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ABSTRACT

While Retrieval Augmented Generation (RAG) has emerged as a popular tech-
nique for improving Large Language Model (LLM) systems, it introduces a large
number of choices, parameters and hyperparameters that must be made or tuned.
This includes the LLM, embedding, and ranker models themselves, as well as hy-
perparameters governing individual RAG components. Yet, collectively optimiz-
ing the entire configuration in a RAG or LLM system remains under-explored—
especially in multi-objective settings—due to intractably large solution spaces,
noisy objective evaluations, and the high cost of evaluations.
In this work, we introduce the first approach for multi-objective parameter opti-
mization of cost, latency, safety and alignment over entire LLM and RAG systems.
We find that Bayesian optimization methods significantly outperform baseline ap-
proaches, obtaining a superior Pareto front on two new RAG benchmark tasks.
We conclude our work with important considerations for practitioners who are de-
signing multi-objective RAG systems, highlighting nuances such as how optimal
configurations may not generalize across tasks and objectives.

1 INTRODUCTION

Retrieval Augmented Generation (RAG) has emerged as a popular technique for improving the per-
formance of Large Language Models (LLMs) on question-answering tasks over specific datasets.
A benefit of using RAG pipelines is that they can often achieve high performance on specific tasks
without the need for extensive alignment and fine-tuning (Gupta et al., 2024), a costly and time-
consuming process. However, the end-to-end pipeline of a RAG system is dependent on many
parameters that span different components (or modules) of the system, such as the choice of LLM,
the embedding model used in retrieval, the number of chunks retrieved and hyperparameters govern-
ing a reranking model. Examples of choices, parameters, and hyperparameters that are often made
or tuned when implementing a RAG pipeline are listed in Table 1. Importantly, the performance of
a RAG pipeline is dependent on these choices (Fu et al., 2024), many of which can be difficult to
tune manually. While those building RAG pipelines might avoid fine-tuning costs, they often spend
time and resources on hyperparameter optimization (HO).

Despite this, there is little research exploring methods for collectively optimizing all the hyperpa-
rameters in a given LLM and RAG pipeline (Fu et al., 2024). Further, to the best of our knowledge,
there is no work that addresses this challenge in multi-objective settings, where the RAG pipeline
must achieve high performance across a range of objectives, like minimizing a system’s inference
time while maximizing its helpfulness. In this work, we aim to fill this gap by introducing an ap-
proach for collectively optimizing the hyperparameters of a RAG system in a multi-objective setting.
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Source dataset and
input parameters

Documents: Accounting doc
Inputs: LLM, chunk size, ...
Questions: How are byproduct
sales evaluated under Topic 606?
...

Run multi-objective
optimization

Objectives:
Cost
Latency
Safety (hallucinations)
Alignment (helpfulness)

Select optimal configuration
from pareto frontier

Chosen configuration
LLM: Llama-3.2-3B
Temperature: 0.79
Num chunks: 3
Chunk size: 512
Chunk overlap: 64
Rerank threshold: 0.24

Figure 1: A high-level overview of our approach. First, we source the datasets that we will use
to optimize our RAG pipeline, define the choices, parameters and hyperparameters that will be
optimized over (see Table 1), and select the objectives for optimization (e.g., cost, latency, safety,
and alignment). Second, we introduce a train-test paradigm for evaluating the performance of RAG
pipelines, and use Bayesian optimization (BO) to find the optimal parameter configurations. We find
that using BO with the qLogNEHVI (Daulton et al., 2021; Ament et al., 2023) acquisition function
is well-suited for this problem, since it is adapted for noisy objective evaluations and makes use of
a single composite objective called hypervolume improvement that allows for an arbitrary number
of objectives. Third, we explore the Pareto frontier of parameter configurations, finding the best
solutions over different objectives.

The authors of this paper are from a mixture of both academia and industry, and this work was
motivated by real-world challenges faced by industry practitioners. Use of RAG pipelines within
industry often requires balancing multiple requirements which are in competition with one another.
For example, at one financial services firm developing an in-house Q&A chatbot to support internal
workflows, practitioners aimed to both maximize accuracy and minimize the time taken to generate
a response. However, there is a tension in these two objectives: a RAG system utilizing larger
models may yield more accurate responses, but consequently requires longer computation time. As
another example, a large bank developing an external insurance policy Q&A chatbot was primarily
concerned with the alignment of generated responses to policies and regulations. Objectives that
we have observed practitioners frequently consider when building RAG pipelines include: cost,
response latency, safety (hallucination risk), and alignment (response helpfulness).

