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Abstract

Collaborative tasks are ubiquitous activities
where a form of communication is required in
order to reach a joint goal. Collaborative build-
ing is one of such tasks. To this end, we wish to
develop an intelligent builder agent in a simu-
lated building environment (Minecraft) that can
build whatever users wish to build by just talk-
ing to the agent. However, in order to achieve
this goal, such agents need to be able to take the
initiative by asking clarification questions when
further information is needed. Existing work
on Minecraft Corpus Dataset only learned to
execute instructions neglecting the importance
of asking for clarifications. In this paper, we
extend the Minecraft Corpus Dataset by anno-
tating all builder utterances into eight types,
including clarification questions, and propose a
new builder agent model capable of determin-
ing when to ask or execute instructions. Exper-
imental results show that our model achieves
state-of-the-art performance on the collabora-
tive building task with a substantial improve-
ment. We also provide baselines for the new
tasks, learning to ask and the joint tasks, which
consists in solving both collaborating building
and learning to ask tasks jointly.

1 Introduction

Following instructions in natural language by in-
telligent agents to achieve a shared goal with
the instructors in a pre-defined environment is a
ubiquitous task in many scenarios, e.g., finding
a target object in an environment (Nguyen and
Daumé III, 2019; Roman et al., 2020), drawing
a picture (Lachmy et al., 2021), or building a target
structure (Narayan-Chen et al., 2019). A number
of machine learning (ML) research projects about
following instructions tasks have been initiated by
making use of the video game Minecraft (John-
son et al., 2016; Shu et al., 2018; Narayan-Chen
et al., 2019; Guss et al., 2019; Jayannavar et al.,
2020). Building such agents requires to make

World State: Before the dialogue

World State: After the dialogue

Dialogue Context

Architect : Aparently, this first structure is a warm up

. Architect : It’s just 3 blocks arranged in an L shape
Builder : Oh cool

. Architect : So two blocks next to each other on the ground
E Builder :

. Architect : And then one more block on top of either
Architect : They are blue!

Figure 1: A simple example of builder task: The builder
can observe the world state and dialogue context. For
the sake of space, only a part of the dialogue history
is displayed. The utterance in green displays under-
standing and the utterance in asks a clarification
question.

progress in grounded natural language understand-
ing — understanding complex instructions, for ex-
ample, with spatial relations in natural language —
self-improvement — studying how to flexibly learn
from human interactions — synergies of ML com-
ponents — exploring the integration of several ML
and non-ML components to make them work to-
gether (Szlam et al., 2019).

The recently introduced Minecraft Corpus
dataset (Narayan-Chen et al., 2019) proposes a col-
laborative building task, in which an architect and
a builder can communicate via a textual chat. Ar-
chitects are provided with a target structure they
want to have built, and the builders are the only
ones who can control the Minecraft avatar in the
virtual environment. The task consists in building
3D structures in a block world-like scenario collab-
oratively, as shown in the Figure 1. Earlier works
in Minecraft collaborative building tasks (Jayan-
navar et al., 2020) attempted to build an automated
builder agent with a large action space but failed
to allow the builder to take the initiative in the con-



versation. However, an intelligent agent should
not only understand and execute the instructor’s
requests but also be able to take initiatives, e.g.,
asking clarification questions, in case the instruc-
tions are ambiguous. In the task defined by this
dataset, builders may encounter ambiguous situa-
tions that are hard to interpret by just relying on
the world state information and instructions. For
example, in Figure 1, we provide a simple case
where the architect fails to provide sufficient in-
formation to the builder, such as the color of the
blocks. In this situation, it is clearly difficult for
the builder to know exactly which action should
be taken. If, however, the builder is able to clarify
the situation with the architect, this ambiguity can
be resolved. Therefore, builders, besides following
architects’ instructions, should take the initiative in
the conversation and ask questions when necessary.

To this end, in this paper we annotate all builder
utterances in the Minecraft Corpus dataset by cat-
egorizing them in the dataset into eight dialogue
utterance types as shown in Table 2, allowing the
intelligent agents to learn when and what to ask
given the world state and dialogue context. Par-
ticularly, a builder would ask task-level questions
or instruction-level questions for further clarifica-
tions. Experimental results in the Sec. 5.2 show
that determining when to ask clarification ques-
tions remains a challenging task. However, it is
worth noting that the clarification questions in the
Minecraft Corpus dataset are more complex and
diverse than those in navigation tasks (Roman et al.,
2020; Thomason et al., 2020; Zhu et al., 2021;
Nguyen and Daumé III, 2019) whose questions
are relatively simpler and mainly about where to

go.

