
Published as a conference paper at ICLR 2024

LOCAL SEARCH GFLOWNETS

Minsu Kim∗ & Taeyoung Yun
KAIST

Emmanuel Bengio
Recursion

Dinghuai Zhang
Mila, Université de Montréal

Yoshua Bengio
Mila, Université de Montréal, CIFAR

Sungsoo Ahn
POSTECH

Jinkyoo Park
KAIST, Omelet

ABSTRACT

Generative Flow Networks (GFlowNets) are amortized sampling methods that
learn a distribution over discrete objects proportional to their rewards. GFlowNets
exhibit a remarkable ability to generate diverse samples, yet occasionally strug-
gle to consistently produce samples with high rewards due to over-exploration on
wide sample space. This paper proposes to train GFlowNets with local search,
which focuses on exploiting high-rewarded sample space to resolve this issue.
Our main idea is to explore the local neighborhood via backtracking and recon-
struction guided by backward and forward policies, respectively. This allows bias-
ing the samples toward high-reward solutions, which is not possible for a typical
GFlowNet solution generation scheme, which uses the forward policy to gener-
ate the solution from scratch. Extensive experiments demonstrate a remarkable
performance improvement in several biochemical tasks. Source code is available:
https://github.com/dbsxodud-11/ls_gfn.

1 INTRODUCTION

Generative Flow Networks (GFlowNets, Bengio et al., 2021) are a family of probabilistic models
designed to learn reward-proportional distributions over objects, in particular compositional objects
constructed from a sequence of actions, e.g., graphs or strings. It has been used in critical appli-
cations, such as molecule discovery (Li et al., 2022; Jain et al., 2023a), multi-objective optimiza-
tion (Jain et al., 2022b), biological design (Jain et al., 2022a), causal modeling (Deleu et al., 2022;
Atanackovic et al., 2023; Deleu et al., 2023), system job scheduling (Zhang et al., 2022a), and graph
combinatorial optimization (Zhang et al., 2023b).

GFlowNets distinguish themselves by aiming to produce a diverse set of highly rewarding samples
(modes) (Bengio et al., 2021), which is especially beneficial in a scientific discovery process where
we need to increase the number of candidates who survive even after screening by the true oracle
function. In pursuit of this objective, the use of GFlowNets emphasizes exploration to uncover novel
modes that differ significantly from previously collected data points.

However, GFlowNets occasionally fall short in collecting highly rewarding experiences as they be-
come overly fixated on exploring the diverse landscape of the vast search space during training.
This tendency ultimately hinders their training efficiency, as GFlowNets heavily relies on experien-
tial data collected by their own sampling policy (Shen et al., 2023).

Industrial & Systems Engineering

Main Intuition for LS-GFN

1

Training

Intra-mode
Exploration

Inter-mode Exploration

Intra-mode
Exploration

GFlowNet

GFlowNet

Figure 1: Strategy of LS-GFN.

Contribution. In this study, we introduce a novel algorithm,
local search GFlowNets (LS-GFN), which is designed to en-
hance the training effectiveness of GFlowNets by leveraging lo-
cal search in object space. LS-GFN has three iterative steps:
(1) we sample the complete trajectories using GFlowNet trajec-
tories; (2) we refine the trajectories using local search; (3) we
train GFlowNets using revised trajectories. LS-GFN is promis-
ing, as we synergetically combine inter-mode global exploration
and intra-mode local exploration. GFlowNets induce inter-mode

∗Correspondence to: Minsu Kim <min-su@kaist.ac.kr>

1

https://github.com/dbsxodud-11/ls_gfn

Published as a conference paper at ICLR 2024

exploration via the iterative construction of solutions from scratch. As shown in Figure 1, local
search serves as a means to facilitate intra-mode exploration.

Our extensive experiments underscore the effectiveness of the proposed exploration strategy for
GFlowNets. To assess the efficacy of our method, we apply it to six well-established benchmarks
encompassing molecule optimization and biological sequence design. We observe a significant im-
provement in the mode seeking and average reward of GFlowNets with our local search. The pro-
posed method outperforms not only prior GFlowNet methods but also reward-maximization tech-
niques employed by various reinforcement learning baselines as well as sampling baselines, in terms
of both the number of modes discovered and the value of top-K rewards.

2 RELATED WORKS

Advances and extension of GFlowNets. A GFlowNet is a generative model that learns particle
flows on a directed acyclic graph (DAG), with directed edges denoting actions and nodes signifying
states of the Markov decision process (MDP). The quantity of flows it handles effectively represents
the unnormalized density within the generation process. GFlowNets, when introduced initially by
Bengio et al. (2021) for scientific discovery (Jain et al., 2023b), employed a flow matching condition
for their temporal difference (TD)-like training scheme. This condition ensures that all states meet
the requirement of having equal input and output flows. Subsequent works have further refined this
objective, aiming for more stable training and improved credit assignment. Notably, Malkin et al.
(2022) introduced trajectory balance which predicts the flow along complete trajectories, resembling
a Monte Carlo (MC) method to achieve unbiased estimation. Madan et al. (2023) proposed subtra-
jectory balance, which is akin to TD(λ) (Sutton, 1988), to train GFlowNets from partial trajectories.
Furthermore, Zhang et al. (2023c) proposed quantile matching to better incorporate uncertainty in
the reward function.

GFlowNets exhibits insightful connections with various research domains, enriching the synergy be-
tween these areas. In the study by Zhang et al. (2022b; 2023a), the connection between GFlowNets
and generative models such as energy-based models (LeCun et al., 2006) and denoising diffusion
probabilistic models (Ho et al., 2020) is investigated. Meanwhile, Malkin et al. (2023) shed light on
the relationship between hierarchical variational inference (Ranganath et al., 2016) and GFlowNets,
providing a comprehensive analysis of why GFlowNets deliver superior performance. Additionally,
the works of Pan et al. (2022; 2023a;b) offer valuable insights into the integration of reinforcement
learning techniques.

