	79.37	79.83
733 Popular	734 InstructBLIP	735 Vanilla	83.40	84.12	78.34	81.92	76.25	79.01
		VCD	80.23	80.04	76.14	78.34	73.27	75.88
		DoLa	82.39	83.41	78.85	80.42	74.82	77.21
		DAMO	84.21	84.27	79.01	81.34	75.31	78.41
		OPERA	83.71	84.08	78.86	81.27	75.62	78.57
		SID	84.16	84.31	79.09	81.63	75.79	78.37
		ARTS	85.23	84.70	80.73	82.37	77.77	79.90
734 Adversarial	735 mPLUG-Owl2	736 Vanilla	80.91	81.31	76.28	77.21	77.24	79.02
		VCD	78.31	80.10	75.34	74.42	75.31	77.46
		DoLa	79.24	80.13	75.28	75.35	75.16	78.82
		DAMO	82.14	82.33	76.73	78.01	78.42	80.13
		OPERA	81.42	81.90	76.75	77.82	78.79	80.22
		SID	82.08	82.21	76.47	78.31	78.69	80.19
		ARTS	83.87	83.37	77.57	79.65	79.67	80.60
735 Popular	736 InstructBLIP	737 Vanilla	80.91	81.98	71.56	77.28	71.42	75.94
		VCD	78.24	78.67	71.02	75.78	70.25	74.26
		DoLa	79.21	80.02	70.22	76.56	69.14	74.44
		DAMO	81.85	81.77	71.42	77.01	71.56	76.11
		OPERA	81.21	81.75	70.83	76.16	71.12	75.75
		SID	81.17	81.68	71.78	76.78	72.22	76.12
		ARTS	82.37	82.27	73.60	77.33	73.76	77.12

751 **A.2 EXPERIMENT RESULTS ON HIGH-LEVEL REASONING TASK**
752753 We evaluate the cognition subset to assess high-level reasoning capability of ARTS. On LLaVA-
754 1.5-7B, ARTS achieves the highest score, exceeding the strongest baseline DOLA by 14.21 points.
755 On mPLUG-Owl2, while all baseline methods exhibit notable performance drops, ARTS maintains

756 the original model performance, demonstrating its robustness in preserving reasoning ability under
 757 challenging conditions.
 758

759 Table 6: Experimental results on MME dataset across LLaVA1.5-7b, mPLUG-Owl2. (The total
 760 score is 800)

Model	Vanilla	VCD	DAMO	DOLA	SID	OPERA	SPIN	ARTS
LLaVA1.5-7b	294.29	287.50	305.25	318.21	311.42	299.98	295.71	332.42
mPLUG-Owl2	345.71	329.29	332.86	265.00	337.14	332.28	332.56	345.24

761 A.3 EXPERIMENT RESULTS ON LLaVA1.5-13B

762 We evaluate our **ARTS** on the MME dataset using LLaVA1.5-13B, as shown in Table 7. We perform
 763 pruning at layer 17 with a retain ratio of 0.5. ARTS achieves the highest overall score (1517.22),
 764 consistently surpassing strong baselines such as VCD (1504.44) and DCLA (1504.82). Compared
 765 with other decoding strategies that only achieve gains in a few categories (e.g., VCD in *Count* or
 766 DAMO in *Scene*), ARTS delivers improvements that are more evenly distributed across all evalua-
 767 tion dimensions, indicating that our method effectively reduces hallucinations and enhances factual
 768 alignment.
 769

770 Table 7: Experimental results of various decoding strategies on MME dataset using LLaVA1.5-13b.

Model	Decoding	Existence	Count	Position	Color	Posters	Celebrity	Scene	Landmark	Artwork	OCR	Total
LLaVA1.5-13b	Regular	188.33	145.00	123.33	160.00	159.52	159.71	157.25	141.75	121.75	147.50	1504.15
	VCD	190.00	163.33	120.00	175.00	151.70	159.41	158.25	129.00	125.25	132.50	1504.44
	DoLa	190.00	150.00	123.33	160.00	160.54	157.06	155.75	134.50	124.00	147.50	1502.69
	DAMO	190.00	125.00	113.33	150.00	166.66	152.06	163.25	166.50	107.75	140.00	1474.56
	DCLA	188.33	145.00	123.33	160.00	159.52	160.88	158.00	140.50	121.75	147.50	1504.82
	ARTS	190.00	155.00	121.67	170.00	159.52	158.53	156.50	134.50	124.00	147.50	1517.22

783 B DETAILS OF TWO TOKEN-IMPORTANCE METRICS

784 B.1 DETAILS OF VISUAL-TEXT ATTENTION

785 Let $H_v \in \mathbb{R}^{L_v \times d}$ denote the visual-token embeddings, and $H_q \in \mathbb{R}^{L_q \times d}$ and $H_{\text{resp}} \in \mathbb{R}^{L_o \times d}$ the
 786 embeddings of the input query and generated response, respectively. We form the textual sequence
 787 by concatenation

$$\tilde{H}_t := \begin{bmatrix} H_q \\ H_{\text{resp}} \end{bmatrix} \in \mathbb{R}^{(L_q+L_o) \times d}.$$

