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ABSTRACT

Computational prediction of protein binding affinity is a cornerstone of modern
drug development, accelerating tasks from lead optimization to de novo protein
design. However, progress is often hampered by evaluation practices, such as Ran-
dom Cross-Validation (RandomCV), that can substantially overestimate model
generalization on real-world tasks and lacking experimental validation. To ad-
dress this, we introduce HAIPR, a unified framework that standardizes the entire
modeling pipeline from training and optimization to inference, providing an ini-
tial selection of algorithms, robust evaluation protocols and curated benchmark
datasets. By extending the BindingGYM benchmark and implementing more
realistic, biologically meaningful data splits, our framework reveals that model
performance on these challenging tasks is substantially lower than suggested by
RandomCV. We systematically compare classical machine learning approaches,
such as Support Vector Regression (SVR) on protein language model (pLM) em-
beddings, with parameter-efficient fine-tuning (PEFT) of pLMs. Our results show
that SVR can be competitive in low-data regimes and less prone to model col-
lapse, while PEFT methods offer clear advantages as dataset size and problem
complexity increase. Furthermore, we analyze the minimum data requirements for
reliable prediction and demonstrate that even modestly sized models can achieve
performance that rivals the experimental reproducibility between state-of-the-art
affinity assays, highlighting a critical ceiling for in silico prediction. Code and
pre-computed embeddings are made available.

Figure 1: HAIPR Framework: We provide a unified framework for high-throughput affinity pre-
diction that provides training, evaluation, and inference protocols as well as curated benchmark
datasets.
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1 INTRODUCTION

Protein-protein interactions (PPIs) are fundamental to cellular function, governing processes from
signal transduction to immune responses Janin et al. (2008); Sprang (1997); Duc et al. (2015); Fein-
stein & Rowe (1965). Accurately predicting the effects of mutations on binding affinity in protein-
protein complexes (PPCs) is a crucial step in drug development and protein engineering pipelines.
Deep mutational scanning (DMS) has emerged as a powerful high-throughput screening (HTS) tech-
nique that enables systematic evaluation of thousands of mutations in parallel Adams et al. (2016),
providing valuable data for machine learning approaches to predict binding affinity changes upon
mutation Yang et al. (2019). Collections of DMS datasets were aggregated in benchmarks such as
ProteinGym Notin et al. (2023) and BindingGYM Lu et al. (2024).

However, data availability remains a major bottleneck for developing foundation models for affinity
prediction. Existing datasets such as SKEMPI2 Jankauskaitė et al. (2019) contain only few dat-
apoints for any given complex, limiting the development of robust predictive models tailored to
any specific complex. Furthermore, evaluation protocols commonly used in the literature, such as
Random Cross-Validation (RandomCV), have been shown to overestimate model performance since
train and test distributions are highly similar, leading to overly optimistic assessments of generaliza-
tion capability Tossou et al. (2024).

Given these unknowns and challenges in the field, there is a clear need for a comprehensive frame-
work that enables researchers to quickly evaluate various experimental setups, model architectures,
and evaluation protocols in a standardized manner. Such a framwork would facilitate unbiased com-
parisons across different algorithms and accelerate progress in the field.

Here, we address these challenges by introducing a comprehensive framework for high-throughput
affinity prediction (HAIPR) that provides a unified evaluation protocol and interface to benchmark
datasets. Our contributions are as follows:

1. We propose the HAIPR framework, which provides the backbone for evaluating future models by
unifying the evaluation protocol and offering a unified access point to benchmark datasets, as well
as comprehensive functionality to evaluate model performance and perturb input data.

2. We show that current splits to estimate out-of-distribution performance are insufficient, as they
either fail to capture the true generalization challenges faced in real-world applications or use only
a fraction of the available data, rendering them unsuitable for large-scale screenings.

3. We provide alternative splits to measure out-of-distribution performance: Leave-one-Mutation-
out (LoMo) and Out-of-Distribution (OOD) splits that better reflect real-world generalization sce-
narios and utilize all available data.

4. We compare classical machine learning approaches such as Support Vector Regression (SVR)
to parameter-efficient fine-tuning of protein language models (pLMs), demonstrating the relative
strengths and limitations of each approach.

5. We evaluate the lower sample size threshold needed in DMS assays to achieve robust prediction
performance, providing guidance for experimental design and data collection strategies.

