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Abstract

Buildings play a crucial role in human well-being, influencing occupant comfort,
health, and safety. Additionally, they contribute significantly to global energy
consumption, accounting for one-third of total energy usage, and carbon emissions.
Optimizing building performance presents a vital opportunity to combat climate
change and promote human flourishing. However, research in building analytics
has been hampered by the lack of accessible, available, and comprehensive real-
world datasets on multiple building operations. In this paper, we introduce the
Building TimeSeries (BTS) dataset. Our dataset covers three buildings over a
three-year period, comprising more than ten thousand timeseries data points with
hundreds of unique classes. Moreover, the metadata is standardized using the
Brick schema. To demonstrate the utility of this dataset, we performed benchmarks
on the multi-label timeseries classification task. This task represent an essential
initial step in addressing challenges related to interoperability in building analytics.
Access to the dataset and the code used for benchmarking are available here:
https://github.com/cruiseresearchgroup/DIEF_BTS

1 Introduction

Importance of building analytics. Building analytics, also known as data-driven smart building [12],
involves the automated adjustment of building operations to minimize emissions and costs, optimize
energy usage, and enhance indoor environmental quality and occupant experience, including comfort,
health, and safety [72]. This is particularly crucial given that buildings account for a third of global
energy usage and a quarter of global carbon emissions, comparable to the transport sector [27].
Optimizing building performance has the potential to significantly mitigate climate change and
promote human well-being.

Literature gaps. This paper addresses two critical gaps in building analytics research. Firstly,
in Section 2.1, we highlight the scarcity of publicly available and freely accessible datasets on
comprehensive real-world building operations, as exemplified in Table 1. While LBNL59 [49, 36] is
the only dataset that captures various aspects of building operations comprehensively, it only includes
data from a single building.
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Table 1: Comparing the scope of representative datasets for building analytics. Only datasets on
real-world building operations that are available, accessible are presented. Note that non-intrusive
load monitoring (NILM) is not a single dataset but a task that usually use similar datasets. Similarly,
AshraeOB is also a collection of dataset.

Year Dataset Unique Class Scope
2013 SLRHOME [5] 3 Aggregate energy load and generation
2014 LCLD [79] 2 Aggregate energy load and tarriff
2015 UCI [78] 1 Aggregate energy load
2017 BGD2 [51] 18 Detailed energy load
2020 LBNL59 [36, 49] 35 Comprehensive

2021 AshraeOB [18, 47] 76 Occupancy and their factors
(e.g. lighting, indoor climate)

Varies NILM [72] Varies Detailed energy load
2024 BTS (Ours) 215 Comprehensive

This limitation underscores the need for datasets covering multiple buildings to address the second
gap: interoperability in building analytical models. Interoperability is crucial for scalability, allowing
models to be applied across diverse buildings with differing characteristics such as climate, usage, size,
regulations, budget, and architecture. This challenge is discussed further in Section 2.2. Additionally,
such datasets inherently possess properties of interest to machine learning research, such as domain
shift, multimodality, imbalance, and long-tailedness, which are discussed further in Section 2.3.

Building TimeSeries (BTS): A new dataset. In this paper, we introduce a new anonymized building
analytics dataset sourced from three buildings located in undisclosed regions across Australia. Span-
ning a three-year period, our dataset encompasses over ten thousand timeseries data points, featuring
a diverse array of 240 unique classes. Notably, this surpasses the ontological breadth of LBNL59 by
more than threefold. These ontologies serve as standardized categorizations of building timeseries
data, including parameters like Temperature_Setpoint and Voltage_Sensor. The breadth of
ontologies within our dataset enables researchers to explore buildings with more intricate analytics
setups, facilitating deeper insights into building dynamics and performance. Furthermore, the meta-
data are standardized using the popular Brick schema [7], ensuring consistency and compatibility
across analyses.

A Benchmark. To demonstrate the utility of this dataset, we conducted benchmarks on a machine
learning model interoperability task: multi-label timeseries classification. One of the initial steps
in achieving building analytics interoperability is to map thousands of heterogeneous timeseries
generated from sensors and actuators to a standardized ontology, such as the Brick schema [7]. This
is also known as the timeseries ontology classification task [67].

We also performed an additional benchmark on a zero-shot forecasting task [19, 28]. This explores
scenarios where a building manager deploys a pre-trained model without fine-tuning. This task
is more complex than typical setups because the model must generalize to an arbitrary number of
timeseries, various permutations of their ontologies, and their relationships [45]. The details can be
found in Appendix D.

Contribution. This paper introduces the Building TimeSeries (BTS) dataset, addressing critical gaps
in publicly available building analytics datasets. Existing datasets often lack accessible, available,
comprehensive, real-world, building operations data, hindering progress in building analytics research.
While some datasets like LBNL59 offer a holistic view, they are limited to single buildings, impeding
efforts to achieve interoperability in building analytics models. BTS fills this void by providing
data from three diverse buildings, spanning a three-year period and encompassing over ten thousand
timeseries data points and 240 unique classes. Morever, BTS inherently possess properties relevant to
machine learning research, including domain shift, multimodality, imbalance, and long-tailedness.
Furthermore, we conduct a benchmark on a machine learning model interoperability task — multi-
label timeseries classification — demonstrating BTS’s utility in addressing challenges related to
interoperability in building analytics. Overall, BTS dataset advances the pursuit of optimizing building
performance, ultimately aiding efforts to mitigate climate change and enhance human flourishing.
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2 Related Works

2.1 Existing Datasets

To write this section, we reviewed of the building datasets utilized in the literature. We found that, in
most cases, the datasets are private, static, simulation-based, or limited in ontology. Although our
review is not systematic as this is not a review paper, our search was sufficiently extensive to ensure
the validity of our findings. The datasets discussed here are primarily derived from five recent review
papers [59, 72, 39, 40, 44] along with our own collections. This would have included earlier surveys
such as [6]. Table 4 in the appendix list the works mentioned in this section.

