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ABSTRACT

Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning (PEFT) method,
has gained remarkable popularity in recent years. By freezing pretrained weights
and injecting the product of two trainable low-rank matrices into certain layers of
the model, LoRA significantly reduces the number of trainable parameters while
introducing no additional inference latency. From an optimization perspective, the
original domain consists of bounded-rank matrices, which LoRA parametrizes us-
ing the standard LR factorization. However, this parametrization has unfavorable
theoretical properties, including a highly non-smooth optimization landscape and
the absence of fast local convergence guarantees. In this work, we explore two al-
ternative techniques with stronger theoretical properties for fine-tuning large mod-
els: (i) direct optimization over the set of fixed-rank matrices and (ii) optimization
over bounded-rank matrices using a smooth parameterization via desingulariza-
tion. Both approaches leverage well-established Riemannian manifold geometry,
and we employ Riemannian Adam with coordinate-wise stepsize as the optimiza-
tion algorithm. The resulting methods have comparable memory and computation
complexity to LoRA optimized with Adam. We show superior performances of
them on fine-tuning LLaMA for commonsense reasoning tasks.

1 INTRODUCTION

Due to the exceptional generalization capabilities of large-scale pretrained models, fine-tuning has
become an essential technique for adaptation to a wide range of downstream tasks. Traditional full-
parameter fine-tuning methods can be computationlly expensive and memory inefficient for certain
tasks especially when the number of downstream tasks increase. To tackle this challenge, parameter-
efficient fine-tuning (PEFT) methods have gained significant attention (Houlsby et al., 2019).

Among them, Low-Rank Adaptation (LORA) (Hu et al., 2022) has emerged as one of the most
popular approaches due to its simplicity and ability to reduce the number of trainable parameters
while maintaining inference efficiency. By freezing the pretrained weights and injecting a trainable
bounded-rank matrix into selected layers, LORA effectively adapts large models with minimal addi-
tional overhead. Specifically, LORA parametrizes the set of bounded-rank matrices via the standard
LR factorization, which is the product of two trainable low-rank matrices.

While this parametrization is easy to implement, it has several unfavorable theoretical properties.
Specifically, the optimization landscape induced by LR parametrization can be highly non-smooth,
makeing optimization challenging and potentially hindering convergence. Furthermore, the absence
of a local Polyak-Łojasiewicz (PŁ) condition may prevent fast local convergence guarantees (Reb-
jock & Boumal, 2024). On the experimental side, a capacity gap may still exist between LORA and
more advanced methods (Zhuo et al., 2024; Hu et al., 2023; Liu et al., 2024).

In this work, we explore two alternative approaches with stronger theoretical properties for opti-
mizing over the set of bounded-rank matrices and apply them to fine-tuning large models. The
first approach is to directly optimize over the set of fixed-rank matrices, which forms a smooth
submanifold of a linear space (Vandereycken, 2013). The second approach optimizes over an al-
ternative smooth parameterization of bounded-rank matrices using a desingularization (Khrulkov &
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Oseledets, 2018). Rebjock & Boumal (2024) have shown that this parameterized set is a smooth
manifold and has endowed it with a family of Riemannian structures.

Contributions. Leveraging well-established Riemannian optimization techniques (Absil et al.,
2008; Boumal, 2023; Boumal et al., 2014), we employ the Riemannian Adam optimizer with
coordinate-wise step sizes to fine-tune large neural networks on these two smooth manifolds. The
resulting methods maintain comparable memory and computational complexity to LoRA optimized
with Adam. We validate their effectiveness through fine-tuning experiments on LLaMA3.1-8B (Tou-
vron et al., 2023) for the commonsense reasoning tasks, We demonstrate their superior performance
compared to LoRA in terms of generalization accuracy and convergence speed. In particular, adding
nuclear norm regularization to the second approach further enhances its performance. Our findings
highlight the potential of Riemannian-based optimization techniques for improving PEFT methods.

Related work. We discuss the closely related work in the next section and defer the reader to the
Appendix for additional references.