6. We demonstrate the inference capabilities of the HAIPR framework to efficiently screen for novel
variants that improve binding affinity based on fine-tuned pLMs trained on DMS data.

Our results demonstrate that while RandomCV can lead to overestimated performance, our proposed
LoMo and OOD splits provide more realistic assessments of the generalization capabilities to unseen
mutations and affinity ranges.

We find that PEFT methods are more prone to model collapse but offer advantages when more data
is available and especially when evaluating performance on OOD splits. Our analysis of data size
requirements provides practical guidance for experimental design, showing that even relatively small
datasets and models can achieve performance exceeding the resolution limits of DMS measurements
given sufficiently similar training and test distributions.
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2 RELATED WORK

Much of previous work has focused on general affinity prediction across diverse protein complexes,
which differs fundamentally from our approach of learning single-complex scoring functions. How-
ever, both the approaches often rely on pre-trained protein language models (pLMs) to provide
embeddings of the protein sequences such as Evolutionary Scale Modeling (ESM) Lin et al. (2022)
or structural models such as ProteinMPNN Dauparas et al. (2022). This section reviews the relevant
literature, highlighting the distinction between these two problem settings.

2.1 GENERAL BINDING AFFINITY PREDICTION OF PROTEIN-PROTEIN COMPLEXES

Predicting Binding Affinity changes upon mutation has been an active field of research for more than
a decade Moretti et al. (2013). Early benchmarks like SKEMPI Jankauskaitė et al. (2019) provided
datasets for evaluating mutation effects on binding affinities measured using low-throughput affinity
assays, but were limited by small sample sizes for each complex. Liu et al. (2024a) extended this
work by increasing the total sample size to 12157 by combining SKEMPI PDBbind Wang et al.
(2005) and SabDAb Dunbar et al. (2014). More recent benchmarks such as ProteinGym Notin et al.
(2023) and BindingGYM Lu et al. (2024) have addressed this limitation by providing a collection of
preprocessed DMS datasets providing up to 92 thousand samples for a single complex and totaling
up to half a million data points.

Many general predictors of binding affinity have been brought forward. Vangone & Bonvin (2015)
demonstrated that interfacial contact networks can effectively predict binding affinity. Zhou et al.
(2020) developed MuPIPR, an end-to-end deep learning framework that uses contextualized rep-
resentations to estimate mutation effects on protein-protein interactions, achieving state-of-the-art
performance on SKEMPI datasets. Fiorellini-Bernardis et al. (2024) proposed eGRAL, a graph neu-
ral network that combines ESM embeddings with structural information to predict binding affinity
changes upon mutation. Jiao et al. (2025) demonstrated that pre-trained inverse folding models can
effectively predict binding free energy changes (∆∆G) for mutations in the SKEMPI dataset.

2.2 AFFINITY PREDICTION FOR SINGLE PROTEIN-PROTEIN COMPLEXES USING DMS DATA

Deep mutational scanning has emerged as a powerful experimental approach for high-throughput
characterization of protein variants Moulana et al. (2022)Adams et al. (2016). These datasets are
generated using high-throughput assays, generally relying on a combination of Sorting and Sequenc-
ing as proposed by Adams et al. (2016). Although these measurements can contain systematic biases
Trippe et al. (2022), their overall correlation with low-throughput assays can approach that of inter-
assay correlation between low-throughput assays Kamat & Rafique (2017) Moulana et al. (2022).
DMS typically tests all single point mutations of the scanned area, often the entire protein, leading
to a large number of datapoints. DMS datasets enable a new approach to binding-affinity prediction
by providing sufficient data to train complex-specific models. Jones & Thornton (1996) emphasized
over two decades ago, that different types of protein-protein interactions may require tailored ap-
proaches rather than one-size-fits-all models thus further supporting this approach. Kastritis et al.
(2011) and Moal et al. (2011) also argued for complex-specific energy functions and highlighted the
important trade-off between compute cost and prediction accuracy.

Lee et al. (2018) showed that deep mutational scanning data can predict evolutionary success,
demonstrating the value of large-scale experimental data for training predictive models. Riesselman
et al. (2018) demonstrated that deep generative models like DeepSequence can predict mutation ef-
fects. Machine learning-guided protein engineering has shown remarkable success in optimizing
protein functions with limited experimental data. Hie & Yang (2022) reviewed adaptive machine
learning approaches for protein engineering, emphasizing sequential optimization strategies for dis-
covering optimized sequences across multiple rounds of training and experimental measurement.