Improving generalization of GFlowNets in high reward space. In a prior attempt to overcome
the low-reward exploration tendency of GFlowNets, Shen et al. (2023) suggested strategies such as
prioritized replay training to target higher-reward regions, and structure-based credit assignment to
identify shared structures among high-reward objects. Furthermore, they suggested a new edge flow
parametrization method called SSR, which predicts edge flows as a function of pairs of states rather
than of a single state. Although Shen et al. (2023) share a similar objective to our research, we dis-
tinguish ourselves by employing a local search approach to steer GFlowNet towards the exploration
of highly rewarding regions.

3 PRELIMINARIES

In this section, we introduce the foundational concepts underpinning GFlowNets, a novel generative
model tailored for compositional objects denoted as x ∈ X . We follow the notation from Bengio
et al. (2023). GFlowNets follow a trajectory-based generative process, using discrete actions to
iteratively modify a state which represents a partially constructed object. This can be described by
a directed acyclic graph (DAG), G = (S,A), where S is a finite set of all possible states, and A is a
subset of S ×S, representing directed edges. Within this framework, we define the children of state
s ∈ S as the set of states connected by edges whose head is s, and the parents of state s as the set of
states connected by edges whose tail is s.

We define a complete trajectory τ = (s0 → . . .→ sn) ∈ T from the initial state s0 to terminal state
sn = x ∈ X . We define trajectory flow as F (τ) : T → R≥0, which represents the unnormalized
density function of τ ∈ T . We define state flow as the total amount of unnormalized probability

2

Published as a conference paper at ICLR 2024

Industrial & Systems Engineering

Illustration for GFlowNet Preliminaries

1

𝑠1

𝑠0

Initial state

Terminal state

𝑅(𝑥1)

𝑥1

SinkSource

𝑥2 𝑅(𝑥2)

Terminal state
Sink

𝑍 = 𝑅 𝑥1 + 𝑅(𝑥2)

Figure 2: Illustration of a GFlowNet in a toy environment with two objects x1, x2 ∈ X . Z = R(x1) +R(x2)
is the total amount of flow in the source, and the sink is the storage for the flow of the terminal state x1 and x2.
The generative probability is: p(x1) = R(x1)/ (R(x1) +R(x2)), and p(x2) = R(x2)/ (R(x1) +R(x2)).

flowing though state s: F (s) =
∑

τ∈T :s∈τ F (τ), and edge flow as the total amount of unnormalized
probability flowing through edge s→ s′: F (s→ s′) =

∑
τ∈T :(s→s′)∈τ F (τ).

We define the trajectory reward R(τ) as the reward of the terminal state of the trajectory
R (τ = (s0 → . . .→ sn = x)) = R(x), i.e., the reward is determined only by the terminal state,
and intermediate states do not contribute to the reward values.

We define the forward policy to model the forward transition probability PF (s
′|s) from s to its child

s′. Similarly, we also consider the backward policy PB(s|s′) for the backward transition s′ 99K s,
where s is a parent of s′.

PF and PB are related to the Markovian flow F as follows:

PF (s
′|s) = F (s→ s′)

F (s)
, PB(s|s′) =

F (s→ s′)

F (s′)

The marginal likelihood of sampling x ∈ X can be derived as P⊤
F (x) =

∑
τ∈T :τ→x PF (τ) where

τ → x denotes a complete trajectory τ that terminates at x. The ultimate objective of GFlowNets
is to match the marginal likelihood with the reward function, P⊤

F (x) ∝ R(x). P⊤
F is also called

terminating probability. See Figure 2 for a conceptual understanding of GFlowNets.

Trajectory balance. The trajectory balance algorithm is one of the training methods that can achieve
P⊤
F (x) ∝ R(x). The trajectory balance loss LTB works by training three models, a learnable scalar

of initial state flow Zθ ≈ F (s0) =
∑

τ∈T F (τ), a forward policy PF (st+1|st; θ), and a backward
policy PB(st|st+1; θ) to minimize the following objective:

LTB(τ ; θ) =

(
log

Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB (st−1|st; θ)

)2

(1)

Replay training of GFlowNets. One of the interesting advantages of GFlowNets is that they can
be trained in an off-policy or offline manner (Bengio et al., 2021). To this end, prior methods often
rely on training with replay buffers, which iterate two stages. (1) collect data D = {τ1, . . . , τM}
by using the GFlowNet’s forward policy PF or an exploratory policy, and (2) minimize the loss
computed from samples from the replay bufferD. This training process leverages the generalization
capability of the flow model to make good predictions on unseen trajectories, which is critical since
visiting the entire trajectory space of T is intractable. This generalization capability highly relies on
the quality of the training datasetD. This study investigates how to make high-quality replay buffers
D using a local search method during the sampling step.

4 LOCAL SEARCH GFLOWNETS (LS-GFN)

Overview. Our method is a simple augmentation (Step B) of existing training algorithms for
GFlowNets (Step A, and Step C). Our local search in Step B refines the candidate samples by

3

Published as a conference paper at ICLR 2024

Industrial & Systems Engineering

Overall Method

1

𝑷𝑷𝑭𝑭 𝝉𝝉

GFlowNet

ACTGAA

𝑀𝑀

𝑷𝑷𝑩𝑩(𝝉𝝉𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃)

ACTGAA

𝑷𝑷𝑭𝑭(𝝉𝝉𝒓𝒓𝒓𝒓𝒃𝒃𝒓𝒓𝒓𝒓)

CTTGAA

𝑀𝑀

Iteration (𝑰𝑰 times)

Step B: Refining

𝑀𝑀

Step A: Sampling

Step C: Training (𝑻𝑻 times iteration)

𝑷𝑷𝑭𝑭

ACTGAA

𝑷𝑷𝑭𝑭

𝑷𝑷𝑭𝑭(𝝉𝝉𝒓𝒓𝒓𝒓𝒃𝒃𝒓𝒓𝒓𝒓)

Backtracking with 𝑷𝑷𝑩𝑩 Reconstruction with 𝑷𝑷𝑭𝑭

𝑷𝑷𝑭𝑭
CTTGAA

accept: transit

Filtering

reject: stayACTGAA

Figure 3: Illustration of Local Search GFlowNet (LS-GFN) algorithm.

partially backtracking the complete trajectory using the backward policy PB and then reconstruct-
ing it with the forward policy PF . This procedure is done multiple times to iteratively refine and
construct highly rewarding samples.