Availability and Accessibility. Most research on building analytics uses private datasets [82]. This
is due to security and privacy concerns of building owners and occupants. This is prevalent across
many aspects of building analytics, from HVAC [69, 33, 77, 71, 30, 29, 20], energy use [60, 61], and
more holistic systems [34, 35, 23, 42, 43, 67].

Some datasets are publicly accessible, but not for free, such as Pecan Street [14], or not freely
available, such as ecobee [21]. Notably, the Mortar dataset [22], which comprises data from 90
buildings and over 9.1 billion data points, is currently unavailable due to cloud deployment issues at
the time of writing.

Building Operation. Most public datasets such as EUBUCCO [53] only contain static information
such as type, height, and construction year. However, these datasets do not contain sufficient
information on building operation. Others contain more extensive information, such as PLUTO [17]
and GBMI [10] with more than 70 fields and 380 fields respectively, or building polygons [87] and
3D shapes [9].

While many public datasets include time information, they are often too sparse (yearly) to be useful
for building analytics, which require at least daily data. Examples include the popular CBECS [16],
and larger ones like BERTOOL [75] and CENED+2 [68], each containing about a million instances.

Real-World and Not Simulation. Simulations, while valuable, present limitations due to their
reliance on assumptions that may not accurately reflect real-world building systems and human
behaviors [95, 72]. Results have been shown to diverge from actual telemetry data in multiple
studies [74, 1, 76]. These simulations are often calibrated to match existing datasets such as
BEM4CBECS [2, 91, 92, 90] which are based on the CBECS dataset [16], while ResStock [84] and
ComStock [58] are based on data from 2.3 million meters in the US [85]. Another notable examples
are CityLearn Challenge Series [81, 54, 57, 56]. Not all simulations are software-based. There are
also hardware-in-the-loop laboratory setup [65, 64].

Whole Building Scope. The few remaining datasets are listed on Tab. 1. They have limited scope, and
does not fully capture the entire building as a holistic system. For example, most datasets are focused
only on aggregated energy load (UCI [78]), or disaggregated (ASHRAE [32, 31, 37], BDG [52, 51],
NILM [59]), or when combined with generation [5], or price [79]. Others focuses on occupancy
patterns [25, 24, 18, 47] or water [13, 70].

To our knowledge, LBNL59 [49, 36], a medium-sized office building in Berkeley, is the only
comprehensive existing dataset. Our dataset complements this dataset by introducing three new
buildings, with more diverse ontology. This allows the exploration various transfer learning techniques
to ensure that machine learning models are interoperable between buildings. In Section 3.2, we make
a detailed comparison of LBNL59 with our dataset.

2.2 Relevant Challenges in Building Analytics

The standardization of building timeseries data overcomes the challenge of interoperability and
scalability that can give rise to greater widespread adoption of energy flexibility in a systematic
manner. Achieving zero-energy buildings has two conflicting optimization goals: to maximise
occupant comfort and indoor environmental quality, and to minimise carbon emissions and operating
costs [41]. It involves two components: the building model that represents the thermodynamics and
energy behavior of a building and its components such as its construction, materials, and HVAC
system, and secondly, a control strategy to automate the control operations.
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Obtaining a building model involves expert knowledge and significant time to develop and validate.
This is further amplified by requiring individual models for each building. These models can be
white-box (physics-based) [95, 80], black-box (data-driven), or grey-box (hybrid) [50, 46]. Our
dataset and benchmark experiment, which automate timeseries data classification, help address this
challenge by reducing the time and cost associated with building key components of these models.

In comparison to building models, there has been a significant focus on optimising building control
operations and transitioning from conventional rule-based approaches to model predictive control or
data-driven methods [50]. The Building Optimization Framework or BOPTEST [11] exists to enable
the development and benchmarking of building control strategies. The performance of a control
strategy or algorithm is evaluated on a virtual "test case". Currently, these test cases are simulation
physics-based models of ideal buildings developed on Spawn [83] (a co-simulation of Modelica and
EnergyPlus) and act as emulators. In their paper, Blum et al. [11] make the contrasting argument that
simulation-based test cases offer advantages over existing challenges when testing in real buildings,
such as being time-consuming and subject to stochastic events.

However, accessing publicly available and anonymized building timeseries data from various non-
residential building types acts as a commodity to reduce the time to develop individual hybrid
building models. On one hand, using data from real buildings can be used to calibrate and interpolate
lesser-known parameters, while maintaining moderate interpretability. And on the other hand, using
standardized timeseries data such as the datasets introduced here aids in scalability and deployability
to build generalized multi-zone environments and substituting with data from another building system
or zone.

More broadly, there are various other applications of this dataset. Generative AI for Privacy-
Preserving Data Sharing: Explore the use of generative AI to create synthetic building timeseries
data, enabling building owners to contribute data for research while safeguarding sensitive information.
LLM Integration for Natural Language Interaction: Investigate methods to integrate LLMs with
building timeseries data, allowing various stakeholders such as building operators to interact with and
query the data using natural language. Redeployability: By using a standardised ontology to describe
the building, and linking timeseries data to the building model, applications (e.g. measurement and
verification, chiller scheduling, occupant comfort) can be written to deploy against a fleet of buildings
without a deep understanding of the building topology, such as those provided within this dataset.