Also, we propose a new automated builder agent
that learns to map instructions to actions and decide
when to ask questions. Our model utilizes three di-
alogue slots, the action type slot, the location slot,
and the color slot. This solution has the benefit
of making the learning easier with respect to those
models that work using a large action space (Jayan-
navar et al., 2020). To solve the collaborative build-
ing task, both the dialogue context and the world
state need to be considered. Therefore, to endow
our model with the ability to better learn the rep-
resentations between the world state and language,
our model implements a cross-modality module,
which is based on the cross attention mechanism.
Experimental results on our extended Minecraft

Corpus dataset show that our model achieves state-
of-the-art performance with a substantial improve-
ment for the collaborative building task. We also
provide new baselines for learning to ask task and
the combination of these two tasks: the collabora-
tive building and learning to ask tasks.

2 Related Work and Background

Dialogue Tasks. As virtual personal assistants
have now penetrated the consumer market, with
products such as Siri and Alexa, the research
community has produced several works on fask-
oriented dialogue tasks such as: hotel book-
ing, restaurant booking, movie recommendation,
etc. (Budzianowski et al., 2018; Li et al., 2018; Ras-
togi et al., 2020; Wei et al., 2018; Wu et al., 2019;
Heck et al., 2020). These task-oriented dialogues
have been modelled as slot filling tasks. These
tasks consist of correctly identifying and extracting
information (slots) useful to solve the task. How-
ever, most of these slot filling tasks (Coope et al.,
2020; Heck et al., 2020) are considered as semantic
tagging or parsing of natural language and do not
normally consider visual information. Moreover,
these tasks focus only on two of the many compo-
nents needed by conversational systems: the Natu-
ral Language Understanding (NLU) and Dialogue
State Tracking (DST) ones (Budzianowski et al.,
2018; Williams et al., 2014). Beside these task-
oriented dialogue tasks, the research community
has also focused on instruction following dialogue
tasks, such as: target completion tasks (de Vries
et al., 2017), object finding tasks (Roman et al.,
2020), and navigation tasks (Thomason et al., 2020;
De Vries et al., 2018). Narayan-Chen et al. (2019)
proposed the Minecraft Corpus dataset, where the
task consists in a cooperative asymmetric task in-
volving an architect and a builder that have to build
a target structure collaboratively. Jayannavar et al.
(2020) then built a builder model to follow the se-
quential instructions from the architect.

Multi-Modal. Almost all instruction following
dialogue tasks need to consider both contextual in-
formation and actions as well as the state of the
world (Suhr and Artzi, 2018; Suhr et al., 2019;
Chen et al., 2019; Lachmy et al., 2021), which
remains a key challenge for instruction follow-
ing dialogue tasks. In particular, the Vision-and-
Dialog Navigation (VDN) task (Chen et al., 2019;
Thomason et al., 2020; Roman et al., 2020; Zhu
et al.,, 2021) where the question-answering dia-



logue and visual contexts are leveraged to facil-
itate navigation, has attracted increasing research
attention. Other tasks, such as blocking move-
ments tasks (Misra et al., 2017) and object finding
tasks (Janner et al., 2018), also require the mod-
elling of both contextual information in natural
language as well as the world state representation
to be solved.

Spatial Reasoning. Many instruction following
dialogue tasks contain texts with spatial-temporal
concepts (Misra et al., 2017; Janner et al., 2018;
Tan and Bansal, 2018; Chen et al., 2019; Yang
et al., 2020). Therefore, another challenge of an
embodied agent is to follow instructions based on
learning spatio-temporal linguistic concepts in nat-
ural language. For instance, the Minecraft Corpus
dataset (Narayan-Chen et al., 2019) contains utter-
ances with spatial relations, e.g., “go to the mid-
dle and place an orange block two spaces to the
left”. Interpreting and grounding abstraction stated
in natural language, such as spatial relations, has
not been systematically studied and remains still
challenging. Lachmy et al. (2021) proposed the
HEXAGONS dataset. This dataset needs players to
follow instructions with spatial relations to recreate
target images.