Problem formulation and background. In this work, we consider adapter-based fine-tuning meth-
ods by introducing additional trainable modules into the original frozen parameters. Following Hu
et al. (2022), we inject a trainable matrix W ∈ Rm×n

≤r (with rank at most r) into a pre-trained weight
W0, so that after fine-tuning, the updated weight becomes W0+W. Compared to directly training
W, this method can significantly improve the memory efficiency if r is sufficiently small. Suppose
we add q such matrices, then the fine-tuning task is equivalent to solving a constrained optimization
problem of the form:

min
(Wi)

q
i=1

f(W1,W2, ...,Wq) subject to Wi ∈ Rmi×ni

≤ri
, ∀i ∈ [n] , (1)

for some ri ≤ min{mi, ni}, where f is the expected loss function for the downstreaming task.

However, the feasible set of problem (1) is a non-convex non-smooth algebraic variety, which can
be computationally hard in general (Gillis & Glineur, 2011). There exist several ways to tackle
this challenge. The most prevalent one is by using LR parametrization: φ(L1,R1, ...,Lq,Rq) =
(LiR

T
i , ...,LqR

T
q ) where Li ∈ Rmi×ri and Ri ∈ Rni×ri . Then solving problem (1) is equivalent

to minimizing g = f ◦ φ over (Li,Ri)
n
i=1, which is the idea behind the celebrated method LORA.

However, this parametrization has several unfavorable theoretical properties. For instance, the func-
tion g can become highly non-smooth even if f has Lipschitz gradient. This can make optimization
challenging and hinder convergence. Moreover, lacking local Polyak–Łojasiewicz (PŁ) condition
of LR parametrization can also prevent fast local convergence. More discussions and details can be
found in (Rebjock & Boumal, 2024) and Section 2.3 from (Khrulkov & Oseledets, 2018).

Apart from LR parametrization, there exist other techniques with stronger theoretical properties to
optimize problem (1). However, how to efficiently apply them to large-model fine-tuning tasks and
how their practical performance compares to LORA remain unclear.

Notations: St(n, r) := {X ∈ Rn×r : XTX = Ir}, diag(r) = {diagonal matrices with size r× r}.

2 LOW-RANK ADAPTATION ON MANIFOLD

In this section, we describe two methods for fine-tuning large neural networks on manifolds with
low-rank structures. Both of them are based on well-established Riemannian geometry.

Fixed-rank matrices as embedded geometry (Vandereycken, 2013). Instead of considering the
set of bounded-rank matrices, the classical approach is to optimize over the set of fixed-rank matri-
ces: Wi ∈ Rmi×ni

ri , for any i ∈ [q]. The whole search space a is a well-known smooth manifold that
can be endowed with a well-defined Riemannian structure (Boumal, 2023). Consequently, we can
apply the stochastic Riemannian gradient methods that generate a sequence of points constrained to
the manifold. Empirically, we found that equipping Riemannian Adam with a coordinate-wise step
size often outperforms the single step size approach described in (Bécigneul & Ganea, 2018), which,
in turn, performs better than Riemannian SGD. The full descriptions of the algorithm we implement
can be found in Algorithm 1. We next discuss its memory and computation cost.

In what follows, we assume q = 1 for simplicity. For any W ∈ Rm×n
r , we can represent and store it

by W = USVT where U ∈ St(m, r), V ∈ St(n, r) and S ∈ diag(r). This requires mr+nr+ r2
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memory storage. The main step is to compute the Riemannian gradient of ∇f(W), which is rep-
resented by a tuple (Up,M,Vp) such that Up = ∇f(W)V − UM, M = UT∇f(W)V and
Vp = ∇f(W)TU − VMT . Note that ∇f(W) is not required to be computed explicitly. In-
stead, it is sufficient to obtain ∇f(W)V and ∇f(W)TU via automatic differentiation (Novikov
et al., 2022). Specifically, the matrices U,S,V do not require gradient computations and we create
trainable matrices A = US ∈ Rm×r and B = 0n×r and compute f(W) = f(AVT + UBT )
during the forward pass. Then after the backward pass, the gradients of A and B are equivalent
to ∇f(W)V and ∇f(W)TU respectively, which are used to compute (Up,M,Vp) and perform
the optimization step. The procedure is described in Algorithm 2. Next, We compute the mo-
mentum which requires the storage of the past tuple (Up,M,Vp) and its element-wise product
(Up⊙Up,M⊙M,Vp⊙Vp). The next point is then obtained by performing a retraction step (Al-
gorithm 3) along the direction of the negative rescaled momentum. Finally, we transport the current
momentum vector to the tangent space of the new point (Algorithm 4).