Multi-objective HO over a RAG pipeline is particularly challenging for several reasons. First, RAG
pipelines naturally have a high number of parameters, leading to a large solution space. We identify
at least 15 example choices, parameters, and hyperparameters in Table 1. Even if one has just a
handful of possible values for each choice, the parameter space becomes intractably large for simple
algorithms like grid search (Bergstra & Bengio, 2012). Second, evaluating a RAG pipeline during
the HO process is costly, with respect to both compute resources and time: it requires running the
RAG system over multiple queries (where each iteration is bounded by the per-token inference time
of the LLM), and then evaluating each output. Third, the objective evaluations can be noisy. The true
characteristic of a RAG system cannot be computed directly, and requires sampling the evaluations
from many queries. Relatedly, since in most cases LLMs are non-deterministic, combinations of
hyperparameters need to be tested over multiple seeds.

Contributions. In this work, we make four main contributions:

(1) We introduce an approach for multi-objective optimization over a unique set of hyperpa-
rameters of a RAG pipeline, including choices for the LLM and embedding models them-
selves. Our approach implements a single composite objective value called the hypervol-
ume indicator (Guerreiro et al., 2021), and uses Bayesian optimization with an acquisition
function that allows for an arbitrary number of noisy objective functions (qLogNEHVI)
(Daulton et al., 2021; Ament et al., 2023) to find the best RAG pipeline configuration.

(2) We empirically show the effectiveness of our approach to identify optimal RAG pipeline
configurations across two tasks (one related to financial services Q&A, and another related
to medical Q&A) using a train-test paradigm, as compared to random parameter choices
and other baseline optimization approaches.
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(3) We publicly release two novel benchmarks for evaluating RAG systems called
FinancialQA and MedicalQA.1 Importantly, these benchmarks more closely mimic
industry RAG use-cases than currently available benchmarks, since the context must be
retrieved at runtime from an available document, rather than being given in the dataset.

(4) We frame our discussion (Section 7) as guidance to practitioners who seek to improve
their own RAG systems. We highlight two important considerations: the first is what we
call “task dependence”, meaning that an optimal configuration for a RAG pipeline on a
task in a specific setting may not generalize to another setting. The second is “objective
dependence”, where objective evaluations follow different trends (or have no trend) across
different configurations. Task and objective dependence can also compound, highlighting
the challenge of collectively optimizing the parameters of a RAG system.

2 RELATED WORK

There has been a mixture of work separately addressing multi-objective optimization and hyperpa-
rameter optimization in LLM and RAG systems, which we summarize here. We provide further
comparison with fine-tuning and model-merging approaches in Appendix A.

Hyperparameter optimization (HO). As many pieces of LLM and RAG pipelines have hyper-
parameters that must be tuned before deployment, there is a large body of work testing the efficacy
of using HO to tune these systems.

Wang et al. (2023) propose a cost-based pruning strategy to hyperparameter tune LLM systems
under budget constraints. They focus on hyperparameters like the type of model (e.g., text-davinci-
003, gpt-3.5-turbo, or gpt-4), the maximum number of tokens that can be generated in a response,
the model temperature2, and the model top-p.3 They use a search method called BlendSearch (Wang
et al., 2021), which combines Bayesian optimization and local search (Wu et al., 2021), to find the
optimal combinations of parameters, and measure performance on the tasks APPS (Hendrycks et al.,
2021), XSum (Narayan et al., 2018), MATH (Hendrycks et al., 2021), and HumanEval Chen et al.
(2021). In comparison with our work, Wang et al. (2023) do not consider a RAG system.

Most related to our work, Kim et al. (2024) proposed AutoRAG, an open-source framework de-
signed for RAG experimentation and hyperparameter optimization. They use a a greedy algorithm
for selecting the hyperparameters governing RAG modules like query expansion, retrieval, passage
augmentation, passage re-ranking, prompt making, and generating (the LLM). In concurrent work,
Fu et al. (2024) proposed AutoRAG-HP, which frames hyperparameter selection as an online multi-
armed bandit (MAB) problem. To carry out HO, they introduce a novel two-level Hierarchical MAB
(Hier-MAB) method, where a high-level MAB guides the optimization of modules, and several low-
level MABs search for optimal settings within each module. Significantly, our work is distinct from
both Kim et al. (2024) and Fu et al. (2024) in that they do not consider multi-objective settings.

