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Abstract

Collaborative tasks are ubiquitous activities001
where a form of communication is required in002
order to reach a joint goal. Collaborative build-003
ing is one of such tasks. To this end, we wish to004
develop an intelligent builder agent in a simu-005
lated building environment (Minecraft) that can006
build whatever users wish to build by just talk-007
ing to the agent. However, in order to achieve008
this goal, such agents need to be able to take the009
initiative by asking clarification questions when010
further information is needed. Existing work011
on Minecraft Corpus Dataset only learned to012
execute instructions neglecting the importance013
of asking for clarifications. In this paper, we014
extend the Minecraft Corpus Dataset by anno-015
tating all builder utterances into eight types,016
including clarification questions, and propose a017
new builder agent model capable of determin-018
ing when to ask or execute instructions. Exper-019
imental results show that our model achieves020
state-of-the-art performance on the collabora-021
tive building task with a substantial improve-022
ment. We also provide baselines for the new023
tasks, learning to ask and the joint tasks, which024
consists in solving both collaborating building025
and learning to ask tasks jointly.026

1 Introduction027

Following instructions in natural language by in-028

telligent agents to achieve a shared goal with029

the instructors in a pre-defined environment is a030

ubiquitous task in many scenarios, e.g., finding031

a target object in an environment (Nguyen and032

Daumé III, 2019; Roman et al., 2020), drawing033

a picture (Lachmy et al., 2021), or building a target034

structure (Narayan-Chen et al., 2019). A number035

of machine learning (ML) research projects about036

following instructions tasks have been initiated by037

making use of the video game Minecraft (John-038

son et al., 2016; Shu et al., 2018; Narayan-Chen039

et al., 2019; Guss et al., 2019; Jayannavar et al.,040

2020). Building such agents requires to make041

World State: Before the dialogue World State: After the dialogue

Architect : Aparently, this first structure is a warm up 

Architect :*It’s just 3 blocks arranged in an L shape 

Builder    : Oh cool 

Architect : So two blocks next to each other on the ground 

Builder    : Any color? 

Architect : And then one more block on top of either 

Architect : They are blue! 

Dialogue Context

Figure 1: A simple example of builder task: The builder
can observe the world state and dialogue context. For
the sake of space, only a part of the dialogue history
is displayed. The utterance in green displays under-
standing and the utterance in yellow asks a clarification
question.

progress in grounded natural language understand- 042

ing – understanding complex instructions, for ex- 043

ample, with spatial relations in natural language – 044

self-improvement – studying how to flexibly learn 045

from human interactions – synergies of ML com- 046

ponents – exploring the integration of several ML 047

and non-ML components to make them work to- 048

gether (Szlam et al., 2019). 049

The recently introduced Minecraft Corpus 050

dataset (Narayan-Chen et al., 2019) proposes a col- 051

laborative building task, in which an architect and 052

a builder can communicate via a textual chat. Ar- 053

chitects are provided with a target structure they 054

want to have built, and the builders are the only 055

ones who can control the Minecraft avatar in the 056

virtual environment. The task consists in building 057

3D structures in a block world-like scenario collab- 058

oratively, as shown in the Figure 1. Earlier works 059

in Minecraft collaborative building tasks (Jayan- 060

navar et al., 2020) attempted to build an automated 061

builder agent with a large action space but failed 062

to allow the builder to take the initiative in the con- 063
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versation. However, an intelligent agent should064