In total, the method requires 2mr + 2nr + r2 memory for storing the parameters (which can be
reduced to mr+nr+r2 if the memory for A and B is freed at each iteration). Additionally, storing
the optimizer states requires 2mr + 2nr + 2r2 memory, The whole storage is nearly the same as
the requirement for LORA. For each optimization step, the product of two matrices of size Rm×r

and Rn×r is computed for several times, which scales up to mnr. Additionally, in the retraction
operator, we need to compute QR factorizations of two thin matrices, and the SVD for a small matrix
of size R2r×2r, which has time complexity (m+ n)r2.

Desingularization of bounded-rank matrices (Khrulkov & Oseledets, 2018; Rebjock &
Boumal, 2024). Khrulkov & Oseledets (2018) proposed another smooth parametrization of the
set of bounded-rank matrices, called desingularization, which is given by:

M = {(W,P) ∈ Rm×n ×Gr(n, n− r) : WP = 0} , (2)

where Gr is the standard Grassmann manifold (Bendokat et al., 2024) and W has rank at most r.
The original problem 1 is equivalent to solving g = f ◦ φ with φ(W,P) = W. Compared with
LR parametrization, the manifold M (2) has several favorable theoretical properties such as having
smooth and bounded fibers, which allows to obtain global and local convergence guarantee. We use
the Riemannian tools provided in (Rebjock & Boumal, 2024) and consider again the Riemannian
Adam with coordinate-wise stepsize. The full algorithm is described in Alogirithm 5.

For any (W,P) ∈ M, we can represent it by W = USVT and P = I − VVT where U ∈
St(m, r),V ∈ St(n, r) and S ∈ diag(r). Therefore, the memory storage of U,S,V is the same as
fixed rank matrices. The Riemannian gradient can be represented as a tuple (K,Vp) where K =
∇f(W)V ∈ Rm×r and Vp = (I −VVT )∇f(W)TUSS(α)−1 ∈ Rn×r with S(α) = 2αI + S2

and α is usually set to be 0.5. We can use the same trick as before to compute ∇f(W)V and
∇f(W)TU via automatic differentiation (See Algorithm 6). To compute the momentum update,
we need to store the previous tuples (K,Vp) and (K ⊙ K,Vp ⊙ Vp). In the retraction operator
(Algorithm 7), a thin QR decomposition of a matrix of size Rn×r and a thin SVD for a Rm×r

matrix are needed, which has the time complexity of order (m + n)r2. In total, the memory and
computation complexity of Algorithm 5 are at the same scale of Algorithm 1.

Nuclear norm regularization. If needed, a nuclear norm penalty can be explicitly added to the
loss function to encourage a solution with small singular values (Bach, 2008). Consider the loss
function g(W) = f(W) + λ ∥W∥∗ where λ > 0 and ∥W∥∗ := trace(S) where U,S,V are
the singular value decomposition of W. We can use −λUVT as the negative subgradient of the
function λ ∥W∥∗ and add this direction separately to the retraction operator similar to decoupled
weight decay for ADAMW (Loshchilov & Hutter, 2019). This is described on line 4 of Algorithm 7.

Non-LoRAM parameters. For all other parameters that are not low-rank and require full fine-
tuning, such as bias vectors or the final layers of the classifier, we optimize them separately using
the standard ADAMW optimizer.

Memory storage of the fine-tuned model. After fine-tuning, for both parametrizations, we can free
the memory of A and B and merge US into a matrix U′. Thus we are only required to store U′ and
VT for each task. During the forward pass, we use Wnew = W0 +U′VT as the updated weight.
Therefore, the memory storage is the same as LORA.
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For the second desingularization approach, since it may converge to a solution with rank less than r,
we can first identify and remove singular vectors associated with singular values below a predefined
threshold before merging, further reducing the memory cost.