Our algorithm trains PF and PB by repeating these three steps (see also Fig. 3):

Step A. We sample a set of trajectories {τ1, ..., τM} using PF (τ).
Step B. We refine the M trajectories in parallel for I iterations. For each iteration, we generate

{τ ′1, · · · τ ′M} from {τ1, · · · τM} using a local search by using PB’s destroying and PF ’s
backtracking, and add {τ ′1, · · · τ ′M} into the training dataset D. Then, we choose whether
to accept τm ← τ ′m (i.e. make transition) or reject τm ← τm (i.e. make staying) with
filtering rules for m = 1, · · · ,M .

Step C. We train the GFlowNet by using training dataset D. We use reward prioritized sampling
over D and use the sampled trajectories to minimize a GFlowNet loss function such as
trajectory balance.

4.1 STEP A: SAMPLING

We construct a complete trajectory τ through a sequential process of generating actions from scratch
by using forward policy PF (τ). This approach enables global exploration over different modes. It
is worth noting that within the GFlowNet literature, various techniques have been proposed to use
PF (τ) for exploration (Pan et al., 2022; Rector-Brooks et al., 2023). In this work, we employ the
ϵ-noisy method. It selects a random action with probability ϵ and follows PF (s

′|s) to sample the
action with probability 1− ϵ.

4.2 STEP B: REFINING

After completing Step A, we have an initial candidate set of samples τ1, τ2, · · · , τM . In Step B, we
make I iterations of local search for M candidate trajectories in parallel.

Taking a representative among the M candidate trajectories, let τ = (s0 → . . .→ sn = x). Inspired
by Zhang et al. (2022b), we backtrack K-step from complete trajectory into partial trajectory using
PB . Subsequently, employing PF , we sample a K-step forward trajectory to reconstruct a complete
trajectory from the partial trajectory.

τback =
(
x = sn 99K . . . 99K s′n−K

)
, τrecon =

(
s′n−K → . . .→ s′n = x′) (2)

Note the 99K stands for a backward transition from one state to its parent state. We call the local
search refined trajectory τ ′:

τ ′ = (s0 → · · · → s′n−K → · · · → s′n = x′︸ ︷︷ ︸
recon

) (3)

We define the transition probability q(τ ′|τ) along with its reverse counterpart q(τ |τ ′) as follows:

q(τ ′|τ) = PB(τback|x)PF (τrecon) , q(τ |τ ′) = PB (τrecon|x′)PF (τdestroy) (4)

We now need to determine whether to accept or reject τ ′ from q(τ ′|τ). We present two filtering
strategies, one deterministic and the other stochastic.

Deterministic Filtering. We accept τ ′ with following probability:

A (τ, τ ′) = 1{R(τ ′)>R(τ)} (5)

4

Published as a conference paper at ICLR 2024

Industrial & Systems Engineering

Overall Method

1

𝑷𝑷𝑭𝑭 𝝉𝝉

GFlowNet

ACTGAA

𝑀𝑀

𝑷𝑷𝑩𝑩(𝝉𝝉𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃)

ACTGAA

𝑷𝑷𝑭𝑭(𝝉𝝉𝒓𝒓𝒓𝒓𝒃𝒃𝒓𝒓𝒓𝒓)

CTTGAA

𝑀𝑀

Iteration (𝑰𝑰 times)

Step B: Refining

𝑀𝑀

Step A: Sampling

Step C: Training (𝑻𝑻 times iteration)

𝑷𝑷𝑭𝑭

ACTGAA

𝑷𝑷𝑭𝑭

𝑷𝑷𝑭𝑭(𝝉𝝉𝒓𝒓𝒓𝒓𝒃𝒃𝒓𝒓𝒓𝒓)

Backtracking with 𝑷𝑷𝑩𝑩 Reconstruction with 𝑷𝑷𝑭𝑭

𝑷𝑷𝑭𝑭
CTTGAA

accept: transit

Filtering

reject: stayACTGAA

Figure 4: Illustration of the 3-step refinement process of LS-GFN.

Stochastic Filtering. We accept τ ′ using the back-and-forth Metropolis-Hastings (Hastings, 1970;
Zhang et al., 2022b) acceptance probability:

A (τ, τ ′) = min

[
1,

R(τ ′)

R(τ)

q(τ ′|τ)
q(τ |τ ′)

]
(6)

Deterministic filtering offers advantages in the context of greedy local search when aiming to
maximize the rewards of candidate samples. In contrast, stochastic filtering can be viewed as a
post-processing sampling method within Markov chain Monte Carlo (MCMC) that helps maintain
the sampling objective of GFlowNets, where we seek to generate samples from the distribution
p(x) ∝ R(x) while promoting diversity. In this work, we use deterministic filtering as a default
setting but closely analyze its pros and cons in Appendix B.2. Our overall process of refinement,
including backtracking, reconstruction, and filtering, is illustrated in Fig. 4.

Note that we gather both accepted and rejected trajectories and compile them into a training dataset
D. To ensure that highly rewarded trajectories from D receive priority during training, we use a
reward-based prioritized replay training (PRT) method (Shen et al., 2023) . This approach increases
the likelihood of using accepted trajectories within the training process.

4.3 STEP C: TRAINING

In this work, we use the TB objective function as the default objective for training on a dataset D.
In TB, we train three models, a model of initial state flow Zθ, a forward policy PF (st+1|st; θ), and
a backward policy PB(st|st+1; θ) as follows:

L(θ;D) = EPD(τ)

[(
log

Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB (st−1|st; θ)

)2
]
. (7)

Note that the transition probability q(τ ′|τ) in Equation (3) is defined with PF (st+1|st; θ) and
PB(st|st+1; θ) where this means the local search capability also evolves with GFlowNets and im-
proves throughout the training process.

