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ABSTRACT

Positional signals in spiking neural networks (SNNs) suffer distortion due to
spike binarization and the nonlinear dynamics of Leaky Integrate-and-Fire (LIF)
neurons, which compromises self-attention mechanisms. We introduce Spiking-
RoPE, a spiking-friendly relative rotary positional encoding that applies two-
dimensional spatiotemporal position-dependent rotations to queries/keys prior to
binarization, ensuring that relative phase kernels are preserved in statistical ex-
pectation under LIF dynamics while maintaining content integrity. Building on
this core, we propose Spiking Fused-PE (SF-PE), a scheme that fuses abso-
lute CPG-based spikes with Spiking-RoPE. The resulting attention score decom-
poses into complementary row/column (absolute) and diagonal (relative) struc-
tures, thereby expanding the representable function space. We validate our method
across two diverse domains (time-series forecasting and text classification) on
Spikformer, Spike-driven Transformer, and QKFormer backbones. SF-PE con-
sistently improves accuracy and enhances length extrapolation capabilities. Abla-
tions on rotation bases and 1D vs. 2D variants support the design. These results es-
tablish rotary encoding as an effective, spiking-friendly relative PE for SNNs and
demonstrate that fusing absolute and relative signals yields synergistic benefits
under spiking constraints. Code: https://anonymous.4open.science/
r/SNN-ROPE-F6DE.

1 INTRODUCTION

Spiking neural networks (SNNs) transmit information via discrete spikes that emulate biological
firing, enabling event-driven computation with low energy and neuromorphic compatibility (Maass},
1997; Davies et al.l 2018} [Roy et al., 2019). Recent work has transplanted key Transformer com-
ponents to SNNs, including spike-friendly self-attention (Zhou et al., 2022} |Yao et al., 2023} |Song
et al.,|2024;Zhou et al.L[2024a). A persistent bottleneck, however, is positional encoding (PE). While
self-attention inherently lacks order awareness and therefore requires PE (Vaswani et al.,|2017), PE
signals in SNNs suffer distortion through spike binarization and the nonlinear dynamics of Leaky
Integrate-and-Fire (LIF) neurons.

Conventional continuous PEs (e.g., sinusoidal) differentiate positions through subtle embedding
changes. However, thresholding operations distort this information by either nullifying these sub-
tle differences (when inputs remain subthreshold) or drastically amplifying them (upon crossing the
threshold). This fundamental incompatibility motivates the development of spiking-friendly PEs that
can survive both binarization and LIF dynamics.

Through a systematic analysis of current approaches, we identify three critical gaps in the existing
SNN positional encoding landscape. Gap 1 (Theory): Existing SNN Transformers predominantly
rely on implicit, weight-based position learning and lack rigorous analysis of how positional in-
formation is preserved through binarization. Gap 2 (Single-paradigm limits): Absolute PE, such
as CPG-PE (Lv et al.| 2024)), exhibits sensitivity to shifts and suffers from aliasing on long se-
quences, whereas relative PE (e.g., Gray/Log-PE (Lv et al.,|2025)) encounters capacity constraints
and distance-resolution limitations. Gap 3 (Spatiotemporal modeling): SNN data are inherently
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spatiotemporal in nature, yet most PEs treat position as one-dimensional, thereby neglecting the
separable time and sequence axes.

To systematically address these identified gaps, we propose Spiking-RoPE, a comprehensive solu-
tion that begins with redesigning rotary positional encoding specifically for SNNs. Spiking-RoPE
applies position-dependent rotations to queries/keys prior to spike binarization, yielding relative
phase kernels that are preserved in statistical expectation under LIF dynamics while maintaining
content integrity. We further decouple rotations along sequence (length) and time axes to obtain
2D Spiking-RoPE, which explicitly models spatiotemporal relations. Finally, we integrate absolute
and relative signals in Spiking Fused-PE (SF-PE) by combining absolute CPG-based spikes at the
input with Spiking-RoPE within blocks. This fused scheme activates complementary row/column
(absolute) and diagonal (relative) structures in attention maps (See Fig. [3|in the Appendix), thereby
expanding representable function space.