not only understand and execute the instructor’s065

requests but also be able to take initiatives, e.g.,066

asking clarification questions, in case the instruc-067

tions are ambiguous. In the task defined by this068

dataset, builders may encounter ambiguous situa-069

tions that are hard to interpret by just relying on070

the world state information and instructions. For071

example, in Figure 1, we provide a simple case072

where the architect fails to provide sufficient in-073

formation to the builder, such as the color of the074

blocks. In this situation, it is clearly difficult for075

the builder to know exactly which action should076

be taken. If, however, the builder is able to clarify077

the situation with the architect, this ambiguity can078

be resolved. Therefore, builders, besides following079

architects’ instructions, should take the initiative in080

the conversation and ask questions when necessary.081

To this end, in this paper we annotate all builder082

utterances in the Minecraft Corpus dataset by cat-083

egorizing them in the dataset into eight dialogue084

utterance types as shown in Table 2, allowing the085

intelligent agents to learn when and what to ask086

given the world state and dialogue context. Par-087

ticularly, a builder would ask task-level questions088

or instruction-level questions for further clarifica-089

tions. Experimental results in the Sec. 5.2 show090

that determining when to ask clarification ques-091

tions remains a challenging task. However, it is092

worth noting that the clarification questions in the093

Minecraft Corpus dataset are more complex and094

diverse than those in navigation tasks (Roman et al.,095

2020; Thomason et al., 2020; Zhu et al., 2021;096

Nguyen and Daumé III, 2019) whose questions097

are relatively simpler and mainly about where to098

go.099

Also, we propose a new automated builder agent100

that learns to map instructions to actions and decide101

when to ask questions. Our model utilizes three di-102

alogue slots, the action type slot, the location slot,103

and the color slot. This solution has the benefit104

of making the learning easier with respect to those105

models that work using a large action space (Jayan-106

navar et al., 2020). To solve the collaborative build-107

ing task, both the dialogue context and the world108

state need to be considered. Therefore, to endow109

our model with the ability to better learn the rep-110

resentations between the world state and language,111

our model implements a cross-modality module,112

which is based on the cross attention mechanism.113

Experimental results on our extended Minecraft114

Corpus dataset show that our model achieves state- 115

of-the-art performance with a substantial improve- 116

ment for the collaborative building task. We also 117

provide new baselines for learning to ask task and 118

the combination of these two tasks: the collabora- 119

tive building and learning to ask tasks. 120

2 Related Work and Background 121

Dialogue Tasks. As virtual personal assistants 122

have now penetrated the consumer market, with 123

products such as Siri and Alexa, the research 124

community has produced several works on task- 125

oriented dialogue tasks such as: hotel book- 126

ing, restaurant booking, movie recommendation, 127

etc. (Budzianowski et al., 2018; Li et al., 2018; Ras- 128

togi et al., 2020; Wei et al., 2018; Wu et al., 2019; 129

Heck et al., 2020). These task-oriented dialogues 130

have been modelled as slot filling tasks. These 131

tasks consist of correctly identifying and extracting 132

information (slots) useful to solve the task. How- 133

ever, most of these slot filling tasks (Coope et al., 134

2020; Heck et al., 2020) are considered as semantic 135

tagging or parsing of natural language and do not 136

normally consider visual information. Moreover, 137

these tasks focus only on two of the many compo- 138

nents needed by conversational systems: the Natu- 139

ral Language Understanding (NLU) and Dialogue 140

State Tracking (DST) ones (Budzianowski et al., 141

2018; Williams et al., 2014). Beside these task- 142

oriented dialogue tasks, the research community 143

has also focused on instruction following dialogue 144

tasks, such as: target completion tasks (de Vries 145

et al., 2017), object finding tasks (Roman et al., 146

2020), and navigation tasks (Thomason et al., 2020; 147

De Vries et al., 2018). Narayan-Chen et al. (2019) 148

proposed the Minecraft Corpus dataset, where the 149

task consists in a cooperative asymmetric task in- 150

volving an architect and a builder that have to build 151

a target structure collaboratively. Jayannavar et al. 152

(2020) then built a builder model to follow the se- 153

quential instructions from the architect. 154

Multi-Modal. Almost all instruction following 155

dialogue tasks need to consider both contextual in- 156

formation and actions as well as the state of the 157

world (Suhr and Artzi, 2018; Suhr et al., 2019; 158

Chen et al., 2019; Lachmy et al., 2021), which 159

remains a key challenge for instruction follow- 160

ing dialogue tasks. In particular, the Vision-and- 161

Dialog Navigation (VDN) task (Chen et al., 2019; 162

Thomason et al., 2020; Roman et al., 2020; Zhu 163

et al., 2021) where the question-answering dia- 164
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logue and visual contexts are leveraged to facil-165