2.3 Relevant Challenges in Machine Learning (ML) Research

Domain shift and domain adaptation. In the realm of ML research, one challenge is in domain
adaptation, particularly about the diverse characteristics of buildings. These variations encompass
factors such as climate, usage, size, regulations, budget, and architecture, resulting in notable distri-
bution shifts. Consequently, traditional ML methodologies fall short in address these discrepancies.
Therefore, the development and implementation of domain adaptation techniques [4, 3, 73, 26] are
crucial to ensure model generalization across different buildings. Additionally, the usual alternative
of employing large foundational models [94] is impractical because privacy and security concerns
limit the availability of extensive building datasets for training. Moreover, as shown in Section 3.3.2,
the unique permutation of ontologies in each building further complicates the scenario, necessitating
novel approaches capable of handling arbitrary permutations effectively [45]. This is an issue since
many timeseries architecture do not allow the model to input and output an arbitrary number of
variate [86].

Multimodal Learning with knowledge graphs (KG) and unbalanced multivariate timeseries
(MVTS) with long tails. While many studies focus on MVTS data in conjunction with spatial
graph [62, 63], video, image, audio, and text data [15, 89], research on MVTS with knowledge
graphs is scarce. Our dataset enable such research as it contains the Brick schema which is a KG on
building metadata, describing relationship between the timeseries in the MVTS. Our dataset is also
challenging because it is unbalanced and featuring distributions long tails. As shown in Section 3.3.2,
some classes, like Chilled Water Differential Temperature Sensor, might only have one
or two instances in the entire dataset, or, like Alarm, have zero values for most of the time . These
challenges could fuel the developments of innovative techniques.
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Figure 1: Visualisation of six timeseries with varying classes. The data is from the snippet of our
BTS dataset available at https://github.com/cruiseresearchgroup/DIEF_BTS

3 Dataset

3.1 Collection Process

This dataset is comprised of data collected onto CSIRO’s Data Clearing House (DCH https:
//research.csiro.au/dch/) digital platform [38]. Connecting to the Building Management
Systems (BMS), timeseries data is collected from sensors, power, water and gas meters, and other
devices within the buildings and uploaded using Message Queuing Telemetry Transport Secured
(MQTTS). A semantic model of the building was created using DCH platform tooling. This created
Brick schema [7] class definitions (version 1.2.1) for points within the model, and linked these points
to the timeseries data ingested via MQTTS.

All instrumentation was conducted prior to the study, and as such no equipment installation or
hardware setup was required by the authors. The work integrates with DCH platform which provides
digital infrastructure to house building data, as well as to generate semantic models to describe the
topology and instrumentation installed within the building. Based on a previously conducted systemic
evaluation of existing ontologies suitable for our research context, we chose the Brick schema [66].
In terms of effort to map to the Brick schema, once sufficient details about the building are compiled,
then typically expert engineers requires at least one to two days of per building to generate a full
semantic building model.

Identifiers for both the point within the model, and the timeseries identifier were anonymised by
generating Universally Unique Identifiers (UUID), and a three-year-period subset of the timeseries
data was extracted from the DCH platform to produce this dataset. The data was not cleaned in effort
to allow evaluation of various different cleaning algorithm, and to allow the evaluations of algorithms
against data with realistic errors.

3.2 Description

The Building TimeSeries (BTS) dataset provides comprehensive, real-world data on building
operations from three buildings in undisclosed Australian locations. It includes timeseries data
(visualized in Figure 1) and building metadata standardised according to Brick schema [7]. Table 2
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shows the statistics, comparing it to the LBNL59 dataset which is the only comparable dataset
currently available. Part of this dataset have been presented in [45].

Figure 2: Brick Schema Illustration and Visualization, depicting machine-readable metadata for
buildings as a knowledge graph. It reveals the logical and spatial links between distinct entities within
a building, including the associated timeseries.

Our dataset use the Brick schema, a knowledge graph (KG) that details building components and
their logical and spatial relationships. As illustrated in Figure 2, it specifies the equipment present in
the buildings, the sensors attached to these equipment, their locations, and other related components
within the same vicinity. Moreover, it also standardised the categorisations of the timeseries data into
classes. The formal definition of the KG is as follows:

3.3 Formal definition of a building semantic model

A building contains many different entities, such as equipment in various locations, and these entities
are interconnected. A structure that captures this information is called a "building semantic model"
and can be interpreted as a KG. The mathematical formalisation of the "building semantic model" is
a directed acyclic graph G = (V, P,E) where:

Vertices (V): Each vertex v ∈ V represents an entity within the building. This could be a physical
location (e.g., a room or a zone served by a single HVAC subsystem), a piece of equipment (e.g. an
air temperature sensor or a fan coil unit), or a reference to a time series in the form of a unique key.
The actual time series data is typically stored in a separate database.

Edges (E): Each edge e = (u, p, v) ∈ E represents a predicate p between two vertices u and v.

Predicate (P): Each edge e is associated with a predicate p ∈ P that specifies the type of relationship
it represents (e.g., hasPart, has Location, or isPointOf).

3.3.1 BTS and LBNL59

BTS complements LBNL59 due to differences in time and location, as well as the size and complexity
of the buildings. While LBNL59 covers a period ending in 2020 in the USA, our dataset spans from
2021 onwards in Australia, offering insights into longitudinal change and different seasonal patterns.
Additionally, our dataset includes larger and more complex buildings compared to those in LBNL59.