To demonstrate the effectiveness and generalizability of our approach, we conduct extensive valida-
tion across two diverse domains (i.e., time-series forecasting and text classification) and three estab-
lished spiking backbones (i.e., Spikformer, Spike-driven Transformer, QKFormer), supplemented by
comprehensive ablations on rotation bases and 1D vs. 2D variants. Our experimental results show
that SF-PE consistently improves accuracy and strengthens length extrapolation capabilities across
all evaluated scenarios.

Contributions.

* C1, Theoretical foundation (Gap 1): We rigorously prove that pre-spike rotary phases pre-
serve relative phase kernels in statistical expectation under LIF (See Appendix [A), thereby
explaining why rotation-based PEs are inherently compatible with spike dynamics.

* C2, Fused absolute-relative PE (Gap 2): SF-PE systematically integrates CPG-PE (abso-
lute) with Spiking-RoPE (relative), jointly inducing complementary row/column and diag-
onal attention structures.

* C3, Native spatiotemporal PE (Gap 3): Spiking-RoPE independently rotates along se-
quence and time axes to capture spatiotemporal relations that are inaccessible to 1D de-
signs.

* C4, Cross-domain evidence: Consistent gains across backbones and tasks, plus ablations,
establish robustness and generality across different domains (i.e., time series forecasting,
text classification).

2 RELATED WORK

2.1 SNN TRANSFORMER ARCHITECTURES

The adaptation of Transformers to the SNN domain has gained significant momentum in recent
years. Notable contributions include Spikformer (Zhou et al., [2022} |2024b), which pioneered the
integration of LIF neurons into vanilla Transformers to create spiking self-attention mechanisms.
Building on this foundation, Spike-driven Transformer (Yao et al., 2023; 2024) advanced the field
by proposing more computationally efficient spike-based MatMul operations. Spikingformer (Zhou
et al., 2023)) proposed a spike-based residual learning framework. QKFormer (Zhou et al.l [2024a)
improved the binarization process of queries and keys to reduce information loss. However, all
of these adopt approaches where weights indirectly learn positions without explicit PE, thereby
exemplifying Gap 1.

2.2 ABSOLUTE PE FOR SNN

Among absolute PE methods designed specifically for SNNs, CPG-PE (Lv et al [2024) represents
the current state-of-the-art approach. This method leverages central pattern generator properties to
assign distinct binary spike patterns to each position through frequency channel thresholding. While
demonstrating spike consistency and neuromorphic compatibility, CPG-PE exhibits fundamental
limitations that our work addresses: (1) Translation sensitivity, absolute coordinate terms in atten-
tion render it vulnerable to sequence shifts, and (2) Long sequence aliasing, finite period synthesis
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causes pattern collisions that become increasingly severe in extended sequences, directly contribut-
ing to Gap 2 identified in our analysis.

2.3 RELATIVE PE FOR SNN

In contrast to the absolute PE method, relative PE approaches for SNNs focus on encoding posi-
tional relationships rather than absolute positions. Gray-PE and Log-PE (Lv et al., 2025) represent
the most advanced relative PE approaches currently available for SNNs. Gray-PE approximates
relative distances using Hamming distance-based discrete codes, while Log-PE employs log-scale
distance buckets. However, both methods encounter critical limitations that reinforce Gap 2: Gray-
PE suffers from (1) representation upper bounds due to bit capacity constraints 2°, and (2) distance
ordering violations where Hamming distance fails to preserve actual distance relationships. Log-PE
encounters (1) coarse distance resolution due to distant interaction binning, and (2) spatiotemporal
instability during 2D extension, thereby highlighting the necessity for our Gap 3 solution.