Algorithm 1 Local Search GFlowNet (LS-GFN)
1: Set D ← ∅ ▷ Initialize training dataset.
2: for t = 1, . . . , T do ▷ Iteration of training rounds
3: Sample τ1, ..., τM ∼ PF (τ ; θ) ▷ Step A: Sampling
4: for i = 1, . . . , I do ▷ Step B: Refining
5: for m = 1, . . . ,M do
6: Propose τ ′

m ∼ q(·|τm; θ) by Equation (4).
7: Update D ← D ∪ {τ ′

m}
8: Accept (τm ← τ ′

m) or reject (τm ← τm) by Equation (5).
9: end for

10: end for
11: Use the Adam optimizer to achieve: θ ← argminL(θ;D). ▷ Step C: Training
12: end for

5

Published as a conference paper at ICLR 2024

We use reward-based prioritized replay training (PRT) (Shen et al., 2023), where we set PD(τ) to
sample a batch of trajectories B = {τ1, . . . , τM} where 50% of the B is sampled from the above
90th percentile of the D and the 50% of the B is sampled from the below 90th percentile of the D.

Our method can similarly accommodate various other objective functions, such as DB, and SubTB.
See Algorithm 1 for the detailed pseudocode of our method.

5 EXPERIMENTS

We present our experimental results on 6 biochemical tasks, including molecule optimization and bi-
ological sequence design. In these settings, generating diverse samples with relatively high rewards
is crucial for robustness to proxy misspecification (Bengio et al., 2023). To this end, we measure the
accuracy of GFlowNets using the relative gap to the target reward distribution following Shen et al.
(2023). We also measure the number of modes discovered by GFlowNets.

5.1 TASK DESCRIPTION

Let X be the set of all objects that can be generated (i.e., the terminal state space), and T be the
complete trajectory space which consists of all possible trajectories that can incrementally construct
any x ∈ X . As different trajectories τ1, . . . , τN ∈ T can represent identical x ∈ X , |T | ≥ |X |.
We consider two molecule optimization and four biological sequence design tasks:

QM9. Our goal is to generate a small molecule graph. We have 12 building blocks with 2 stems and
generate a molecule with 5 blocks. Our objective is to maximize the HOMO-LUMO gap, which is
obtained via a pre-trained MXMNet (Zhang et al., 2020) proxy.

sEH. Our goal is to generate binders of the sEH protein. We have 18 building blocks with 2 stems
and generate a molecule with 6 blocks. Our objective is to maximize binding affinity to the protein
provided by the pre-trained proxy model provided by (Bengio et al., 2021).

TFBind8. Our goal is to generate a string of length 8 of nucleotides. Though an autoregressive
MDP is conventionally used for strings, we use a prepend-append MDP (PA-MDP) (Shen et al.,
2023), in which the action involves either adding one token to the beginning or the end of a partial
sequence. The reward is a DNA binding affinity to a human transcription factor (Trabucco et al.,
2022).

RNA-Binding. Our goal is to generate a string of 14 nucleobases. We consider the PA-MDP to
generate strings. Our objective is to maximize the binding affinity to the target transcription factor.
We present three different target transcriptions, L14-RNA1, L14-RNA2, and L14-RNA3, introduced
by Sinai et al. (2020).

5.2 BASELINES

We consider prior GFlowNet (GFN) methods and reward-maximization methods as our base-
lines. Prior GFN methods include detailed balance (DB, Bengio et al., 2023), maximum entropy
GFN (MaxEnt, Malkin et al., 2022), trajectory balance (TB, Malkin et al., 2022), sub-trajectory
balance (SubTB, Madan et al., 2023), and substructure-guided trajectory balance (GTB, Shen et al.,
2023). For reward-maximization methods, we consider Markov Molecular Sampling (MARS, Xie
et al., 2020), which is a sampling-based method known to work well in the molecule domain, and
RL-based methods which include advantage actor-critic (A2C) with entropy regularization (Mnih
et al., 2016), Soft Q-Learning (SQL, Haarnoja et al., 2018), and proximal policy optimization (PPO,
Schulman et al., 2017).

5.3 IMPLEMENTATIONS AND HYPERPARAMETERS

For GFN implementations, we strictly follow implementations from Shen et al. (2023) and re-
implement only non-existing methods by ourselves. For all GFN models, we apply prioritized replay
training (PRT) and relative edge flow policy parametrization mapping (SSR) from Shen et al. (2023).
We run experiments with T = 2, 000 training rounds for QM9, sEH, and TFBind8 and T = 5, 000
training rounds for RNA-binding tasks.

6

Published as a conference paper at ICLR 2024

Table 1: Accuracy of GFlowNets. Mean and standard deviation from 3 random seeds are reported.

Method QM9 (↑) sEH (↑) TFBind8 (↑) L14-RNA1 (↑) L14-RNA2 (↑) L14-RNA3 (↑)
DB 93.16 ± 0.94 95.26 ± 0.37 77.64 ± 0.70 28.25 ± 0.54 16.99 ± 0.15 17.27 ± 0.21
DB + LS-GFN 95.41 ± 1.94 93.77 ± 0.48 75.59 ± 0.09 29.86 ± 0.24 18.19 ± 0.31 17.72 ± 0.03

MaxEnt 96.95 ± 0.44 100.00 ± 0.00 84.64 ± 0.63 33.53 ± 0.19 21.80 ± 0.26 32.49 ± 1.59
MaxEnt + LS-GFN 100.00 ± 0.00 100.00 ± 0.00 97.67 ± 1.14 88.04 ± 1.94 56.93 ± 1.05 74.28 ± 3.71

SubTB (0.9) 93.49 ± 0.62 98.98 ± 0.19 76.53 ± 1.08 29.38 ± 0.32 28.18 ± 0.14 18.77 ± 0.27
SubTB (0.9) + LS-GFN 100.00 ± 0.00 100.00 ± 0.00 76.54 ± 0.55 41.16 ± 0.41 25.01 ± 0.31 21.24 ± 0.12