Multi-objective alignment. Several researchers have proposed methods for incorporating multi-
ple objectives directly into the LLM fine-tuning and alignment processes. Li et al. (2020) devel-
oped an approach for multi-objective alignment from human feedback using scalar linearization.
Mukherjee et al. (2024) expanded on that approach by developing an algorithm that finds a diverse
set of Pareto-optimal solutions that maximize the hypervolume, given a set of objectives. Zhou et al.
(2024) proposed a reward-function free extension called Multi-Objective Direct Preference Opti-
mization (MODPO). The latter showed that MODPO can effectively find a Pareto-optimal frontier
of fine-tuned models, trading off objectives like “helpfulness” and “harmlessness”. While these
works have demonstrated success in multi-objective LLM alignment, we focus on RAG pipelines
and avoid aligning and fine-tuning models altogether.

1https://huggingface.co/datasets/Trustwise/optimization-benchmark-dataset
2A parameter for which low or high values sharpen or soften the probability distribution of a token being

outputted by an LLM, respectively.
3A parameter that restricts the domain of tokens that can be outputted by an LLM to those whose cumulative

probability is greater than p.
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Table 1: Common choices, parameters, and hyperparameters that are often made/tuned when imple-
menting RAG pipelines. Bold indicates a parameter that was optimized over in our experiments.

Domain Parameters Notes

System-level LLM model e.g., gpt-4, llama-3.1-8b, llama-3.1-70b
Embedding model For RAG pipelines, e.g., text-embedding-ada-002

LLM controls

System prompt
Temperature
Top-k, top-p
Max length of output

Fine-tuning

Preference-tuning
approach

e.g., RLHF, DPO, KTO; these methods may also
introduce hyperparameters that must be tuned, e.g.,
DPO uses β, KTO uses β, λU , λD

Parameter-Efficient
Fine-Tuning (PEFT)

e.g., LoRA, adapter modules (Houlsby et al.,
2019); these methods may also introduce hyperpa-
rameters, e.g., LoRA uses rank and scaling α

Dropout rate
Learning rate
Training epochs

RAG controls

Modules Approaches for query expansion, retrieval, passage
augmentation and re-ranking, and prompt making

Chunk size
Number of chunks
Chunk overlap
Re-rank threshold
Retrieval size (top-k)

3 PRELIMINARIES AND PROBLEM FORMULATION

Multi-Objective Optimization (MOO). The goal of MOO is to find a solution x ∈ X that maxi-
mizes (or minimizes) a set of objective functions, where x = [x1, x2, . . . xl] corresponds to a series
of input values, and X is said to be the solution space. We then define each objective as f : X → R
and use f : X → Rk to represent k objective functions. Using these definitions, we aim to solve the
following optimization problem:

max
x∈X

f(x) := max
x∈X

[f1(x), f2(x), . . . fk(x)] (1)

Rather than identifying a single solution, MOO algorithms identify a set of non-dominated solu-
tions (Deb et al., 2016). We use f(x∗) ≻ f(x) to signify that f(x∗) dominates f(x):

∀i ∈ {1, . . . , k}, fi(x) ≤ fi(x
∗), and ∃j s.t. fj(x) < fj(x

∗) (2)

Hence, and following Daulton et al. (2021), we define the Pareto set as P∗ = {f(x∗) | x∗ ∈
X ,∄ x ∈ X s.t. f(x) ≻ f(x∗)}, and the corresponding Pareto optimal solutions as X ∗ = {x∗ |
f(x∗) ∈ P∗}. In practice, the Pareto optimal set often consists of an infinite set of points. Given a
set of observed solutions from X , we aim to identify an approximate Pareto optimal set, P̂ ⊂ Rk,
and its associated Pareto optimal solutions, X̂ . We then use the hypervolume (HV) indicator,HV , to
evaluate the quality of P̂ given a reference point r ∈ Rk. Our optimization problem then becomes:

argmax
P̂

HV(P̂|r) (3)

In this work, we seek to find the Pareto-optimal combinations of parameters of a RAG system (those
indicated in Table 1). We represent a configuration of a RAG system as a solution vector x ∈ X ,
where each value corresponds to a system parameter. We aim to find the solution set containing
different RAG pipeline configurations that maximizesHV for the objectives in Section 4.2.
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Bayesian Optimization (BO). Objective function evaluations herein are obtained using an en-
tire RAG pipeline, meaning there is no single analytic expression or gradient available for solving
Equation (3). BO is a derivative-free optimization method that works by constructing probabilistic
surrogate models to capture the uncertainty of objective functions. The core methodology employs
Gaussian process regression to model the unknown objective landscape, where each function fi is
represented as a stochastic process with a posterior distribution p(fi | D) conditioned on observed
data (Williams & Rasmussen, 2006). Importantly, BO makes use of an acquisition function to bal-
ance exploration of unknown regions and exploitation of promising solutions. BO has been known
to perform well compared to other optimization methods when objective functions are expensive to
evaluate, as in our setting (Gramacy, 2020; Diessner et al., 2022; Guerreiro et al., 2021).