5The reason for the discrepancy between the number of timeseries and Point is that multiple time series can
be associated with the same Point in some instances.
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Table 2: Summary statistics of the three buildings in our Building TimeSeries (BTS) dataset in
comparison with LBNL59 [36, 49]. The table details the count and unique count (in parentheses) for
the top-level Brick ontology [7] and the Point sub-classes. 5

Count (Unique) LBNL59 BTS_A BTS_B BTS_C

To
p

L
ev

el Collection 0 (0) 4 (2) 2 (2) 8 (1)
Equipment 59 (3) 547 (24) 159 (25) 963 (41)
Location 73 (3) 481 (9) 68 (17) 381 (26)
Point 230 (11) 8374 (126) 851 (57) 10440 (159)

Timeseries 337 8349 851 5347

Po
in

tS
ub

cl
as

s Alarm 0 (0) 798 (16) 5 (2) 109 (8)
Command 0 (0) 363 (6) 97 (5) 785 (13)

Parameter 0 (0) 79 (6) 36 (2) 935 (17)
Sensor 144 (8) 4396 (56) 266 (25) 4062 (68)

Setpoint 86 (3) 772 (26) 232 (16) 1629 (41)
Status 0 (0) 1628 (17) 110 (6) 2187 (19)

Location Berkeley, USA Undisclosed locations in Australia
Start Date 01-01-2018 01-01-2021 01-01-2021 23-06-2021
End Date 31-12-2020 31-12-2023 31-12-2023 18-01-2024

Duration (Days) 1094 1094 1094 939
Size Zipped (GB) 0.26 8.48 1.31 8.98

BTS dataset is larger and more diverse. Each building in BTS includes significantly more
timeseries—ranging from double to over twenty times more—resulting in a combined file size
approximately 70 times larger when zipped.

The BTS dataset also exhibits greater diversity. Although LBNL59 contains 337 different timeseries,
they are composed of only 11 different classes, all classified as either Sensor or Setpoint. In
contrast, the BTS dataset has hundreds of unique Point classes including additional categories such
as Alarm, Command, Parameter, and Status, offering a more comprehensive and varied dataset.

3.3.2 Addressing Literature Gaps with BTS Dataset

In Sections 2.2 and 2.3, the importance of scalability and interoperability was underscored, alongside
the notable properties exhibited by our datasets, including domain shift, multimodality, imbalance,
and long-tailedness. Here, we elaborate on how the BTS dataset effectively addresses these identified
gaps in the literature.

Brick is machine-readable and multimodal. Consequently, this dataset fuels the research into
building-agnostic, interoperable, and scalable software and ML models for building analytics. As a
KG, Brick includes text components, facilitating novel research into interactions between KG, LLM
and MVTS data.

Our dataset is from real-world buildings. This inclusion highlights real-world issues, as illustrated
in Figure 1. For instance, the anomalously straight segments in Air Temp Sensor, Outside Air
Temp Sensor, and Enable Status during the middle of May might indicate that there are missing
values. Additionally, at the end of June, an anomalous data point is observed where the temperature
sensors and setpoint limits drop to zero at the same time. It remains unclear if this was intentional, or
by accident, or an error. This dataset serves as a test bed to evaluate how ML pipelines can address
such issues during inference.

Domain Shift. The presence of domain shift complicates transfer learning efforts, as each building
exhibits a unique distribution of classes. For instance, in the BTS_A, over half of the timeseries are
sensors, whereas in BTS_B, this proportion drops to less than a third. Similarly, approximately a
third of timeseries in BTS_B are setpoints, compared to less than a tenth in BTS_A.

Moreover, individual timeseries within each building demonstrate distinct distributions. As depicted
in Figure 1, Outside Air Temp Sensor exhibit periodic behavior, leading to a more normal
distribution, while Electrical Power Sensor display a non-periodic, monotonically increasing
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pattern, and Enable Status adheres to a Bernoulli distribution. Moreover, as shown in the figures
in Appendix B, there is a significant disjoint of ontological classes between buildings; more than
half of the classes only appear in one of the buildings only. Therefore, our dataset serves as an ideal
dataset for investigating domain shifts.

Long-Tailed Distributions. The class distribution in BTS exhibits a long tail as shown in the
figures in Appendix B. This means that certain class appear frequently, such as the 1004 instances
of Electrical Power Sensor across all three buildings (Figure 4), while others are rare, with
10 classes appearing only once in the entire dataset, such as the Air Differential Pressure
Setpoint location in BTS_C (Figure 7). Similarly, the values in some timeseries also follow a
long-tailed distribution. For example, Alarms are expected to remain at zero most of the time.

4 Benchmark

Figure 3: Visualisation of the multi-label timeseries classification task.

To demonstrate the utility of this dataset, we conducted a benchmark on the multi-label timeseries
classification task. We picked this task because it highlights the challenges in implementing machine
learning model that is interoperable between buildings. We also performed an additional benchmark
on a zero-shot forecasting task. The details can be found in Appendix D.

Brick schema [7] was developed to aids in data interoperability across buildings. However, construct-
ing the Brick schema for each building requires expensive and error prone manual expert labor to
classifying timeseries data into the correct Brick classes. Past studies [8, 43, 67] have attempted to
automate this process with ML relied on private data and did not release their code. This benchmark
is the first to address the task using publicly available data. We formulated this task as a multi-label
timeseries classification task, where a label will also return true for all super-classes and return as
zero for all subclass. More details on this benchmark can be found in Appendix C

4.1 Problem Formulation

A datapoint d = (t, v) is an ordered pair where t ∈ R is time and and v ∈ R is the value. A
timeseries T = {di|1 ≤ i ≤ n} is a vector of datapoint of length n ∈ Z+. The length of timeseries
can varies.