Learning by Asking Questions. Determining
whether to ask clarification questions and what to
ask is critical for instruction followers to complete
the tasks. Several recent studies have focused on
learning a dialogue agent with the ability to interact
with users by both responding to questions and by
asking questions to accomplish their task interac-
tively (Li et al., 2017; de Vries et al., 2017; Misra
et al., 2018; Roman et al., 2020). For instance,
de Vries et al. (2017) introduced a game to locate
an unknown object via asking questions about ob-
jects in a given image. A decision-maker is intro-
duced to learn when to ask questions by implicitly
reasoning about the uncertainty of the agent. Dif-
ferent from earlier works (Kitaev and Klein, 2017;
Suhr et al., 2019), recent works on VDN tasks
propose agents that learn to ask a question when
the certainty of the next action is low (Nguyen
and Daumé 111, 2019; Thomason et al., 2020; Ro-
man et al., 2020; Chi et al., 2020). Roman et al.
(2020) proposed a two models-based agent with
a navigator model and a questioner model. The
former model was responsible for moving towards
the goal object, while the latter model was used

to ask questions. Zhu et al. (2021) proposed an
agent that learned to adaptively decide whether
and what to communicate with users in order to
acquire instructive information to help the naviga-
tion. However, compared to questions in navigation
tasks (Roman et al., 2020; Thomason et al., 2020;
Zhu et al., 2021; Nguyen and Daumé III, 2019)
where questions are relatively simple and mostly
relevant to where to go, the clarification questions
in our extended Minecraft collaborative building
task are more complex and challenging due to their
diversity.

3 Dataset and Tasks

3.1 The Minecraft Dialogue Corpus

The Minecraft Dialogue Corpus (Narayan-Chen
et al., 2019) is built upon a simulated block-world
environment with dialogues between an architect
and a builder. This consists of 509 human-human
dialogues (15,926 utterances, 113,116 tokens) play-
ing the role of an architect and a builder, and game
logs for 150 target structures of varying complexity
(min. 6 blocks, max. 68 blocks, avg. 23.5 blocks),
For each target structure at least three dialogues
are collected where each dialogue contains 30.7 ut-
terances (22.5 architect utterances and 8.2 builder
utterances) and 49.5 builder blocks movements on
average.

The architect instructs about a target structure the
builder to build it via a dialogue. Although the ar-
chitect observes the builder operating in the world,
only the builder can move blocks. The builder has
access to an inventory of 120 blocks of six given
colors that he or she can place or remove. The col-
laborative building task restricts the structures to a
build region of size 11 x 9 x 11, and contains 3709,
1331, and 1616 samples for training, validation,
and test sets.

3.2 Builder Dialogue Annotation

Builders need to be able to decide their actions at
any time point rather than only execute actions with
the information about when to execute. Thus, we
annotate all builders’ utterances in the Minecraft
Corpus dataset (Narayan-Chen et al., 2019) and
categorize all 4,904 builder utterances into 8 ut-
terance types. Each utterance falls into exactly
one category. These categories are defined as fol-
lows: (1) Instruction-level Questions: used to re-
quest that the architect clarifies a given instruction
or statement;(2) Task-level Questions: used to re-



Table 1: The taxonomy of builders’ utterances: We categorize them into eight types where instruction-level questions
and task-level questions are both a sub-type of clarification questions. There are 4,904 builder utterances in total.

Catogory Example Amount Percentage
. . 1. What color?
Instruction-level Questions 2 Is it flat? 914 18.64%
s
Task-level Questions é glﬁz?asmge\:gbuﬂdmg, 252 5.14%
: 7
Verification Questions é hﬂt(k?izhtiteocrrggzv;i)r?/a}lte a2 1021 20.82%
. 1. Ready?
Greeting 2 Hello! 808 16.48%
g i 1. In the future we can call these donuts or something 59 1.23%
Suggesnons 2. No problem, if it’s hard to describe we can just go step by step o2
. . 1. No problem.
Display Understanding 2. Knew what you meant 1296 26.43%
1. I don’t have enough green to continue.
Status Update 2. I'll stay with this perspective 101 2.06%
Chit-Chat and others 1. I got my first job from Minecraft. 453 924%
2. Oh, wwo, sorry!

Table 2: Statistics of the extended Minecraft Dia-
logue Corpus: "Execution(Original)" represents that
the builder should predict a sequence of building ac-
tions given the dialogue context and the world state
in a sample; "Ask for clarifications" indicates that the
builder should ask for more information in order to ex-
ecute building actions; "Others" stands for remaining
dialogue acts for the builder such as greetings, chit-chat,
and display understanding.

