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ABSTRACT

Learning to assemble geometric shapes into a larger target structure is a funda-
mental task with various high-level vision applications. In this work, we frame
this problem as geometric registration with extremely low overlap. Our goal is to
establish accurate correspondences on the mating surface of the shape fragments
to predict their relative rigid transformations for assembly. To this end, we in-
troduce Proxy Match Transform (PMT), an approximate high-order feature trans-
form layer that enables reliable correspondences between dense point clouds of
shape fragments, while incurring low costs in memory and compute. In our exper-
iments, we demonstrate that Proxy Match Transform surpasses existing state-of-
the-art baselines on a popular geometric shape assembly dataset, while exhibiting
significantly better efficiency than other high-order feature transform methods.

1 INTRODUCTION

Shape assembly is a pivotal task aiming to determine the precise placement and orientation of
fractured parts, with the primary objective of constructing a larger target structure. This task
holds paramount significance, especially in the context of various applications encompassing
robotics (Wang & Hauser, 2019; Zakka et al., 2020; Zeng et al., 2021), manufacturing, computer
graphics (Li et al., 2012), and computer-aided design (Chen et al., 2015; Jacobson, 2017). Despite
its pivotal role in industrial productivity and the plethora of applications it underpins, shape assem-
bly has received relatively limited attention in the literature. It persists as a formidable challenge due
to its inherent complexities. These complexities arise from the necessity to comprehend the intricate
geometric structures at play and establish reliable local pairwise relationships between input shape
pairs to facilitate accurate assembly.

An overarching challenge in shape assembly lies in the precise identification of mating surfaces and
the subsequent verification of local correspondences between the surfaces. Previous methods have
addressed these challenges by relying on semantic information linked to object fragments, e.g., part
labels, effectively reconstructing complete objects by aligning their semantic components (Narayan
et al., 2022; Li et al., 2020b; Huang et al., 2020). However, these methods necessitate additional
semantic annotations, which restricts their applicability to semantic shape assembly and specific
datasets. To expand the scope of research, Sellán et al. (2022) introduced a large-scale assembly
benchmark, called BreakingBad dataset, that simulates physically broken objects resulting from
external forces, which facilitates the study of geometric shape assembly with diverse objects.

The task of geometric shape assembly can be framed within a broader context of point cloud regis-
tration. Recent methods for the task typically utilize a high-order feature transform, e.g., high-order
convolution or attention, to establish reliable correspondences from noisy input (Choy et al., 2020;
Yu et al., 2021; Huang et al., 2021; Qin et al., 2022). The high-order feature transform considers
structural patterns of correlations in a high-dimensional space and has been particularly effective in
matching and registration (Rocco et al., 2018; Min & Cho, 2021; Kim et al., 2022). However, a
significant challenge arises from its quadratic complexity concerning input resolution, restricting its
use only to coarse-grained matching with a limited number of points. In the context of geometric
shape assembly, this complexity issue greatly hinders the performance since the object fractures are
typically complex and intricate, demanding meticulous registration with dense point clouds.

In this paper, we address this issue by introducing a new form of low-complexity high-order fea-
ture transform layer, dubbed Proxy Match Transform (PMT), for use in geometric shape assembly

1



Under review as a conference paper at ICLR 2024

(Fig. 1). We theoretically prove that the proposed PMT layer can effectively approximate the con-
ventional high-order convolution layers (Rocco et al., 2018; Choy et al., 2020; Min & Cho, 2021)
under some conditions. To demonstrate the effect, we incorporate the PMT layer into a coarse-to-
fine matching network, where PMT is used in both coarse-level and fine-level matching steps to
establish reliable correspondences between mating surfaces and enable accurate assembly. We com-
pare our result with recent state-of-the-art approaches and thoroughly analyze its performance on
the geometric shape assembly benchmark, e.g., BreakingBad dataset. The experiments demonstrate
that our method outperforms existing approaches while being computationally efficient.

Our main contributions can be summarized as follows:

• We introduce Proxy Match Transform, a low-complexity high-order feature transform layer
that effectively refines the matching of the feature pair.

• Our theoretical analysis showcases how Proxy Match Transform approximates high-order
convolution while incurring only sub-quadratic complexity.

• The performance improvements in geometric shape assembly over the state-of-the-art base-
lines demonstrate the efficacy of the proposed approach.

2 RELATED WORK

3D shape generation & assembly. Previous studies explored the generative models that represent
objects through the combination of basic 3D primitives. One approach involves training specialized
models for individual object classes, enabling them to assemble objects from volumetric primi-
tives, such as cuboids (Tulsiani et al., 2017). Another approach involves training a single model
capable of generating cuboid primitives for all classes (Khan et al., 2019). Variational autoen-
coders (VAE) (Kingma & Welling, 2014) have also been used to model objects as combinations of
cuboids (Jones et al., 2020). These methods provide robust abstractions, distilling local geometric
details and revealing object correspondences.

Another related area of research deals with part assembly, aiming to construct complete objects
from sets of parts. Li et al. (2020b) proposed to predict translations and rotations for part point
clouds to assemble a target object from an image. Narayan et al. (2022); Huang et al. (2020) frame
part assembly as graph learning, using iterative message passing to assemble parts into complete
objects. These methods leverage the PartNet (Mo et al., 2019) dataset to ensure that assembled parts
semantically correspond to the target object. While shape is crucial in part assembly, part semantics
can also guide the process directly, bypassing geometric cues.

Our work addresses the problem of learning to fit together pieces with no particular semantics and
without a provided target. The most relevant method to ours is Chen et al. (2022), which aims to
solve 3D shape assembly while coupling the task with implicit shape reconstruction. In contrast, we
aim to formulate this task as an extremely low-overlap point cloud registration, eschewing the need
for shape reconstruction and rather focusing on finding reliable correspondences between the shapes
to fit together along their mating surface.

High-order feature transform. The idea of high-order feature transform has been widely applied
in areas handling visual correspondence to identify the consensus among correspondences in a high-
dimensional space. Rocco et al. (2018) coined the idea of learning-based neighborhood consensus,
such that a certain match will support its neighboring ambiguous matches between 2D images.

To alleviate the high computation complexity of high-order feature transform, subsequent studies
propose to squeeze the high-dimensional correlation (Min et al., 2021), sparsify the correlation map
using top-k scores to reduce computation (Rocco et al., 2020). More recently, Cho et al. (2021) and
Kim et al. (2022) proposed to integrate the self-attention mechanism to leverage the global consensus
between the high-dimensional features, which have shown to be effective albeit at an increased cost.

A similar trend is evident in the area of 3D registration; Choy et al. (2020) aims to filter outlier cor-
respondences using a 6D sparse convolutional layer (Choy et al., 2019), while Huang et al. (2021)
and Yu et al. (2021) aims to transform 3D features by leveraging self-attention and cross-attention,
both within and across point cloud features. Qin et al. (2022) proposed to embed transformation-
invariant information into the positional embedding of the transformer layers, achieving robust su-
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2S-convolution with quadratic complexity Product of PMTs with sub-quadratic complexity

Proxy
Tensor

Figure 1: Given a pair of S-dimensional features, dot product of our proposed feature transform
layers, i.e., Proxy Match Transform (PMT), can express the 2S-convolution with sub-quadratic
complexity, while existing high-order convolution (Rocco et al., 2018; Choy et al., 2020; Min &
Cho, 2021) needs quadratic complexity.

perpoint matching accuracy. While these methods excel in low-overlap scenarios, their adoption for
fine-grained matching is hindered by inherent high computational costs.