itate navigation, has attracted increasing research166

attention. Other tasks, such as blocking move-167

ments tasks (Misra et al., 2017) and object finding168

tasks (Janner et al., 2018), also require the mod-169

elling of both contextual information in natural170

language as well as the world state representation171

to be solved.172

Spatial Reasoning. Many instruction following173

dialogue tasks contain texts with spatial-temporal174

concepts (Misra et al., 2017; Janner et al., 2018;175

Tan and Bansal, 2018; Chen et al., 2019; Yang176

et al., 2020). Therefore, another challenge of an177

embodied agent is to follow instructions based on178

learning spatio-temporal linguistic concepts in nat-179

ural language. For instance, the Minecraft Corpus180

dataset (Narayan-Chen et al., 2019) contains utter-181

ances with spatial relations, e.g., “go to the mid-182

dle and place an orange block two spaces to the183

left”. Interpreting and grounding abstraction stated184

in natural language, such as spatial relations, has185

not been systematically studied and remains still186

challenging. Lachmy et al. (2021) proposed the187

HEXAGONS dataset. This dataset needs players to188

follow instructions with spatial relations to recreate189

target images.190

Learning by Asking Questions. Determining191

whether to ask clarification questions and what to192

ask is critical for instruction followers to complete193

the tasks. Several recent studies have focused on194

learning a dialogue agent with the ability to interact195

with users by both responding to questions and by196

asking questions to accomplish their task interac-197

tively (Li et al., 2017; de Vries et al., 2017; Misra198

et al., 2018; Roman et al., 2020). For instance,199

de Vries et al. (2017) introduced a game to locate200

an unknown object via asking questions about ob-201

jects in a given image. A decision-maker is intro-202

duced to learn when to ask questions by implicitly203

reasoning about the uncertainty of the agent. Dif-204

ferent from earlier works (Kitaev and Klein, 2017;205

Suhr et al., 2019), recent works on VDN tasks206

propose agents that learn to ask a question when207

the certainty of the next action is low (Nguyen208

and Daumé III, 2019; Thomason et al., 2020; Ro-209

man et al., 2020; Chi et al., 2020). Roman et al.210

(2020) proposed a two models-based agent with211

a navigator model and a questioner model. The212

former model was responsible for moving towards213

the goal object, while the latter model was used214

to ask questions. Zhu et al. (2021) proposed an 215

agent that learned to adaptively decide whether 216

and what to communicate with users in order to 217

acquire instructive information to help the naviga- 218

tion. However, compared to questions in navigation 219

tasks (Roman et al., 2020; Thomason et al., 2020; 220

Zhu et al., 2021; Nguyen and Daumé III, 2019) 221

where questions are relatively simple and mostly 222

relevant to where to go, the clarification questions 223

in our extended Minecraft collaborative building 224

task are more complex and challenging due to their 225

diversity. 226

3 Dataset and Tasks 227

3.1 The Minecraft Dialogue Corpus 228

The Minecraft Dialogue Corpus (Narayan-Chen 229

et al., 2019) is built upon a simulated block-world 230

environment with dialogues between an architect 231

and a builder. This consists of 509 human-human 232

dialogues (15,926 utterances, 113,116 tokens) play- 233

ing the role of an architect and a builder, and game 234

logs for 150 target structures of varying complexity 235

(min. 6 blocks, max. 68 blocks, avg. 23.5 blocks), 236

For each target structure at least three dialogues 237

are collected where each dialogue contains 30.7 ut- 238

terances (22.5 architect utterances and 8.2 builder 239

utterances) and 49.5 builder blocks movements on 240

average. 241

The architect instructs about a target structure the 242

builder to build it via a dialogue. Although the ar- 243

chitect observes the builder operating in the world, 244

only the builder can move blocks. The builder has 245

access to an inventory of 120 blocks of six given 246

colors that he or she can place or remove. The col- 247

laborative building task restricts the structures to a 248

build region of size 11 × 9 × 11, and contains 3709, 249

1331, and 1616 samples for training, validation, 250

and test sets. 251

3.2 Builder Dialogue Annotation 252

Builders need to be able to decide their actions at 253

any time point rather than only execute actions with 254

the information about when to execute. Thus, we 255

annotate all builders’ utterances in the Minecraft 256

Corpus dataset (Narayan-Chen et al., 2019) and 257

categorize all 4,904 builder utterances into 8 ut- 258

terance types. Each utterance falls into exactly 259

one category. These categories are defined as fol- 260

lows: (1) Instruction-level Questions: used to re- 261

quest that the architect clarifies a given instruction 262

or statement;(2) Task-level Questions: used to re- 263

3



Table 1: The taxonomy of builders’ utterances: We categorize them into eight types where instruction-level questions
and task-level questions are both a sub-type of clarification questions. There are 4,904 builder utterances in total.