3 PRELIMINARY

3.1 NOTATION

T denotes the number of time steps, L is the sequence length (number of tokens/patches), and D
is the feature dimension. Bold uppercase letters denote tensors, and operations apply to the last
dimension unless otherwise specified. BN(-) denotes batch normalization, and SN(-) denotes the
spike operation induced by LIF in Eq. [T}

3.2 LEAKY INTEGRATE-AND-FIRE (LIF) NEURON

In this study, we use LIF neurons (Maassl |1997) for spike binarization in SNNs. At discrete time ¢,
the membrane potential update H (¢), spike S(¢), and post-reset potential U (¢) for input current I (t)

are as follows:
1 Ht)=Ut =1+ (I(t) = (Ut =1) = Ureset) ) »
S(t) = O(H(t) — Uwr), (1)
U(t) = (1 - S(t)) H(t) + S(t) Uteset

where 7 is the leak time constant, Uy, is the threshold, UL is the reset potential, and O(-) is
the Heaviside step function. In this paper, SN(z) refers to spike output under LIF dynamics (e.g.,
@(Z - Uthl‘))'

3.3 SPIKING SELF-ATTENTION

Spiking Self-Attention (SSA) is a transformation of self-attention adapted for spike representations
following Spikformer (Zhou et al., 2022). For spike tensor X € {0, 1}7*ExD:

Q. =BN(X)Wg, K.=BN(X)Wgk, V.=BN(X)Wy, 2)
where Wy y are learnable linear mappings. The corresponding spike embeddings are:
Q; =SN(Q.), K;=SN(K.), V,=SN(V,.). 3)

Time indices are omitted for notational simplicity, and attention is computed at each time step as fol-
lows, where AttnMap is an integer matrix reflecting spike co-occurrence over feature dimensions:

AttnMap = Q, K] € Ni*F, SSA = SN(AttnMap - V). 4)
3.4 CPG-PE
CPG-PE (Lv et al,, [2024) is an absolute PE that borrows the periodic firing principles of central
pattern generators. For K channels with different periods, at position ¢ € {0,...,L — 1}:
(i) = cos(wyi + ¢x), k=1,... K, ®)
g (i) = O(uy (i) — 1) € {0,1}, (6)
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(c) Spiking Fused-PE
Figure 1: SFPE architecture. The diagram illustrates the integration of CPG-PE and RoPE with

Spiking Neural Network, showing the flow from input spike trains through the fused PE to the
attention computation in spiking transformers.

binary signals are synthesized to create:

pPE = [g1(1), 92(3), ..., gx ()] € {0,1}F, )

where wy, is the angular frequency (T}, = 27 /wg), ¢k is the phase, 7y is the threshold, and © is the
Heaviside step function.

3.5 ROTARY POSITIONAL EMBEDDING (ROPE)

ROPE (Su et al., [2024) encodes positional information by rotating (2i—1, 2¢) channel pairs of em-
beddings at position m with position-dependent angles. For per-head dimension d (even), the fre-

quencies are set as §; = B~2(=1/d (; = 1,... d/2), where base B > 1 determines the rotation
frequency. The block diagonal rotation matrix at position m € {0,..., L — 1} is:
o cos(mby) —sin(mb) cos(mbyj) —sin(mbys) dxd
Fon = dlag( {Sin(mﬂl) cos(mby) |77 |sin(mby/2)  cos(mby2) eRTE®

For query/key Q., K. € RE*4 RoPE is applied position-wise as:

(Qc)m = Rm (Qc)ma (Kc)m = Rm (Kc)m; (9)

while values remain unchanged.

4 METHODOLOGY

4.1 OVERVIEW

Positional encoding (PE) in SNN-based transformers has evolved through the development process
shown in Fig. |1} Early SNN transformers (a) suffered from performance degradation by learning
positional information implicitly. CPG-PE (b) was introduced as the first explicit, absolute positional
encoding (PE), but it revealed new limitations, such as pattern collisions in long sequences.

Building on this, our proposed Spiking Fused-PE (c) is a fusion approach that combines CPG-PE
for learning absolute positions with our Spiking-RoPE for injecting relative relationships. This dual-
stage design leverages both types of information to expand the representation space and enhance its
performance.
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4.2 SPIKING-ROPE

RoPE, originally designed for continuous neural networks, decomposes attention inner products
into kernels that depend only on relative phase differences A through position-dependent rotations.
Building on this foundation, we propose Spiking-RoPE by adapting this rotation mechanism to the
pre-spike binarization stage, where relative phase kernels are maintained from a statistical expecta-
tion perspective even under LIF leakage and threshold conditions. (See Fig. []in the Appendix for
Spiking-RoPE transformation steps; See Appendix [C|for the detailed implementation).