The class Point in Brick has m sub-classes, including both direct and indirect sub-classes. In the
original dataset, each timeseries is only labeled with a single class. However, we reformulated this as
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a multi-label classification task, where a label will also return true for all super-classes and return as
zero for all subclass. More formally, lj ∈ {−1, 0, 1} for 1 ≤ j ≤ m where lj = 1 if timeseries T
belongs to the jth subclass of Point and also for all of its super-class, lj = 0 for all of its sub-class,
and lj = −1 otherwise. For practical purposes, m is not the number of sub-classes of Point in the
definition, but only those found in our dataset.

The task for each timeseries is to predict if timeseries T belongs in the jth label lj = f (T )∀j. This
is visualised in Figure 3.

4.2 Results

Table 3: Benchmark results on the multi-label timeseries classification task. Deterministic methods
do not have standard deviation.

Method Accuracy F1 mAP
Zero 0.8484 ±N/A 0.0000 ±N/A 0.0000 ±N/A
Mode 0.8592 ±N/A 0.1296 ±N/A 0.0990 ±N/A

Random Proportional 0.8147 ±0.0001 0.1487 ±0.0002 0.1520 ±0.0001
Random Uniform 0.4999 ±0.0002 0.1813 ±0.0002 0.1520 ±0.0001

One 0.1516 ±N/A 0.2234 ±N/A 0.1516 ±N/A
LR 0.2366 ±N/A 0.0882 ±N/A 0.0497 ±N/A

XGBoost 0.8593 ±N/A 0.2697 ±N/A 0.2627 ±N/A
Transformer (default) 0.7807 ±0.0139 0.3360 ±0.0116 0.3171 ±0.0078

Transformer (HP tuned) 0.8052 ±0.0074 0.3615 ±0.0079 0.3489 ±0.0057
Informer 0.7627 ±0.0010 0.3162 ±0.0019 0.2849 ±0.0030
DLinear 0.7030 ±0.0042 0.2499 ±0.0020 0.2494 ±0.0010

PatchTST 0.7534 ±0.0017 0.2981 ±0.0014 0.2721 ±0.0013

Table 3 shows the results. Notice how naive methods achieved very high accuracy but very poor F1
and mean Average Precision (mAP) scores, while deep learning methods obtained slightly better F1
and mAP scores but much poor accuracy. We attribute this to the extreme imbalance in our dataset.
All models performed only slightly better than the naive methods, indicating that this is an unsolved
problem with significant potential for new discoveries.

Refer to Appendix C for more details about this experiment, including formal problem formulation,
more results and other experimental details.

5 Limitations

Firstly, the dataset is sourced from only three non-residential buildings in Australia, limiting its
geographical diversity. Consequently, models trained on this dataset may not generalize well to
residential buildings, or buildings in other regions with different climates, regulations, and building
practices. This limitation implies that models should primarily be used for research purposes rather
than direct deployment.

Secondly, the anonymization process, essential for privacy, may have removed valuable context-
specific information, such as building layouts, occupancy patterns, and operational schedules. This
reduction in detail could limit the dataset’s applicability for certain analyses. Moreover, despite
thorough anonymization efforts, there is no absolute guarantee that personally identifiable information
cannot be recovered, particularly when correlated with external datasets.

Finally, as this paper focuses on the dataset rather than benchmarking, the depth of the benchmarks is
limited. For example, hyperparameter optimization was not performed.

6 Conclusion

In this paper, we introduced the Building TimeSeries (BTS) dataset, addressing the critical gaps
in building analytics research by providing a comprehensive, publicly available dataset that spans
three buildings over three years, encompassing over ten thousand timeseries data points and 240
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unique classes. This dataset is standardized using the Brick schema, ensuring interoperability and
consistency across analyses. Additionally, our datasets inherently possess properties of interest to
machine learning research, such as domain shift, multimodality, imbalance, and long-tailedness.
Our benchmarks on multi-label timeseries classification and zero-shot forecasting tasks demonstrate
the dataset’s utility in addressing key challenges in building analytics. By making the BTS dataset
and our benchmarking code publicly accessible, we aim to facilitate further research in optimizing
building performance, ultimately contributing to efforts to mitigate climate change and enhance
human well-being.
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[11] D. Blum, J. Arroyo, S. Huang, J. Drgoňa, F. Jorissen, H. T. Walnum, Y. Chen, K. Benne,
D. Vrabie, M. Wetter, et al. Building optimization testing framework (boptest) for simulation-
based benchmarking of control strategies in buildings. Journal of Building Performance
Simulation, 14(5):586–610, 2021. 4

[12] D. Blum, J. Candanedo, Z. Chen, G. Fierro, V. Gori, H. Johra, H. Madsen, A. Marszal-
Pomianowska, Z. O’Neill, O. Pradhan, D. Rovas, F. Sacco, S. Stensson, C. A. Thilker, C. Val-
lianos, J. Wen, and S. White. Data-Driven Smart Buildings: State-of-the-Art Review. CSIRO,
Australia, 2023. 1

[13] M. J. Booysen. Synthetic domestic hot water profile generator. Stellenbosch University, 1 2021.
3

[14] P. S. Dataport. Pecan street dataport. https://dataport.pecanstreet.org/, 2016. 3, 19