Catogory Example Amount Percentage

Instruction-level Questions 1. What color?
2. Is it flat? 914 18.64%

Task-level Questions 1. What are we building?
2. What’s next? 252 5.14%

Verification Questions 1. Like that or othwr way?
2. Is this the cross you wanted? 1021 20.82%

Greeting 1. Ready?
2. Hello! 808 16.48%

Suggestions 1. In the future we can call these donuts or something
2. No problem, if it’s hard to describe we can just go step by step 59 1.23%

Display Understanding 1. No problem.
2. Knew what you meant 1296 26.43%

Status Update 1. I don’t have enough green to continue.
2. I’ll stay with this perspective 101 2.06%

Chit-Chat and others 1. I got my first job from Minecraft.
2. Oh, wwo, sorry! 453 9.24%

Table 2: Statistics of the extended Minecraft Dia-
logue Corpus: "Execution(Original)" represents that
the builder should predict a sequence of building ac-
tions given the dialogue context and the world state
in a sample; "Ask for clarifications" indicates that the
builder should ask for more information in order to ex-
ecute building actions; "Others" stands for remaining
dialogue acts for the builder such as greetings, chit-chat,
and display understanding.

Train Valid Test
Execution (Original) 3709 1331 1616
Ask for clarifications 437 151 163
Others 837 267 366
Total 4983 1749 2145

quest the architect to give a description about the264

whole picture of the building task, e.g., asking for265

the next instruction or asking to describe how the266

target structure should look like; (3) Verification267

Questions: used to request to confirm that the pre-268

vious action(s) were correct; (4) Greetings: used269

as a welcome message or to recognize the start of270

the mission and only occurs early in the dialogue;271

(5) Suggestions: used to provide suggestions; (6)272

Display Understanding: used to express whether273

a given instruction has been understood; (7) Sta-274

tus Update: used to describe the current status,275

e.g., tell the architect where they are, their current276

block stock status, or whether they have finished277

a given instruction. (8) Chit-chat and others: any278

other utterance not relevant to the completion of the279

task, including chit-chat, expressing gratification280

or apologies, etc.281

Among these 8 utterance types, the instruction-282

level questions and the task-level questions are a283

sub-type of clarification questions used to further 284

clarify instructions or the task itself when the infor- 285

mation from the architect is not clear or ambigu- 286

ous. Based on these annotations, we extend the 287

original dataset (the first row in Table 2) with two 288

other dialogue acts, ask for clarifications and oth- 289

ers, as shown in the second and third row of Table 290

2. The ’Ask for clarifications’ sample includes a 291

dialogue context by a builder utterance labelled as 292

instruction-level questions or task-level questions, 293

while remaining dialogue contexts ended by builder 294

utterances are considered as ’others’. 295

3.3 Task Definition 296

Let H be the set of all dialogue contexts, W the 297

set of all world states, and A the set of all building 298

actions, including placing and removing a block 299

and a special stop action, which terminates the 300

task. The action execution will update the world 301

state via a transition function T : W × A → 302

W . Given a dialogue context h ∈ H, a grid- 303

based world state wn ∈ W , and the action his- 304

tory {a1, . . . , an}, a1, . . . , an ∈ A, the target is 305

to predict the action type: execution (placement, 306

removal, or stop), ask (for clarifications or oth- 307

ers), or stop. When the prediction of the action 308

type is execution, also a sequence of actions should 309

be output {a1, . . . , an}, a1, . . . , an ∈ A, such that 310

wi+1 = T (wi, ai), w1, . . . , wn ∈ W , an is the 311

stop action and wn contains the target structure. 312

4 Method 313

In this section we introduce the proposed builder 314

model, as shown in Figure 2. The model comprises 315
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Figure 2: The model architecture. The ⊕ sign represents the concatenation operation. This illustration uses the plate
notation. There are a total of NT + 1 text single modality modules, NG + 1 grid single modality modules, NT text
cross modality modules, and NT grid cross modality modules. Arrows indicate the flow of information.