Theoretical Foundation (Gap 1 Resolution): The critical insight enabling Spiking-RoPE is our
theoretical proof that phase rotation preserves relative positional information statistically even after
spike binarization. This addresses Gap 1 by providing the first rigorous analysis of positional infor-
mation preservation in SNNs. The complete theoretical analysis, including expectation preservation
proofs and LIF dynamics interaction, is presented in Appendix [A]

4.2.1 1D SPIKING-ROPE

1D Spiking-RoPE encodes relative positional information along a single axis. For this purpose,
rotation matrices ;) are applied to (2r—1,2r) channel pairs in even dimension d.

G = Ry ql(c)7 ];j = Ry(j) kg'C)’ Aij = (i) = ¢()- (10)

As a result, the relative relationship between two positions 7, j depends only on the phase difference
A

ij-
4.2.2 2D SPIKING-ROPE

To explicitly model the spatiotemporal characteristics of SNN data, 2D Spiking-RoPE encodes po-
sitional information by separating it into sequence length axis / and time axis ¢. First, the embedding
is divided into two equal-dimensional blocks, and independent 1D Spiking-RoPE is applied to each
block. One block rotates based on sequence position (7), while the other rotates based on time step

(t:)-
~ N c,t 7 c,l) . c,t
4 = [Rw(i) ngc ) i Ry, t) q,( )]’ kj = [Rw(j) k]( : i Rty kj( )]' Y

When computing query/key inner products, letting A; = ¢; (i) — () and Ay = i (t;) — we(t;),
the inner product operation naturally separates into the sum of relative phase kernel A; along the
length axis and relative phase kernel A; along the time axis as shown below. This allows the model
to consider both spatiotemporal relative distances.

(@i k) = (@, k) cos AL+ (0, TED) sin A)

(12)
+ ((qgc’t), kj(-c’t)> cos Ay + <qi(c’t), Jk§c"t)> sin Ay).

4.2.3 PHASE PRESERVATION UNDER LIF

LIF performs nonlinear transformations (Eq. [T), and there is a risk of losing positional informa-
tion encoded as continuous values during this process. We show that PE applied at the pre-spike
stage through Spiking-RoPE is preserved from a statistical expectation perspective even after LIF’s
spiking transformation.

This proof involves approximating the firing probability function of LIF neurons as a linear function.
Batch Normalization in SSA (Eq. [2) stabilizes the distribution of pre-spike inputs to mean 0 and
variance 1. Assuming that input currents are distributed in a narrow region around the mean (0) such
that the firing probability function operates almost linearly, we can show that the probability of query
and key firing simultaneously in a specific dimension is approximately proportional to the product
of pre-spike values ¢;q, k;4. Under this linear approximation, the expectation of inner products over
all dimensions is derived as follows.

Elg; k;] = oG, kj), (13)
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where o > 0 is a scaling constant depending on neuron sensitivity and input distribution, and

attention scores are determined by the inner product value (g;, k;). When Spiking-RoPE is applied,

(Gi, k;) is expanded as a function of relative phase A;; = ¢ — j, resulting in the final attention score
having the following relationship:

SA(qi, ki) x Elg; kj] o <q§c), k(-c)> cos Agj + (q(c), ka(-c)> sin Ayj. (14)

% J [
In conclusion, Spiking-RoPE preserves phase kernels containing relative positional information un-
der nonlinear LIF dynamics, enabling the utilization of positional information in SNNs.