4 METHODOLOGY

Our approach works by defining a solution space (over the configurations of a RAG pipeline), objec-
tives, and a train-test paradigm, then using BO to find the optimal configuration. BO is well-suited
to exploit patterns in objective evaluations, for example the tendency for latency to increase with
chunk size. We allow that the solution space has a mixture of continuous variables (e.g., tempera-
ture of LLM) and categorical variables (e.g., choice of LLM). In addition, we allow for constraints
on the inputs, such as asserting that the chunk overlap must be less than the chunk size.

We make use of two state-of-the-art algorithms that implement and extend BO. The first,
qLogEHVI, takes advantage of recent advances in programming models and hardware acceleration
to parallelize multi-objective BO using the LogEI variant (Ament et al., 2023) of expected hyper-
volume improvement to guide the acquisition of new candidate solutions (Daulton et al., 2020). The
second is qLogNEHVI, which extends qLogNEHVI by using a novel acquisition function that was
theoretically motivated and empirically demonstrated to outperform benchmark methods in settings
with noisy objective evaluations (Daulton et al., 2021). The noisy variant is particularly useful since
the probabilistic nature of LLMs can cause noisy objective function evaluations. BO is also well-
suited to exploit patterns in objective evaluations, for example the tendency for latency to increase
with chunk size. Following Daulton et al. (2021), we initialize both BO algorithms with Ninit points
from a scrambled Sobol sequence.

We outline our proposed methodology in Algorithm 1, and provide implementation details in Sec-
tion 5. We also provide a method of approximating each objective function in Appendix B.

Algorithm 1 Train-test multi-objective optimization of RAG or LLM system
Require: set of documents D, solution space X , reference point r, number of iterations N , number

of iterations for BO initialization Ninit
1: Q,Qtest ← Generate(D) ▷ Generate train-test queries from documents
2: H,Htest ← [ ], [ ] ▷ Start with empty train and test history
3: for n = 1...N do ▷ Parameter optimization
4: if n ≤ Ninit then
5: x← Sobol(H,X ) ▷ Sobol sampling for Ninit iterations
6: else
7: x← qLogNEHVI(H,X ) ▷ qLogNEHVI acquisition function
8: end if
9: f ← ObjectiveEvaluations(x, Q) ▷ Evaluate solution on Q

10: H.append({x, f}) ▷ Save to history
11: X̂ , P̂ ← ParetoOptimalSet(H) ▷ Find Pareto-optimal set
12: HV← HV(P̂|r) ▷ Find hypervolume w.r.t reference point
13: ftest ← ObjectiveEvaluations(x, Qtest) ▷ Evaluate solution on Qtest
14: Htest.append({x, ftest}) ▷ Save to history
15: X̂test, P̂test ← ParetoOptimalSet(Htest) ▷ Find test Pareto-optimal set
16: HVtest ← HV(P̂test|r) ▷ Find test hypervolume w.r.t reference point
17: end for
18: Xopt ← SelectOptimalConfig(X̂test, P̂test) ▷ Select optimal configuration(s)
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4.1 GENERATING TRAIN-TEST QUERIES

A frequent challenge encountered by the authors in industry is a lack of existing queries for RAG
Q&A tasks. To this end, we use LLMs to help generate queries from the data, which may be PDF
documents or large documents of text. LLMs are a reasonable choice for this approach because
they have been shown to be effective at generating synthetic data (Long et al., 2024). For our
FinancialQA dataset described in Section 5.1, we generate train and test queries using an LLM
(GPT-4o). We publicly release the synthetic questions as part of our datasets, and provide the prompt
used to generate the questions in Appendix D.

4.2 OBJECTIVES

Motivated by experiences in industry, we consider four objectives that practitioners commonly con-
sider important: safety, alignment, cost and latency.

Safety. In this work, we use the term “safety” to refer to hallucination risks, or the risk that a RAG
pipeline will return false information to the user. Hallucinations can cause significant downstream
harm, particularly in high-stakes domains such as healthcare. In our experiments, we evaluate safety
using the faithfulness metric defined in the Trustwise API.4 Like previous work (Min et al., 2023;
Es et al., 2023), faithfulness detects hallucinations by evaluating whether or not the response from
a RAG system is supported by the context. The response is split into individual, “atomic” claims
that are verified with respect to the context. Scores of these verifications are then aggregated into a
single faithfulness score between 0 and 100 for each response, where 100 represents a completely
“safe” response with no hallucinations.5

Alignment. While hallucination risks are an immediate concern, the alignment of a response is
often just as important in enterprise use-cases. To evaluate alignment, we follow the definition of
helpfulness popularized by Anthropic (Bai et al., 2022). We measure alignment using the helpfulness
metric as implemented in the Trustwise API which judges how useful, detailed and unambiguous a
response is. This metric assigns a score between 0 and 100 for each response, where a higher score
indicates a more helpful response.