Diagonal Scaling. Similar to DORA (Liu et al., 2024), one can enhance the expressivity of the
solution by introducing scaling matrices. For example, the updated weight can be parameterized as
Wnew = D1W0D2 + W where D1 ∈ diag(m) and D2 ∈ diag(n) are additional two trainable
parameters. Since letting D1 = Im and D2 = In recover the previous parametrization, the new
solution should in principle be better. This simple approach can be independently incorporated into
LORA and LORAM. We leave this exploration in the future work.

3 EXPERIMENTS

In this section, we evaluate LORAM against LORA by fine-tuning LLaMA3.1-8B (Touvron et al.,
2023) on commonsense reasoning tasks. We conduct the experiments using four A100-40G GPUs.

The commonsense reasoning benchmark consists of eight sub-tasks, each with predefined training
and testing sets. Following the setup of Hu et al. (2023); Liu et al. (2024), we combine the training
datasets from all eight tasks to form a unified training dataset and evaluate performance on the
individual test set. We inject trainable parameters into three attention matrices as well as up and
down projection matrices. In addition, we make several changes to create a better training setup.

We first increase the validation set (part of the training dataset) from 160 to 24000 to ensure a more
robust solution. We then choose the best model based on the evaluation accuracy instead of the
evaluation loss, as the former is more stable than the latter for this task. Finally, we only compute
the cross entropy loss for the answer tokens.

In what follows, we use LORAM-FR to denote Algorithm 2 running on the manifold of fixed-rank
matrices and LORAM-BR to refer to Algorithm 6 for optimizing the desingularization of bounded-
rank matrices. We use the minibatch size of 16 and context length of 256. We run 3 epochs of all
the methods and evaluate the performance every 640 iterations. The learning rate of all the methods
is linearly decreased to 0. The result can be found in Table 1.

Methods rank lr ARC-c ARC-e BoolQ PIQA SIQA HellaSwag WinoGrande OBQA Average

LORA-previous a 32 3× 10−4 71.2 84.2 70.8 85.2 79.9 91.7 84.3 87.4 80.8

LORA 16 10−4 83.6 93.5 74.8 89.1 80.7 94.3 88.6 87.4 86.5
LORAM-FR 16 5× 10−5 83.0 92.2 74.5 91.0 83.1 95.4 89.2 88.2 87.1
LORAM-BR b 16 10−4 84.2 93.8 76.4 90.0 81.2 95.7 89.7 87.8 87.3

LORA 32 10−4 84.7 93.1 75.5 89.9 81.7 95.5 89.1 88.4 87.2
LORAM-FR 32 3× 10−5 84.6 93.5 76.0 90.5 81.7 95.5 89.7 88.4 87.5
LORAM-BR b 32 10−4 85.3 93.4 76.2 91.0 81.8 95.5 89.7 87.8 87.6

aThe performance of LORA reported in previous papers (Liu et al., 2024; Si et al., 2025) fine-tuned on LLaMA3-8B.
bWe use λ = 10−3 for nuclear norm regularization . The performance gets worse if λ = 0.

Table 1: Performance comparison (test accuracy) of different methods for fine-tuning LLaMA3.1-
8B on commonsense reasoning tasks where the last column is the average over the number of tasks.

We see a significant improvement of LORA compared to the statstics reported in previous papers
(line 1), validating the effectiveness of the training setup. Moreover, LoRAM can further improve
the performance and test accuracy of both rank options. The convergence comparisons can be found
in Figure 1 in the Appendix.

4 CONCLUSION AND FUTURE WORK.

In this work, we propose to fine-tune large models on smooth manifolds with low-rank structures.
Future work includes extensive empirical studies on various downstream tasks, adding additional
diagonal scaling parameters, and using quantization strategies to further improve memory efficiency.
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Figure 1: Convergence (validation accuracy) comparisons of LORAM against LORA on for fine-
tuning LLaMA 3.1-8B on commonsense reasoning tasks.