TB 97.84 ± 0.63 100.00 ± 0.00 85.63 ± 0.35 33.47 ± 0.37 21.88 ± 0.35 32.70 ± 0.59
TB + LS-GFN 100.00 ± 0.00 100.00 ± 0.00 97.05 ± 0.58 87.28 ± 3.25 56.63 ± 0.56 75.75 ± 3.10

Figure 5: Accuracy of GFlowNet on various tasks. Ours stands for TB + LS-GFN.
To ensure fairness in sample efficiency across all baselines, we maintain a consistent reward eval-
uation budget for each task. This budget denoted as B, is determined by the number of candi-
date samples per training round (M), and the number of local search revisions (I) resulting in
B = M × (I + 1) = 32 for all baselines. for LS-GFN, we set M = 4, and I = 7 as default.
We provide a detailed description of the hyperparameters in Appendix A.2.

5.4 EVALUATING THE ACCURACY OF GFLOWNETS

We first evaluate how well our method matches the target reward distribution. As suggested in
Shen et al. (2023), we measure the accuracy of training GFlowNet p(x; θ) by using a relative error
between the sample mean of R(x) under the learned distribution p(x; θ) and the expected value of
R(x) given the target distribution p∗(x) = R(x)/

∑
x∈X R(x):

Acc (p (x; θ)) = 100×min
(Ep(x;θ) [R (x)]

Ep∗(x) [R (x)]
, 1

)
,

For all experiments, we report the performance with three different random seeds. We provide
details of our experiments in Appendix A.1.

Table 1 presents the results of our method when integrated with different GFN training objectives.
Note that our local search mechanism is orthogonal to training methods, so we can plug our method
into various objectives. As shown in the table, our method outperforms baselines and matches the
target distribution in most cases. This highlights the effectiveness of local search guided by GFN
policies on finding high-quality samples.

Figure 5 shows the performance of our method and prior GFN baselines across training. We only
plot results of prior GFN methods without local search and our method integrated with TB for
clear visualization. For monitoring, we collect 128 on-policy samples every 10 training rounds and
accumulate them, following Shen et al. (2023). Note that samples for computing relative error from
the target mean have never been used for training. As shown in the figure, our method converges to
the target mean faster than any other baselines.

7

Published as a conference paper at ICLR 2024

Table 2: The number of discovered modes. Mean and standard deviation from 3 random seeds are reported

Method QM9 (↑) sEH (↑) TFBind8 (↑) L14-RNA1 (↑) L14-RNA2 (↑) L14-RNA3 (↑)
DB 635 ± 5 217 ± 11 304 ± 5 5 ± 0 4 ± 0 1 ± 0
DB + LS-GFN 745 ± 5 326 ± 13 317 ± 0 11 ± 3 13 ± 1 3 ± 0

MaxEnt 701 ± 10 676 ± 37 316 ± 3 10 ± 1 8 ± 2 7 ± 3
MaxEnt + LS-GFN 793 ± 3 4831 ± 148 317 ± 2 33 ± 2 31 ± 1 19 ± 0

SubTB (0.9) 665 ± 8 336 ± 28 309 ± 3 6 ± 0 5 ± 1 4 ± 1
SubTB (0.9) + LS-GFN 787 ± 2 2434 ± 60 314 ± 2 16 ± 4 13 ± 0 7 ± 0

TB 699 ± 14 706 ± 126 320 ± 3 10 ± 4 6 ± 0 6 ± 1
TB + LS-GFN 793 ± 4 5228 ± 141 316 ± 0 32 ± 4 27 ± 1 18 ± 0

Figure 6: Number of modes discovered over training. Ours stands for TB + LS-GFN.
Note: We conducted a local search only for training, not at the inference phase for fair comparison.
For every inference-aware metric, such as the relative error metric, we compare our method with
other GFN baselines without the local search refining process.

5.5 EVALUATING THE NUMBER OF MODES DISCOVERED

In this experiment, we systematically assess our training process’s ability to uncover numerous
distinctive modes. In biochemical tasks, modes are defined as high-scoring samples that exceed a
specified reward threshold, and are distinctly separated based on a predefined similarity constraint.
To achieve this, we evaluate both the reward magnitude and the diversity of generated samples.
Detailed statistics regarding these modes can be found in Appendix B.4. To ensure the reliability of
our results, we report performance across all experiments using three random seeds.

In Table 2, we present the outcomes of incorporating our method into various GFN training objec-
tives. We see that our approach exhibits remarkable performance in mode diversity when compared
to previous GFN techniques. This underscores the efficacy of our local search mechanism in facil-
itating exploration within intra-mode regions during training. Notably, our method showcases the
most substantial improvements in RNA-binding tasks, where objects are comparatively longer than
in other tasks. Complementing these findings, Figure 6 visually represents the progression of mode
discovery throughout training. Our method not only identifies the highest number of modes among
the compared techniques but also stands out for its accelerated mode detection, underscoring its ef-
ficiency. This is relatively surprising, since one common downside of training on higher rewards is
to make the model greedier and less diverse (Jain et al., 2023c).

5.6 COMPARISON WITH REWARD MAXIMIZATION METHODS

We evaluate our method against established techniques, including reinforcement learning baselines
(PPO, A2C, SQL) and a sampling baseline (MARS). We use three metrics: number of modes dis-
covered, mean rewards of the top 100 scoring samples out of evaluation samples accumulated across

8

Published as a conference paper at ICLR 2024

Figure 7: Performances in QM9 task. The average among 3 independent runs is reported.

Figure 8: Performances in L14-RNA1 task. The average among 3 independent runs is reported.

training, and sample uniqueness. Sample uniqueness is maximized at 1.0 when all samples are dis-
tinct, while it will be zero when all samples are identical.