Cost. To calculate the cost of an evaluation, we consider all the components of a RAG pipeline,
including the query embedding cost, reranker embedding cost, LLM input token cost and LLM
output token cost. Importantly, the cost of a RAG pipeline is a function of its configuration:

cost = number of query tokens× cost per embedding token
+ number of context tokens× cost per reranker token
+ number of prompt input tokens× cost per LLM input token
+ number of output tokens× cost per LLM output token

(4)

The embedding cost per query token, reranker token cost, LLM input token cost, and LLM output to-
ken cost are based on the specific choices of those models, as well as the hardware being used to run
the RAG pipeline. In enterprise use-cases, these costs may also include overhead and maintenance.

Latency. We define latency as the time it takes for a complete end-to-end run of the RAG pipeline,
from the moment an initial query is sent to the system to the moment a full response is returned to
the user. As with cost, we can calculate the latency of a system as a function of its configuration:

latency = embedding latency+ reranker latency+LLM response latency+ evaluation latency (5)

We note that response evaluations can take as long as, or longer than, response generation and thus
the end-to-latency is vital to consider in enterprise settings where evaluations are a requirement.

4 Trustwise documentation available at: https://trustwise.ai/docs
5For those aiming to replicate our approach, there are open-source alternatives for evaluating safety that

could be used instead, such as LlamaGuard (Inan et al., 2023).
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Figure 2: HV improvement on train and test splits for both datasets. Our proposed acquisition func-
tion for BO (qLogNEHVI) outperforms its noiseless variant (qLogEHVI) and both BO algorithms
perform significantly better than the baselines. There is a noticeable increase in HV after iteration
20 (dotted line), indicating the end of Sobol sampling initializations for the BO algorithms, and the
start of acquisition function-guided selections.

5 EXPERIMENTS

We tested our optimization approaches on two RAG tasks from different industries. We use a stan-
dard RAG setup with retrieval using vector embeddings, a reranker to filter out unnecessary context
chunks, and an LLM prompted to generate a response using the context. The exact configuration
solution space we use is given in Appendix C.

We optimize for the four objectives of cost, latency, safety and alignment. We run BO using the
train question set, and then report results on a held out test set. We use Ax (Bakshy et al., 2018) and
BoTorch (Balandat et al., 2020) to run and manage experiments. For all algorithms we use 50 total
iterations, and for BO methods, the first 20 iterations are chosen using Sobol sampling. In MOO,
a reference point is used to calculate the HV improvement, and represents the minimum acceptable
solution. Based on our industry experience, we use a reference point with cost of $2000 per million
queries, latency of 20s per query, safety of 50 and alignment of 50. This choice of reference point
prevents degenerate solutions (e.g., a degenerate RAG system which does not retrieve any chunks)
from contributing to the HV improvement.

Throughout this work, we report the cost in USD per million queries ($ / million queries) and latency
in seconds (s). Safety and alignment scores are dimensionless and range from 0 to 100. Cost and
latency are objectives to minimize, while safety and alignment are objectives to be maximized.

5.1 DATASETS

Existing datasets for Q&A tasks generally exist in the form of (question, context, answer) triplets.
However, in industry RAG use-cases, the context is often retrieved at runtime from a set of docu-
ments. As such, we want to include the retrieval of the context as part of of our evaluation. To this
end, we adapt two known tasks to fit the needs of our experimental setup6:

FinancialQA. This task uses a publicly available document covering revenue recognition from a
leading global accounting firm.7 The document includes more than 1000 pages of text, representing
a significant Q&A context retrieval challenge. Since the document does not come with a set of
questions, we synthetically generate 50 questions by prompting GPT-4o, using the method described
in Section 4.1. We then randomly split this set into 30 train and 20 test questions.

6We publicly release the train and test questions for these documents at https://huggingface.co/
datasets/Trustwise/optimization-benchmark-dataset

7Financial document available at: https://kpmg.com/kpmg-us/content/dam/kpmg/frv/
pdf/2024/handbook-revenue-recognition-1224.pdf
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Figure 3: 2D projections of the 4D Pareto frontier for each algorithm for a fixed random seed on
both datasets. We see our proposed algorithm (qLogNEHVI BayesOpt) obtains a superior Pareto
front, with solutions concentrated towards high safety, high alignment, low cost, and low latency.

