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ABSTRACT

Generative Flow Networks (GFlowNets) are amortized sampling methods that
learn a distribution over discrete objects proportional to their rewards. GFlowNets
exhibit a remarkable ability to generate diverse samples, yet occasionally strug-
gle to consistently produce samples with high rewards due to over-exploration on
wide sample space. This paper proposes to train GFlowNets with local search,
which focuses on exploiting high-rewarded sample space to resolve this issue.
Our main idea is to explore the local neighborhood via backtracking and recon-
struction guided by backward and forward policies, respectively. This allows bias-
ing the samples toward high-reward solutions, which is not possible for a typical
GFlowNet solution generation scheme, which uses the forward policy to gener-
ate the solution from scratch. Extensive experiments demonstrate a remarkable
performance improvement in several biochemical tasks. Source code is available:
https://github.com/dbsxodud-11/1s_gfn.

1 INTRODUCTION

Generative Flow Networks (GFlowNets, Bengio et al., 2021) are a family of probabilistic models
designed to learn reward-proportional distributions over objects, in particular compositional objects
constructed from a sequence of actions, e.g., graphs or strings. It has been used in critical appli-
cations, such as molecule discovery (Li et al., 2022; Jain et al., 2023a), multi-objective optimiza-
tion (Jain et al., 2022b), biological design (Jain et al., 2022a), causal modeling (Deleu et al., 2022;
Atanackovic et al., 2023; Deleu et al., 2023), system job scheduling (Zhang et al., 2022a), and graph
combinatorial optimization (Zhang et al., 2023b).

GFlowNets distinguish themselves by aiming to produce a diverse set of highly rewarding samples
(modes) (Bengio et al., 2021), which is especially beneficial in a scientific discovery process where
we need to increase the number of candidates who survive even after screening by the true oracle
function. In pursuit of this objective, the use of GFlowNets emphasizes exploration to uncover novel
modes that differ significantly from previously collected data points.

However, GFlowNets occasionally fall short in collecting highly rewarding experiences as they be-
come overly fixated on exploring the diverse landscape of the vast search space during training.
This tendency ultimately hinders their training efficiency, as GFlowNets heavily relies on experien-
tial data collected by their own sampling policy (Shen et al., 2023).

Contribution. In this study, we introduce a novel algorithm, \l nter-mode Exploration
local search GFlowNets (LS-GFN), which is designed to en-
hance the training effectiveness of GFlowNets by leveraging lo-
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(1) we sample the complete trajectories using GFlowNet trajec- Exploration

tories; (2) we refine the trajectories using local search; (3) we Intra-mode

GFlowNet

Exploration

train GFlowNets using revised trajectories. LS-GFN is promis-
ing, as we synergetically combine inter-mode global exploration
and intra-mode local exploration. GFlowNets induce inter-mode

Figure 1: Strategy of LS-GFN.
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exploration via the iterative construction of solutions from scratch. As shown in Figure 1, local
search serves as a means to facilitate intra-mode exploration.

Our extensive experiments underscore the effectiveness of the proposed exploration strategy for
GFlowNets. To assess the efficacy of our method, we apply it to six well-established benchmarks
encompassing molecule optimization and biological sequence design. We observe a significant im-
provement in the mode seeking and average reward of GFlowNets with our local search. The pro-
posed method outperforms not only prior GFlowNet methods but also reward-maximization tech-
niques employed by various reinforcement learning baselines as well as sampling baselines, in terms
of both the number of modes discovered and the value of top-K rewards.

2 RELATED WORKS

Advances and extension of GFlowNets. A GFlowNet is a generative model that learns particle
flows on a directed acyclic graph (DAG), with directed edges denoting actions and nodes signifying
states of the Markov decision process (MDP). The quantity of flows it handles effectively represents
the unnormalized density within the generation process. GFlowNets, when introduced initially by
Bengio et al. (2021) for scientific discovery (Jain et al., 2023b), employed a flow matching condition
for their temporal difference (TD)-like training scheme. This condition ensures that all states meet
the requirement of having equal input and output flows. Subsequent works have further refined this
objective, aiming for more stable training and improved credit assignment. Notably, Malkin et al.
(2022) introduced trajectory balance which predicts the flow along complete trajectories, resembling
a Monte Carlo (MC) method to achieve unbiased estimation. Madan et al. (2023) proposed subtra-
jectory balance, which is akin to TD( ) (Sutton, 1988), to train GFlowNets from partial trajectories.
Furthermore, Zhang et al. (2023c) proposed quantile matching to better incorporate uncertainty in
the reward function.