In this work, we propose Proxy Match Transform (PMT), which approximates existing high-order
feature transforms while incurring significantly lower computation complexity. We integrate PMT in
a coarse-to-fine manner, where on coarse-level PMT identifies accurate and reliable correspondences
on the mating surface of input shape fragments, then refines on fine-level for more precise assembly.

3 PROPOSED APPROACH

In the task of geometric shape assembly, analyzing geometric compatibility between fractured
shapes is of utmost importance; the geometric properties of the mating surfaces should exhibit
consistency, where vertices, edges, and surfaces seamlessly fit together to form a coherent struc-
ture. To achieve reliable localization of mating surfaces between shapes, a model needs to analyze
the compatibility of all possible feature correspondences and accurately identify spatially consistent
matches. In the field of matching and registration (Rocco et al., 2018; Choy et al., 2020; Min & Cho,
2021) and its applications (Min et al., 2021), a trending approach for assessing match reliability is
the utilization of high-order convolution. This technique effectively assesses patterns within neigh-
borhood matches in a differentiable manner. Building upon these principles, we will now explore
the theoretical formulation of high-order convolution, with a specific emphasis on its application for
enhancing pairwise feature correlation.

In the section, we first start with the preliminary where we revisit the concept of high-order convolu-
tion and introduce the theorem that multi-head self-attention (MHSA) can express convolution; this
motivates us to use an attention-based formulation to approximate the high-order convolution. We
then present the Proxy Match Transform (PMT) and show how PMT can effectively express high-
order convolution with only sub-quadratic complexity (Sec. 3.1). Finally, we explain two constraints
of PMT for its approximation (Sec. 3.2). The necessary proofs and discussions supporting our ap-
proach are further detailed in the Appendix, and each will be referenced throughout the relevant
sections.

Preliminary. High-order convolution (Rocco et al., 2018; Choy et al., 2020; Min & Cho, 2021)
generalizes the standard convolution by taking as input more functions, feature maps, or sets. In
the context of our problem, we consider two point clouds X = {xi ∈ R3|i = 1, ..., N} and
Y = {yi ∈ R3|i = 1, ...,M}, and focus on the 2nd-order convolution with two sets of features FX
and FY , associated with the two point clouds, respectively. For ease of notation, we represent these
features in matrix form, i.e., FX ∈ R|X |×Demb , where Demb is the feature embedding dimension, and
indexes each feature of the matrix using its associated point x ∈ X such that Fx ∈ RDemb , and same
goes for FY . We also express the feature correlation of two points from each point cloud, x and y,
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as C(x,y) := FxF
⊤
y . The 2nd-order convolution on (FX ,FY) with kernel K is then defined as

Conv(FX ,FY ;K)(x,y) :=
∑

(n,m)∈N (x)×N (y)

C(n,m)K([n− x,m− y]), (1)

where N (·) represents a set of neighbor points and K : R6 −→ R is a convolutional kernel, repre-
sented as a mapping function that takes displacement vectors onto learnable weight scalar.

On the other hand, Cordonnier et al. (2020) show the relation of self-attention to convolution:

Theorem (Cordonnier et al., 2020). A multi-head self-attention layer with Nh heads of dimension
Dh, output dimension Dout and a relative positional encoding of dimension Dp ≥ 3 can express
any convolutional layer of kernel size

√
Nh ×

√
Nh and min(Dh, Dout) output channels.

Motivated by this, we attempt to express the high-order convolution using an attention-based form.

As illustrated in Fig. 1, the 2nd-order convolution (Eq. 1) disambiguates spatially consistent corre-
spondences and updates their correlation values by analyzing correlation patterns around each point
pair (x,y) ∈ X × Y . Despite its good empirical performance in literature (Rocco et al., 2018;
Choy et al., 2020; Min & Cho, 2021; Min et al., 2021), its critical limitation lies in the quadratic
complexity of correlation computation, i.e., O(|X | · |Y|), with respect to input resolution, imposing
significant computational burdens during both the training and inference phases. This restricts its
practical applications for large spatial resolutions; Notably, the geometric shape assembly task de-
mands sophisticated matching techniques, especially at high resolutions, to ensure precise assembly.

3.1 PROXY MATCH TRANSFORM: EFFICIENT HIGH-ORDER FEATURE TRANSFORM WITH
SUB-QUADRATIC COMPLEXITY

To overcome this limitation, we introduce an efficient correlation refinement layer called Proxy
Match Transform (PMT), which can effectively express high-order convolution with sub-quadratic
complexity. Given a pair of input features (FX ,FY), two of Proxy Match Transforms with Nh

heads1 are defined for input feature, FX and FY , respectively, as follows:

PMT(FX ) :=
∑

h∈[Nh]

A
(h)
X FXP(h)⊤w

(h)
X , (2)

PMT(FY) :=
∑

h∈[Nh]

A
(h)
Y FYP

(h)⊤w
(h)
Y , (3)

where w
(h)
X ∈ R is a learnable weight scalar, A(h)

X ∈ R|X |×|X| is local attention matrix 2; the same
applies for Y . And P(h) ∈ RDproxy×Demb is proxy tensor that satisfies:

P(h)⊤P(h) = IDemb , ∀h∈[Nh], (4)

where Dproxy refers to the spatial resolution of the proxy tensor: Dproxy ≪ |X | and Dproxy ≪ |Y|.
We refer the readers to Appendix A.4 for the details of attention calculation.

At each head, the layer initially constructs a correlation between the input feature FX and the proxy
tensor P(h): C

(h)
X := FXP(h)⊤ in much smaller size of |X | × Dproxy, compared to the pairwise

feature correlation C = FXFY
⊤ ∈ R|X |×|Y| defined in Eq. 1. After applying learnable weight

w
(h)
X , the output at position (n,m) ∈ |X | × Dproxy is computed through a weighted-sum of its

neighborhood matches lying on the spatial dimension of feature map FX , e.g., {(n′,m)}n′∈N (n)

where |N (n)| = ϵ ≪ |X |. To formally put, the Proxy Match Transform output at head h given

1Similar to multi-head self-attention (Vaswani et al., 2017), each head performs distinct attentions and
feature transform, allowing the layer to attend and transform different aspects of the input simultaneously.

2As attention matrix A
(h)
X is local, i.e., sparse, in actual implementation, we reduce its size to |X | × ϵ

instead of |X | × |X | where ϵ ∈ N+ is the number of neighbors: |X | ≫ ϵ. For ease of presentation, we
demonstrate our method using square attention matrix A

(h)
X ∈ R|X|×|X|.
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input FX at position (n,m) is defined as

PMT(FX )(h)(n,m) = A
(h)
X (n,:)FXP(h)⊤

(:,m)w
(h)
X = A

(h)
X (n,:)C

(h)
X (:,m)w

(h)
X

=
∑

n′∈N (n)

A
(h)
X (n,n′)C

(h)
X (n′,m)w

(h)
X , (5)

where PMT(FY)
(h) is similarly defined but with a different set of parameters of A(h)

Y and w
(h)
Y .