Algorithm 1 RAdam for fixed-rank matrices applied to fine-tuning task
1: Input {ηk}, β1 > 0, β2 > 0, ε > 0
2: Initialize Ui ∈ St(mi, ri), Vi ∈ St(ni, ri), Si = 0ri×ri , wi,−1 = (0mi×ri ,0ri×ri ,0ni×ri),

v
Up

i,−1 = 0mi×ri , vM
i,−1 = 0ri×ri , vVp

i,−1 = 0ni×ri , ∀i ∈ [q]. Let vi,k = (v
Up

i,k ,v
M
i,k,v

Vp

i,k ).
3: for k = 0, 1, 2, ... do
4: for each i ∈ [q] do
5: gi,k = (Ui,k

p ,Mi,k,V
i,k
p ) (By Algorithm 6)

6: mi,k = β1wi,k−1 + (1− β1)gi,k

7: v
Up

i,k = β2v
Up

i,k−1 + (1− β2)U
i,k
p ⊙Ui,k

p

8: vM
i,k = β2v

M
i,k−1 + (1− β2)M

i,k ⊙Mi,k

9: v
Vp

i,k = β2v
Vp

i,k−1 + (1− β2)V
i,k
p ⊙Vi,k

p

10: (Ui,k+1,Si,k+1,Vi,k+1) = R(Ui,k,Si,k,Vi,k)

(
−ηkmi,k/(

√
vi,k + ε)

)
1

11: (By Algorithm 3)
12: wi,k = PT(Ui,k,Si,k,Vi,k)→(Ui,k+1,Si,k+1,Vi,k+1)(mi,k) (By Algorithm 4)

A APPENDIX

More Related work. Recent studies have investigated various LORA variants from multiple per-
spectives. A line of research focuses on understanding and improving the optimization of LORA.
Hayou et al. (2024) propose adjusting and assigning different learning rates to the two adapter ma-
trices. Zhang & Pilanci (2024) introduces a small r × r preconditioner to the gradient updates. Xia
et al. (2024) suggest periodically merging the low-rank matrices into the frozen pre-trained weights.
Zhu et al. (2024); Malinovsky et al. (2024) explore training one component and freezing the other in
the product of two matrices to tackle the non-smooth optimization landscape. However, in practice,
LORA is trained with coordinate-wise adaptive stepsize, which is incomparable to the theoretical
settings of these works. Another line of research focuses on modifying LORA to balance expres-
sivity and efficiency. Some works introduce additional trainable parameters to enhance the model’s
expressivity (Liu et al., 2024; Lin et al., 2024), while others reduce the number of trainable param-
eters to further optimize memory usage (Kopiczko et al., 2024). Zhang et al. (2023) propose to add
regularization to adaptively choose the rank for each layer based on SVD decomposition.

1The operation /, + and
√
· is element-wise.

2The operation /, + and
√
· is element-wise.
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Algorithm 2 Computation of Riemannian gradient for fixed-rank matrices
1: Input: (Ui,Si,Vi)

q
i=1 with Ui ∈ St(mi, ri), Vi ∈ St(ni, ri) and Si =

diag(ri) (with requires grad=False), Ai = UiSi and Bi = ′ni×ri (both with
requires grad=True)

2: for i ∈ [q] in parallel do
3: Compute Wi = AiV

T
i +UiB

T
i (Wi = UiSiV

T
i )

4: Inject Wi to the corresponding large matrix
5: Perform forward and backward pass
6: Set Mi = UT

i Ai.grad, Ui
p = Ai.grad−UiMi and Vi

p = Bi.grad−ViM
T
i

7: Return (Ui
p,Mi,V

i
p)

q
i=1

Algorithm 3 Retraction operator for fixed-rank matrices
1: Input: points (Ui,Si,Vi)

q
i=1, vectors (Ui

p,Mi,V
i
p)

q
i=1.