4.3 FUSED PE

In Transformer-based models, positional encoding (PE) injects order and dependencies between
tokens. Existing research has independently used either absolute or relative PE. We propose fused
PE, which combines both approaches to enhance positional representation power. To simultaneously
reflect absolute PE p* and relative PE R, in input z, query/key are defined as follows:

G = Rom Walzi +pi™),  kj = Reg) Wr(z; +15”), (15)

where p® is the absolute PE, and R,u) € R?¥*4 js the RoPE-style block rotation at position i.
This configuration organically fuses two information sources within a single vector by projecting
content+absolute information through linear mapping, then injecting relative information through
phase rotation. The row/column structure created by absolute PE and the diagonal structure cre-
ated by relative PE are simultaneously activated, providing richer representation power compared
to single PE (See Fig. [3|in the Appendix). Subsequently, in continuous (pre-spike) space, letting

q§C) = WQ(mi + p‘;‘bs) and k‘;c) = WK(in + pa;bs)’
6= Roal”, ki = Rk, A= oli) = ().
With the 90° block rotation operator .J for even channel pairs, the inner product is as follows.

(G, l~€J> = <q§c)’ kj(-c)> cos Aj; + (qfc), J krj(-c)> sin Ay (16)
According to Appendix |A] this inner product approximately preserves the relative phase kernel form
of the above equation in the expectation E[g;" k;] even after spike binarization.

4.4 FINAL INCORPORATION

Following fused PE, we propose Spiking Fused-PE (SF-PE), a fused method that combines CPG-PE
for absolute PE and Spiking-RoPE for relative PE. First, after injecting CPG-PE from Eq.[7]into the
embedding,

¢\? = Wo(z; + EpS™), &\ = Wi(z; + Ep§*®),  EeR™K, (17
which is rotated with 2D Spiking-RoPE. Then, the continuous inner product is decomposed with
respect to the relative phases of the two axes as follows:

di/2 di/2
(Gir kj) = Z (AE;)T cos AWV + Bl(jl)r sin Ag})) + Z (AS)T cos AW + Bl(;)r sin Agjf))7 (18)
r=1 r=1

where d; and d; denote per-axis even dimensions, and the amplitude terms are
O _ g (el) (e O _ g (e (el)
Aij = (g, 7]?7‘ ), By = (g; 7ka )

and similarly AE?, Bi(;) are defined for the time axis. Consequently, the attention score of SF-PE
is structured as a sum of contributions from the length [ and time ¢ axes, each of which is itself a
sum over individual rotational frequency channel pairs. This decomposition shows how two types of
positional information are complementarily combined for each channel pair: absolute information
(amplitudes A, B) and relative information (trigonometric kernels, A;, A;), allowing the model to
capture richer and more granular positional details. This structure is preserved from a statistical
expectation perspective even after the spike binarization process, enabling SNNs to effectively learn
complex spatiotemporal patterns.
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Table 1: Performance comparison on time series forecasting on 4 benchmarks with various predic-
tion lengths 6, 24, 48, 96. The best results are shown in bold. PE types: A = absolute, F = Fused
(absolute + relative). Metrics: higher R? and lower RSE indicate better performance. All results are
averaged across 3 random seeds.

PE . Metr-la (L = 12)
Models Metric 5 7 73

Pems-bay (L = 12)
Type 6 24 48

Solar (L = 168) Electricity (L = 168) A
24 48 9 | 6 24 48 96 | V&

96 96

Transformer w/Sin-PE (Upper bound) A R*T | 727 554 413 284 | 785 734 688 .673 | 953 .858 759 718 | .978 975 .972 964 | .733

PP RSE| | .551 704 .808 .895 | .502 .558 .610 .618 | .223 377 .504 545 | 260 277 347 425 | 512
R*T | 713 527 399 267 | .773 .697 .686 .667 | .929 .828 744 .674 | .959 955 .955 954 | .733
RSE| | .565 725 .818 903 | 514 594 .606 .621 | 272 426 519 .586 | .373 371 379 .382 | .541
R*T | 726 526 418 287 | 780 712 .690 .666 | 937 .833 757 .707 | .972 970 .966 .960 | .744