It is important to note that Proxy Match Transform layer performs two independent transform for
feature matching, one for FX and the other for FY . Despite the independence, matching between
the feature pair is effectively facilitated by a shared proxy tensor P. This proxy tensor allows for
the exchange of information between the features, eliminating the need to construct and convolve
memory-intensive pairwise feature correlations, which often contain sparse and limited informative
match scores. Additionally, it is worth noting that different sets of parameters are used for FX and
FY which enhances the flexibility and adaptability for matching. In Sec. 4.2, we empirically prove
the efficacy of the use of proxy tensor and different parameter sets in point cloud matching.

3.2 CONSTRAINTS FOR PROXY MATCH TRANSFORM

In order for the Proxy Match Transforms to express the high-order convolution, we assume two
constraints, (i) orthonormality constraint: P(i)⊤P(j) = IDemb if i = j, and (ii) zero constraint:
P(i)⊤P(j) = 0 ∈ RDemb×Demb otherwise for all i, j ∈ [Nh]. Given these constraints on proxy
tensors, the dot product between PMT outputs effectively approximates the high-order convolution:

(PMT(FX ) · PMT(FY)
⊤)(x,y) ≈ Conv(FX ,FY ;K)(x,y). (6)

We refer the readers to the Appendix A.1, for the complete proof. For the proxy tensors to satisfy
the conditions, we design two auxiliary training objectives on proxy tensors, orthonormal loss Lorth

and zero loss Lzero, as follows:

Lorth =
∑

(i,j)∈[Nh]2

δ(i, j)(P(i)⊤P(j) − IDemb), (7)

Lzero =
∑

(i,j)∈[Nh]2

(1− δ(i, j))P(i)⊤P(j), (8)

where δ(i, j) provides 1 if i = j and 0 otherwise.

3.3 OVERALL ARCHITECTURE

Fig. 2 illustrates the overall architecture of our method. Building on recent developments in the field,
e.g., GeoTransformer (Qin et al., 2022), it introduces two key enhancements to optimize its perfor-
mance: (i) replacing the coarse-level matcher with Proxy Match Transform layers, and (ii) incorpo-
rating Proxy Match Transform layers at the fine-level stages after each upsampling in KPConv-FPN
backbone (Thomas et al., 2019) as seen in Fig. 2.

Feature extractor. Given a pair of mesh fragments for pairwise assembly, we first sample a total of
5,000 points from an object O. The sizes of the point sets X and Y are then determined based on
the proportional volumes each mesh fragment occupies within the entire object O. These point sets
are then fed into the KPConv-FPN backbone, which downsamples the input twice, yielding coarse-
level feature pair F̂X ∈ R|X̂ |×Dc and F̂Y ∈ R|Ŷ|×Dc , and subsequently upsamples twice to obtain
fine-level feature pair F̃X ∈ R|X̃ |×Df and F̃Y ∈ R|Ỹ|×Df .

Note that in the case of fine-level features F̃X and F̃Y , refinement is carried out at the upsam-
pling stage through the fine matcher, i.e., two PMT blocks, each consisting of multiple PMT layers
followed by a sequence of Group Normalization and LeakyReLU, and repeats for Nt times. It is
important to note that the performance of the fine matcher is a critical aspect of our approach, and
we will present empirical results to demonstrate its effectiveness in Sec. 4.2.

Coarse-level Matching. As seen in Fig. 2, at both coarse and fine levels, distinct Proxy Match
Transform layers are applied to establish correspondences between fragments. Similarly to the fine
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Figure 2: Overall pipeline of the proposed Proxy Match Transform for pairwise shape assembly.
The proposed architecture largely consists of two modules: (1) coarse-level matching and (2) fine-
level matching. Each module uses coarse-level features and fine-level features acquired from the
KPConv-FPN backbone as their input. Details are described in Sec. 3.3

matcher, the coarse matcher also utilizes a PMT block with an identical configuration. The inputs
for the PMT block in the coarse matcher are the coarse-level features F̂X and F̂Y , together with
their respective positional embeddings RX and RY . After the PMT block as the coarse matcher, the
output feature pair, denoted as ĤX and ĤY , is utilized to compute the pairwise similarity. We then
select the top-k matches as coarse-level correspondences Ĉ.

Fine-level Matching. Once we have reliable matches at the coarse level, we apply the point-to-
node grouping method (Yu et al., 2021). This technique allows us to expand the coarse-level cor-
respondences to fine-level correspondences and to extract local patches based on these coarse-level
correspondences, denoted as Ĉ. Subsequently, these local patches are fed into an optimal transport
layer (Sarlin et al., 2020), which facilitates the extraction of confidence matrices. Using these ma-
trices, we obtain fine-level correspondences by selecting the mutual top-k entries (Qin et al., 2022).

Following this, Local-to-Global Registration (LGR) (Qin et al., 2022) takes these fine-level corre-
spondences into account, to select and refine the final relative transformation, represented as {R|t}.

Training objectives. Following Qin et al. (2022), we adopt training objectives to establish coarse-
and fine-level correspondences, which are, respectively, the circle loss objective Loc and point
matching loss objective Lp. We refer the readers to Qin et al. (2022) for details on the framework.

Our final training objective is described as follows:

L = Loc + Lp + λorthLorth + λzeroLzero, (9)

where λorth and λzero are hyperparameters that manage the contribution of each respective loss. In
our case, we have set both of these hyperparameters to 1.

4 EXPERIMENTS

In this section, we evaluate our proposed method, compare it with the recent state of the arts, and
provide in-depth analyses of the results with ablation study in Sec. 4.2. We first show the results on
pairwise shape assembly in Sec. 4.1, and with considering pairwise assemble as a partial stage of
multi-part assembly, then show the extended experimental results in Sec. 4.3.

4.1 PAIRWISE SHAPE ASSEMBLY

Dataset. We use the BreakingBad dataset (Sellán et al., 2022) to train and evaluate Proxy Match
Transform on the task of pairwise shape assembly. The BreakingBad dataset is a large-scale dataset
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Table 1: Pairwise shape assembly results on BreakingBad dataset.