GFlowNets exhibits insightful connections with various research domains, enriching the synergy be-
tween these areas. In the study by Zhang et al. (2022b; 2023a), the connection between GFlowNets
and generative models such as energy-based models (LeCun et al., 2006) and denoising diffusion
probabilistic models (Ho et al., 2020) is investigated. Meanwhile, Malkin et al. (2023) shed light on
the relationship between hierarchical variational inference (Ranganath et al., 2016) and GFlowNets,
providing a comprehensive analysis of why GFlowNets deliver superior performance. Additionally,
the works of Pan et al. (2022; 2023a;b) offer valuable insights into the integration of reinforcement
learning techniques.

Improving generalization of GFlowNets in high reward space. In a prior attempt to overcome
the low-reward exploration tendency of GFlowNets, Shen et al. (2023) suggested strategies such as
prioritized replay training to target higher-reward regions, and structure-based credit assignment to
identify shared structures among high-reward objects. Furthermore, they suggested a new edge flow
parametrization method called SSR, which predicts edge flows as a function of pairs of states rather
than of a single state. Although Shen et al. (2023) share a similar objective to our research, we dis-
tinguish ourselves by employing a local search approach to steer GFlowNet towards the exploration
of highly rewarding regions.

3 PRELIMINARIES

In this section, we introduce the foundational concepts underpinning GFlowNets, a novel generative
model tailored for compositional objects denoted as X 2 X. We follow the notation from Bengio
et al. (2023). GFlowNets follow a trajectory-based generative process, using discrete actions to
iteratively modify a state which represents a partially constructed object. This can be described by
a directed acyclic graph (DAG), G = (S; A), where S is a finite set of all possible states, and A is a
subsetof S S, representing directed edges. Within this framework, we define the children of state
s 2 S as the set of states connected by edges whose head is S, and the parents of state S as the set of
states connected by edges whose tail is S.

We define a complete trajectory = (Sg ¥ ::: ¥ s,) 2 T from the initial state Sq to terminal state
Sn = X 2 X. We define trajectory flow as F( ) : T ¥ Rxo, which represents the unnormalized
density function of 2 T. We define state flow as the total amount of unnormalized probability
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Figure 2: lllustration of a GFlowNet in a toy environment with two objectsx, 2 X . Z = R(x1) + R(Xz2)
is the total amount of ow in the source, and the sink is the storage for the ow of the terminakstatedx.
The generative probability iga(x1) = R(x1)=(R(Xx1) + R(X2)), andp(x2) = R(x2)=(R(x1) + R(X2)).

P
owing though states: F (s) = o152 F( ), andque owas the total amount of unnormalized
probability owing through edges! s® F(s! s%= 2T «(s! s9)2 F().

We de ne the trajectory reward R( ) as the reward of the terminal state of the trajectory
R( =(so! :::! sp=x) = R(x), i.e., the reward is determined only by the terminal state,
and intermediate states do not contribute to the reward values.

We de ne theforward policyto model the forward transition probabiliBg (sYs) from s to its child
s% Similarly, we also consider theackward policyPg (sjs?) for the backward transitios? 99Ks,
wheres is a parent o&°.

Pr andPg are related to the Markovian oW as follows:

F(s! s9
F(s)

F(s! s9

Pg (sis?) = TEE)

P (s9s) =

The marginal likelihood of sampling 2 X can be derived aBZ (x) = P o1 -1 ¢ PE( ) where

I x denotes a complete trajectorythat terminates at. The ultimate objective of GFlowNets
is to match the marginal likelihood with the reward functi®y, (x) / R(x). PZ is also called
terminating probability. See Figure 2 for a conceptual understanding of GFlowNets.