Spikformer w/Conv-PEZhou et al. (2022] A

Spikformer w/CPG-PE[LY et al. |j2024} A | RSE| | 553 720 806 .890 | 508 .580 602 622 | 257 420 506 555 | 299 310 314 355 | .519
- P . RII |79 561 432 317|783 713 6% 670 939 877 782 752 981 975 972 965 | 760
pritormer w/sk- urs RSE| | .538 .698 .795 .871 | 499 .576 .593 .618 .251 362 .479 .511 .240 .280 .300 .336 | .497
—— - R71 | 588 364 236 .121| 674 668 658 639 | 922 837 .732 685 | 958 051 046 930 | .682

SDT-V1 w/Cony-PE[Yao et al. {2023} A | RSE] | .92 841 935 984 | 599 605 .616 637 | 281 405 .533 584 | 367 389 412 430 | 582
— - . RZ1 | 601 387 257 .152| .695 695 680 664 | 935 860 748 710 | 966 955 959 945 | .700

SDT-V1 w/CPG-PE|LV et al. |f2024] A | RSE| | 667 827 910 972 | 580 578 .592 607 | 260 383 515 553 | 320 378 362 417 | 558
o . RII | 703 470 296 187|741 700 686 679 945 871 794 766 979 971 971 969 | 733

RSE| | .576 .769 .886 .952 | .533 .573 .587 .593 242 369 466 496 259 299 302 310 | 513
R*1 | 706 509 411 275 |.735 671 .667 .663 | 927 .841 737 .689 | .966 .961 .958 955 | .729
RSE| | .577 743 816 901 | .557 .621 .625 .629 | 275 402 .527 .569 | .302 .324 340 .358 | .535
R?T | 711 522 423 286 | .743 684 .681 .668 | 930 .856 .755 .732 | .977 968 .966 .959 | .734
RSE| | .567 729 .801 890 | .548 .608 .611 .623 | 271 389 .508 .531 | .264 .289 .307 .361 | .533
R*T | 717 520 419 292 | .749 .702 .698 .668 .934 .868 .793 .737 .981 972 .968 954 | .748
RSE| | .561 .730 .804 .887 | .542 .590 .594 .623 .264 372 468 .526 .244 299 318 383 | .513

QKFormer w/Conv-PE Zhou et al. (2024a) A

QKFormer w/CPG-PE|Lv et al. (2024 A

QKFormer w/SF-PE (Ours) F

5 EXPERIMENTS

We evaluate on two diverse domains, time series forecasting and text classification, to test the
modality-agnostic nature of SF-PE. The choice follows directly from the method’s characteristics:
(1) pre-spike rotary phases preserve relative kernels under LIF (C1; Sec. [d.2] Sec. [.2.3); (2) the
fused absolute—relative scheme induces complementary row/column vs. diagonal attention struc-
ture that any ordered data exhibits (C2; Eq. [I6); and (3) the 2D variant decouples length and time
to model spatiotemporal relations while remaining compatible with 1D sequences (C3; Sec. f.2.2]
Eq. . We therefore assess robustness across (a) modalities (continuous signals vs. discrete tokens)
and (b) SNN backbones (Spikformer, SDT-V1, QKFormer), and we include length extrapolation to
specifically probe relative-position generalization.

Our experimental validation systematically demonstrates how our gap-targeted solutions (C1-C3)
translate to performance improvements across diverse domains. For our primary comparisons, we
evaluate against two baselines: Conv-PE (Zhou et al.| [2022; [Yao et al.l 2023} |Zhou et al., 2024a),
where positional information is learned implicitly, and CPG-PE (Lv et al.|[2024)), the state-of-the-art
absolute PE for SNNs. However, there has been no research effort for applying relative PE to SNNs,
making a direct comparison with a pre-existing method challenging (See the alternative comparison
in Appendix [E)). Additionally, we utilize our Spiking-RoPE as a relative-only baseline and provide
a detailed comparison in the ablation studies. Detailed experimental settings, including datasets,
metrics, and hyperparameters, are provided in Appendix [B]and length extrapolation analysis in Ap-

pendix [D]

5.1 TIME SERIES FORECASTING

Table|l|shows the performance of SF-PE on four time series forecasting datasets. The results reveal
several notable patterns:

Consistent superiority of SF-PE: SF-PE consistently outperforms absolute PE approaches across
all backbone models (Spikformer, SDT-V1, and QKFormer). In particular, the average R? score
improved from 0.744 to 0.760 on Spikformer and showed a substantial improvement from 0.700 to
0.733 on SDT-V1. Similarly, SF-PE achieved a leading average R? score of 0.748 on QKFormer.