Method
CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
(10−2) (10−3) (◦) (10−2) (10−2) (10−3) (◦) (10−2)

everyday artifact

ICP 8.57 6.52 83.73 27.41 7.48 5.01 83.41 25.11
Sparse ICP 8.55 7.08 83.54 27.26 8.49 6.37 83.73 25.06
RANSAC 8.25 5.39 88.62 26.34 7.44 4.49 83.43 26.82
FGR 8.05 6.44 84.65 26.64 7.23 4.91 83.39 24.81

Global 25.10 13.80 86.40 28.80 24.70 12.39 87.59 26.69
LSTM 27.90 15.20 85.20 30.70 24.07 11.12 83.86 25.84
DGL 24.20 12.10 85.50 28.10 24.62 10.68 86.03 26.36
NSM 22.23 14.54 80.83 24.85 23.18 9.97 83.97 11.37
GeoTransformer 1.66 1.23 34.40 8.82 2.65 2.22 46.63 11.37

PMT (Ours) 1.67 1.05 33.40 8.16 2.46 2.08 40.08 10.39

GTOursGeoTransformerFGRRANSACSparseICPICPInput NSM

Figure 3: Qualitative results of pairwise shape assembly on BreakingBad dataset.

of fractured objects for the task of geometric shape assembly, which consists of over 1 million
fractured objects simulated from 10K meshes of PartNet (Mo et al., 2019) and Thingi10k (Zhou
& Jacobson, 2016). Our focus, akin to the work of Chen et al. (2022), is centered on the problem
of mating a pair of fragments. Please note that we exclusively select a subset that contains two-
fragment objects from the BreakingBad dataset for training and evaluating pairwise assembly, while
we utilize all samples for training and evaluating multi-part assembly.

Baselines. To assess the performance of our method, we conduct a comprehensive comparison
with three main groups of baseline methods. First, for non-learning-based point cloud registration
methods, we used the ICP (Besl & McKay, 1992), and SparseICP (Bouaziz et al., 2013) for local
registration methods, and RANSAC (Fischler & Bolles, 1981) and FGR (Zhou et al., 2016) for
global registration. Next, we also include four learning-based shape assembly methods, namely
Global (Li et al., 2020a), LSTM (Zhang et al., 2019), DGL (Huang et al., 2020), and NSM (Chen
et al., 2022). The first three methods are semantic shape assembly techniques that served as baselines
in a previous study by Sellán et al. (2022). NSM (Chen et al., 2022) is, as of our submission, the
only learning-based baseline available for the geometric shape assembly task. Lastly, we compare
with the recent learning-based point cloud registration method, GeoTransformer (Qin et al., 2022).

Evaluation metrics. Following the evaluation protocol of Sellán et al. (2022), we measure the
root mean square error (RMSE) between the ground-truth and predicted rotation and translation
parameters, and the Chamfer distance (CD) between the assembly results and ground-truth. In
addition, we introduce and report a new metric, called CoRrespondence Distance (CRD), which is
simply defined as the Frobenius norm between two point clouds. Unlike Chamfer distance, it offers
a more comprehensive measure of similarity, capturing both proximity and structural alignment. For
a detailed definition of each metric, please refer to the Appendix A.5.

Implementation details. We implement our Proxy Match Transform using Pytorch (Paszke et al.,
2019). Experiments were conducted on a machine with Intel(R) Xeon(R) Gold 6342 CPU @
2.80GHz and NVIDIA GeForce RTX 3090 GPU. For all experiments, except the ones include Geo-
Transformer, we use ADAM (Kingma & Ba, 2015) optimizer with an initial learning rate of 1×10−3

without learning rate decay for 300 epochs on a single GPU. For GeoTransformer, we use the iden-
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Table 2: Ablation study on the proxy shar-
ing. By sharing proxy tensor in each Proxy
Match Transform layer, two independent feature
transforms share information, yielding the high-
est score.

Ref. proxy shared CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
proxy (10−2) (10−3) (◦) (10−2)

(a) ✗ ✗ 4.27 3.77 63.96 17.28
(b) ✓ ✗ 2.06 1.36 38.02 8.80

Ours ✓ ✓ 1.67 1.05 33.40 8.16

Table 3: Ablation study on the contribution
of Lorth and Lzero. Both losses effectively con-
strains Proxy Match Transform in approximating
the high-order convolution layers, yielding the
highest score.

Ref. orth zero CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
loss loss (10−2) (10−3) (◦) (10−2)

(a) ✗ ✗ 1.81 1.28 35.27 8.23
(b) ✓ ✗ 1.85 1.34 34.88 8.19
(c) ✗ ✓ 1.77 1.22 35.23 8.23

Ours ✓ ✓ 1.67 1.05 33.40 8.16

Table 4: Ablation study on the choice of a fine matcher. (a) Proxy Match Transform layer at fine-
level yields the best assembly accuracy while incurring low-compute complexity than baselines.
(b) Proxy Match Transform layer consistently delivers improvements, irrespective of the choice of
coarse matcher.

(a) Proxy Match Transform as coarse matcher + various fine matchers

Ref. Coarse Fine CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓
Matcher Matcher (10−2) (10−3) (◦) (10−2)

(a)

PMT

None 1.92 1.48 34.41 8.68
(b) Linear 2.11 1.73 37.36 9.42
(c) MLP 1.95 1.56 35.29 9.06
(d) HDC Out of memory error
(e) GeoTr Out of memory error

Ours PMT 1.67 1.05 33.40 8.16

(b) Various coarse matchers + Proxy Match Transform as fine matcher

Ref. Coarse Fine CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓
Matcher Matcher (10−2) (10−3) (◦) (10−2)

(a) None None 2.77 2.42 42.18 11.14
(b) PMT 2.10 1.68 36.41 8.32
(c) Linear None 2.22 1.90 36.50 9.18
(d) PMT 1.90 1.47 33.69 8.03
(e) MLP None 2.24 1.74 36.40 9.75
(f) PMT 1.75 1.21 32.32 8.04
(g) HDC None 2.03 1.69 35.96 9.24
(h) PMT 1.64 1.17 32.42 7.86
(i) GeoTr None 1.66 1.23 34.40 8.82
(j) PMT 1.49 1.00 32.49 8.10
(k) PMT None 1.92 1.48 34.41 8.68

Ours PMT 1.67 1.05 33.40 8.16

tical settings but only reduce the learning rate to 1 × 10−4 to prevent model divergence. To ensure
uniform point density among fractures, we uniformly sample 5,000 points on the surface of holistic
objects and allocate the number of sample points for each fracture proportional to the volume of
each fracture. Detailed configurations for all experiments can be found in Appendix A.4.

Results. We evaluate our method and compare it against baseline methods on the everyday and
artifact subsets of the BreakingBad dataset. Tab. 1 displays the results, showing that our method
consistently outperforms all baseline methods on both subsets. In Fig. 3, we provide qualitative
results for all methods. Note that although all methods receive pairs of point clouds, as in the leftmost
column of the figure, we present the results using mesh representation for better visualization.

4.2 ABLATION STUDY

To evaluate our design choices, we conducted a series of ablation studies. Evaluations for ablation
studies are conducted on the everyday subset of the BreakingBad dataset. First, we aimed to
highlight the impact of the shared proxy tensor in facilitating inter-fragment information exchange.
To this end, we conducted an ablation study by removing the shared proxy. The results, as shown
in Tab. 2, clearly indicate that eliminating proxy sharing leads to a significant decline in assembly
performance, underscoring the efficacy of the shared proxy for facilitating information exchange.

Next, we delve into the impact of Lorth and Lzero, which serve as the sufficient conditions that
constrain the Proxy Match Transform layer to represent the high-dimensional convolutional layers,
as detailed in Sec. 3.2. The results are presented in Tab. 3. As evident from the table, the best
performance is achieved when both losses are incorporated. This underscores the significance of
these constraining conditions for PMT, as they are instrumental in enabling PMT to effectively
approximate the high-dimensional convolutional layers.