For antibody optimization, Bachas et al. (2022) developed deep learning approaches to predict both
binding affinity and developability, enabling co-optimization of therapeutic antibodies. Shan et al.
(2022) used geometric deep learning to optimize antibodies against SARS-CoV-2 variants, showcas-
ing the potential for rapid in silico optimization. Gainza et al. (2023) used geometric deep learning
frameworks to design novel protein binders, opening possibilities for designing binders for any
target of interest. Bachas et al. (2022) demonstrated that deep contextual language models can

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

quantitatively predict binding of antibody variants spanning three orders of magnitude in KD range,
revealing strong epistatic effects that highlight the need for intelligent screening approaches.

A critical challenge in high-throughput screening is ensuring model reliability when applied to novel
variants. Dias & Kolaczkowski (2017) highlighted the critical importance of data quality for train-
ing accurate prediction models, suggesting that efforts should focus on curating high-quality, high-
resolution datasets rather than simply developing more complex models.

Nevertheless, training models that can generalize to unseen mutations and affinity ranges still poses
a challenge. This is highligted by Tossou et al. (2024) who demonstrated the pitfalls of covariate
shift in molecular interactions, and the resulting overestimation of model performance on random
train/test splits.

While steps have been taken to address this challenge, oftentimes the resulting splitting mechanism
discards the majority of the available data such as in the contig or modulo splits proposed by Notin
et al. (2022; 2023). Fernandez-Diaz et al. (2024) introduced the AU-GOOD metric for evaluating
model generalization, providing a framework for assessing model reliability on dissimilar proteins.
Phillips et al. (2021) reconstructed binding affinity landscapes of five distinct SARS-CoV-2 Binding
Partners (4 Antibodies and human ACE2). This work demonstrated how single mutations can carry
much of the affinity variance for a given PPC.

While many predictors have been proposed for approximating sequence-function relationships using
DMS data, only few have been experimentally tested in vitro. This might also be due to the lack of
end-to-end pipelines for high-throughput screening. The only peer-reviewedwork we are aware of
that exersized high-throuhgput affinity screening based models trained on DMS data is Gelman et al.
(2021) who trained an ensemble of convolutional-, graph-convolutional-, fully-connected neural
networks and a linear regression model on one-hot encoded sequences to screen novel mutations.

3 METHODS

3.1 DATA

We filtered the BindingGYM benchmark to datasets containing more than 3000 samples and ex-
panded it with 5 datasets from Moulana et al. (2022), yielding a total of 21 PPCs. We extended the
BindingGYM benchmark with additional datasets derived from combinatorial libraries. Combina-
torial libraries are characterized by a high mean frequency of all mutations and a limited number
of mutation sites. In contrast, most DMS datasets contain most mutations but with low frequency.
These combinatorial datasets provide alternative evaluation protocols for out-of-distribution perfor-
mance based on unseen mutations while not relying on single mutants. See Figure A.2.1 for details.

We compared two input regimes in line with Lu et al. (2024):

• Focus-on: only chains carrying variance are used. (mutated chains)

• Focus-off: The entire complex is used. (mutated and non-mutated chains alike.)

For datasets with a single mutated chain, we extracted that sequence and provided it to the (em-
bedding) model. For datasets with more than one mutated chain or when we chose the ”focus
off” regime, we concatenated the sequences using a separator token. This enabled us to determine
whether protein language models can position mutated complexes more fine-grained in their embed-
ding space using the context provided by the non-mutated chains. Sequences were tokenized with
the model’s native vocabulary. We obtained residue-level embeddings from the final layer and aggre-
gated by mean pooling across the sequence length to obtain sequence embeddings unless specified
otherwise.

3.2 ALTERNATIVE SPLITS FOR OUT-OF-DISTRIBUTION ASSESSMENT

We proposed and evaluated two alternative splitting strategies that reflect real-world generalization
challenges.
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• Out-of-Distribution (OOD) Split: The target variable, in this case the affinity or affinity
change, is divided into bins, with one bin held out for testing. This provides a more realistic
assessment of model generalization to unseen affinity ranges.

• Leave-One-Mutation-Out (LoMo) Split: All samples containing a specific mutation are
held out for testing. This split is applicable to combinatorial libraries.