MedicalQA. We create our medical dataset using the existing FACTS benchmark (Jacovi et al.,
2025) which includes (question, context, answer) triplets.8 We take the medical Q&A subset, and the
authors manually filter out unrepresentative questions. We then combine all the individual context
chunks from each question in the medical Q&A split into one large document. The final dataset
includes one large medical document, and independent sets of 43 train and 43 test questions.

5.2 BASELINES

For our tasks, we lack access to a “ground truth” set of Pareto optimal configurations because we can-
not evaluate the objective functions directly, and grid search is computationally unfeasible. Hence
we use three baseline approaches that are applicable in MOO settings. The first is uniform sam-
pling, which generates configurations independently, where each configuration from the solution
space is equally probable. The second is Sobol sampling. Like Latin hypercube sampling (Loh,
1996), this method generates configurations that guarantee good high-dimensional uniformity. It is
commonly used to initialize optimization algorithms, including BO, and represents a sensible alter-
native to grid-search. Finally, we use qLogEHVI BO, the noiseless variant of our chosen acquisition
function (Daulton et al., 2020).

6 RESULTS

We report the HV improvement on the train and test splits of both datasets, across five random seeds
in Figure 2. We find that BO methods significantly outperform other baseline approaches on both

8FACTS dataset available at: https://www.kaggle.com/facts-leaderboard
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Figure 4: Radar charts comparing the four objective function evaluations for iterations chosen to
optimize each objective. We see that improved safety can be achieved at the expense of increased
cost and latency. N.B. Lower is better for cost and latency but higher is better for safety and
alignment.

tasks, and that qLogNEHVI outperforms its noiseless variant. Both BO methods show significant
improvement compared to baselines after iteration 20, when the BO acquisition function is used to
select inputs rather than Sobol sampling.

Figure 3 shows the Pareto front for a fixed seed for the FinancialQA and MedicalQA datasets. Since
the overall Pareto frontier lies in R4 (as there are 4 objectives), we project onto three R2 plots for
visualization purposes. We find that qLogNEHVI BO obtains a superior Pareto front compared to
the baselines, also finding a wider spread of solutions. In particular, we notice significant clustering
around sub-optimal solutions when using qLogEHVI BO, as observed by Daulton et al. (2021).

Figure 4 depicts the objective function evaluations across different configurations optimized for each
objective. We see that safety and alignment optimized configurations come at the expense of cost
and latency, and vice versa. We find that significant cost and latency reduction can be achieved at the
cost of minimal safety and alignment reduction. All configuration settings and objective evaluations
are detailed in Table 2, where we observe similar chosen parameters across both datasets, especially
the choice of LLM and embedding model. From these examples and others, we observe general
patterns that help to optimize each objective. Safety optimized configurations often use the large
embedding model and a large chunk size. In contrast, latency optimized configurations use the
small embedding model and a small chunk size. This is intuitive: high safety requires sufficient
high-quality context tokens, whereas low latency necessitates fewer context tokens.

7 DISCUSSION

We frame our discussion as takeaways for industry practitioners that aim to optimize configurations
of a RAG pipeline in a multi-objective setting. The first consideration is what we call objective
relationships. In our experiments, we found that safety and alignment are often positively correlated
with each other, and similarly for cost and latency. However, these two sets of objectives involve
conflicting parameters, which makes it challenging to set a suitable trade-off between reliability
(safety and alignment) and efficiency (cost and latency). Resolving conflicts between objectives is
inherently challenging and remains an open question; we recommend that practitioners be thoughtful
about latent relationships between objectives when choosing which objectives to optimize over.

The second consideration is task dependence, meaning that an optimal configuration for a RAG
pipeline on a task in one setting may not generalize to another. While we observe configurations
that work well across both tasks with respect to certain objectives (e.g., high chunk size correlates
with higher safety and alignment), there is no optimal configuration that is shared across the two
tasks. Practitioners should be aware that the optimal configuration will be highly dependent on
the task they are building for, including the way their system will be used, the domain, and the
stakeholders.

The third consideration is objective dependence, where objective evaluations follow different trends
(or have no trend) across different configurations. For example, we see high objective dependence
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for temperature, since high temperatures (e.g., > 1.0) consistently reduced all four objectives. How-
ever, it is harder to discern a relationship between chunk overlap and the objectives, indicating low
objective dependence. Task and objective dependence can also compound, highlighting the chal-
lenge of collectively optimizing the configuration of a RAG system.