Train  Valid  Test
Execution (Original) 3709 1331 1616
Ask for clarifications 437 151 163
Others 837 267 366
Total 4983 1749 2145

quest the architect to give a description about the
whole picture of the building task, e.g., asking for
the next instruction or asking to describe how the
target structure should look like; (3) Verification
Questions: used to request to confirm that the pre-
vious action(s) were correct; (4) Greetings: used
as a welcome message or to recognize the start of
the mission and only occurs early in the dialogue;
(5) Suggestions: used to provide suggestions; (6)
Display Understanding: used to express whether
a given instruction has been understood; (7) Sta-
tus Update: used to describe the current status,
e.g., tell the architect where they are, their current
block stock status, or whether they have finished
a given instruction. (8) Chit-chat and others: any
other utterance not relevant to the completion of the
task, including chit-chat, expressing gratification
or apologies, etc.

Among these 8 utterance types, the instruction-
level questions and the task-level questions are a

sub-type of clarification questions used to further
clarify instructions or the task itself when the infor-
mation from the architect is not clear or ambigu-
ous. Based on these annotations, we extend the
original dataset (the first row in Table 2) with two
other dialogue acts, ask for clarifications and oth-
ers, as shown in the second and third row of Table
2. The ’ Ask for clarifications’ sample includes a
dialogue context by a builder utterance labelled as
instruction-level questions or task-level questions,
while remaining dialogue contexts ended by builder
utterances are considered as “others’.

3.3 Task Definition

Let H be the set of all dialogue contexts, WV the
set of all world states, and A the set of all building
actions, including placing and removing a block
and a special stop action, which terminates the
task. The action execution will update the world
state via a transition function 77 : W x A —
W. Given a dialogue context h € H, a grid-
based world state w,, € W, and the action his-
tory {a1,...,an},a1,...,a, € A, the target is
to predict the action type: execution (placement,
removal, or stop), ask (for clarifications or oth-
ers), or stop. When the prediction of the action
type is execution, also a sequence of actions should
be output {ai,...,an},a1,...,a, € A, such that
wit1 = T(wi,a),wy,...,w, € W, a, is the
stop action and w,, contains the target structure.

4 Method

In this section we introduce the proposed builder
model, as shown in Figure 2. The model comprises



Figure 2: The model architecture.
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four major components: the utterance encoder, the
world state encoder, the fusion module, and the slot
decoder. The utterance encoder (in Sec. 4.1) and
world state encoder (in Sec. 4.2) learn to represent
the dialogue context and the world state. These
encoded representations are then fed into the fu-
sion module (in Sec. 4.3) that learns contextualized
embeddings for the grid world and textual tokens
through the single and cross modality modules. Fi-
nally, the learned world and text representations
are mapped into the pre-defined slot-values in the
slot decoder (in Sec. 4.4).

4.1 Dialogue Context Encoder

We add “architect” and “builder” annotations be-
fore each architect utterance A; and each builder
utterance By respectively. Then, the dialogue utter-
ances are represented as

D; = “architect” A; @ “builder” B;

at the turn ¢, where @ is the operation of sequence
concatenation.The entire dialogue context is de-
fined as:

H=D1®Dy®---® Dy (D

Given the dialogue context H, we truncate the to-
kens from the end of the dialogue context or pad
them to a fixed length as inputs and then use the di-
alogue context encoder to encode utterance history
into U € R*% where d,, is the dimension of the
word embedding and s is the maximum number of
tokens for a dialogue context. The dialogue context
encoder can be word embeddings like Glove Pen-
nington et al. (2014) or contextual word embed-
dings Devlin et al. (2019).

4.2 Grid World State Encoder

The world state is represented by a voxel-based
grid. We first represent each grid state as a 7-
dimensional one-hot vector that stands for empty
status or one of 6 colors, yielding a 7x11x9x11
world state representation. Additionally, we trun-
cate the action history to the last five ones, as-
sign an integer weight in 1,...,5 and then in-
clude these weights as a separate input feature in
each grid, resulting in a raw world state input of
Wy € R8XUXIX1L WWe also represent the last ac-
tion as an 11-dimensional vector a where the first
two dimensions represent the placement or removal
actions, the next six dimensions represent the color,
and the last three dimensions represent the location
of the last action.