four major components: the utterance encoder, the316

world state encoder, the fusion module, and the slot317

decoder. The utterance encoder (in Sec. 4.1) and318

world state encoder (in Sec. 4.2) learn to represent319

the dialogue context and the world state. These320

encoded representations are then fed into the fu-321

sion module (in Sec. 4.3) that learns contextualized322

embeddings for the grid world and textual tokens323

through the single and cross modality modules. Fi-324

nally, the learned world and text representations325

are mapped into the pre-defined slot-values in the326

slot decoder (in Sec. 4.4).327

4.1 Dialogue Context Encoder328

We add “architect” and “builder” annotations be-
fore each architect utterance At and each builder
utterance Bt respectively. Then, the dialogue utter-
ances are represented as

Dt = “architect”At ⊕ “builder”Bt

at the turn t, where ⊕ is the operation of sequence329

concatenation.The entire dialogue context is de-330

fined as:331

H = D1 ⊕D2 ⊕ · · · ⊕Dt (1)332

Given the dialogue context H , we truncate the to-333

kens from the end of the dialogue context or pad334

them to a fixed length as inputs and then use the di-335

alogue context encoder to encode utterance history336

into U ∈ Rs×dw , where dw is the dimension of the337

word embedding and s is the maximum number of338

tokens for a dialogue context. The dialogue context339

encoder can be word embeddings like Glove Pen-340

nington et al. (2014) or contextual word embed-341

dings Devlin et al. (2019).342

4.2 Grid World State Encoder 343

The world state is represented by a voxel-based 344

grid. We first represent each grid state as a 7- 345

dimensional one-hot vector that stands for empty 346

status or one of 6 colors, yielding a 7×11×9×11 347

world state representation. Additionally, we trun- 348

cate the action history to the last five ones, as- 349

sign an integer weight in 1, . . . , 5 and then in- 350

clude these weights as a separate input feature in 351

each grid, resulting in a raw world state input of 352

W0 ∈ R8×11×9×11. We also represent the last ac- 353

tion as an 11-dimensional vector a where the first 354

two dimensions represent the placement or removal 355

actions, the next six dimensions represent the color, 356

and the last three dimensions represent the location 357

of the last action. 358

The structure of the world state encoder is sim- 359

ilar to Jayannavar et al. (2020)’s, i.g., consisting 360

of k 3D-convolutional layers (f1) with kernel size 361

3, stride 1 and padding 1, followed by a ReLU ac- 362

tivation function. Between every successive pair 363

of these layers there is a 1×1×1 3D-convolutional 364

layer (f2) with stride 1 and no padding followed by 365

ReLU: 366

Wi = ReLU(f i
2(ReLU(f i

1(Wi−1)))), (2) 367

Wk = ReLU(f i
1(Wk−1)), (3) 368

where i = 1, 2, . . . , k − 1. Wk ∈ Rdc×11×9×11 is 369

the learned world grid-based representation where 370

dc is the dimension of each grid representation. 371

Then we concatenate the last action representation 372

a ∈ R11 to each grid vectors in Wk and reshape 373

them into W
′ ∈ Rd

′
c×1089, where d

′
c = dc + 11. 374
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4.3 Fusion Module375

The fusion module comprises four major compo-376

nents: two single modality modules and two cross-377

modality modules. The former modules are based378

on self-attention layers and the latter on cross-379

attention layers. These take as input the world380

state representation and dialogue history represen-381

tation. Between every successive pair of grid single-382

modality modules or text single-modality modules383

there is a cross modality module. We take NG and384

NT layers for the grid cross modality module and385

the text cross modality module. We first revisit the386

definition and notations about the attention mech-387

anism (Bahdanau et al., 2015) and then introduce388

how they are integrated into our single modality389

modules and cross-modality modules.390

Attention Mechanism. Given a query vector x391

and a sequence of context vectors {yj}Kj=1, the at-392

tention mechanism first computes the matching393

score sj between the query vector x and each394

context vector yj . Then, the attention weights395

are calculated by normalizing the matching score:396

aj =
exp(sj)∑K
j=1 exp(sj)