Robustness in long-term prediction: While the performance degradation occurs as prediction
length increases (6 to 96 hours), SF-PE maintains relatively stable performance compared to other
methods. Specifically, in the 96-hour prediction on the Metr-la dataset, SF-PE achieves R? = 0.317,
showing a 10.5% improvement over CPG-PE’s 0.287. This suggests that our SF-PE is more effective
at capturing long-term dependencies.

Dataset-specific characteristic analysis:
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Table 2: Performance comparison on six text classification tasks using the Spikformer backbone.
The best results are shown in bold. PE types: A = absolute, F = Fused (absolute + relative). Metrics:
F1 score for MRPC, and accuracy for all other tasks. All results are averaged across 3 random seeds.

Model Tl;llie Param(M) MR sg?};mem A"aléi}'ﬁj SST5 Inflngeli:lce sﬁlg;%ny Avg.
Fine-tuned BERT (Upper bound) A 109.8 86.39 92.01 95.43 49.87 69.42 89.75 80.48
Conv-PE|Zhou et al.[(2022] [ A ] 1098 [71.84+0.14 80.17+£0.08 88.35+0.12 38.69 +0.10 [ 52.71 + 0.00 | 68.38 £ 0.03 | 66.69
CPG-PE|Lv et al.|(2024) | A ] 1104 [7273£0.09 81.77£0.04 8897+0.09 39.15£0.12 [ 52.71 £ 0.00 [ 70.10 £ 0.04 | 67.57
SF-PE (Ours) ‘ F ‘ 110.4 73.57+£0.10 81.83+0.05 89.70 +0.08 40.05+0.09 52.71 & 0.00 ‘ 70.59 £ 0.03 ‘ 68.07

* Solar dataset: The strong periodic patterns in this dataset appear well-suited for spatiotem-
poral PE, as all models achieved their highest performance on this task.

* Electricity dataset: Despite high dimensionality (321 customers), SF-PE shows particu-
larly strong results, indicating that our fused PE approach can effectively capture complex
multivariate relationships.

 Traffic data (Metr-la, Pems-bay): SF-PE consistently maintains its performance advan-
tage on the more volatile and inherently challenging traffic datasets, even with lower abso-
lute scores.

Comparison with upper bound: Vanilla transformer used in SNNs is considered the performance
upper bound, as the binarization process in spiking models can cause information loss compared
to the continuous values used in standard transformers. Notably, in some instances, the addition of
SF-PE enables spiking models to outperform the upper bound.

5.2 TEXT CLASSIFICATION

Table [2] presents the performance on six text classification tasks.

Improvement in sentiment analysis: Our SF-PE consistently surpasses both the CPG-PE baseline
and the model without PE across all sentiment analysis tasks. Specifically, it achieves 73.57% ac-
curacy on the MR task, an improvement of 0.84% over CPG-PE 72.73%. It also attains the highest
performance of 40.05% in the fine-grained sentiment classification of SST-5.

Improvement in other tasks: On the MRPC, SF-PE improves the F1 score by 0.49% to 70.59%,
compared to CPG-PE. However, for the RTE, neither CPG-PE nor SF-PE provides a performance
benefit over the Spikformer baseline.

Comparison with upper bound: While the BERT model provides upper bounds, SF-PE demon-
strates substantial performance. Particularly, on the Subj (subjectivity classification) task, our
method achieves 89.70%, narrowing the performance gap to BERT’s 95.43%.

Performance vs. model complexity: SF-PE shows consistent performance improvements while
maintaining nearly identical parameter count (110.4M) as existing CPG-PE. This means SF-PE
improves representation power without additional overhead.