Trajectory balance. The trajectory balance algorithm is one of the training methods that can achieve
Pz (x) /' R(x). The trajectory bajance lossrg works by training three models, a learnable scalar
of initial state ow Z F(sp) = -t F( ), aforward policyPr (st+1jst; ), and a backward
policy Pg (StjSt+1; ) to minimize the following objective:

Q )
rzzl Pe (stist 15 )
R(x) szl Pe (st 1jst; )

Lwe( ; )= log 1)
Replay training of GFlowNets. One of the interesting advantages of GFlowNets is that they can
be trained in an off-policy or of ine manner (Bengio et al., 2021). To this end, prior methods often

by using the GFlowNet's forward polici?e or an exploratory policy, and (2) minimize the loss
computed from samples from the replay bufferThis training process leverages the generalization
capability of the ow model to make good predictions on unseen trajectories, which is critical since
visiting the entire trajectory space ©fis intractable. This generalization capability highly relies on
the quality of the training datasBt. This study investigates how to make high-quality replay buffers
D using a local search method during the sampling step.

4 LocAL SEARCH GFLOWNETS(LS-GFN)

Overview. Our method is a simple augmentatioBt¢p B) of existing training algorithms for
GFlowNets Step A and Step Q). Our local search ifBtep B re nes the candidate samples by
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Figure 3: lllustration of Local Search GFlowNet (LS-GFN) algorithm.

partially backtracking the complete trajectory using the backward p&lcyand then reconstruct-
ing it with the forward policyPg . This procedure is done multiple times to iteratively re ne and
construct highly rewarding samples.

Our algorithm traind®r andPg by repeating these three steps (see also Fig. 3):

Step A. We samplea set of trajectories 1;:::; m gusingPe( ).

Step B. Were ne the M trajectories in parallel fol iterations. For each iteration, we generate
f o S gfromf g; m g using a local search by usimig 's destroying andPr 's
backtracking, and add ?; J ginto the training datasd®. Then, we choose whether
to accept n, 9 (i.e. make transition) or reject, m (i.e. make staying) with
Iteringrulesform=1; ;M.

Step C. Wetrain the GFlowNet by using training datadet We use reward prioritized sampling
over D and use the sampled trajectories to minimize a GFlowNet loss function such as
trajectory balance.

4,1 STEP A: SAMPLING

We construct a complete trajectoryhrough a sequential process of generating actions from scratch
by using forward policyPe ( ). This approach enables global exploration over different modes. It

is worth noting that within the GFlowNet literature, various techniques have been proposed to use
Pe () for exploration (Pan et al., 2022; Rector-Brooks et al., 2023). In this work, we employ the
-noisy method. It selects a random action with probabilignd followsPr (s§s) to sample the
action with probabilityl

4.2 STEP B: REFINING

After completingStep A, we have an initial candidate set of samples »; ; m . InStep B we
makel iterations of local search foM candidate trajectories in parallel.

Taking a representative among tecandidate trajectories, let= (sp ! :::! s, = X). Inspired
by Zhang et al. (2022b), we backtrakk-step from complete trajectory into partial trajectory using
Pg . Subsequently, employirige , we sample & -step forward trajectory teeconstructa complete
trajectory from the partial trajectory.

back= X = Sn 99K:1199KS) ¢ i recon= S5 k! il oSy = xC )

Note the99Kstands for a backward transition from one state to its parent state. We call the local
search re ned trajectory®

O=(sp! 1 &% 1 sﬁzx}o) (3)

We de ne the transition probabilitg( § ) along with its reverse counterpayt j © as follows:
a( % )= Pa( baciX)PF ( recon; a( ] 0): Pg ( recorjxo) Pr ( destro;) 4)

We now need to determine whether to accept or rejédtom g( 9 ). We present two lItering
strategies, one deterministic and the other stochastic.

Deterministic Filtering. We accept °with following probability:
A(; 9=1r( 95r ()g ©)

4
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Figure 4: lllustration of th&-step re nement process of LS-GFN.

Stochastic Filtering. We accept © using the back-and-forth Metropolis-Hastings (Hastings, 1970;
Zhang et al., 2022b) acceptance probability:

AG 9=min 3 RJ9CT)
R()a( 9

Deterministic Itering offers advantages in the context of greedy local search when aiming to
maximize the rewards of candidate samples. In contrast, stochastic ltering can be viewed as a
post-processing sampling method within Markov chain Monte Carlo (MCMC) that helps maintain
the sampling objective of GFlowNets, where we seek to generate samples from the distribution
p(x) / R(x) while promoting diversity. In this work, we use deterministic Itering as a default
setting but closely analyze its pros and cons in Appendix B.2. Our overall process of re nement,
including backtracking, reconstruction, and ltering, is illustrated in Fig. 4.