As shown in Figures 7 and 8, our method surpasses reward-maximization methods in terms of mode-
seeking capabilities. Reward maximization methods can lead to a high fraction of duplicated sam-
ples, falling into non-diverse local optima. Our method consistently surpasses existing techniques in
terms of the number of modes identified, which is only possible when both strong exploration and
exploitation are achieved by the model.

We interpret these results by recalling the importance of the structure of both trajectory space (T)
and object space (X). Some inefficiencies in reinforcement learning (RL) arise from the failure to
account for symmetries, wherein multiple trajectories can lead to the generation of identical samples.
GFlowNets, which make use of this symmetry in their training objective, may very well waste less
time visiting the same state from different paths, since they are trained to know they are the same
outcome. See Appendix B.1 for detailed results on the other four tasks.

5.7 ADDITIONAL EXPERIMENTS

Comparison between deterministic filtering and stochastic filtering. See Appendix B.2.

Experiments for hyperparameter I . We did experiments for the hyperparameter I we introduced,
which is the number of revisions with local search; see Appendix B.3 for details.

Experiments for the number of modes metric. We investigated different ways of counting modes
and closely compared LS-GFN with other algorithms; see Appendix B.4.

Experiment for acceptance rate. We measured the acceptance rate A (τ, τ ′) during training, re-
flecting the success of the local search compared to GFlowNet’s sampling. We observed an in-
teresting phenomenon: the rate is fairly steady, signifying consistent evolution between GFlowNet
(PF (τ ; θ)) and the local search (i.e., PB(τdestroy; θ) and PF (τrecon; θ)); see Appendix B.6.

6 DISCUSSION

In this paper, we proposed a novel algorithm: Local Search GFlowNet (LS-GFN). We found that
LS-GFN has the fastest mode mixing capability among GFlowNet baselines and RL baselines and
has better sampling quality than GFlowNets. Our method had been consistently applied to exist-

9

Published as a conference paper at ICLR 2024

ing GFlowNets algorithms with simple modifications. These results suggested that combining the
inter-mode exploration capabilities of GFlowNets and intra-mode exploration through local search
methods is a powerful paradigm.

Limitation and Future Works. A limitation of LS-GFN lies in the potential impact of the quality
of the backward policy on its performance, particularly when the acceptance rate of the local search
becomes excessively low. One immediate remedy is to introduce an exploratory element into the
backward policy, utilizing techniques like ϵ-greedy or even employing a uniform distribution to
foster exploration within the local search. A promising avenue for future research could involve
fine-tuning backward policy to enhance the local search’s acceptance rate.

ACKNOWLEDGEMENT

We thank Nikolay Malkin, Hyeonah Kim, Sanghyeok Choi, Jarrid Rector-Brooks, Chenghao Liu,
Ling Pan, and Max W. Shen for their valuable input and feedback on this project.

REFERENCES

Lazar Atanackovic, Alexander Tong, Jason Hartford, Leo J Lee, Bo Wang, and Yoshua Bengio.
Dyngfn: Bayesian dynamic causal discovery using generative flow networks. arXiv preprint
arXiv:2302.04178, 2023.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023. URL http:
//jmlr.org/papers/v24/22-0364.html.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Char-
lin, and Yoshua Bengio. Joint bayesian inference of graphical structure and parameters with a
single generative flow network. arXiv preprint arXiv:2305.19366, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

WK Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, pp. 97–109, 1970.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning,
pp. 9786–9801. PMLR, 2022a.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcı́a, Jarrid Rector-Brooks, Yoshua
Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International
Conference on Machine Learning, 2022b. URL https://api.semanticscholar.org/
CorpusID:253097761.

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua
Bengio. Gflownets for ai-driven scientific discovery. Digital Discovery, 2(3):557–577, 2023a.

10

http://jmlr.org/papers/v24/22-0364.html
http://jmlr.org/papers/v24/22-0364.html
https://api.semanticscholar.org/CorpusID:253097761
https://api.semanticscholar.org/CorpusID:253097761

Published as a conference paper at ICLR 2024

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernández-Garcı́a, and Yoshua
Bengio. GFlowNets for AI-driven scientific discovery. Digital Discovery, 2023b.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıéa, Jarrid Rector-Brooks, Yoshua
Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International
Conference on Machine Learning, pp. 14631–14653. PMLR, 2023c.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Shibo Li, Jeff M Phillips, Xin Yu, Robert Kirby, and Shandian Zhe. Batch multi-fidelity active
learning with budget constraints. Advances in Neural Information Processing Systems, 35:995–
1007, 2022.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Elizabeth Everett,
Dinghuai Zhang, and Yoshua Bengio. GFlowNets and variational inference. International Con-
ference on Learning Representations (ICLR), 2023.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, and Yoshua Bengio. Generative
augmented flow networks. International Conference on Learning Representations (ICLR), 2022.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of GFlowNets with
local credit and incomplete trajectories. International Conference on Machine Learning (ICML),
2023a.

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. Conference on Uncertainty in Artificial Intelligence, 2023b.

Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. In International
conference on machine learning, pp. 324–333. PMLR, 2016.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
gflownets. arXiv preprint arXiv:2306.17693, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving GFlowNet training. In International
Conference on Machine Learning, pp. 30956–30975. PMLR, 2023.

Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
Adalead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv
preprint arXiv:2010.02141, 2020.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

11

Published as a conference paper at ICLR 2024

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 21658–21676. PMLR, 2022.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars:
Markov molecular sampling for multi-objective drug discovery. In International Conference on
Learning Representations, 2020.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. In The Eleventh International Conference on Learning Representations, 2022a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Confer-
ence on Machine Learning, pp. 26412–26428. PMLR, 2022b.

Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative
models with GFlowNets and beyond. International Conference on Machine Learning (ICML)
workshop of Beyond Bayes:Paths Towards Universal Reasoning Systems, 2023a.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint
arXiv:2305.17010, 2023b.

Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, and Yoshua Bengio. Distribu-
tional GFlowNets with quantile flows. arXiv preprint 2302.05793, 2023c.

Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multi-
plex graph for molecular structures. arXiv preprint arXiv:2011.07457, 2020.