Finally, we conduct an ablation study to assess the significance of the PMT layer when employed
as a fine matcher. To accomplish this, we conducted two distinct sets of experiments. Initially, we
examined the assembly performance by altering the fine-level while fixing the coarse matcher as
PMT (Tab. 4 (a)). Subsequently, we incorporated various coarse matchers and then evaluated the
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Table 5: Multi-part assembly results on the Breaking Bad dataset.

Method
CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ PA ↑ CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ PA ↑
(10−2) (10−3) (◦) (10−2) (%) (10−2) (10−3) (◦) (10−2) (%)

everyday artifact

Global 38.74 19.25 81.23 15.96 17.63 39.84 20.66 84.18 16.26 7.23
LSTM 40.71 23.62 85.64 16.41 11.21 41.40 27.48 85.23 16.86 2.30
DGL 38.21 18.14 81.81 15.35 20.08 40.00 20.62 86.40 16.05 6.68

PMT w/ PGO (Ours) 13.81 12.79 48.22 15.27 47.82 13.91 12.29 50.76 15.52 45.14

GTGlobal LSTM OursDGL

Figure 4: Qualitative results of multi-part assembly on BreakingBad dataset.

impact of adding the PMT layer to the fine matchers (Tab. 4 (b)). As evident from both tables,
incorporating the PMT layer as a fine matcher consistently leads to superior performance, affirming
its superiority and importance in this role.

4.3 MULTI-PART ASSEMBLY

Multi-part assembly presents a significantly more challenging task, involving establishing multiple
matches between fragments and considering the relationships among all these pairwise connections.

We initiate this process by constructing a pose graph for an object with N fractures. This graph
comprises relative transformations Tij = {Rij |tij}, which act as factors, and individual part frac-
tures Pi as nodes. These relative transformations are computed using the pairwise matcher we have
proposed in Sec. 3.1 for pairwise shape assembly. Subsequently, we optimize the pose graph to es-
timate synchronized global rotations R̃i and translations t̃i. To optimize our pose graph, we employ
a state-of-the-art transformation averaging method (Dellaert et al., 2020).

We evaluate the performance of multi-part assembly with the same metrics we used for pairwise
shape assembly, but also report the Part Accuracy (PA) (Huang et al., 2020), which is defined as the
percentage of fractures with Chamfer Distance less than the predefined threshold, set at 0.01 for our
experiments. We present the results of multi-part assembly on the BreakingBad dataset in Tab. 5 and
Fig. 4. Notably, our method significantly outperforms all baseline methods. In-depth information on
pose graph optimization (PGO) and other implementation specifics are presented in Appendix A.6.

5 CONCLUSION

We’ve developed a new low-complexity, high-order feature transform layer, Proxy Match Trans-
form, designed for efficient approximation of previously compute-intensive layers. This signif-
icantly advances the analysis of complex geometric feature correlations while reducing compu-
tational load. Despite its excellent performance in geometric shape assembly, the Proxy Match
Transform currently focuses on pairwise assembly, indicating potential for future expansion into an
efficient method for multi-part assembly.

9
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A APPENDIX

A.1 THEORETICAL ANALYSIS OF PROXY MATCH TRANSFORM

We now derive sufficient conditions such that Proxy Match Transform can express high-dimensional
convolution. Our main theoretical result is given below.

Theorem 1. If we assume P(i)⊤P(j) = IDemb if i = j and P(i)⊤P(j) = 0 otherwise for all
i, j ∈ [Nh], and define A

(h)
(x,y),(n,m)

:= A
(h)
X (x,n) · A

(h)
Y (y,m)

and w(h) := w
(h)
X w

(h)
Y , then, the

dot-product of Proxy Match Transform outputs with a sufficient number of heads Nh ≥ K2 can
express high-dimensional convolutional layer with kernel K ∈ RK2

: PMT(FX ) · PMT(FY)
⊤ =

Conv(FX ,FY ;K).

Proof. We first take the dot-product of Proxy Match Transform outputs and simplify:

PMT(FX ) · PMT(FY)
⊤ =

 ∑
h∈[Nh]

A
(h)
X FXP(h)⊤w

(h)
X

 ∑
h∈[Nh]

A
(h)
Y FYP

(h)⊤w
(h)
Y

⊤

(10)

=
∑

(i,j)∈[Nh]2

w
(i)
X A

(i)
X FXP(i)⊤P(j)F⊤

YA
(j)⊤
Y w

(j)
Y (11)

=
∑

(i,j)∈[Nh]2

δ(i, j)
(
w

(i)
X A

(i)
X FXF⊤

YA
(j)⊤
Y w

(j)
Y

)
(12)

=
∑

h∈[Nh]

w
(h)
X A

(h)
X FXF⊤

YA
(h)⊤
Y w

(h)
Y , (13)

where δ(i, j) provides 1 if i = j and 0 otherwise. Using definitions of A(h) ∈ R|X ||Y|×|X||Y| and
w(h) ∈ R, the output at a specific position (x,y) ∈ R6 is as follows:

(PMT(FX ) · PMT(FY)
⊤)(x,y) =

∑
h∈[Nh]

A
(h)
X (x,:)FXF⊤

YA
(h)⊤
Y (:,y)

w(h) (14)

=
∑

h∈[Nh]

∑
(n,m)∈X×Y

A
(h)
X (x,n)FX (n,:)F

⊤
Y (:,m)A

(h)⊤
Y (m,y)

w(h)

(15)

=
∑

h∈[Nh]

 ∑
(n,m)∈X×Y

A
(h)
X (x,n) ·A

(h)
Y (y,m)

C(n,m)w
(h) (16)

=
∑

h∈[Nh]

A
(h)
((x,y),:)C w(h). (17)

Now consider the following Lemma:

Lemma 1. Consider a bijective mapping of natural numbers, i.e., heads, onto 6-dimensional local
displacements: t(h) : [Nh] → ∆(x,y). Let A(h) ∈ R|X ||Y|×|X||Y| be an attention matrix that
holds the following:

A
(h)
(x,y),(n,m) =

{
1, if t(h) = (n,m)− (x,y)

0, otherwise.
(18)

Then, for any high-dimensional convolution with a kernel K : R6 −→ R, there exists {w(h) ∈
R}h∈[Nh] such that following equality holds:

Conv(FX ,FY ;K)(x,y) =
∑

h∈[Nh]

A
(h)
((x,y),:)C w(h). (19)
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Proof. Consider high-dimensional convolution at position (x,y):

Conv(FX ,FY ;K)(x,y) :=
∑

(n,m)∈N (x)×N (y)

C(n,m)K([n− x,m− y])

=
∑

(ννν,µµµ)∈∆(x,y)

C(x,y)+(ννν,µµµ)K((ννν,µµµ))

=
∑

h∈[Nh]

C(x,y)+t(h)K(t(h)) ( t(h) : [Nh] → ∆(x,y) )

=
∑

h∈[Nh]

C(x,y)+t(h)w
(h) ( w(h) := K(t(h)) ∈ R )

=
∑

h∈[Nh]

 ∑
(n,m)∈X×Y

1[t(h) = (n,m)− (x,y)] C(n,m)

w(h)

=
∑

h∈[Nh]

A
(h)
((x,y),:)C w(h). (20)

By applying Lemma 1, we conclude that the dot-product of Proxy Match Transform outputs is
equivalent to the high-order convolution. ■

A.2 EMPIRICAL ANALYSIS OF PROXY MATCH TRANSFORM

(a) (b)

Figure 5: Visualization of the correlation between the proxy P and the input features FX and FY .
The red, blue, and purple color indicates the source (X ), target (Y), and the proxy (P), respectively.
(a) t-SNE visualization of source feature FX , target feature FY , and shared proxy tensor P. (b)
Visualization of points in each point cloud with the highest correlation with the proxy.