The structure of the world state encoder is sim-
ilar to Jayannavar et al. (2020)’s, i.g., consisting
of k 3D-convolutional layers (f1) with kernel size
3, stride 1 and padding 1, followed by a ReLLU ac-
tivation function. Between every successive pair
of these layers there is a 1x1x1 3D-convolutional
layer (f2) with stride 1 and no padding followed by
ReLU:

Wi = ReLU(f3(ReLU(f{(Wi-1)))), ()
W, = ReLU(f{(Wy-1)), 3)
wherei = 1,2,...,k—1. W}, € Rdex11x9x11 ¢

the learned world grid-based representation where
d. is the dimension of each grid representation.
Then we concatenate the last action representation
a € R to each grid vectors in W}, and reshape

them into W' € R%>1089 where d, = d. + 11.



4.3 Fusion Module

The fusion module comprises four major compo-
nents: two single modality modules and two cross-
modality modules. The former modules are based
on self-attention layers and the latter on cross-
attention layers. These take as input the world
state representation and dialogue history represen-
tation. Between every successive pair of grid single-
modality modules or text single-modality modules
there is a cross modality module. We take N and
Nr layers for the grid cross modality module and
the text cross modality module. We first revisit the
definition and notations about the attention mech-
anism (Bahdanau et al., 2015) and then introduce
how they are integrated into our single modality
modules and cross-modality modules.

Attention Mechanism. Given a query vector x
and a sequence of context vectors {y; }2 =1 the at-
tention mechanism first computes the matching
score s; between the query vector x and each
context vector y;. Then, the attention weights
are calculated by normalizing the matching score:
exp(s;)

Soiey exp(s;)
is the attention weighted sum of the context vectors:
Attention(x,y;) = >_;a; - y;. Particularly, the
attention mechanism is called self-attention when
the query vector itself is in the context vectors {y; }.
We use the multi-head attention following Devlin
et al. (2019); Tan and Bansal (2019).

aj = The output of an attention layer

Single-Modality Module. Each layer in a single-
modality module contains a self-attention sub-
layer and a feed-forward sub-layer, where the feed-
forward sub-layer is further composed of a linear
transformation layer, a dropout layer and a normal-
ization layer. We take Ng + 1 and Nt + 1 layers
for the grid single-modality modules and the text
single-modality modules respectively, interspersed
with cross-modality module as shown in Figure 2.
Since new blocks can only be feasibly placed if one
of their faces touches the ground or another block
in the Minecraft world, we add masks to all infeasi-
ble grids in the grid single modality modules. For a
set of text vectors {u]'}{_; and a set of grid vectors
{wm 1089 as inputs of n-th text single-modality
layer and m-th grid single-modality layer, where
ne{l,...,Np+1}andm € {1,...,Ng + 1},
we first feed them into two self attention sub-layers:

{ui'}), )
"{wi"y, mask)  (5)

uj = SelfAttny, (u;'
wj" = SelfAttny (w?"

Lastly, the outputs of self attention modules,
and wj", are followed by feed-forward sub-layers
to obtain ;" and w;"™

Cross-Modality Module. Each layer in the cross-
modality module consists of one cross-attention
sub-layer and one feed-forward sub-layer, where
the feed-forward sub-layers follow the same setting
as the single-modality module. Given the outputs

of n-th text single-modality layer, {;"}7_;, and
the m-th grid single-modality layer, {w;™ ]10819,

as the query and context vectors, we pass them
through cross-attention sub-layers, respectively:

;" = CrossAttn? (1;", {w;™}),  (6)

w;™ ! = CrossAttn”" (w;™, {4;"}), (7)
The cross-attention sub-layer is used to exchange
the information and align the entities between
the two modalities in order to learn joint cross-
modality representations. Then the output of
the cross-attention sub-layer is processed by one
feed-forward sub-layer to obtain {u}*'}5_ and
{wm+1 ;0819, which will be passed to the follow-
ing singe-modality modules.

Finally, we obtain a set of word vec-
tors, {u;"TT1}s |, and a set of grid vectors,
{w NG“}}QSP, that is, UNT and W Since the
value of Ng and Np could be different, the modal-
ity with more layers would keep using the last sin-
gle modality module’s output of another modality
as the input of its cross modality modules, as shown
in the Figure 2.