(6)

Note that we gather both accepted and rejected trajectories and compile them into a training dataset
D. To ensure that highly rewarded trajectories frBnreceive priority during training, we use a
reward-based prioritized replay training (PRT) method (Shen et al., 2023) . This approach increases
the likelihood of using accepted trajectories within the training process.

4.3 STEP C: TRAINING

In this work, we use the TB objective function as the default objective for training on a d&taset
In TB, we train three models, a model of initial state &v, a forward policyPg (St+1 jSt; ), and
a backward policyPg (stjsi+1 ; ) as follows:

" Qn o

. Pe (sijst 1) )
. = n l
L( ;D) EPD( ) log R(x) Y?:l Ps (st 1jst; )

()

Note that the transition probability( § ) in Equation (3) is de ned withPg (st+1 jSt; ) and
Ps (stjst+1; ) Where this means the local search capability also evolves with GFlowNets and im-
proves throughout the training process.

Algorithm 1 Local Search GFlowNet (LS-GFN)

1: SetD ; . Initialize training dataset.
2. fort=1;:::;T do . Iteration of training rounds
3: Sample ;i m Pe( ;) . Step A: Sampling
4 fori=1;:::;1 do . Step B:Re ning
5 form=1;:::;M do

6: Propose® q(j m; ) by Equation (4).

7 UpdateD D[f Qg

8 Accept (m 5y or reject (m m ) by Equation (5).

9 end for

10: end for

11: Use the Adam optimizer to achieve: argminL( ;D). . Step C: Training
12: end for
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We use reward-based prioritized replay training (PRT) (Shen et al., 2023), where Rig(sétto

90th percentile of th® and the 50% of th8 is sampled from the below 90th percentile of the

Our method can similarly accommodate various other objective functions, such as DB, and SubTB.
See Algorithm 1 for the detailed pseudocode of our method.

5 EXPERIMENTS

We present our experimental results on 6 biochemical tasks, including molecule optimization and bi-
ological sequence design. In these settings, generating diverse samples with relatively high rewards
is crucial for robustness to proxy misspeci cation (Bengio et al., 2023). To this end, we measure the
accuracy of GFlowNets using the relative gap to the target reward distribution following Shen et al.
(2023). We also measure the number of modes discovered by GFlowNets.

5.1 TASK DESCRIPTION

Let X be the set of all objects that can be generated (i.e., the terminal state spacg)parttie
complete trajectory space which consists of all possible trajectories that can incrementally construct

We consider two molecule optimization and four biological sequence design tasks:

QM?9. Our goal is to generate a small molecule graph. We have 12 building blocks with 2 stems and
generate a molecule with 5 blocks. Our objective is to maximize the HOMO-LUMO gap, which is
obtained via a pre-trained MXMNet (Zhang et al., 2020) proxy.

SEH. Our goal is to generate binders of the sEH protein. We have 18 building blocks with 2 stems
and generate a molecule with 6 blocks. Our objective is to maximize binding af nity to the protein
provided by the pre-trained proxy model provided by (Bengio et al., 2021).

TFBIind8. Our goal is to generate a string of length 8 of nucleotides. Though an autoregressive
MDP is conventionally used for strings, we use a prepend-append MDP (PA-MDP) (Shen et al.,
2023), in which the action involves either adding one token to the beginning or the end of a partial
sequence. The reward is a DNA binding af nity to a human transcription factor (Trabucco et al.,

2022).

RNA-Binding. Our goal is to generate a string of 14 nucleobases. We consider the PA-MDP to
generate strings. Our objective is to maximize the binding af nity to the target transcription factor.
We present three different target transcriptions, L14-RNA1, L14-RNA2, and L14-RNA3, introduced
by Sinai et al. (2020).