To provide the analysis on the role of the shared proxy in our Proxy Match Transform, in Fig. 5, we
visualize the correlation between the shard proxy P and the input features, FX and FY . As depicted
in Fig. 5. (a), the features of the source, target point clouds, and the proxy form distinct clusters,
with some regions of the source and target point clouds showing higher correlation with the proxy,
resulting in proximity in t-SNE visualization. In Fig. 5. (b), we visually represent those points with
high correlation in 3D point clouds. Remarkably, the points with the highest correlation with the
proxy are predominantly located on the mating surfaces of the fragments. This observation suggests
that the proxy in our Proxy Match Transform effectively facilitates the critical information exchange
from the points near the mating surfaces. Note that the correlations are computed on proxy tensor
P(h), specifically with a head index of h = 0.
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A.3 EFFICIENCY OF PROXY MATCH TRANSFORM

In Tab. 6, we present detailed experimental results that showcase the efficiency of PMT when em-
ployed as both a coarse-matcher and a fine-matcher.

Specifically, we measure the computational efficiency of our method by employing Floating Point
Operations Per Second (FLOPS) as a metric and compare it with Qin et al. (2022). To assess the
memory overhead and footprint, we record the peak memory usage for each method during both the
training and inference phases, as well as the number of parameters. For clarity in our comparison,
when measuring the FLOPS and the number of parameters, we exclude those associated with the
backbone and focus solely on the coarse matcher, and if applicable, the fine matcher.

Table 6: Comparison of computational efficiency and memory usage between Qin et al. (2022) and
Proxy Match Transform (PMT).

Method Coarse Fine FLOPS (G)↓ # Param. (K) ↓ Mem. train (GB) Mem. test (GB)

GeoTransformer GeoTr - 9.67 926.85 6.96 3.10
PMT(Coarse) PMT - 0.45 273.85 2.12 0.28
PMT(Ours) PMT PMT 0.78 296.15 3.78 0.88

The table above clearly indicates that our PMT Blocks deliver substantial reductions not only in
computational complexity but also in memory requirements, both during the training and testing
phases. This improvement is noteworthy when compared to the previous state-of-the-art methods,
specifically Qin et al. (2022). Such efficiency is crucial, as it facilitates the practical deployment of
our fine matcher for intricate matching tasks.

A.4 IMPLEMENTATION DETAILS

Attention Calculation. We adopt the relative-position encoding strategy of PerViT (Min et al.,
2022) to compute the attention matrix A

(h)
X . Specifically, given a query and key positions q,k ∈ R3,

the Euclidean distances is defined as follows: Rq,k = ||q − k||2. An MLP takes this distance to
produce an attention score:

(A
(h)
X )q,k := Linear(ReLU(Linear(Rq,k;Wp1))W

(h)
p2 )

= ReLU(RWp1)W
(h)
p2 ∈ R, (21)

where Wp1 ∈ R1×Nh and Wp2 ∈ RNh×1 are the linear projection parameters, and ReLU gives
non-linearity to the function.

Training Details. For the backbone network, we utilize KPConv-FPN (Thomas et al., 2019) and
set a subsampling radius of 0.02. And the coarse-level and fine-level feature dimension are set as
Dc = 512 and Df = 128, respectively. This configuration is employed across all baselines and in
our method for both the main results and ablation studies, using a coarse-to-fine approach. For other
details, we used the default settings implemented in Qin et al. (2022). We direct readers to their
work for further details.

For our PMT blocks with Proxy Match Transform layers, we repeat Nt = 2 times to constuct both
coarse and fine matchers. In Proxy Match Transform layer, the number of head is set of Nh = 4,
and the spatial resolutions Dproxy of the proxy tensors are set of 32 for both coarse and fine matcher.

Baseline methods. In our ablation studies (Sec. 4), we evaluated our PMT model against four dis-
tinct baselines, demonstrating its effectiveness in both coarse- and fine- matching contexts. The
first baseline, Linear, involves constructing two individual linear layers for features FX and FY ,
sharing a common weight matrix W ∈ RDemb×Demb . The second, MLP, employs two linear layers
with weight matrices W1 ∈ RDemb×Demb/2 and W2 ∈ RDemb/2×Demb , each followed by a Group Nor-
malization and ReLU sequence. The third baseline, HDC, adheres to the center-pivot convolution
approach as introduced by Min et al. (2021). Lastly, for GeoTr, we implemented the Geometric
Transformer according to the method outlined by Qin et al. (2022).
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A.5 EVALUATION METRICS

We employ four different metrics to assess the results. Consider a pair of input point clouds {X ,Y}
where X ∈ RN×3, Y ∈ RM×3. Without loss of generality, we assume that N < M . The ground
truth SE(3) relative pose between the point clouds is represented by TGT =

[
RGT, tGT

]
, while the

predictions are denoted as T = [R, t]. Note that in our context, the direction of pose is defined as
the transformation that aligns X with the coordinate frame of Y .

Chamfer Distance (CD). The chamfer distance between two point clouds S1, S2 is defined as

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22 +
∑
y∈S2

min
x∈S1

∥x− y∥22, (22)

and measures the sum of the distance between nearest neighbor correspondences between point
clouds. To assess the quality of shape assembly, we measure the chamfer distance between ground
truth assembly and the prediction as:

CD(T,TGT) = dCD((RX + t) ∪ Y, (RGTX + tGT) ∪ Y) (23)

CoRrespondence Distance (CRD). While the Chamfer distance calculates the distance between two
point clouds, its ability to capture more complex features of the object’s geometry, such as symmetry
and rotation, is limited. To overcome this limitation, we define a new metric, CoRrespondence
Distance (CRD). CRD is simply defined as the Frobenius norm between two point clouds (Eq. 24).
By considering all pairwise distances between point clouds, it offers a more comprehensive measure
of similarity, capturing both proximity and structural alignment.

CRD(T,TGT) = ∥(RX + t) ∪ Y − (RGTX + tGT) ∪ Y∥F , (24)

Rotational-, Translational-RMSE (RRMSE, TRMSE). Finally, to directly measure the prediction ac-
curacy of transformation parameters, we compute the root mean square error (RMSE) between pre-
dicted and ground-truth rotation and translation, respectively. Following the protocols of Sellán et al.
(2022), we use Euler angle representation for rotation.