5.3 ABLATION STUDY

5.3.1 1D vs. 2D IN SPIKING-ROPE Table 3: 1D vs. 2D SNN RoPE performance on
Electricity dataset using Spikformer backbone.

We proposed Spiking-RoPE, which indepen- The best results are shown in bold and the second

dently encodes positional information along the highest results are underlined. Metrics: a higher

temporal ¢ and spatial [ axes. Tab. 3] validates R? indicates better performance.

this design by comparing the performance of

1D and 2D in Spiking-RoPE on the Electricity ;1.1 PE

Electricity [

| A

dataset. Type | 6 24 48 96 | V&
Conv-PE [ A [959 0955 0955 954 956

The results show a clear progression in perfor- _CPG-PE | A [972 970 966 960 | .967
mance. While both 1D Spiking-RoPE variants ~_1D-Spatial RoPE R 1975 972 966 960 | 968
. 1D-Temporal RoPE R 976 973 968 962 | 970

show s.trong performance, 2D2 Spiking-RoPE  —5xopE R | 978 973 969 963 | 971
further improves the average R~ score t0 0.971.  “Spiking FusedPE_| F | 981 .975 972 965 | 973

The complete SF-PE model ultimately attains
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the highest score of 0.973. This demonstrates a clear synergy between separating spatiotemporal
features and fusing absolute with relative positional information.

5.3.2 ROTATION FREQUENCY VARIATION

The base value B is a

core hyperparameter of T ey—0o i pe— —
Spiking-RoPE, ~ which . = ' gom s

determines the rotation T Soler f::

frequency. Appropriate fre- Ew Lo

quency selection enables gm

the model to effectively o g

distinguish relative dis- Lo — 1
tances of various lengths. = ™ o PE Base & e W PE Base &’ 0600

Too  high frequencies
may focus excessively on
short-range  relationships
and miss long-range de-
pendencies, while too low
frequencies make fine positional distinctions difficult.

(a) Time series forecasting (b) Text classification

Figure 2: Performance versus RoPE base parameter B.

Our experiments, illustrated in Figure [2] demonstrate that the model is robust to the parameter B,
with performance consistently peaking at B = 10000 across all tested datasets. We therefore adopt
this value as the default for B in all our experiments.

5.4 RESULTS DISCUSSION AND ANALYSIS

The experimental results demonstrate the effective design of SF-PE from multiple angles:

Empirical validation of theoretical predictions: The phase preservation theory presented in Sec-
tion[4.2.3| has been confirmed in actual experiments. Despite nonlinear transformations of LIF neu-
rons, the consistently improved performance of models with Spiking-RoPE suggests that phase ker-
nel preservation under linear approximation is indeed effective.

Synergistic effect of Fused PE: The combination of absolute PE (CPG-PE) and relative PE
(Spiking-RoPE) creates synergy beyond simple performance summation. As shown in Eq. this
is because absolute information (amplitudes A, B) and relative information (trigonometric kernels
cos A, sin A) work complementarily to expand the representation space.

Task-specific adaptability:

* Time series forecasting: The spatiotemporal separation approach of Spiking-RoPE is par-
ticularly effective for tasks where periodic patterns and long-term dependencies are impor-
tant.

» Text classification: Relative positional information contributes to performance improve-
ment even in natural language tasks where contextual understanding is crucial.

* Length extrapolation: Shows stable performance even on inputs longer than training se-
quences, confirming generalization ability (Appendix D).

6 CONCLUSION

We presented Spiking Fused-PE (SF-PE), a spiking-friendly positional encoding that fuses ab-
solute CPG codes with pre-spike rotary phases. Built on Spiking-RoPE and its 2D extension, our
design preserves relative phase kernels under LIF dynamics while injecting complementary absolute
information. Across time-series and text tasks on Spikformer, SDT-V1, and QKFormer backbones,
SF-PE delivers consistent accuracy gains and stronger length extrapolation without an increase in
model parameters. These results validate that absolute and relative encodings are synergistic in spik-
ing transformers and provide a principled approach for spatiotemporal PE under spiking constraints.
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