12

Published as a conference paper at ICLR 2024

A EXPERIMENTAL SETTING

A.1 DETAILED IMPLEMENTATION

For the GFlowNets policy model, we use an MLP architecture with relative edge flow parameteriza-
tion (SSR) suggested in Shen et al. (2023). Given a pair of states (s, s′), we encode each state into
a one-hot encoding vector and concatenate them to pass as an input of the forward/backward policy
network. The number of layers and hidden units varies across different tasks, which is listed in Ta-
ble 3. We use the same architecture with different parameters to model forward and backward poli-
cies. We initialize logZθ to 5.0. Following Shen et al. (2023), we clip gradient norms to a maximum
of 10.0 and policy logit predictions to a minimum of -50.0 and a maximum of 50.0. To implement
DB and SubTB, which require state flow predictions, we find that introducing a separate neural net-
work for mapping fθ(s) : S → R+ is more useful than SSR, fθ(s) =

∑
s′∈child(s) fθ(s, s

′). Please
refer Figure 9.

(a) Number of Modes - DB (b) Number of Modes - SubTB (0.9)

Figure 9: Experiments on the different parametrization of state flow in DB and SubTB.
A.2 HYPERPARAMETERS

For hyperparameters of GFlowNets, we do not change the initial setting proposed by Shen et al.
(2023). For all tasks, we use ADAM (Kingma & Ba, 2015) optimizer with learning rate 1 × 10−2

for logZθ, 1× 10−4 for forward and backward policy. We use different reward exponent β to make
p(x; θ) ∝ Rβ(x) and reward normalization constant suggested in Shen et al. (2023) except for the
RNA task, which is newly suggested by us. For the RNA task, we use a reward exponent of 8 and
scale the reward to a maximum of 10.

Table 3: GFlowNet hyperparameters for various tasks

Tasks Number of Layers Hidden Units Reward Exponent (β) Training Rounds (T)

QM9 2 1024 5 2,000
sEH 2 1024 6 2,000
TFBind8 2 128 3 2,000
RNA-binding 2 128 8 5,000

For LS-GFN, we have set the number of candidate samples as M = 4 and the local search interaction
to I = 7 as default values. In contrast, other GFN models without local search employ a default
value of M = 32 to ensure a fair comparison of sample efficiency.

A.3 HYPERPARAMETER TUNING FOR RL BASELINES

To implement RL baselines, we also employ the same MLP architecture used in GFlowNet baselines.
We find an optimal hyperparameter by grid search on the QM9 task in terms of the number of modes.
For A2C with entropy regularization, we separate parameters for actor and critic networks and use
a learning rate of 1 × 10−4 selected from {1 × 10−5, 1 × 10−4, 1 × 10−4, 5 × 10−3, 1 × 10−3}
with entropy regularization coefficient 1 × 10−2 selected from {1 × 10−4, 1 × 10−3, 1 × 10−2}.
For Soft Q-Learning, we use learning rate of 1 × 10−4 selected from {1 × 10−5, 1 × 10−4, 1 ×
10−4, 5 × 10−3, 1 × 10−3}. For PPO, we employ entropy regularization term and use a learning
rate of 1× 10−4 selected from {1× 10−5, 1× 10−4, 1× 10−4, 5× 10−3, 1× 10−3} with entropy
regularization coefficient 1× 10−2 selected from {1× 10−4, 1× 10−3, 1× 10−2}.

13

Published as a conference paper at ICLR 2024

B ADDITIONAL EXPERIMENTS

B.1 CLOSER COMPARISON WITH RL BASELINES

We also assess our approach against RL baselines across four additional tasks, as detailed in Chapter
5.6. In Figures 10, 11, 12, and 13, we present the comprehensive results. These findings demonstrate
that our method outperforms RL baselines, particularly in the detection of diverse modes. While
most RL methods yield a subpar unique fraction by producing duplicated samples concentrated in
narrow, highly rewarded regions, our approach excels in seeking remarkable modes, resulting in a
wide variety of highly rewarded samples.

Figure 10: The sEH task.

Figure 11: The TFbind8 task.

Figure 12: The L14 RNA2 task.

Figure 13: The L14 RNA3 task.

14

Published as a conference paper at ICLR 2024

B.2 CLOSER COMPARISON BETWEEN DETERMINISTIC FILTERING AND STOCHASTIC
FILTERING

We also compare the different filtering strategies we proposed in the methodology section. We
conduct experiments on the QM9, sEH, and TFbind8 tasks with TB as an underlying GFN training
method. For evaluation, we generate 2048 samples from the trained model. Experiment results are
reported in Table 4. As depicted in Table 4, the stochastic filtering strategy yields a wider range
of solutions, emphasizing diversity, whereas the deterministic strategy places greater emphasis on
maximizing high-scoring rewards. Consequently, these two filtering strategies can be selected based
on distinct objectives or purposes.

Table 4: Analysis on Different Filtering Strategies

Task Filtering Strategy Accuracy Top 100 Reward Top 100 Diversity Uniq. Fraction

QM9 Stochastic 100.00 ± 0.00 0.59 ± 0.01 0.43 ± 0.00 0.97 ± 0.00
Deterministic 100.00 ± 0.00 0.61 ± 0.02 0.42 ± 0.00 0.96 ± 0.01

sEH Stochastic 100.00 ± 0.00 6.84 ± 0.01 0.30 ± 0.00 1.00 ± 0.00
Deterministic 100.00 ± 0.00 6.87 ± 0.01 0.29 ± 0.01 1.00 ± 0.00

TFbind8 Stochastic 99.23 ± 1.09 0.97 ± 0.00 1.98 ± 0.02 0.96 ± 0.00
Deterministic 100.00 ± 0.00 0.97 ± 0.00 1.94 ± 0.03 0.95 ± 0.00

B.3 ABLATION STUDY OF I AND M

We investigate the effect of the number of revision steps on reward and diversity. When we set the
number of revision steps as 0, it is a typical GFN method. When we set the number of revision
steps as a batch size, we generate a single sample and apply local search repeatedly. We conduct
experiments on the QM9 task with TB as an underlying GFN training method. Table 5 presents the
performance across different numbers of revision steps. As shown in the table, we confirm that the
mean of the top 100 rewards consistently increases as the number of revision steps increases due to
strong local exploration, while the unique fraction of samples gradually decreases.