(A)
(B)

Figure 2: (A) Illustration of the Out-of-Distribution (OOD) split. (B) Illustration of the Leave-One-
Mutation-Out (LoMo) split.

These two approaches provide means to evaluate out-of-distribution performance while preserving
all available data.

3.3 MODELS

We evaluated two modeling approaches:

• Support Vector Regression (SVR), using pLM embeddings as input features

• Parameter-Efficient Fine-Tuning (PEFT) of pLMs in combination with a simple regres-
sion head

Within these approaches we probed various models from the ESM model family.

3.3.1 SUPPORT VECTOR REGRESSION (SVR)

We fitted SVR models on pre-computed pLM features to probe the embedding space of the pLMs.
We used the scikit-learn implementation of SVR. If not stated otherwise, we instantiated the SVR
with the following hyperparameters: C=75, ϵ=0.1, kernel=RBF, and gamma=scale. We did not
constrain optimizer iterations but limited runtime to 48 CPU hours.

3.3.2 PARAMETER-EFFICIENT FINE-TUNING (PEFT) OF PLMS

pLMs are trained on vast amounts of data which motivates their large parameter counts. For down-
stream tasks like binding affinity prediction however, data availability is often limited. To reduce the
number of trainable parameters and adapt to the available dataset sizes, we employed parameter-
efficient finetuning using the PEFT library. We used weight decomposed low rank adaptation
(DoRA) introduced by Liu et al. (2024b). DoRa is a matrix factorization approach that reduces
the number of trainable parameters by factorizing the weight matrix of the pLM into a low-rank
approximation. In contrast to LoRa, DoRa does this for direction and magnitude separately en-
suring that the adapted weights are still on the unit sphere which enbales closer resembles to the
characteristics of full fine-tuning Liu et al. (2024b).

For non-optimization runs we set rank to 2, alpha to 16, and dropout to 0.1. The MLP prediction
head consisted of a single-layer MLP with hidden dimension size of 8, dropout of 0.5, and ReLU ac-
tivation, mapping from the pLM embedding dimension to a single regression output. See Appendix
Table A.7.2 for the resulting trainable parameters of the LoRa matrices and the MLP head as well
as model abbreviations and sources.
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4 RESULTS

4.1 THE HAIPR FRAMEWORK

We developed the HAIPR framework, which provides a unified backbone for evaluating affinity
prediction models. HAIPR standardizes the evaluation protocol, offers a single access point to
benchmark datasets, and includes comprehensive tools for model assessment and input data pertur-
bation as well as inference. This design ensures consistency, reproducibility, and extensibility. The
framework supports arbitrary models through a simple Predictor Interface. Furthermore, we support
all splits from Notin et al. (2023), albeit arguing against their use, as well as our own splits. We sup-
port arbitrary sequence generators through a simple Generator Interface. We provide comprehensive
customization of the framework through Hydra. We support optimization of most configurable pa-
rameters through Optuna enabling end-to-end optimization of all stages in unison. See Figure 1 for
an overview of the framework.

4.2 LIMITATIONS OF RANDOM SPLITS AND CURRENT OUT-OF-DISTRIBUTION EVALUATION
PROTOCOLS

We trained SVR models on ESM embeddings of 21 large DSM datasets using RandomCV splits.
For these datasets, we obtained mean Spearman correlation coefficients of 0.71 to 0.80 (Figure 3A).
Larger models, such as ESM2-15B provided slighlty better performance than smaller models. How-
ever, even the smallest ESM family model (ESM2-8M) achieved mean Spearman correlations on
RandomCV that exceed the correlation between high-throughput and low-throughput assays and
even sometimes between two distinct state-of-the-art low-throughput assays Kamat & Rafique
(2017). This highlights the need for more realistic evaluation strategies. See Appendix A.3 for
a complete overview of the results.

One reason might be that individual mutations often account for a large portion of the variance in
binding affinity. When using RandomCV, the model is exposed to these mutations during training,
which could inflate performance estimates. However, in real-world deployment, the primary objec-
tive is to accurately predict the effects of mutations that the model has not previously encountered,
as shown previously in Tossou et al. (2024).

(A) (B)

Figure 3: (A) Mean Spearman correlation over RandomCV of SVR models on ESM embeddings.
(B) Number of samples split by single- (blue) and multi-mutants (red).