788 For notational simplicity and clarity, we omit the linear projections W_Q and W_K and directly use
 789 \tilde{H}_t and H_v . At decoder layer K , consider the cross-attention from textual queries to visual keys
 790 produced is

$$A^{(K)} = \text{softmax} \left(\frac{\tilde{H}_t H_v^\top}{\sqrt{d}} \right) \in \mathbb{R}^{(L_q+L_o) \times L_v},$$

791 The importance of a visual token i is defined as its average attention mass over all textual positions:

$$r_i = \frac{1}{L_q + L_o} \sum_{j=1}^{L_q+L_o} A_{j,i}^{(K-1)}, \quad i = 1, \dots, L_v.$$

805 B.2 DETAILS OF VISUAL-CLS ATTENTION

806 Let $H_v \in \mathbb{R}^{L_v \times d}$ denote the visual-token embeddings produced by the vision encoder, which con-
 807 tains a designated [CLS] token at index i_{cls} . We extract this representation as
 808

$$h_{\text{cls}} = H_v[i_{\text{cls}}, :] \in \mathbb{R}^d.$$

810 For notational simplicity and clarity, we omit the linear projections W_Q and W_K and directly use
 811 h_{cls} and H_v . At decoder layer K , consider the cross-attention from the [CLS] query to all visual
 812 tokens, computed as

$$813 \quad a^{(K)} = \text{softmax} \left(\frac{h_{\text{cls}} H_v^\top}{\sqrt{d}} \right) \in \mathbb{R}^{L_v},$$

$$814$$

$$815$$

816 The importance of a visual token i is then defined as its attention mass with respect to the [CLS]
 817 query:

$$818 \quad r_i = a_i^{(K)}, \quad i = 1, \dots, L_v.$$

$$819$$

$$820$$

821 C PARAMETER SETTINGS

$$822$$

823 We provide our detailed hyperparameter settings in Table 8. For each LVLM, we report the start-
 824 ing layer K and the retention ratio P used throughout all experiments. Here, “m” denotes the
 825 configuration adopted for evaluations on the MME benchmark, while “p” corresponds to the config-
 826 uration used for the POPE benchmark. Moreover, even with non-optimal (K, P) values, our method
 827 consistently outperforms the regular decoding baseline, highlighting its robustness and general ap-
 828 plicability.

829 Table 8: Hyperparameter settings for different LVLMs. K denotes the starting layer and P the
 830 retention ratio.

	LLaVA1.5-7B m/p	mPLUG-Owl2 m/p	InstructBLIP m	InstructBLIP p	MiniGPT4 m	MiniGPT4 p
K	13	14	15	16	16	17
P	0.30	0.35	0.20	0.50	0.05	0.50

837 D 2-MEANS CLUSTERING WITH EUCLIDEAN DISTANCE

839 A. Global Minimization Objective

840 Given a set of scalar values $\{x_i\}_{i=1}^N$, 2-means clustering with Euclidean distance aims to partition
 841 them into two clusters S_1 and S_2 by minimizing the total within-cluster variance:

$$844 \quad \min_{\mu_1, \mu_2, S_1, S_2} \sum_{i \in S_1} (x_i - \mu_1)^2 + \sum_{i \in S_2} (x_i - \mu_2)^2. \quad (2)$$

$$845$$

$$846$$

847 Here,

$$848$$

- 849 • x_i denotes the i -th scalar value (in our method, an attention-derived scalar score),
- 850 • S_1, S_2 are the two clusters (index sets of samples),
- 851 • μ_1, μ_2 are the corresponding cluster means.

852 This objective encourages values within each cluster to stay close to their cluster mean (reducing
 853 intra-cluster variance) and naturally separates the set into a “large-value” cluster and a “small-value”
 854 cluster.

857 B. Iterative Alternating Minimization Procedure

858 The above objective is typically solved by the standard alternating minimization procedure of k-
 859 means:

860 **1. Initialization** The two cluster means μ_1 and μ_2 are first initialized, e.g., by randomly selecting
 861 two values from $\{x_i\}$ or using other standard initialization strategies.