2: for i ∈ [q] in parallel do
3: Compute thin QR factorizations of the left and right matrices:
4: Qi

UR
i
U = [Ui U

i
p], Q

i
V R

i
V = [Vi V

i
p]

5: Compute SVD of a small matrix: ŨiS̃iṼ
T
i = Ri

U

[
Si +Mi Iri

Iri 0

]
(Ri

V )
T

6: Update U+
i = Qi

UŨi[:, : r], S+
i = S̃i[: r, : r] and V+

i = Qi
V Ṽi[:, : r]

7: Return (U+
i ,S

+
i ,V

+
i )

q
i=1

Algorithm 4 Parallel transport for fixed-rank matrices
1: Signature: PT(U,S,V)→(U+,S+,V+)(Up,M,Vp)

2: Input: points (U,S,V), (U+,S+,V+), vector (Up,M,Vp)
3: M+ = (U+)T (UM+Up)V

TV+ + (U+)TUVT
p V

+

4: U+
p = (UM+Up)V

TV+ +UVT
p V

+ −U+M+

5: (V+
p )

T = (U+)T (UM+Up)V
T + (U+)TUVT

p −M+(V+)T

6: Return (U+
p ,M

+,V+
p )

Algorithm 5 RAdamW for bounded-rank matrices applied to fine-tuning task
1: Input {ηk}, λ ≥ 0, β1 > 0, β2 > 0, ε > 0
2: Initialize Ui ∈ St(mi, ri), Vi ∈ St(ni, ri), Si = 0ri×ri , wi,−1 = (0mi×ri ,0ni×ri), vK

i,−1 =

0mi×ri , vVp

i,−1 = 0ni×ri , ∀i ∈ [n]. Let vi,k = (vK
i,k,v

Vp

i,k ).
3: for k = 0, 1, 2, ... do
4: for each i ∈ [n] do
5: gi,k = (Ki,k,V

i,k
p ) (By Algorithm 6)

6: mi,k = β1wi,k−1 + (1− β1)gi,k

7: vK
i,k = β2v

K
i,k−1 + (1− β2)Ki,k ⊙Ki,k

8: vVP

i,k = β2v
Vp

i,k−1 + (1− β2)V
i,k
p ⊙Vi,k

p

9: (Ui,k+1,Si,k+1,Vi,k+1) = Rλ
(Ui,k,Si,k,Vi,k)

(
−ηkmi,k/(

√
vi,k + ε)

)
2

10: (By Algorithm 7)
11: wi,k = PT(Ui,k,Si,k,Vi,k)→(Ui,k+1,Si,k+1,Vi,k+1)(mi,k) (By Algorithm 8)

8
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Algorithm 6 Computation of Riemannian gradient for desingularization of bounded-rank matrices
1: Input: (Ui,Si,Vi)

q
i=1 with Ui ∈ St(mi, ri), Vi ∈ St(ni, ri) and Si =

diag(ri) (with requires grad=False) Ai = UiSi and Bi = 0ni×ri (both with
requires grad=True), α > 0 (e,g, α = 0.5)

2: for i ∈ [q] in parallel do
3: Compute Wi = AiV

T
i +UiB

T
i (Wi = UiSiV

T
i )

4: Inject Wi to the corresponding large matrix
5: Perform forward and backward pass
6: Set Ki = Ai.grad, and Vi

p = (I−ViV
T
i )Bi.gradSi(2αI+ S2

i )
−1

7: Return (Ki,V
i
p)

q
i=1

Algorithm 7 Q-factor retraction operator with nuclear norm regularization
1: Input: points (Ui,Si,Vi)

q
i=1, vectors (−Ki,−Vi

p)
q
i=1, and constant λ ≥ 0

2: for i ∈ [q] in parallel do
3: Compute a thin QR decomposition Vi −Vi

p = QiRi

4: Compute the matrix Wi =
(
UiSi −Ki − λUi)

)
VT

i Qi − (UiSi)(V
i
p)

TQi

5: Compute thin SVD for Wi = ŪiS̄iH
T
i ∈ Rm×r

6: Set U+
i = Ūi,S

+
i = S̄i,V

+
i = QiHi

7: Return (U+
i ,S

+
i ,V

+
i )

q
i=1

Algorithm 8 Parallel transport for bounded-rank matrices
1: Signature: PT(U,S,V)→(U+,S+,V+)(K,Vp)

2: Input: points (U,S,V), (U+,S+,V+), vector (K,Vp), α > 0

3: K+ = [K,US] [V,Vp]
T
V+

4: V+
p = (I−V+(V+)T )

(
[V,Vp][K,US]TU+S++2α(VpV

T+VVT
p )V

+
)(
2αI+(S+)2

)−1

5: Return (K+,V+
p )
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