Alternative splitting strategies, such as Contig and Modulo splits Lu et al. (2024); Notin et al. (2023),
are limited to single-mutation data and result in significant data loss, making them unsuitable for
large-scale screenings. Panel (B) in Figure 3 visualizes the sample loss after filtering for single
mutants. Using single-mutant based splits for evaluating out-of-distribution performance leads to a
significant loss of data which limits the utility of the DMS assays.
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4.3 OUT-OF-DISTRIBUTION PREDICTIONS

4.3.1 LEAVE-ONE-MUTATION-OUT (LOMO)

To investigate the relationship between a models capabillity to predict an unseen mutation and the
mutations contribution to the variance in binding affinity, we trained SVR models using ESMC-
300M embeddings on our proposed LoMo splits that withhold all samples containing a specific
mutation from the training data. Figure 4 shows the results of the training using the splits that
results in the highest and lowest mean affinity differences betweed train and test datasets for two
different combinatorial assays introduced in Section 3.2. We found that mutations that shift the
entire distribution of binding affinity pose a much greater challenge to the model than mutations that
have only a small impact. Notably, the mutations evaluated are consistent across the datasets, as
they originate from the same library; however, some datasets contain fewer variants or lack certain
mutations if those mutations prevented binding to the target.

(A) (B)

Figure 4: Using ESMC-300M Embeddings, we trained SVR models over LoMo splits for predicting
the binding affinity between the SARS-CoV2 RBD and (A) Human ACE2 Receptor (DMS Index
17) as well as the (B) LY-CoV555 Antibody (DMS Index 19)

This further supports the argument that RandomCV is not a good proxy for high-throughput screen-
ing performance, where it is expected that the model is challenged by mutations that are not present
in the training data. For a complete overview see Appendix A.4.

4.3.2 OUT-OF-DISTRIBUTION (OOD)

Figure 5: Distribution of Spearman
correlation values for SVR models
trained on ESM embeddings, com-
paring RandomCV and OOD splits.

We propose OOD splits as a general approach to evaluate out-
of-distribution performance for high-throughput affinity pre-
diction. This approach is less biologically motivated then
LoMo splits where we specifically evaluate the model’s ability
to predict unseen mutations but is not restricted to combinato-
rial libraries. To demonstrate the impact of our OOD splits on
prediction performance, we trained SVR models on a range of
ESM2 (8M, 150M, 650M, 15B) embeddings for all datasets
containing fewer than 40,000 samples. Figure 5 shows the
mean Spearman correlation for the CV and OOD splits. Com-
parison of model performance between RandomCV and OOD
splits for SVR models trained on these ESM2 embeddings
highlights the drop in predictive performance when moving
from RandomCV splits, which overestimate generalization, to
more realistic OOD splits that better reflect real-world scenar-
ios.
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4.4 EFFECT OF STRUCTURAL CONTEXT ON MODEL PERFORMANCE

Figure 6: Distribution of Spearman
correlation values for SVR models
trained on ESM embeddings, com-
paring Focus-on and Focus-off.

To assess whether model would profit from providing full
structural context, we trained SVR models on ESM-family
embeddings (ESM2: 8M, 35M, 650M; ESMC: 300M, 600M)
across a subset of the BindingGYM benchmark using OOD
splits. Figure 6 shows the distribution of Spearman correla-
tion, comparing the two input regimes. Each violin plot repre-
sents the aggregated performance distribution for one regime
over all datasets and models. Complete results are provided in
Appendix A.3.1. The effect of providing full structural con-
text was surprisingly small, although a small advantage of the
Focus-on regimen was detectable. Future work will explore
more direct approaches to investigate the impact on structural
models.

4.5 SAMPLE
SIZE REQUIREMENTS FOR RELIABLE PREDICTION

Next, we systematically investigated the minimum data size re-
quired to achieve reliable prediction performance. For bench-
marks with more than 30,000 samples, we subsampled the training data at thresholds of 1,000,
2,500, 5,000, 10,000, 20,000 and 30,000 samples. Both SVR and PEFT models were evaluated
using ESM2-8M, ESM2-15B, and ESMC-300M across OOD and CV splits. As expected, the effect
of data size was more pronounced for OOD prediction, while even 1,000 samples were sufficient to
exceed the data resolution for RandomCV prediction. Figure 7 shows results for the GB1 bench-
mark. While PEFT models outperformed SVR models, they were more challenging to train and
in our experiments suffered more frequently from model collapse, leading to missing datapoints.
We hypothesize that optimizing hyperparameters would likely mitigate this effect and we intend to
explore this in future work.