4.4 Slot Decoder

The Slot Decoder contains three linear projection
layers of trainable parameters, My, € Rd;, Mg €
R6*dw A € Rba>dw where d, is the number of
action types to predict. We compute the average of
UNT ¢ R$*4w alongside the s-dimension to obtain
u € R% . Then we compute location logits, color
logits, and action type logits:

[ = softmax(Mp, - WNe), (8)
¢ = softmax(Mc¢ - u), 9)
t = softmax(Mr - u), (10)

where softmax functions are used to map the ex-
tracted information into [ € R!%® ¢ € RS, and
t € Rée.



S Experiment, Results and Discussion

In this section, we first compare our model against
the baseline for the collaborative building task
where models only need to learn the instruction
following task (in Sec. 5.1). Then, we train our
model to learn when to ask and evaluate on our
extended Minecraft Dialogue Corpus (in Sec. 5.2).
Finally, we evaluate our model’s ability on the com-
bination of the two above-mentioned tasks (in the
Sec. 5.3). All training details are reported in the
Appendix. The software and data used to run these
experiments are available at the following weblink:
<anonymized>.

Table 3: Evaluation on the collaborative building task.

. Augmentation
Model Metric None A Ix 6x
F1 19.7 195 212 20.8
BAP model Recall - - - -
Precision - - - -
F1 350 365 378 394
Ours (GloVe) Recall 283 30.1 314 334
Precision | 45.8 462 476 48.1
F1 345 30.1 304 354
Ours (BERT) Recall 267 236 234 279
Precision | 48.7 42.6 435 485

5.1 Collaborative Building Task

Settings. We first compare our model against the
only baseline (Jayannavar et al., 2020), named BAP.
Then, we conduct the experiments performing the
same data augmentations as in BAP, where utter-
ances are paraphrased, color substituted, and spa-
tial transformation were used to augment the size
and variety of the Minecraft Corpus Dataset. The
basic train, valid, and test set contain 3709, 1331,
and 1616 samples. All models are also evaluated
with augmented training sizes !: 5,563 (indicated
as 2x), 9,272 (4x), and 12,981 (6x) training sam-
ples. Additionally, we present the performance of
two different dialogue context encoders: we use
the pre-trained GloVe word embeddings with 300
dimensions (Pennington et al., 2014) as the initial
word embeddings followed by a GRU(Chung et al.,
2014) and contextual word embeddings using the
pre-trained BERT base model (Devlin et al., 2019).

For the action type slot, we pre-define three po-
tential values: placement, removal, and stop. The
value of the location slot can be one of 1,089 can-

"'We use the dataset released by the author of the baseline
model, whose sizes are smaller than those reported in the

paper.

didate voxels and the value of the color slot can
be one of six candidate colors. During training we
minimize the sum of the cross entropy losses of
the location slot, the color slot, and the action type
slot. The F1 metric on the test set is used to eval-
uate model performance by comparing the model
predictions against the action sequence performed
by the human builder.

Results. In Table 3 we present the results of our
model and the baselines for the collaborative build-
ing task on the Minecraft Corpus Dataset. Experi-
mental results show that our model outperforms the
baseline model with a large margin. Meanwhile,
results on the augmented dataset show that the ad-
vantage of the data augmentation is not obvious.
The performance using contextualized word em-
beddings is poorer. This could be due to the size
of the builder model with the BERT encoder which
makes it more difficult to train.

5.2 Learning to Ask Questions

Settings. For the action type slot, we define three
potential values: execution, ask, and other. ’Other’
is used for all utterance types in Table 1 except for
the instruction-level and task-level questions. In
this experiment, the slots for location and color are
not used. We test the pre-trained GloVe embed-
dings in the dialogue context encoder as described
in Sec. 5.1. During the training, the cross entropy
loss of the action type is minimized.

Table 4: Evaluation of the learning to ask task. Numbers
in bold are the test accuracy for each action type.

Test Prediction

Accuracy(%) Execute  Ask  Other Size
Execution 93.81 4.33 1.86 | 1616

Oracle Ask 22.09 63.80 14.11 163
Others 3579 36.89 27.32 366

Overall Test Acc 80.05 2145

Results. In Table 4, we present the results of our
model. Although our model achieves around 80%
overall test accuracy, the correct answers mainly
come from the execution type while the model
struggles with the ask and other types. These two
types have in fact a joint test accuracy of 38.6%.
Experimental results demonstrate that the difficulty
of the learning to ask task and that there is still a
large room for improvement.
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Figure 3: Case study of the collaborative building task in Sec. 5.1: A represents the architect and B the builder.