. The output of an attention layer397

is the attention weighted sum of the context vectors:398

Attention(x, yj) =
∑

j aj · yj . Particularly, the399

attention mechanism is called self-attention when400

the query vector itself is in the context vectors {yj}.401

We use the multi-head attention following Devlin402

et al. (2019); Tan and Bansal (2019).403

Single-Modality Module. Each layer in a single-404

modality module contains a self-attention sub-405

layer and a feed-forward sub-layer, where the feed-406

forward sub-layer is further composed of a linear407

transformation layer, a dropout layer and a normal-408

ization layer. We take NG + 1 and NT + 1 layers409

for the grid single-modality modules and the text410

single-modality modules respectively, interspersed411

with cross-modality module as shown in Figure 2.412

Since new blocks can only be feasibly placed if one413

of their faces touches the ground or another block414

in the Minecraft world, we add masks to all infeasi-415

ble grids in the grid single-modality modules. For a416

set of text vectors {uni }si=1 and a set of grid vectors417

{wm
j }1089j=1 as inputs of n-th text single-modality418

layer and m-th grid single-modality layer, where419

n ∈ {1, . . . , NT + 1} and m ∈ {1, . . . , NG + 1},420

we first feed them into two self attention sub-layers:421

uni = SelfAttnnu(u
n
i , {uni }), (4)422

wm
j = SelfAttnmw (wm

j , {wm
j },mask) (5)423

Lastly, the outputs of self attention modules, uni 424

and wm
j , are followed by feed-forward sub-layers 425

to obtain ûi
n and ŵj

m. 426

Cross-Modality Module. Each layer in the cross- 427

modality module consists of one cross-attention 428

sub-layer and one feed-forward sub-layer, where 429

the feed-forward sub-layers follow the same setting 430

as the single-modality module. Given the outputs 431

of n-th text single-modality layer, {ûin}si=1, and 432

the m-th grid single-modality layer, {ŵj
m}1089j=1 , 433

as the query and context vectors, we pass them 434

through cross-attention sub-layers, respectively: 435

ûi
n+1 = CrossAttnnu(ûi

n, {ŵj
m}), (6) 436

ŵj
m+1 = CrossAttnmw (ŵj

m, {ûin}), (7) 437

The cross-attention sub-layer is used to exchange 438

the information and align the entities between 439

the two modalities in order to learn joint cross- 440

modality representations. Then the output of 441

the cross-attention sub-layer is processed by one 442

feed-forward sub-layer to obtain {un+1
i }si=1 and 443

{wm+1
j }1089j=1 , which will be passed to the follow- 444

ing singe-modality modules. 445

Finally, we obtain a set of word vec- 446

tors, {ûiNT+1}si=1, and a set of grid vectors, 447

{ŵj
NG+1}1089j=1 , that is, UNT and WNG . Since the 448

value of NG and NT could be different, the modal- 449

ity with more layers would keep using the last sin- 450

gle modality module’s output of another modality 451

as the input of its cross modality modules, as shown 452

in the Figure 2. 453

4.4 Slot Decoder 454

The Slot Decoder contains three linear projection 455

layers of trainable parameters, ML ∈ Rd
′
c ,MC ∈ 456

R6×dw ,MT ∈ Rda×dw where da is the number of 457

action types to predict. We compute the average of 458

UNT ∈ Rs×dw alongside the s-dimension to obtain 459

u ∈ Rdw . Then we compute location logits, color 460

logits, and action type logits: 461

l̂ = softmax(ML ·WNG), (8) 462

ĉ = softmax(MC · u), (9) 463

t̂ = softmax(MT · u), (10) 464

where softmax functions are used to map the ex- 465

tracted information into l̂ ∈ R1089, ĉ ∈ R6, and 466

t̂ ∈ Rda . 467
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5 Experiment, Results and Discussion468

In this section, we first compare our model against469

the baseline for the collaborative building task470

where models only need to learn the instruction471

following task (in Sec. 5.1). Then, we train our472

model to learn when to ask and evaluate on our473

extended Minecraft Dialogue Corpus (in Sec. 5.2).474

Finally, we evaluate our model’s ability on the com-475

bination of the two above-mentioned tasks (in the476

Sec. 5.3). All training details are reported in the477

Appendix. The software and data used to run these478

experiments are available at the following weblink:479

<anonymized>.480

Table 3: Evaluation on the collaborative building task.