5.2 BASELINES

We consider prior GFlowNet (GFN) methods and reward-maximization methods as our base-
lines. Prior GFN methods include detailed balance (DB, Bengio et al., 2023), maximum entropy
GFN (MaxEnt, Malkin et al., 2022), trajectory balance (TB, Malkin et al., 2022), sub-trajectory
balance (SubTB, Madan et al., 2023), and substructure-guided trajectory balance (GTB, Shen et al.,
2023). For reward-maximization methods, we consider Markov Molecular Sampling (MARS, Xie
et al., 2020), which is a sampling-based method known to work well in the molecule domain, and
RL-based methods which include advantage actor-critic (A2C) with entropy regularization (Mnih
etal., 2016), Soft Q-Learning (SQL, Haarnoja et al., 2018), and proximal policy optimization (PPO,
Schulman et al., 2017).

5.3 IMPLEMENTATIONS AND HYPERPARAMETERS

For GFN implementations, we strictly follow implementations from Shen et al. (2023) and re-
implement only non-existing methods by ourselves. For all GFN models, we apply prioritized replay
training (PRT) and relative edge ow policy parametrization mapping (SSR) from Shen et al. (2023).
We run experiments witli = 2; 000training rounds for QM9, seH, and TFBind8 amd= 5; 000
training rounds for RNA-binding tasks.
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Table 1: Accuracy of GFlowNets. Mean and standard deviation from 3 random seeds are reported.

Method QM9 () SEH (') TFBINd8 (') L14-RNA1(') L14-RNA2(') L14-RNA3 ()

DB 93.16+0.94 9526+0.37 77.64+0.70 2825+054 16.99+0.15 17.27+0.21
DB + LS-GFN 95.41+1.94 93.77+0.48 7559+0.09 29.86+0.24 18.19+031  17.72+0.03
MaxEnt 96.95+0.44 100.00+0.00 84.64+0.63 3353+0.19 21.80+0.26  32.49+159
MaxEnt + LS-GFN 100.00£0.00 100.00+0.00 97.67+1.14 88.04+194 56.93+1.05 74.28+3.71
SubTB (0.9) 93.49+0.62 98.98+0.19 7653+1.08 29.38+0.32 28.18+0.14  18.77 +0.27
SubTB (0.9) + LS-GFN  100.00+ 0.00 100.00+0.00 76.54+0.55 41.16+0.41 2501031  21.24+0.12
B 97.84+0.63 100.00+0.00 85.63+0.35 33.47+0.37 21.88+0.35 3270+ 0.59
TB + LS-GFN 100.00£0.00 100.00+0.00 97.05+0.58 87.28+325 56.63+0.56  75.75+3.10

Figure 5: Accuracy of GFlowNet on various tasks. Ours stands for TB + LS-GFN.

To ensure fairness in sample ef ciency across all baselines, we maintain a consistent reward eval-
uation budget for each task. This budget denote® ass determined by the number of candi-

date samples per training rounil §, and the number of local search revisioh3 (esulting in
B=M (I +1) = 32 for all baselines. for LS-GFN, we st = 4, andl = 7 as default.

We provide a detailed description of the hyperparameters in Appendix A.2.

5.4 BEVALUATING THE ACCURACY OF GFLOWNETS

We rst evaluate how well our method matches the target reward distribution. As suggested in
Shen et al. (2023), we measure the accuracy of training GFlop(Xet ) by using a relative error

between the sample meanR(x) under the leagned distributige(x; ) and the expected value of
R(x) given the target distributiop (x) = R(X)= ,,x R(X):

CoN = - Epx )[R,
Acc(p(x; ))=100 min m,l :

For all experiments, we report the performance with three different random seeds. We provide
details of our experiments in Appendix A.1.

Table 1 presents the results of our method when integrated with different GFN training objectives.
Note that our local search mechanism is orthogonal to training methods, so we can plug our method
into various objectives. As shown in the table, our method outperforms baselines and matches the

target distribution in most cases. This highlights the effectiveness of local search guided by GFN
policies on nding high-quality samples.

Figure 5 shows the performance of our method and prior GFN baselines across training. We only
plot results of prior GFN methods without local search and our method integrated with TB for
clear visualization. For monitoring, we collect 128 on-policy samples every 10 training rounds and
accumulate them, following Shen et al. (2023). Note that samples for computing relative error from

the target mean have never been used for training. As shown in the gure, our method converges to
the target mean faster than any other baselines.
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