A.6 MULTI-PART ASSEMBLY DETAILS

With nP2 computed pairwise transformations, we first construct a pose graph G = (V,E) for an
object O with N fractures. We adopt a pose graph optimization (PGO) (Choi et al., 2015) process
from the SLAM domain (Carlone et al., 2015b), assuming our estimated relative transformations
Rij |tij to be noisy measurements.

To solve the problem, we divide the pose graph optimization into two steps: (1) rotation averag-
ing, and (2) translation recovering. To estimate global rotation R̃i and R̃j from estimated relative
rotations Rij , we set an objective of rotation averaging as follows:

argmin
R̃∈SO(3)

∑
(i,j)∈E

κIij ∥ R̃j − R̃iRij ∥2F , (25)

where κIij are concentration parameters for an assumed Langevin noise model (Carlone et al.,
2015a; Boumal et al., 2014), and Iij are information matrices. We design our information matri-
ces Iij as:

Iij =
1

∥
∑

(i,j)∈Ĉ si,j ∥22
· I6, (26)

with coarse-level correspondence score si,j = exp(− ∥ hX
i − hY

j ∥22) from each pairwise matcher
with input Pi and Pj . To optimize our pose graph, we use Shonan Rotation Averaging (Dellaert
et al., 2020), the state-of-art transformation optimization method, and we use the implementation in
gtsam (Dellaert, 2012). Then, we simply recover the global translation t̃i and t̃j with its objective:

argmin
t̃∈R3

∑
(i,j)∈E

κIij ∥ R̃itij + t̃i − t̃j ∥2, (27)

where tij are estimated relative translations.

Finally, we assemble the part fractures Pi using transformations derived from synchronized global
poses {R̃i, t̃i}Ni=1, and we take the system of the largest pieces as canonical pose for the object O.
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A.7 ADDITIONAL RESULTS

Experiments on Real-world Dataset. In Tab. 7, we have extended our experimental evaluation to
include the Fantastic Breaks dataset (Lamb et al., 2023), which consists of real data samples for
shape re-assembling. We acknowledge that this dataset is comparatively small, containing only 150
samples, but we believe it provides a valuable preliminary indication of how our model, trained on
synthetic data, performs in real-world scenarios.

Table 7: Experimental results on real-world dataset, Fantastic Breaks.

Method
CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
(10−2) (10−3) (◦) (10−2) (10−2) (10−3) (◦) (10−2)

everyday→ Fantastic Breaks artifact→ Fantastic Breaks

Global 26.41 16.37 88.92 22.99 26.50 17.23 87.97 24.19
LSTM 26.48 18.53 85.26 25.00 25.85 18.25 85.18 23.29
DGL 26.92 15.22 86.66 22.76 26.23 16.98 87.96 23.58
NSM 25.05 18.62 81.88 22.54 26.09 17.28 86.69 23.36
GeoTransformer 7.79 6.54 43.79 10.17 13.69 15.14 70.08 20.96

PMT (Ours) 7.30 6.52 39.38 11.35 12.24 13.32 66.88 19.03

Experiments on Generalizability. Furthermore, to underscore the generalizability of our approach
in Tab. 8, we have conducted transferability experiments between BreakingBad everyday, and
artifact subsets. The results of these experiments confirm that PMT retains its efficacy when
applied to data distributions that differ from the training set, indicating robust transfer learning
capabilities.

Table 8: Transferability experimental results on BreakingBad dataset.

Method
CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓ CRD ↓ CD ↓ RMSE (R) ↓ RMSE (T) ↓
(10−2) (10−3) (◦) (10−2) (10−2) (10−3) (◦) (10−2)

everyday→ artifact artifact→ everyday

Global 24.81 11.82 86.55 27.50 27.34 15.24 85.67 29.09
LSTM 24.81 12.44 84.21 27.53 26.84 14.90 84.81 28.87
DGL 25.02 11.69 86.69 27.87 26.85 14.40 86.22 29.00
NSM 24.76 11.33 84.60 26.24 25.68 14.58 85.68 27.55
GeoTransformer 3.78 3.05 61.35 15.41 4.38 3.61 61.95 14.95

PMT (Ours) 3.96 2.97 59.02 16.31 4.20 3.33 61.25 16.06

In Tab. 9, we report the classwise quantitative results of pairwise assembly by all methods, evaluated
on everyday subset of BreakingBad dataset. In Fig. 6 and Fig. 7 we include additional qualitative
results of all methods on both everyday and artifact subset of BreakingBad dataset (Sellán
et al., 2022).

17



Under review as a conference paper at ICLR 2024

Table 9: Class-wise quantitative results of pairwise assembly on everyday subset of BreakingBad.
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CRD (10−2) ↓
ICP 13.35 7.78 7.49 6.30 4.46 11.78 25.90 4.81 6.13 11.80 9.74 3.85 19.31 12.53 7.13 15.35 9.37 2.38 10.28 12.49 8.57 10.11

SparseICP 13.33 7.73 7.27 6.17 4.42 12.00 24.90 4.90 6.16 11.69 9.75 3.91 19.25 12.69 7.09 14.95 9.25 2.36 10.18 12.74 8.55 10.04
RANSAC 14.25 9.24 6.77 5.46 4.20 13.42 21.85 5.56 5.89 8.41 8.10 4.15 17.90 12.57 7.57 16.11 8.17 3.45 10.19 11.00 8.24 9.71

FGR 11.88 8.05 6.17 5.16 4.38 11.95 25.78 5.17 6.14 8.85 8.95 4.29 17.91 13.18 6.35 15.85 8.49 2.46 9.64 12.54 8.15 9.66
Global 21.95 24.99 27.89 29.31 27.64 22.9 29.53 18.99 25.26 9.26 21.99 23.43 13.39 25.15 26.72 24.15 22.68 25.29 26.52 46.09 25.10 24.66
LSTM 30.79 24.66 27.06 28.39 28.42 23.01 27.13 17.72 27.12 23.88 27.79 22.67 30.11 24.92 28.18 24.44 22.27 24.81 31.02 27.13 27.90 26.08

DGL 16.18 24.08 28.9 29.99 28.31 23.37 27.8 18.86 26.86 8.1 16.63 22.33 8.83 25.4 26.07 19.46 19.44 22.23 25.62 53.24 24.20 23.58
NSM 25.05 22.86 21.54 25.09 25.85 22.41 26.81 14.82 24.45 9.12 17.15 21.55 13.88 24.35 25.35 22.06 17.96 26.56 23.4 18.59 1.66 21.44

GeoTransformer 0.62 1.84 0.86 0.22 0.70 0.97 30.35 0.32 3.23 0.56 0.83 1.06 0.77 3.73 1.47 10.79 6.16 1.01 1.41 8.24 1.66 3.76
Ours 0.51 1.51 0.48 0.78 0.76 0.89 29.41 0.45 2.74 0.28 0.76 0.35 0.47 2.48 0.66 12.37 4.14 1.14 1.64 5.36 1.46 3.36

CD (10−3) ↓
ICP 10.88 4.66 6.11 4.65 3.38 5.15 68.63 2.10 4.07 5.78 7.16 1.26 18.58 10.25 4.13 19.56 3.90 1.81 8.53 15.65 6.52 10.31