Model Metric Augmentation
None 2x 4x 6x

BAP model
F1 19.7 19.5 21.2 20.8

Recall - - - -
Precision - - - -

Ours (GloVe)
F1 35.0 36.5 37.8 39.4

Recall 28.3 30.1 31.4 33.4
Precision 45.8 46.2 47.6 48.1

Ours (BERT)
F1 34.5 30.1 30.4 35.4

Recall 26.7 23.6 23.4 27.9
Precision 48.7 42.6 43.5 48.5

5.1 Collaborative Building Task481

Settings. We first compare our model against the482

only baseline (Jayannavar et al., 2020), named BAP.483

Then, we conduct the experiments performing the484

same data augmentations as in BAP, where utter-485

ances are paraphrased, color substituted, and spa-486

tial transformation were used to augment the size487

and variety of the Minecraft Corpus Dataset. The488

basic train, valid, and test set contain 3709, 1331,489

and 1616 samples. All models are also evaluated490

with augmented training sizes 1: 5,563 (indicated491

as 2x), 9,272 (4x), and 12,981 (6x) training sam-492

ples. Additionally, we present the performance of493

two different dialogue context encoders: we use494

the pre-trained GloVe word embeddings with 300495

dimensions (Pennington et al., 2014) as the initial496

word embeddings followed by a GRU(Chung et al.,497

2014) and contextual word embeddings using the498

pre-trained BERT base model (Devlin et al., 2019).499

For the action type slot, we pre-define three po-500

tential values: placement, removal, and stop. The501

value of the location slot can be one of 1,089 can-502

1We use the dataset released by the author of the baseline
model, whose sizes are smaller than those reported in the
paper.

didate voxels and the value of the color slot can 503

be one of six candidate colors. During training we 504

minimize the sum of the cross entropy losses of 505

the location slot, the color slot, and the action type 506

slot. The F1 metric on the test set is used to eval- 507

uate model performance by comparing the model 508

predictions against the action sequence performed 509

by the human builder. 510

Results. In Table 3 we present the results of our 511

model and the baselines for the collaborative build- 512

ing task on the Minecraft Corpus Dataset. Experi- 513

mental results show that our model outperforms the 514

baseline model with a large margin. Meanwhile, 515

results on the augmented dataset show that the ad- 516

vantage of the data augmentation is not obvious. 517

The performance using contextualized word em- 518

beddings is poorer. This could be due to the size 519

of the builder model with the BERT encoder which 520

makes it more difficult to train. 521

5.2 Learning to Ask Questions 522

Settings. For the action type slot, we define three 523

potential values: execution, ask, and other. ’Other’ 524

is used for all utterance types in Table 1 except for 525

the instruction-level and task-level questions. In 526

this experiment, the slots for location and color are 527

not used. We test the pre-trained GloVe embed- 528

dings in the dialogue context encoder as described 529

in Sec. 5.1. During the training, the cross entropy 530

loss of the action type is minimized. 531

Table 4: Evaluation of the learning to ask task. Numbers
in bold are the test accuracy for each action type.

Test
Accuracy(%)

Prediction SizeExecute Ask Other

Oracle
Execution 93.81 4.33 1.86 1616

Ask 22.09 63.80 14.11 163
Others 35.79 36.89 27.32 366

Overall Test Acc 80.05 2145

Results. In Table 4, we present the results of our 532

model. Although our model achieves around 80% 533

overall test accuracy, the correct answers mainly 534

come from the execution type while the model 535

struggles with the ask and other types. These two 536

types have in fact a joint test accuracy of 38.6%. 537

Experimental results demonstrate that the difficulty 538

of the learning to ask task and that there is still a 539

large room for improvement. 540
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Figure 3: Case study of the collaborative building task in Sec. 5.1: A represents the architect and B the builder.

5.3 Joint Learning541

Settings. For the action type slot, we pre-define542

five potential values: placement, removal, stop, ask,543

and other. The value of the location slot can be544

one of 1,089 candidate grid and the value of the545

color slot is one of 6 candidate colors. We still546

use pre-train GloVe embedding in the dialogue con-547

text encoder as described in Sec. 5.1. During the548

training we minimize the sum of the cross entropy549

losses of the location slot, the color slot, and the550

action type slot with weights equal to 0.1, 0.1, 0.8551

for each slot type.