Table 5: Effect of the number of revision steps on Reward and Diversity

I M Num. Modes Accuracy Top 100 Reward Top 100 Diversity Uniq. Fraction

0 32 699 ± 14 98.46 ± 2.17 0.57 ± 0.01 0.43 ± 0.00 0.98 ± 0.00

1 16 752 ± 7 99.85 ± 0.16 0.57 ± 0.01 0.43 ± 0.00 0.98 ± 0.00
3 8 781 ± 5 100.00 ± 0.00 0.59 ± 0.01 0.42 ± 0.00 0.97 ± 0.00
7 4 793 ± 4 100.00 ± 0.00 0.60 ± 0.00 0.43 ± 0.00 0.97 ± 0.00
15 2 800 ± 3 100.00 ± 0.00 0.61 ± 0.02 0.42 ± 0.00 0.96 ± 0.01
31 1 793 ± 1 100.00 ± 0.00 0.62 ± 0.01 0.42 ± 0.00 0.95 ± 0.01

15

Published as a conference paper at ICLR 2024

B.4 EXPERIMENTS ON SEVERAL NUMBER OF MODES METRIC

How to define mode is not a trivial problem. All samples whose reward is above a certain threshold
cannot be considered as modes. Therefore, we conduct experiments on several different metrics for
defining modes.

First, for molecule optimization tasks, we use the Tanimoto diversity metric. We define mode as
follows. For all samples whose reward is above a certain threshold level, we only accept samples
that are far away from previously accepted modes in terms of diversity metric.

For biological sequence design tasks, we define mode as a local optimum among its intermediate
neighborhoods. We can define the neighborhood as n− hamming ball, which means that we can
make x from xneighbor by modifying n components of the sequence following the definition intro-
duced by Sinai et al. (2020).

Figure 14 shows the performance of our method and prior GFN methods in terms of a number of
modes. As shown in the figure, our approach outperforms other baselines when the definition of the
mode is changed. We also find that when we eliminate a similar sample from the modes, GTB shows
promising results among all the other prior GFN methods. Figure 15 also exhibits similar trend.

Figure 14: Experiments on several number of modes metrics. Experiments are conducted on QM9. The
diversity is measured by 1 - Tanimoto similarity.

Figure 15: Experiments on several number of modes metrics. Experiments are conducted on L14 RNA1.

16

Published as a conference paper at ICLR 2024

B.5 ABLATION STUDY OF K

We investigate the effect of the number of destruction and reconstruction steps on the performance
of our method. For default, we set K = ⌊(L + 1)/2⌋, where L is the total length of the object
x. We conduct an ablations study of K on RNA task. As shown in the Figure 16, we find that
when we increase K, we can generate more diverse samples while we can achieve higher reward by
decreasing K. When k = 4, we achieve the highest number of modes discovered across training.

Figure 16: Ablation study on k. The average value among 3 independent runs is reported.

17

Published as a conference paper at ICLR 2024

B.6 LOCAL SEARCH ACCEPT RATE EXPERIMENTS

(a) Accept Rate - QM9 (b) Accept Rate - L14 RNA1

Figure 17: Experiments on the local search accept rate of different filtering strategies.

In Step B of enhancing the sampled trajectories from PF (τ) through a local search guided by
PB(τdestroy) and PF (τrecon), we assess the acceptance rate and decide whether to accept or reject
the new suggestion generated by the local search.

Recapping, in deterministic filtering, we accept τ ′ with the following probability:

A (τ, τ ′) = 1{R(τ ′)>R(τ)}

Additionally, in stochastic filtering, we accept τ ′ based on the Metropolis-Hastings acceptance prob-
ability:

A (τ, τ ′) = min

[
1,

R(τ ′)

R(τ)

q(τ ′|τ)
q(τ |τ ′)

]
The acceptance rate, denoted as A (τ, τ ′), gauges how effectively local search enhances the perfor-
mance compared to PF (τ). An intriguing experiment involves tracking the acceptance rate during
training to observe the dynamic interplay between PF (τ) and the local search mechanisms (i.e.,
PB(τdestroy) and PF (τrecon)). The ideal outcome would manifest as a stable acceptance rate, signi-
fying that as PF (τ) evolves efficiently during training, it receives valuable support from the local
search, which in turn evolves effectively with the aid of well-trained PB(τdestroy) and PF (τrecon).

As demonstrated in Figure 17, the acceptance rate remains consistently stable, serving as confirma-
tion that our LS-GFN training maintains stability while evolving both PF (τ) and the local search
components (PB(τdestroy) and PF (τrecon)) in a mutually supportive manner.

The acceptance rate in deterministic filtering is lower compared to stochastic filtering due to its
stricter acceptance criteria. These rates consistently fall below 0.5 in each training iteration, indi-
cating that only a small proportion of successfully refined trajectories contribute significantly to the
improvement of the GFlowNet training process.

18

	Introduction
	Related Works
	Preliminaries
	Local Search GFlowNets (LS-GFN)
	Step A: Sampling
	Step B: Refining
	Step C: Training

	Experiments
	Task Description
	Baselines
	Implementations and Hyperparameters
	Evaluating The Accuracy of GFlowNets
	Evaluating the Number of Modes Discovered
	Comparison with Reward Maximization Methods
	Additional Experiments

	Discussion
	Experimental Setting
	Detailed Implementation
	Hyperparameters
	Hyperparameter tuning for RL baselines

	Additional Experiments
	Closer comparison with RL baselines
	Closer comparison between deterministic filtering and stochastic filtering
	Ablation study of I and M
	Experiments on several number of modes metric
	Ablation Study of K
	Local Search Accept Rate Experiments