Future Work Our results demonstrate that end-to-end optimization of RAG systems is a promis-
ing avenue for research. We highlight two key areas for future exploration: first, improving the
efficiency of Algorithm 1. A potential direction is “decoupled evaluation”, where not all objectives
are assessed at every iteration, towards a cost-aware optimization strategy. For instance, evaluating
safety and alignment is significantly more expensive than measuring cost and latency.

Second, improvements can be made to the framework itself. Our current approach does not account
for prompt engineering, despite its significant impact on response quality. Additionally, our safety
and alignment metrics considered in this work remain limited in scope, excluding aspects such as
toxicity and data leakage. However, our framework is inherently flexible and can be extended with
adapted objectives or additional parameters. Another open challenge is configuration selection from
the Pareto frontier. As Figure 3 illustrates, multiple configurations are Pareto-optimal, making the
selection of the most suitable trade-off for a given application non-trivial.
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A RELATED WORK ON FINE-TUNING AND MODEL MERGING

While we do not explore fine-tuning or model-merging in our work, several authors have studied the
effectiveness of HO to improve the alignment process.

Fine-tuning. Wu et al. (2024) explored the importance of hyperparameter tuning the β-parameter9

for Direct Preference Optimization (DPO) (Rafailov et al., 2024), a popular framework for human-
preference tuning LLMs. Significantly, they uncovered settings in which increasing β improves
DPO performance, and others where increasing β has the exact opposite effect and decreases per-
formance. Wang et al. (2024) introduce an approach called Hyperparameter Aware Generation
(HAG), that allows LLMs to “self-regulate” hyperparameters like temperature, top-p, top-k, and
repetition penalty during inference. They observed that different configurations of these hyperpa-
rameters lead to different performances on tasks like reasoning, creativity, translation, and math.
Tribes et al. (2023) used hyperparameter optimization (HO) to improve the instruction fine-tuning
process, adjusting the hyperparameters rank and scaling α for Low-Rank Adaptation (LoRA) (Hu
et al., 2021)10, as well as the model dropout rate and learning rate. In their experiments, they
fine-tuned a Llama 2 7B parameter model11, and found that HO-fine-tuning resulted in better perfor-
mance on tasks like MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), DROP (Dua et al.,
2019), and HumanEval (Chen et al., 2021), as compared to vanilla fine-tuning. Methodologically,
they tested two HO approaches: Tree-structured Parzen Estimator tuning12 (Bergstra et al., 2011)
and Mesh Adaptive Direct Search (Audet & Dennis Jr, 2006), and found better performance with
the latter. Overall, their results confirm the necessity of careful HO in instruction-tuning.

Model merging. Li et al. (2024) frame LLM model merging, or combining different “source”
(or base) models to create a unified model that retains the strengths of each model, as a multi-
objective optimization (MOO) problem. They use parallel multi-objective Bayesian optimization
(qEHVI) (Daulton et al., 2020) to search over a range of model merging techniques like Model
Soup (Wortsman et al., 2022) and TIES-Merging (Yadav et al., 2024) (and the associated hyperpa-
rameters of those techniques), and evaluate the performance of the merged model on benchmarks

9β governs the extent to which the policy model’s behavior can diverge from the original model.
10Low-Rank Adaptation (LoRA) is a method that reduces the number of trainable parameters for a fixed

model for downstream tasks like fine-tuning.
11https://huggingface.co/meta-llama/Llama-2-7b
12TPE is a Bayesian optimization (Bergstra et al., 2011) algorithm that uses a probabilistic model for HO. It

is a Sequential Model-Based Optimization (SMBO) method (Hutter et al., 2010).
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like MMLU and Big-Bench Hard (Suzgun et al., 2022). Our work is distinct from approaches using
model merging in that we search over choices for LLMs rather than combine them. However, similar
to Li et al. (2024), we test the effectiveness of the qEHVI and qNEHVI (Daulton et al., 2021) (a
variation allowing for noisy objectives) for HO.

B APPROXIMATING OBJECTIVE FUNCTIONS

Equation 3 defines our proposed task as the maximization of the HV across multiple objectives.
Each objective function evaluates a property of the RAG system for a given workload. We define
a workload as a probability distribution across all possible queries, P (q), where q ∈ Q is a user
query for the RAG system. Further, we use fq

m : X ,Q 7→ R to denote an evaluation function for an
individual query and objective m. Using these definitions, we can write down the objective function
as the expectation across queries:

fm(x) =
∑
q∈Q

fq
m(x, q)P (q) (6)

Assuming we can sample queries from the workload, q ∼ P (q), we can use a Monte Carlo approx-
imation for each objective function using a sample set Q′ ⊂ Q:

fm(x) ≈ 1

|Q′|
∑
q∈Q′

fq
m(x, q) (7)

We assume that generating data synthetically using an LLM (Section 4.1) is equivalent to sampling
queries q ∼ P (q) to obtain Q′. Our algorithm uses Equation 7 as a tractable approximation of the
objective functions in Equation 1.