(A) (B)

Figure 7: Performance of (A) SVR on ESM embeddings and (B) PEFT models across RandomCV
and OOD splits with increasing data size. Missing data points are due to model collapse or hitting
the training time limit of 48 hours.

4.6 HIGH-THROUGHPUT SCREENING AND DESIGN WITH HAIPR

We provide an initial implementation for sequence space exploration using a genetic algorithm based
on Gad (2021). We used an ensemble of 5 ESMC-300M PEFT models trained on the GB1 IgG-
Fc fitness 1FCC dataset on the OOD splits to score sequences generated by the genetic algorithm.
Best generational sequences are folded using BOLTZ-2 Passaro et al. (2025) to ensure sequences
still are predicted to fold. Figure 8 and Figure 9 show the results of this screening. For additional
information see Appendix A.6 and Figure 18, 15 and 16 in the Appendix.

8
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Figure 8: Example of high-throughput in silico
screening using HAIPR. We show the predicted
fitness scores for log-distributed generations.

Figure 9: BOLTZ-2 prediction of the best gener-
ational sequence. Mutations from the Wildtype
are highlighted in Orange.

5 DISCUSSION

The HAIPR framework offers streamlined, end-to-end access for high-throughput affinity predic-
tion and inference using DMS assays. It emphasizes the importance of robust and realistic eval-
uation protocols, providing practical guidance for both experimental design and model selection.
The framework is designed for easy extension to new models, facilitating rigorous and consistent
evaluation.

Our findings highlight that evaluation splits encompassing the full affinity and mutational test dis-
tribution can significantly overestimate true out-of-distribution performance, underscoring the limi-
tations of Random Cross-Validation in this context.

We have expanded the BindingGYM benchmark with five new combinatorial datasets, enabling
sample-efficient assessment of out-of-distribution performance based on unseen mutations. These
resources are now available to the community. While the introduced OOD and LoMo splits serve as
a strong foundation for evaluating out-of-distribution generalization, we plan to further enhance the
HAIPR framework with additional protocols for molecular OOD settings, such as those proposed
by Fernandez-Diaz et al. (2024).

Our results indicate that SVR models face challenges in demanding out-of-distribution scenarios but
can remain competitive under RandomCV given enough training data. Although providing structural
context (focus on/off) had negligible impact for the sequence-based pLMs evaluated here, it may
be crucial for structural models trained on interface geometries, as suggested by Loux et al.. The
amount of data required for robust prediction is highly dependent on the complexity of the evaluation
split. This highlights the importance of carefully considering split design when assessing model
performance and provides guidance for the experiemtnal design of DMS assays intended for training
high-throughput predictors.

While hyperparameter optimization via Optuna was not a primary focus in this work, the framework
fully supports it. An illustrative example in Appendix A.5 demonstrates that even a limited number
of trials can yield notable improvements in performance. Systematic exploration of hyperparameter
optimization remains an avenue for future work. Initial inference experiments on the GB1 IgG-
Fc fitness 1FCC dataset using the OOD split produced promising results, which will be undergoing
experimental validation in our laboratories.

Overall, HAIPR provides a unified interface for all presented experiments, enabling robust compar-
ison and fostering the development of future models for high-throughput affinity prediction.

9
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A APPENDIX

A.1 IMPLEMENTATION DETAILS AND COMPUTE

All methods share a unified preprocessing and evaluation pipeline to ensure fairness across models
and input regimes. We log experiments using the open source platform MLflow. We use the Optuna
library for hyperparameter optimization. We intend to provide all generated embeddings to the
community. All code used to conduct the experiments will be made available. If not stated oterwise
we used the default parameters specified by the hydra configuration files.