5.3 Joint Learning

Settings. For the action type slot, we pre-define
five potential values: placement, removal, stop, ask,
and other. The value of the location slot can be
one of 1,089 candidate grid and the value of the
color slot is one of 6 candidate colors. We still
use pre-train GloVe embedding in the dialogue con-
text encoder as described in Sec. 5.1. During the
training we minimize the sum of the cross entropy
losses of the location slot, the color slot, and the
action type slot with weights equal to 0.1, 0.1, 0.8
for each slot type.

Table 5: Test accuracy of the joint task: Figure in bold
of each row is the test accuracy for each action type.

Test Prediction
Accuracy(%) Execution  Ask  Others
Execution 82.04 8.64 8.72
Oracle Ask 8.61 60.93 30.46
Others 2547 47.07 31.46
Overall Test Acc 72.26

Table 6: The evaluation of the joint task.

F1 Recall
28.4 20.9

Precison
43.9

Ours

Results. In Table 5, we present the results of our
model’s test accuracy for each action type. The
model has an 82.6% test accuracy. However, if the
execution of building actions is excluded, its joint
test accuracy of ask and other action types is about
40.5%, indicating that deciding when to take the
initiative remains challenging. In Table 6, we also
report the results of recall rate, precision rate, and
F1 score for the building task. Not surprisingly, the
performance of our model drops slightly compared
to those in Table 3, reflecting the difficulty of joint
learning the collaborative building and the learning
to ask tasks.

5.4 Case Study

Although our model can predict the actions more
accurately than the baselines, for example our
model can usually predict the color of the blocks
correctly with about 60% test accuracy rate, it is
still non-trivial for our model to predict the whole
action sequence correctly. In Figure 3, the archi-
tect instructed the builder to build a 3x3 square and
then our model generated only parts of the structure
successfully.

The dataset noise makes the learning process
more challenging: the builder action sequences are
noisy due to, for example, the builder miss-clicking
in the construction process (Narayan-Chen, 2020).
Also, builder action sequences are often frag-
mented between utterances due to the frequent in-
terruptions of the architect. In order to solve these
issues a good model should be capable to learn bet-
ter representations for higher-level abstractions in
natural language like spatial relation concepts and
be more robust to noisy actions. However, existing
models including pre-trained ones (Devlin et al.,
2019) fail to learn such representations for spatial
reasoning, which translates into poor performance
in these instruction following tasks.

6 Conclusion

In this paper, we extend the Minecraft Corpus
dataset by labelling each builder utterances into
eight types, in which two of them are relevant
to asking clarification questions. This allows the
builder models to learn to take the initiative in the
instruction following tasks. Also, we have pro-
posed a new model that achieves state-of-the-art
performance on the Minecraft collaborative build-
ing task with a large improvement. Besides these
contributions, we define the new learning to ask
task used to learn to ask clarification questions, and
new baseline models for this task and the joint one:
the collaborative building and the learning to ask
task.
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A Appendix

Training Details. We examine our model on the
extend Minecraft Dialogue Corpus dataset. Our
model’s hyper-parameters are fixed for all three ex-
periments in the Sec 5 as follows. The number of
3D-conv layers k is 3, the dimension of each grid
representation d. is 300, the number of layers of the
grid cross-modality modules N¢ is 4, and the num-
ber of layers of the text cross-modality modules
Nr is 2. The max length of the dialogue context s
is selected as 100 and the dropout rates are all set
to 0.2. The number of heads for the attention mech-
anism in the text singe and cross modality modules
is set to 2, while the number of heads is set to 1 for
the attention mechanism in the grid singe and cross
modality modules. The cross entropy loss from the
location slot is not counted if the ground truth label
of the action type is not ’placement’ or ‘removal’,
and the cross entropy loss from the color slot is
not counted if the ground truth label of the action
type is not ’placement’. For the experiment in the
Sec 5.2 and 5.3, we randomly sample from *Ask’
and ’Others’ sets in the training set to make train-
ing samples of different action types (’Execution’,
’Ask’, and *Others’) in the training set balanced.
We train our model with cross entropy loss func-
tions of all slots and a batch size of 50, using Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 1e-6, 51 = 0.9 and 35 = 0.99. We train our
model with 50 epochs and select the model with
the highest F1 score on the valid set.
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