SparseICP 10.93 5.45 6.56 4.64 3.45 9.70 69.41 2.18 4.14 5.83 7.22 1.49 18.62 15.80 4.21 19.54 3.91 1.79 8.62 15.76 7.08 10.96
RANSAC 9.98 4.12 4.25 2.14 1.68 8.30 36.77 1.87 3.60 5.30 6.08 1.10 18.06 12.18 2.04 13.38 3.80 0.47 6.44 12.70 5.38 7.71

FGR 10.28 4.79 5.62 3.81 3.48 9.35 71.72 1.87 3.87 4.99 6.69 1.23 18.15 46.99 3.83 17.83 3.98 1.76 8.17 15.71 8.74 12.20
Global 13.87 10.39 15.42 8.56 12.0 17.11 29.64 7.45 14.11 2.2 8.48 5.35 4.75 19.1 8.53 24.56 9.56 7.04 16.39 79.69 13.80 15.71
LSTM 19.88 13.93 13.57 9.49 12.43 14.44 38.96 7.76 15.05 10.57 13.63 4.33 25.88 20.99 10.04 24.76 7.12 5.93 17.86 39.36 15.20 16.3

DGL 6.72 10.36 14.55 7.29 11.71 10.19 27.78 9.26 13.98 1.22 5.55 3.81 0.97 20.08 6.88 18.94 8.73 5.74 13.92 106.17 12.10 15.19
NSM 29.27 16.92 18.17 9.46 18.3 14.97 32.06 7.22 13.49 2.77 8.57 5.8 10.9 22.12 7.34 21.57 9.81 6.38 17.2 33.31 14.54 15.28

GeoTransformer 0.11 0.91 0.40 0.04 0.21 0.25 69.74 0.07 2.82 0.11 0.27 0.98 0.10 4.08 0.37 4.37 4.44 0.16 0.85 13.48 1.23 5.19
Ours 0.11 0.99 0.22 0.73 0.22 0.50 72.33 0.13 2.34 0.03 0.30 0.23 0.06 2.08 0.37 15.69 4.59 0.24 1.31 4.91 1.09 5.37

RMSE (R) (◦) ↓
ICP 82.15 84.10 78.21 83.58 84.51 84.12 65.96 80.86 83.64 86.82 83.45 85.22 85.35 86.79 82.60 76.50 80.76 84.35 83.64 84.53 83.71 82.36

SparseICP 82.33 83.17 76.26 83.18 84.29 88.46 47.62 81.38 83.68 85.93 84.01 86.28 85.46 85.24 80.89 76.58 79.44 84.61 83.76 83.37 83.54 81.30
RANSAC 93.52 81.45 89.64 88.80 87.83 85.92 108.93 91.99 81.39 89.94 91.80 86.32 102.91 84.79 89.06 78.93 88.73 84.97 93.67 107.56 89.05 90.41

FGR 84.61 83.95 77.97 79.51 85.24 91.56 62.47 81.66 83.79 84.07 85.86 84.92 100.23 84.98 79.38 89.29 78.32 84.53 87.19 85.80 85.02 83.77
Global 85.5 86.81 85.56 79.97 85.13 91.28 116.8 89.09 84.23 82.89 87.04 90.95 80.18 88.21 86.89 82.14 78.7 87.15 85.97 86.52 86.40 87.05
LSTM 76.64 84.5 86.65 87.84 84.93 81.34 57.03 73.64 83.08 82.85 85.9 78.62 83.86 88.81 92.41 73.17 78.95 83.2 84.87 85.14 85.20 81.67

DGL 92.24 86.94 91.62 87.07 84.84 79.8 42.63 89.78 87.36 79.75 84.58 94.13 70.52 86.78 87.9 77.6 80.73 91.72 88.63 81.63 85.50 83.31
NSM 81.95 76.43 86.93 82.53 80.82 72.29 87.85 84.23 87.22 79.62 78.0 85.62 81.34 84.57 85.97 92.78 74.27 93.09 82.23 77.59 80.83 82.77

GeoTransformer 7.71 25.49 26.81 6.45 40.67 22.10 98.52 3.15 77.85 16.34 27.61 24.28 4.42 34.83 25.71 69.47 97.10 68.20 21.22 64.51 34.40 38.12
Ours 7.41 23.37 16.08 14.39 49.83 18.08 115.97 12.82 63.71 11.41 26.08 11.49 2.29 29.19 31.24 54.72 42.35 76.95 22.49 64.57 32.86 34.72

RMSE (T) (10−2) ↓
ICP 30.86 24.39 26.82 27.23 29.27 22.90 30.93 16.56 27.43 24.98 27.62 24.63 26.32 25.49 28.05 22.84 20.19 22.86 29.04 33.20 27.42 26.08

SparseICP 30.77 24.15 26.17 26.63 28.87 22.70 29.99 16.79 27.43 25.17 27.64 24.70 26.21 25.63 27.83 22.28 19.94 22.73 28.83 32.94 27.26 25.87
RANSAC 31.53 26.07 23.04 20.38 26.00 19.68 27.47 18.67 26.23 21.38 25.60 21.38 27.77 27.36 22.47 18.93 20.39 33.26 28.23 36.00 26.22 25.09

FGR 27.82 24.71 25.37 25.72 28.57 22.30 30.73 16.77 26.74 22.07 27.02 24.97 25.92 26.93 26.60 25.70 18.21 23.69 28.08 33.30 26.81 25.56
Global 26.54 25.54 28.44 28.75 31.46 23.94 30.05 16.83 29.03 22.59 27.78 25.97 11.76 25.59 29.31 28.42 29.03 27.3 31.85 38.27 28.80 26.92
LSTM 36.01 25.03 30.13 30.06 32.79 22.9 38.46 17.33 30.63 29.76 33.05 24.93 25.89 26.29 32.86 25.04 23.41 26.18 33.91 41.29 30.70 29.30

DGL 22.43 25.53 29.05 27.42 28.94 23.76 31.75 16.48 29.73 19.77 25.28 24.55 8.37 26.8 29.04 22.22 22.1 26.57 30.67 33.16 28.10 25.18
NSM 30.06 24.71 25.46 29.12 28.32 22.88 34.55 19.72 29.53 14.79 18.24 23.5 11.83 26.23 28.42 23.0 17.16 21.58 25.87 16.74 24.85 23.59

GeoTransformer 3.74 7.14 6.52 2.31 8.23 3.07 38.69 1.41 19.56 4.68 7.60 2.87 1.48 9.61 11.65 14.58 16.48 13.01 5.37 29.88 8.82 10.39
Ours 1.37 7.47 4.92 2.54 11.05 3.46 37.60 2.35 16.20 5.03 7.63 1.87 0.92 6.53 6.66 15.73 10.82 15.81 5.52 12.52 8.17 8.80
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GTOursGeoTransformerFGRRANSACSparseICPICPInput NSM

Figure 6: Additional qualitative results of pairwise shape assembly on BreakingBad.

GTGlobal LSTM OursDGL

Figure 7: Additional qualitative results of multi-part assembly on BreakingBad.
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