A.2 FIGURES

A.2.1 COMBINATORIAL LIBRARIES

Figure 10: Combinatorial Libraries, are characterized by a high mean frequency of all mutations
and a limited number of mutation sites.
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A.3 ALL RESULTS FOR SVR-ESM2 MODELS ON RANDOM CV

Figure 11: All Results for SVR-ESM2 Models on Random CV

A.3.1 FOCUS ON/OFF

Figure 12: Results for BindingGYM subset comparing Support Vector Machines (SVR) on ESM
embeddings with and without context (focus on/off)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 LOMO RESULTS

Figure 13: Mean Spearman correlation by benchmark and model for the LoMo split

A.5 PARALLEL COORDINATES OF ACE2 DELTAKD HYPERPARAMETER OPTIMIZATION

Figure 14: Parallel Coordinates of ACE2 deltaKd (DMS index 8) Hyperparameter Optimization

A.6 HIGH-THROUGHPUT SCREENING

Figure 15: (A) Correlation of Inference matches
of GB1 IgG-Fc fitness 1FCC over generations

Figure 16: (B) Maximum fitness scores
for GB1 IgG-Fc fitness 1FCC during inference
across generations

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 17: Overlayed binders from GB1 IgG-Fc fitness 1FCC. Showing the wild-type (orange),
best from training (light blue) and best from inference (dark blue)

Figure 18: Sequence logo of the top 5 sequences of each generation for inference OOD split Trained
EMSC-300M Ensemble on GB1 IgG-Fc fitness 1FCC.
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A.7 TABLES

A.7.1 MAPPING FROM DMS INTEGER TO DMS ID

Table 1: Mapping from DMS integer to DMS ID

DMS Index DMS id

1 5A12 VEGF fitness 4ZFF
2 Z-domain ZSPA-1 LL1 fitness 1LP1
3 Z-domain ZSPA-1 LL2 fitness 1LP1
4 CXCR4 CXCL12 enrich 8U4O
5 hYAP65 peptide FunctioncalScore 1JMQ
6 GB1 IgG-Fc fitness 1FCC
7 GB1 IgG-Fc fitness 1FCC 2016
8 SARS2-RBD ACE2 deltaKd 6M0J
9 KRAS DARPinK27 norfitness 5O2S

10 KRAS PICK3CG-RBD norfitness 1HE8
11 KRAS RAF1 norfitness 6VJJ
12 KRAS RAF1-RBD norfitness 6VJJ
13 KRAS RALGDS-RBD norfitness 1LFD
14 KRAS SOS1 norfitness 8BE4
15 HLA-A2 TAPBPR meanscore 5WER
16 CD19 FMC63 Fitness 7URV
17 SARS2-RBD ACE2 HUMAN 7WPB
18 SARS2-RBD LY-CoV016 7C01
19 SARS2-RBD LY-CoV555 7KMG
20 SARS2-RBD S309 7XCO
21 SARS2-RBD REGN10987 9LYP

A.7.2 MODEL TRAINABLE PARAMETERS

Table 2: Total and Trainable Number of Parameters

Model Trainable Total Source

ESM2-T6 31.4K 8M Lin et al. (2022)
ESM2-T12 90.3K 35M Lin et al. (2022)
ESM2-T30 293K 150M Lin et al. (2022)
ESM2-T33 643K 650M Lin et al. (2022)
ESM2-T36 1.4M 3B Lin et al. (2022)
ESM2-T48 3.7M 15B Lin et al. (2022)
ESMC-300M 929K 300M github
ESMC-600M 1.3M 600M github
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A.7.3 ABSOLUTE MEAN DIFFERENCE BY MUTATION FOR COMBINATORIAL LIBRARIES

Table 3: Absolute mean differences by mutation for each Combinatorial Dataset

20 17 21 19 18
Mutation Index abs mean diff abs mean diff abs mean diff abs mean diff abs mean diff

1 0.3270 0.0021 0.0424 0.0849 0.0790
2 0.1726 0.0340 0.0091 0.0329 0.0145
3 0.2176 0.0084 0.0336 0.0526 0.0647
4 0.1996 0.0959 0.2034 0.3542 0.3161
5 0.0650 0.3046 0.0703 0.0363 1.3200
6 0.0131 0.1273 0.1950 0.0436 0.0225
7 0.0325 0.2027 0.6392 0.0360 0.0227
8 0.0029 0.2756 0.0109 0.0099 0.0405
9 0.0093 0.0234 0.0035 0.0791 0.0773
10 0.0361 0.0263 0.1407 1.0990 0.1698
11 0.0246 0.1290 0.0112 1.7586 0.9759
12 0.0227 0.2204 0.1706 0.0290 0.1994
13 0.0851 0.3436 0.0231 0.1533 0.1746
14 0.0132 1.0585 0.1223 0.2738 0.2057
15 0.0134 0.3478 0.0121 0.0986 0.0469

A.8 USE OF LLMS

We used LLMs to aid in preventing repetitive words and optimize sentence structure as well as
language.
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