[15] S. Deldari, H. Xue, A. Saeed, J. He, D. V. Smith, and F. D. Salim. Beyond just vision: A review
on self-supervised representation learning on multimodal and temporal data. arXiv preprint
arXiv:2206.02353, 2022. 4

[16] H. Deng, D. Fannon, and M. J. Eckelman. Predictive modeling for us commercial building
energy use: A comparison of existing statistical and machine learning algorithms using cbecs
microdata. Energy and Buildings, 163:34–43, 2018. 3, 19

[17] Department of City Planning. https://www.nyc.gov/site/planning/data-maps/
open-data/dwn-pluto-mappluto.page. 3, 19

[18] B. Dong, Y. Liu, W. Mu, Z. Jiang, P. Pandey, T. Hong, B. Olesen, T. Lawrence, Z. O’Neil,
C. Andrews, et al. A global building occupant behavior database. Scientific data, 9(1):369,
2022. 2, 3, 19

[19] S. Dooley, G. S. Khurana, C. Mohapatra, S. V. Naidu, and C. White. Forecastpfn: Synthetically-
trained zero-shot forecasting. Advances in Neural Information Processing Systems, 36, 2024.
2
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(a) If your work uses existing assets, did you cite the creators? [N/A] No existing assets
were used.

(b) Did you mention the license of the assets? [Yes] The data is released under CC BY
4.0 while the code is released under MIT License. These are mentioned in their
respective repository.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We included the URL in the abstract.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] The dataset does not contain personally identifiable information.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The dataset does not contain personally
identifiable information.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

17



(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Appendices
A List of Related Works

For convenience, we summarised the works listed in Section 2.1 in Table 4.

Table 4: List of related work.
Datasets

Private HVAC [69, 33, 77, 71, 30, 29, 20], energy use [60, 61], timeseries
ontology classification [34, 35, 23, 42, 43, 67], and simulation [76].

Paid Pecan Street [14].

Upon discretion of
the data provider

ecobee [21]. Mortar [22] is intended to be freely available, yet it has
limited access due to cloud deployment issues at the time of writing).

Static EUBUCCO [53], PLUTO [17], GBMI [10], Roofpedia [87],
HBD3D [9],

Corase temporal
granularity (more
than daily)

CBECS [16], BERTOOL [75], CENED+2 [68],

Simulation-based BEM4CBECS [2, 91, 92, 90], ResStock [84], ComStock [58],
CityLearn Challenge Series [81, 54, 57, 56], and hardware-in-the-loop
laboratory [65, 64].

Limited scope SLRHOME [5], LCLD [79], and UCI [78]

NILM Non-intrusive load monitoring (NILM) is task and many dataset have
been made for this task check this recent survey [59] that list pub-
licly available dataset. However, since the datasets are only made for
this specific task in mind, the scope is limited to only electricity sub-
metering. Other datasets with focus on submetering: BDG [52] and
BDG2 [51].

Occupant behaviour From AshraeOB [18, 47] website: "The ASHRAE Global Occupant
Behavior Database aims to advance the knowledge and understanding
of realistic occupancy patterns and human-building interactions with
building systems. This database includes 34 field-measured occupant
behavior datasets for both commercial and residential buildings, con-
tributed by researchers from 15 countries and 39 institutions covering
10 different climate zones. It includes occupancy patterns, occupant
behaviors, indoor and outdoor environment measurements."

Comprehensive Lawrence Berkeley National Laboratory building 59
(LBNL59) [36, 49] and BTS (ours) https://github.com/
cruiseresearchgroup/DIEF_BTS.

Other lists A review paper on NILM [59], a review paper on buildings at urban
scale [72], a review paper on energy flexibility datasets [44], a review
paper on building and energy dataset [40], and the Building Data
Genome Directory [39].

B Visualisation of Domain Shift and Long-tail Distribution in Our Datasets.

We visualise the domain shift by comparing the different distributions of classes between buildings.
We visualise the that the distributions of classes have long-tails by plotting the histogram. These are
shown in Figure 4, 5, 6, and 7. The relevant discussions can be found in Section 2.3 and 3.3.2.
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Figure 4: Histogram of class of timeseries by buildings.

C Multi-label Timeseries Classification: More details

C.1 Data Pre-processing

Each timeseries are cut into shorter chunk of either 2/4/8 weeks. The reason is to enable analysis
of accuracy against various length of the timeseries. Those with too few datapoint, less than 1 per
day, are removed. Due to great ranges of values, they are scaled using symmetric log first, and then
standard scaling. The symmetric log function is defined as follows:

v′ =


9 + log10(v) if v > 10

−9− log10(−v) if v < −10

v otherwise

C.2 Development and Test Partition

The partition is done by time and buildings. The reason for this partition strategy is to evaluate the
performance in the future, and in different buildings. The development partition consist of the first
four months of BTC_A and the first year of BTC_B. The development partition is randomly split into
training and validation with a 80% and 20% ratio respectively. The remaining data are set to the
testing partition.

C.3 Feature Extraction

Depending on whether the models are made generic classification (LR, RF, and XGBoost) or deep
learning models specialised for timeseries, a different feature extraction method were used. For
generic models, we extract the following global features: mean, standard deviation, skew, kurtosis,
root mean square, minimum, maximum, the three quartiles, and average duration between data points.
For timeseries algorithm, we aggregate the timeseries into four hour slots and extract the maximum,
mean, standard deviation, and number of datapoints within each slot.