Table 5: Test accuracy of the joint task: Figure in bold
of each row is the test accuracy for each action type.

Test
Accuracy(%)

Prediction
Execution Ask Others

Oracle
Execution 82.64 8.64 8.72

Ask 8.61 60.93 30.46
Others 25.47 47.07 31.46

Overall Test Acc 72.26

552

Table 6: The evaluation of the joint task.

F1 Recall Precison
Ours 28.4 20.9 43.9

Results. In Table 5, we present the results of our553

model’s test accuracy for each action type. The554

model has an 82.6% test accuracy. However, if the555

execution of building actions is excluded, its joint556

test accuracy of ask and other action types is about557

40.5%, indicating that deciding when to take the558

initiative remains challenging. In Table 6, we also559

report the results of recall rate, precision rate, and560

F1 score for the building task. Not surprisingly, the561

performance of our model drops slightly compared562

to those in Table 3, reflecting the difficulty of joint563

learning the collaborative building and the learning564

to ask tasks.565

5.4 Case Study 566

Although our model can predict the actions more 567

accurately than the baselines, for example our 568

model can usually predict the color of the blocks 569

correctly with about 60% test accuracy rate, it is 570

still non-trivial for our model to predict the whole 571

action sequence correctly. In Figure 3, the archi- 572

tect instructed the builder to build a 3x3 square and 573

then our model generated only parts of the structure 574

successfully. 575

The dataset noise makes the learning process 576

more challenging: the builder action sequences are 577

noisy due to, for example, the builder miss-clicking 578

in the construction process (Narayan-Chen, 2020). 579

Also, builder action sequences are often frag- 580

mented between utterances due to the frequent in- 581

terruptions of the architect. In order to solve these 582

issues a good model should be capable to learn bet- 583

ter representations for higher-level abstractions in 584

natural language like spatial relation concepts and 585

be more robust to noisy actions. However, existing 586

models including pre-trained ones (Devlin et al., 587

2019) fail to learn such representations for spatial 588

reasoning, which translates into poor performance 589

in these instruction following tasks. 590

6 Conclusion 591

In this paper, we extend the Minecraft Corpus 592

dataset by labelling each builder utterances into 593

eight types, in which two of them are relevant 594

to asking clarification questions. This allows the 595

builder models to learn to take the initiative in the 596

instruction following tasks. Also, we have pro- 597

posed a new model that achieves state-of-the-art 598

performance on the Minecraft collaborative build- 599

ing task with a large improvement. Besides these 600

contributions, we define the new learning to ask 601

task used to learn to ask clarification questions, and 602

new baseline models for this task and the joint one: 603

the collaborative building and the learning to ask 604

task. 605
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A Appendix853

Training Details. We examine our model on the854

extend Minecraft Dialogue Corpus dataset. Our855

model’s hyper-parameters are fixed for all three ex-856

periments in the Sec 5 as follows. The number of857

3D-conv layers k is 3, the dimension of each grid858

representation dc is 300, the number of layers of the859

grid cross-modality modules NG is 4, and the num-860

ber of layers of the text cross-modality modules861

NT is 2. The max length of the dialogue context s862

is selected as 100 and the dropout rates are all set863

to 0.2. The number of heads for the attention mech-864

anism in the text singe and cross modality modules865

is set to 2, while the number of heads is set to 1 for866

the attention mechanism in the grid singe and cross867

modality modules. The cross entropy loss from the868

location slot is not counted if the ground truth label869

of the action type is not ’placement’ or ’removal’,870

and the cross entropy loss from the color slot is871

not counted if the ground truth label of the action872

type is not ’placement’. For the experiment in the873

Sec 5.2 and 5.3, we randomly sample from ’Ask’874

and ’Others’ sets in the training set to make train-875

ing samples of different action types (’Execution’,876

’Ask’, and ’Others’) in the training set balanced.877

We train our model with cross entropy loss func-878

tions of all slots and a batch size of 50, using Adam879

optimizer (Kingma and Ba, 2015) with a learning880

rate of 1e-6, β1 = 0.9 and β2 = 0.99. We train our881

model with 50 epochs and select the model with882

the highest F1 score on the valid set.883
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