864 **2. Assignment Step** Given the current means μ_1 and μ_2 , each value x_i is assigned to the cluster
 865 with the closest mean:
 866

$$867 \quad S_1 = \{ i : |x_i - \mu_1| \leq |x_i - \mu_2| \}, \quad S_2 = \{ i : |x_i - \mu_1| > |x_i - \mu_2| \}. \quad (3)$$

869 Using $|x_i - \mu_1|$ and $|x_i - \mu_2|$ (instead of squared distance) is valid, because in one dimension
 870 $(x_i - \mu)^2$ and $|x_i - \mu|$ are monotonically equivalent, and thus yield the same arg min.
 871

872 **3. Update Step** After the assignment step, the new cluster means are computed as the average of
 873 all values assigned to each cluster:
 874

$$875 \quad \mu_1^{\text{new}} = \frac{1}{|S_1|} \sum_{i \in S_1} x_i, \quad \mu_2^{\text{new}} = \frac{1}{|S_2|} \sum_{i \in S_2} x_i. \quad (4)$$

878 The assignment and update steps are repeated until the cluster memberships no longer change, yielding
 879 a locally optimal partition of the values into two groups.
 880

882 E COMPUTATIONAL EFFICIENCY

884 In this section, we first report the memory usage of various hallucination mitigation methods to high-
 885 light the lightweight nature of our approach. We then compare ARTS with two other token pruning
 886 strategies in terms of GPU memory consumption, FLOPs, and inference latency, to demonstrate the
 887 quality–efficiency trade-off achieved by ARTS.

888 Despite introducing some additional computation during sink-token detection and redundancy scor-
 889 ing, ARTS significantly reduces the overall computational load through token pruning, resulting in a
 890 net efficiency gain. As shown in Table 9, ARTS is the only method that consumes less GPU memory
 891 than the base model across both LLaVA-1.5-7B and mPLUG-Owl2.
 892

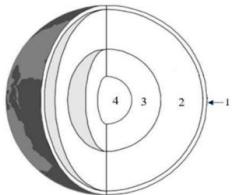
893 Table 9: Memory consumption (in GiB) of different hallucination mitigation methods during infer-
 894 ence on MME benchmark.

896 Model	Vanilla	VCD	DOLA	OPERA	DAMO	ARTS
898 LLaVA-1.5-7B (GiB)	15.5	16.6	15.9	23.2	15.5	15.3
899 mPLUG-Owl2 (GiB)	17.2	17.6	17.3	25.1	17.2	17.1

900 Compared with Visual-CLS and Visual-Text, ARTS incurs only marginal increases in FLOPs, la-
 901 tency, and other computational costs, as shown in Table 10. This demonstrates that ARTS offers a
 902 favorable efficiency–performance trade-off.
 903

905 Table 10: Inference efficiency comparison between Visual-CLS attention, Visual-Text attnetion and
 906 ARTS with LLaVA-1.5-7B on MME benchmark.

908 Retain Ratio	909 Method	910 Avg. FLOPs (T)	911 GPU Mem (GiB)	912 Latency (ms)	913 Throughput (it/s)
910 1	911 LLaVA-1.5-7B	912 8.82	913 15.47	914 138.69	915 7.21
911 0.5	912 Visual-CLS	913 6.40	914 15.18	915 133.73	916 7.48
	912 Visual-Text	913 6.38	914 14.79	915 134.88	916 7.41
	912 ARTS	913 6.57	914 15.34	915 136.21	916 7.34
912 0.1	913 Visual-CLS	914 4.76	915 15.05	916 123.06	917 8.12
	913 Visual-Text	914 4.74	915 14.67	916 125.59	917 7.96
	913 ARTS	914 4.92	915 15.19	916 127.56	917 7.84
915 0.05	916 Visual-CLS	917 4.59	918 14.74	919 122.38	920 8.17
	916 Visual-Text	917 4.56	918 14.62	919 124.94	920 8.00
	916 ARTS	917 4.79	918 15.12	919 127.57	920 7.84

918 F CASE STUDY
919920 Here, we provide a qualitative example from the MM-Vet dataset to illustrate the output of ARTS.
921 As shown in Figure F, ARTS corrects a hallucinated response produced by LLaVA-1.5-7B and
922 accurately identifies that Number 2 in the image indicates the mantle.
923924 1. Figure 1 shows the structure of the earth's interior. Write the number showing
925 each layer in the table below.
926
927928 Figure 1
929
930
931
932

Layer	Number on figure 1
Outer core	
Mantle	
Crust	
Inner core	

933 "What earth's interior structure does
934 number 2 indicate?"
935936 **LLaVA1.5:**937 "Number 2 in the image indicates the **outer core**
938 of the Earth's interior. The outer core is the layer
939 of the Earth that lies between the mantle and the
940 core, and it is primarily composed of liquid iron
941 and nickel. It is responsible for generating the
942 Earth's magnetic field and plays a crucial role in
943 the Earth's overall structure and functioning."944 **ARTS:**945 "Number 2 in the image indicates the mantle, which is the layer of the Earth's interior that lies
946 between the core and the crust. The mantle is primarily composed of rock and is responsible for
947 the Earth's tectonic activity, including plate tectonics and the formation of mountains. It is also
948 the layer that transfers heat from the Earth's interior to the surface, contributing to the Earth's
949 climate."950 Figure 5: Case Study from MMVet on LLaVA-1.5-7B. Hallucinations are marked in red
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971