C.4 Model Training

We used binary cross-entropy (BCE) loss, treating every single label as binary, and applied additional
extra weight to the positive samples proportionally. The maximum number of epochs was set to 100,
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Figure 5: Histogram of class of timeseries by buildings, continued.
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Figure 6: Histogram of class of timeseries by buildings, continued.

with a patience of 30 epochs for early stopping. The learning rate was set to 0.01, and we used the Re-
duceLROnPlateau strategy with a patience of 10 epochs. The optimizer was Rectified Adam (RAdam).
For deep learning methods, we adapted the TSLib code [88] from their official GitHub repository
https://github.com/thuml/Time-Series-Library. The batch size for each method was ad-
justed to fit memory. Our implementations, including our hardware setup, are available on the GitHub
repository for this project https://github.com/cruiseresearchgroup/DIEF_BTS.

C.5 Baselines

We use four naive baselines that does not take the features into account:

• Zero. The model output negative prediction on all labels.

• Random Uniform. The model based the prediction on a coin flip (50/50)

• Random Proportional. The model based the prediction randomly, but according to the
proportion each label appears on the training data.

• Mode. The most common class was Sensor. So the model predictSensor all the time.
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Figure 7: Histogram of class of timeseries by buildings, continued.
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Figure 8: Visualisation of the hyperparameter tuning of the Transformer model.

C.6 Hyperparameter Tuning

D Zero-shot Forecasting Across Buildings

The advent of building digitalization presents significant opportunities for leveraging deep learning
methods in building management systems for accurate forecasting. In practical applications, it is
crucial for well-trained models to be applicable across diverse building scenarios without retraining
costs. However, specific building constraints, operational variances, functionality differences, and
data heterogeneity pose significant challenges in real-world settings. As shown in Table 2, models
must adapt to dynamic ontology changes when applied to different buildings. Previous studies
often rely on identical features and well-processed data, not reflecting the complexity of real-world
scenarios. LBNL59, involving only one building, is insufficient for transfer learning studies. This
study establishes a baseline for zero-shot forecasting using the BTS multivariate time series.

D.1 Problem Formulation

Suppose we have dataset D ∈ RN×K with N IoT points and K timesteps. Each data point is denoted
as dN,k = DN,k:k+S , where S is the sequence length of the historical data. Detnote the forecasting
model as h(·). The multi-step forecasting problem is formalized as follows: h(dN,k) = dN,k+S+H ,
where H is the forecasting horizon. In zero-shot forecasting, the model is trained and tested across
different datasets. In this study, S = 12, H = 12.

D.2 Data Pre-processing

This study utilizes a 1-month training dataset spanning from 00:00:00 on 01/07/2022 to 00:00:00
on 01/08/2022, with irregular data resampled to a 10-minute granularity and then standardization.
The historical window and forecast horizon are set to 12 time steps, equivalent to 2 hours. A model
trained on one dataset is evaluated across all buildings for the same period. For each dataset, a subset
of IoT points is selected for training based on the criterion Nunique/Nsample > η where η = 0.1. This
feature selection results in 133, 710, and 2025 IoT points for the three respective datasets.
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D.3 Baselines

DLinear[93], PatchTST[55], Informer[96] and iTransformer[48] as backbone models are employed
for this benchmark study.

D.4 Model Training

While employing DLinear for training, we treat this task as a multivariate forecasting task. Models
are fed by all the IoT points data and expect to forecast the corresponding values of these IoT points.
Considering that certain Transformer-based backbone models that involve a conventional embedding
layer, such as iTransformer, Informer, and PatchTST, do not support changes in input channels
between training and testing sets, we handle the task as an univariate forecasting problem, treating
each IoT point equivalently. Similar to the multi-label classification task, the code is modified based
on TSLib[88] Github repository. The training process employs the Adam optimizer with a learning
rate of 0.01 and Mean Square Error (MSE) loss, and a learning rate scheduler is applied. Training is
capped at 20 epochs with an early stopping patience of 3 epochs. All experiments are conducted on
the NCI Gadi server utilizing 4 V100 GPUs.

D.5 Metrics

Baseline performance is evaluated using Mean Absolute Error (MAE) and Symmetric Mean Absolute
Percentage Error (SMPAE) averaged by IoT points.Following the above-mentioned notation, the
mathematical definitions are as follows:

MAE =
1

N

N∑
n=1

|ŷn − yn|

SMAPE =
100%

N

N∑
n=1

|ŷn − yn|
|ŷn|+ |yn|

R2 = 1−
N∑

n=1

(yn − ŷn)
2/

N∑
n=1

(yn − ȳ)2

where ŷn, yn, ȳn are the multi-step prediction, ground truth, and mean for the evaluated model.

D.6 Main Results

Table 5 presents the Symmetric Mean Absolute Percentage Error (SMAPE) and R2 scores for four
baseline models in this task, with diagonal values omitted. PatchTST and DLinear consistently
outperform the other models, balancing higher R2 scores with lower SMAPE values. However,
the overall performance highlights the complexity and challenges inherent in zero-shot forecasting,
indicating significant scope for further research and improvement.

D.7 Detailed Results with Standard Deviations

Table6-8 shows the mean and standard deviation values about MAE, SMAPE, and R2 for the
multi-step zero-shot forecasting.
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Table 5: Benchmark results on the zero-shot forecasting task. The columns refer to the training set,
whereas the row represents the testing set.