C EXPERIMENTAL DETAILS

We use the following search space for hyperparameters:

• cs ∈ Z+: Maximum number of tokens in each document chunk.
• cn ∈ Z+: Number of chunks retrieved from the vector database for each query.
• o ∈ Z+: Number of tokens which overlap between adjacent chunks in a document.
• t ∈ [0, 1.2]: Temperature of the LLM when generating responses.
• r ∈ [0, 1]: Rerank threshold used to set the minimum similarity between the context chunk

and query, as evaluated by the reranker13. Retrieved documents which are below this thresh-
old are ignored and not passed to the LLM as context. If no chunks exceed this threshold,
we choose only the highest scoring chunk as context.

• ℓ ∈ {gpt-4o, gpt-4o-mini, llama-3.2-3B, llama-3.1-8B}: Choice of LLM used to generate
the response.

• e ∈ {text-embedding-3-large, text-embedding-3-small}: Choice of embedding model
when embedding the queries and document chunks.

13We use a fixed rerank model Salesforce/Llama-Rank-V1 provided by TogetherAI for all RAG
systems.
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D LLM PROMPTS

We use the following prompt with GPT-4o to generate synthetic questions from the financial source
document:

You are an expert synthetic data generation agent. Look at this PDF
document containing information on accounting from a leading global
financial services organization. Generate 50 questions which
accountants might ask based only on the information provided in the
document. Example questions are:

Are there any specific disclosures required when transferring HTM
securities to AFS?

Are there any tax implications to consider when transferring securities
between categories?

What are the steps to recording a transfer of AFS securities to HTM?
How should Federal agencies implement the new Land standard?
I have a client in bankruptcy, what is the presentation of financial

statements once they emerge from bankruptcy
How do you determine if a limited partnership is a VIE
can a debt being refinanced with a different lender result in

modification accounting?
Are there specific criteria for capitalizing costs related to PP&E

additions?
how do you account for PP&E additions
which examples in the debt and equity handbook illustrate the accounting

for preferred stock?
Are there any examples of exit fees in investment company accounting?

For prompting the LLM during RAG, we use the following prompt from https://smith.
langchain.com/hub/rlm/rag-prompt:

You are an assistant for question-answering tasks. Use the following
pieces of retrieved context to answer the question. If you don’t know
the answer, just say that you don’t know. Use three sentences

maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
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E ADDITIONAL RESULTS

FinancialQA Optimized Configurations
Safety Alignment Cost Latency

Hyperparam

Embedding model text-
embedding-
3-large

text-
embedding-
3-large

text-
embedding-
3-large

text-
embedding-
3-small

LLM gpt-4o-mini Llama-3.1-
8B

Llama-3.2-
3B

Llama-3.1-
8B

Chunk size 1024 1024 512 1024
Chunk overlap 512 128 64 64
Num chunks 3 4 3 3
Rerank threshold 0.00 0.64 0.24 1.00
Temperature 0.03 0.12 0.79 0.00

Objective

Safety 98.1 87.8 81.6 80.1
Alignment 61.3 62.0 56.8 54.8
Cost 585 410 90.8 145
Latency 12.4 11.7 12.8 7.26

MedicalQA Optimized Configurations
Safety Alignment Cost Latency

Hyperparam

Embedding model text-
embedding-
3-large

text-
embedding-
3-small

text-
embedding-
3-large

text-
embedding-
3-small

LLM gpt-4o-mini gpt-4o-mini Llama-3.1-
8B

Llama-3.1-
8B

Chunk size 1024 1024 256 1024
Chunk overlap 256 512 32 32
Num chunks 6 6 2 2
Rerank threshold 0.00 0.22 0.57 0.36
Temperature 0.00 0.10 0.57 0.00

Objective

Safety 91.5 89.1 60.9 77.7
Alignment 64.8 65.3 57.8 61.3
Cost 1010 997 92.6 244
Latency 17.0 15.6 12.4 9.62

Table 2: Input parameters and objective evaluations for individual configurations optimized for each
objective. We observe a similar choice of parameters between both datasets, especially the choice
of LLM and embedding model.
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