BTS-A BTS-B BTS-C
MAE SMAPE MAE SMAPE MAE SMAPE

Previous Day Persistence 0.5377 48.1539 0.4976 43.2985 0.5458 45.7014
Previous Week Persistence 0.6190 57.2713 0.5918 51.3867 0.6499 58.1922

BTS-A

DLinear N/A 0.4324 35.9846 0.4262 36.2734
PatchTST N/A 0.3748 29.2570 0.3712 29.5552
Informer N/A 0.5968 49.2217 0.5920 51.9745

iTransformer N/A 0.4026 31.1924 0.3842 30.1102

BTS-B

DLinear 0.4940 41.2264 N/A 0.4206 35.3121
PatchTST 0.4575 36.7689 N/A 0.3711 29.2135
Informer 0.5233 45.9279 N/A 0.4592 39.7068

iTransformer 0.4783 37.5907 N/A 0.3901 29.9940

BTS-C

DLinear 0.4858 40.7421 0.4158 34.1473 N/A
PatchTST 0.4542 36.9451 0.3723 28.9325 N/A
Informer 0.5213 46.6112 0.4602 39.7162 N/A

iTransformer 0.4859 39.5158 0.4262 32.6550 N/A

Table 6: Mean Absolute Error (MAE) on the zero-shot forecasting task. The columns refer to the
training set, whereas the row represents the testing set.

Method BTS_A BTS_B BTS_C

B
T

S_
A DLinear[93] N/A 0.43243±0.16060 0.42617±0.19525

PatchTST [55] N/A 0.37480±0.06301 0.37480±0.06301
Informer [96] N/A 0.59679±0.04698 0.59196±0.05424
iTransformer [48] N/A 0.40257±0.06487 0.38416±0.07446

B
T

S_
B DLinear[93] 0.49398±0.21579 N/A 0.42059±0.20122

PatchTST [55] 0.45745±0.08428 N/A 0.37106±0.07449
Informer [96] 0.52329±0.06606 N/A 0.45922±0.05966
iTransformer [48] 0.47830±0.08542 N/A 0.39099±0.07722

B
T

S_
C DLinear[93] 0.48582±0.22002 0.41582±0.17401 N/A

PatchTST [55] 0.45413±0.08338 0.37227±0.06339 N/A
Informer [96] 0.52133±0.06237 0.46022±0.05043 N/A
iTransformer [48] 0.48588±0.08002 0.42620±0.06586 N/A

Table 7: Symmetric Mean Absolute Percentage Error (SMAPE) on the zero-shot forecasting task.
The columns refer to the training set, whereas the row represents the testing set.

Method BTS_A BTS_B BTS_C

B
T

S_
A DLinear[93] N/A 35.98461±15.47196 36.27335±18.34376

PatchTST [55] N/A 29.25704±5.03140 29.55517±6.07105
Informer [96] N/A 49.22169±2.54525 51.97452±4.25621
iTransformer [48] N/A 31.19242±5.23906 30.11023±5.97160

B
T

S_
B DLinear[93] 41.22638±18.84817 N/A 35.31209±18.23204

PatchTST [55] 36.76894±6.63363 N/A 29.21348±5.96805
Informer [96] 45.92792±6.15185 N/A 39.70681±5.37708
iTransformer [48] 37.59074±6.54195 N/A 29.99402±6.02286

B
T

S_
C DLinear[93] 40.74205±19.53859 34.14733±16.12281 N/A

PatchTST [55] 36.94508±6.74060 28.93252±5.03300 N/A
Informer [96] 46.61115±6.07310 39.71622±4.55301 N/A
iTransformer [48] 39.51578±6.64577 32.65497±5.24526 N/A
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Table 8: R2 score on the zero-shot forecasting task. The columns refer to the training set, whereas
the row represents the testing set.

Method BTS_A BTS_B BTS_C
B

T
S_

A DLinear[93] N/A 0.54196±0.12989 0.53206±0.09756
PatchTST [55] N/A 0.51219±0.16793 0.51258±0.05317
Informer [96] N/A 0.32122±0.18004 0.32153±0.05191
iTransformer [48] N/A 0.46723±0.17016 0.48543±0.05315

B
T

S_
B DLinear[93] 0.43686±0.09253 N/A 0.52964±0.09715

PatchTST [55] 0.40926±0.03239 N/A 0.50624±0.05375
Informer [96] 0.39893±0.02753 N/A 0.47109±0.04673
iTransformer [48] 0.36844±0.03443 N/A 0.46792±0.05684

B
T

S_
C DLinear[93] 0.44519±0.09250 0.54543±0.12879 N/A

PatchTST [55] 0.41773±0.03099 0.51411±0.17089 N/A
Informer [96] 0.41886±0.02556 0.48993±0.13881 N/A
iTransformer [48] 0.37250±0.03034 0.42437±0.17611 N/A

Models trained on BTS_A exhibit poorer cross-building forecasting results. This can be attributed
to the greater complexity of BTS_A compared to BTS_B and BTS_C. BTS_A includes more
heterogeneous series and entity types (BTS_A has 42 entities, where BTS_B and BTS_C have 16
and 31 entities respectively in the task training data), which introduces additional noise that impacts
accuracy.

The evaluation metrics, MAE and SMAPE, indicate that PatchTST outperforms other baselines,
while R2 scores suggest that DLinear is superior. However, DLinear also shows a higher standard
deviation. This indicates that DLinear effectively captures linearity in sequential data, leading to
accurate predictions for IoT points with strong linear relationships. Conversely, it struggles with
complex inherent dependencies, resulting in poorer performance on datasets with such characteristics.

The overall scores indicate significant potential for improvement. Considering the comprehensive
metadata scope provided by the BTS dataset, future work can leverage knowledge graphs to enhance
data modality. This approach could improve the accuracy and robustness of deep learning models in
zero-shot forecasting.
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